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Abstract

We show that, in a minimum effort game with incomplete information where

player types are independently drawn, there is a largest and smallest Bayesian

equilibrium, leading to the set of equilibrium payoffs (as evaluated at the in-

terim stage) having a lattice structure. Furthermore, the range of equilibrium

payoffs converges to those of the deterministic complete information version of

the game, in the limit as the incomplete information vanishes. This entails that

such incomplete information alone cannot explain the equilibrium selection sug-

gested by experimental evidence.
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1 Introduction

In a minimum effort game (Bryant, 1983; van Huyck et al., 1990; Legros and

Matthews, 1993; Vislie, 1994; Hvide, 2001), players simultaneously exert efforts in

order to produce a public good,1 with the output being determined by the player

exerting the minimum effort. Since no player wishes to exert more effort than the

minimum effort of his opponents, such a game has a continuum of (pure strategy)

Nash-equilibria that are Pareto-ranked.

While it might seem natural to restrict attention to the unique Pareto-dominant

equilibrium, experimental evidence (see van Huyck et al., 1990) does not seem to

support this argument. Subsequently, Carlsson and Ganslandt (1998) and Anderson

et al. (2001) have provided a theoretical foundation for van Huyck et al.’s results

by introducing noise in the players’ effort choice, by letting their strategic choices

translate into efforts with the addition of noise terms (“trembles”).

Both Carlsson and Ganslandt (1998) and Anderson et al. (2001) indicate that

such noise may be interpreted as or motivated by uncertainty about the objective

functions of the players.2 Hence, it is of interest to pose the following question: If

each player’s uncertainty about the effort of his opponent is not due to trembles,

but to a small amount of incomplete information about their motivation (e.g., their

willingness to pay for the public good, or their cost of contributing effort), will a

similar equilibrium selection be obtained? We show in this paper that this is not

the case: Introducing incomplete information without trembles in the action choices

does not reduce the set of equilibrium payoff profiles.

1Although we will interpret output as a public good throughout this paper, an equivalent inter-

pretation is that output is a private good divided among the players by a linear sharing rule.

2Carlsson and Ganslandt (1998, pp. 23–24) write: “The noise may also result from slightly

imperfect information about the productivity of the different agents’ efforts . . . ”, while Anderson

et al. (2001, p. 181) motivate their approach by suggesting that “[e]ven in experimental set-ups,

in which money payoff can be precisely stated, there is still some recidual haziness in the players’

actual payoffs, in their perceptions of the payoffs, . . . ”.
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We establish that, in the minimum effort game with incomplete information

where player types are independently drawn, there is a largest and smallest Bayesian

equilibrium, leading to the set of equilibrium payoff profiles (as evaluated at the

interim stage) having a lattice structure. Hence, there is a unique Bayesian equi-

librium that is weakly preferred to any other Bayesian equilibrium, for all types of

each player. Moreover, any Bayesian equilibrium is weakly preferred to the unique

Bayesian equilibrium where all players exert minimum effort, for all types of each

player. The range of equilibrium payoffs converges to those of the deterministic com-

plete information version of the game, in the limit as the incomplete information

vanishes. This entails that such incomplete information alone cannot explain the

equilibrium selection suggested by experimental evidence.

van Damme (1991, Chapter 5) analyze finite normal form games “in which each

player, although knowing his own payoff function exactly, has only imprecise in-

formation about the payoff functions of his opponents”, referring to them as dis-

turbed games. He shows that, under certain conditions, only perfect equilibria of

an undisturbed game can be approximated by equilibria of disturbed games, as the

disturbances go to 0. The minimum effort game has infinite action sets and hence is

outside the class studied by van Damme (1991). Still, we may note that the (pure

strategy) Nash equilibria of the minimum effort game, which all can be approximated

in a similar manner, are strict and thus pass any test of strategic stability.

The information structure of this paper differs from those in global games. In

Carlsson and Ganslandt (1998) and Anderson et al. (2001), players’ noise terms are

independent. So, the exact counterpart of their models with incomplete information

must be one in which player types are independently drawn. However, in global

games — as originally modeled by Carlsson and van Damme (1993) and generalized

by Frankel et al. (2003) — player types are correlated.

Our paper belongs to a large class of games with strategic complementarities,

so-called supermodular games. Supermodular games were first introduced by Topkis

(1979) and further explored by Vives (1990) and Milgrom and Roberts (1990). For
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games with incomplete information, existence of pure Bayesian equilibria is shown by

Vives (1990) for games that are supermodular in actions; by Athey (2001) for games

that satisfy a single crossing condition; and recently by Van Zandt and Vives (2007)

for games where (a) actions are strategic complements, (b) there is complementarity

between actions and types, and (c) interim beliefs are increasing in type with respect

to first-order stochastic dominance. Our analysis echoes Vives (1990) and Van Zandt

and Vives (2007) by showing the existence of a largest and a smallest Bayesian

equilibrium.

We start by introducing the minimum effort game in Section 2, before illustrating

incomplete information in Section 3 through the case with two players and two types

for each player. We then turn to the analysis of the general n-player case with a

continuum of types in Sections 4 and 5. We offer concluding remarks in Section 6,

and collect the proofs and some intermediate results in an appendix.

2 The minimum effort game

Consider a coordination game, with I = {1, 2, ..., n} (n ≥ 2) as the player set, and

[0,∞) as the action set for each player i. Player i’s action, ei, is interpreted as

effort. The players’ efforts are chosen simultaneously. Denote by bi player i’s benefit

coefficient. The payoff function for player i is given as

big (min {e1, ..., en})− cei ,

where g(min{e1, ..., en}) is the outcome and c is the constant marginal cost of effort.

Hence, the outcome is a function g of the minimum effort. We assume throughout

this paper that c is positive and that g : [0,∞) → R satisfies g (0) = 0, g′ (·) > 0,

g′′ (·) < 0, g′(e) →∞ as e → 0, and g′(e) → 0 as e →∞.

Note that the benefit coefficients, bi, i ∈ I, allow for heterogeneity between the

players, by endowing them with different willingness to pay for the public good.

However, by writing the payoff function as

g (min {e1, ..., en})−
c

bi
ei = g (min {e1, ..., en})− c

ei

bi
,
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it is apparent that the analysis of this paper remains unchanged if we instead inter-

pret the heterogeneity as different costs of contributing effort, or different produc-

tivity of effort.

Our assumptions on g(·) entails that for any b > 0, there is a unique effort level

ē(b) := arg maxebg(e)− ce

determined by bg′(ē(b)) = c. Furthermore, the function ē : (0,∞) → [0,∞) is

continuous and increasing. The interpretation is that player i will choose to exert

ē(bi) if he believes that his effort will be minimal and hence determine the outcome.

With complete information about the benefit coefficients it is straightforward

to show that e = (e1, . . . , en) is a (pure strategy) Nash equilibrium if and only

if, for all i ∈ I, ei = e∗ for some e∗ ∈ [0 , ē(min{b1, . . . , bn})]. Furthermore, if

0 ≤ e′ < e′′ ≤ ē(min{b1, . . . , bn}), then it holds for all i ∈ I that

big
(
e′

)
− ce′ < big

(
e′′

)
− ce′′ .

This shows that with complete information the minimum effort game has a contin-

uum of Nash-equilibria that are Pareto-ranked. In particular, with homogeneous

players (i.e., bi = b for all i ∈ I), the range of equilibrium payoffs is given by

[0 , bg(ē(b))− cē(b)] .

3 Illustrating incomplete information: Two types

Before turning to the general analysis of incomplete information in Section 4, it

is instructive to illustrate incomplete information in the simplest setting, with two

players and two types for each player, since the basic structure of the analysis carries

over to the more general case.

The type of each player i corresponds to his benefit coefficient bi, which may take

the values in the set {bL, bH}, with 0 < bL < bH . The types of each player is private

information and is i.i.d., being bH with probability P and bL with probability 1−P .
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A strategy for each player i is a function si : {bL, bH} → [0,∞). A strategy profile

(s1, s2) is a Bayesian equilibrium if, for each i ∈ {1, 2},

si(bL) = arg maxe∈[0,∞)u (e, sj , bL) (1)

si(bH) = arg maxe∈[0,∞)u (e, sj , bH) , (2)

where, for k = L, H,

u (ei, sj , bk) := Pbkg (min {ei, sj(bH)}) + (1− P ) bkg (min {ei, sj(bL)})− cei .

To investigate the range of equilibria payoffs in this simple incomplete informa-

tion setting, consider the following uniquely determined effort levels,

eL := ē(bL)

eH := arg maxePbHg(e)− ce ,

and consider the strategy s̄ defined by,

s̄(bL) := eL

s̄(bH) := max{eL, eH} .

The following result shows that the strategy s̄ provides an upper bound on equilib-

rium effort.

Proposition 1 Any Bayesian equilibrium s = (s1, s2) satisfies that for every player

i, 0 ≤ si(bL) ≤ s̄(bL) and 0 ≤ si(bH) ≤ s̄(bH).

Our main result of this section establishes the existence of a largest and smallest

Bayesian equilibrium and shows that the set of Bayesian equilibrium payoff profiles

(as evaluated at the interim stage) has a lattice structure.

Proposition 2 (i) The symmetric strategy profile s = (s1, s2) where for every

player i, si = s, with s defined by s(bk) = 0 for k = L, H, is a Bayesian

equilibrium.
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(ii) The symmetric strategy profile s = (s1, s2) where for every player i, si = s̄, is

a Bayesian equilibrium.

(iii) If s = (s1, s2) is a Bayesian equilibrium, then, for i ∈ {1, 2} and k = L, H,

0 = u(s(bk), s, bk) ≤ u(si(bk), sj , bk) ≤ u(s̄(bk), s̄, bk) .

(iv) For i ∈ {1, 2} and k = L, H, if u satisfies

0 = u(s(bk), s, bk) ≤ u ≤ u(s̄(bk), s̄, bk) ,

then there exists a Bayesian equilibrium s = (s1, s2) such that u(si(bk), sj , bi) =

u.

Proposition 2 entails that, in this simple version of the minimum effort game

with incomplete information, the range of equilibrium payoffs converges to those

of the deterministic complete information version of the game, in the limit as the

incomplete information vanishes, by having bL and bH converge to a common benefit

coefficient b. In the next two sections we show that this result carries over to the

minimum effort game with a continuum of types.

4 Incomplete information with a continuum of types

In the incomplete information version of the minimum effort game with a continuum

of types, the type bi of each player i is drawn independently from an absolutely

continuous CDF F : B → [0, 1], where B = [ b , b̄ ] denotes the set of types, with

0 < b < b̄. A strategy si : B → [0,∞) for each player i is a measurable function,

with Si denoting i’s strategy set. Write b−i := (b1, . . . , bi−1, bi+1, . . . , bn), Ω := Bn−1,

s−i := (s1, . . . , si−1, si+1, . . . , sn), and S−i := S1×· · ·×Si−1×Si+1,× · · ·×Sn. Define

Φ : Ω → [0, 1] by

Φ(b−i) := F (b1)× · · · × F (bi−1)× F (bi+1)× · · · × F (bn) .

6



Then the payoff of a player of type bi ∈ B can be written as

u(ei, s−i, bi) := biG(ei, s−i)− cei ,

where

G (ei, s−i) :=
∫

Ω
min{g(ei), g (minj 6=i {sj (bj)})}dΦ (b−i) .

If a player of type bi believes that his effort will be minimal and hence determine

the outcome, he will choose to exert ē(bi). However, when playing with opponents

whose strategies are given by s−i, type bi will choose an effort in [0, ē(bi)], since

other players, following their strategies, may choose efforts smaller than ē(bi) and

determine the outcome if type bi exerts ē(bi). The following proposition shows that

each type bi of player i has a unique best response

β(s−i)(bi) := arg maxeu(e, s−i, bi) ,

which is an element of [0, ē(bi)] for each bi, and which is a continuous and non-

decreasing function of bi.

Proposition 3 For every s−i ∈ S−i, the following holds. Each type bi of player

i has a unique best response β(s−i)(bi). Furthermore, β(s−i) is a continuous and

non-decreasing function of bi.

A strategy profile s = (s1, . . . , sn) is a Bayesian equilibrium, if,

for each type bi of every player i, si(bi) = β(s−i)(bi) .

It follows from Proposition 3 that si(·) is a continuous and non-decreasing function

if si is part of a Bayesian equilibrium.

To investigate the range of equilibrium payoffs under incomplete information,

consider the strategy s̄ : B → [0,∞) defined by

s̄(bi) := sup{e | ∃b ≤ bi satisfying F (b) < 1 s.t. e(b) = e} ,

where e : {b ∈ B | F (b) < 1} → [0,∞) is defined by

e(b) := arg maxebg(e)(1− F (b))n−1 − ce .
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By the assumptions on g(·) it follows that, for each b ∈ B satisfying F (b) < 1, e(b)

is uniquely determined by bg′(e(b))(1− F (b))n−1 = c. The following result conveys

the importance of the strategy s̄.

Proposition 4 Any Bayesian equilibrium s = (s1, . . . , sn) satisfies that, for each

type bi of every player i, 0 ≤ si(bi) ≤ s̄(bi).

Our main result of this section establishes the existence of a largest and smallest

Bayesian equilibrium and shows that the set of Bayesian equilibrium payoff profiles

(as evaluated at the interim stage) has a lattice structure.

Proposition 5 (i) The symmetric strategy profile s = (s1, . . . , sn) where for

every player i, si = s, with s defined by s(bi) = 0 for each type bi, is a

Bayesian equilibrium.

(ii) The symmetric strategy profile s = (s1, . . . , sn) where for every player i, si = s̄,

is a Bayesian equilibrium.

(iii) If s = (s1, . . . , sn) is a Bayesian equilibrium, then, for each type bi of every

player i,

0 = u
(
s(bi), (s, . . . , s)︸ ︷︷ ︸

n−1 times

, bi

)
≤ u

(
si(bi), s−i, bi

)
≤ ui

(
s̄(bi), (s̄, . . . , s̄)︸ ︷︷ ︸

n−1 times

, bi

)
.

(iv) For each type bi of every player i, if

0 = u
(
s(bi), (s, . . . , s)︸ ︷︷ ︸

n−1 times

, bi

)
≤ u ≤ u

(
s̄(bi), (s̄, . . . , s̄)︸ ︷︷ ︸

n−1 times

, bi

)
,

then there exists a Bayesian equilibrium s = (s1, . . . , sn) such that ui

(
si(bi),

s−i, bi

)
= u.

In the next section we show that the range of equilibrium payoffs converges to

those of the deterministic complete information version of the game, in the limit as

the incomplete information vanishes.
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5 Vanishing incomplete information

Given some b > 0, consider two sequences {bm}∞m=1 and {b̄m}∞m=1 satisfying

bm < bm+1 < b < b̄m+1 < b̄m for all m ∈ N and limm→∞bm = b = limm→∞b̄m .

Write Bm := [bm, b̄m] for each m ∈ N, implying that Bm ⊃ Bm+1 for all m ∈ N and

∩∞m=1Bm = {b}.

For each m ∈ N, construct a incomplete information minimum effort game where

the type bi of each player i is drawn independently from an absolutely continuous

CDF Fm : Bm → [0, 1]. A strategy si : Bm → [0,∞) of each player i is a measurable

function. Denote Ωm := Bn−1
m , and define Φm : Ωm → [0, 1] by

Φm(b−i) := Fm(b1)× · · · × Fm(bi−1)× Fm(bi+1)× · · · × Fm(bn) .

Then the payoff of an agent of type bi ∈ Bm can be written as

um(ei, s−i, bi) := biGm(ei, s−i)− cei ,

where

Gm (ei, s−i) :=
∫

Ωm

min{g(ei), g (minj 6=i {sj (bj)})}dΦm (b−i) .

Let the strategy s̄m : Bm → [0,∞) be defined by

s̄m(bi) := sup{e | ∃b ≤ bi satisfying Fm(b) < 1 s.t. em(b) = e} ,

where em : {b ∈ Bm | Fm(b) < 1} → [0,∞) is defined by

em(b) := arg maxebg(e)(1− Fm(b))n−1 − ce .

Note that Propositions 4 and 5 (ii)–(iv) apply to the strategy s̄m(·), and Proposition

5 (i) applies to the strategy sm defined by sm(bi) = 0 for each type bi.

Since the sequence {Bm}∞m=1 converges to a singleton set containing only the

benefit coefficient b, the sequence of incomplete information games converges, in the

limit as m →∞, to a complete information game where all players have a common

benefit coefficient b. The following result shows that the range of equilibrium payoffs

9



converges to those of the deterministic complete information version of the game, in

the limit as the incomplete information vanishes.

Proposition 6 Consider the sequence of incomplete information minimum effort

games determined by the sequence of supports {Bm}∞m=1 and the sequence of CDFs

{Fm}∞m=1. Then

limm→∞um(s̄m(bm), s−i, bi) = bg(ē(b))− cē(b) = limm→∞um(s̄m(b̄m), s−i, bi) .

Proposition 6 entails that small uncertainty about the payoffs of the opponents

in the minimum effort game with a continuum of types does not result in equilibrium

selection, provided that player types are independently drawn. This shows that such

an incomplete information version of the minimum effort game does not lead to the

the equilibrium selection results obtained by Carlsson and Ganslandt (1998) and

Anderson et al. (2001) through their versions of the minimum effort game, where

the players’ strategic choices translate into efforts with the addition of noise terms.

6 Concluding remarks

Equilibrium selection in the minimum effort game has been studied since van Huyck

et al. (1990) obtained their experimental evidence. Both Carlsson and Ganslandt

(1998) and Anderson et al. (2001) obtain results consistent with the experiment

evidence by introducing noise. Neither Carlsson and Ganslandt (1998) nor Anderson

et al. (2001) study incomplete versions of the minimum effort game, since in their

formulations the action choices of the players do not depend on private information.

In the present paper we endow the players with private information about their

payoff functions, where player types are independently drawn. We establish that

such incomplete information alone does not lead to equilibrium selection in the

minimum effort game. This means that one should be cautious in interpreting the

results of Carlsson and Ganslandt (1998) and Anderson et al. (2001) in terms of

incomplete information about the payoff functions of the opponents.
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Appendix: Proofs

Proof of Proposition 1. Assume that s is a Bayesian equilibrium. Since the effort set is

[0,∞), it remains to be shown that si(bL) ≤ s̄(bL) and si(bH) ≤ s̄(bH).

Suppose that si(bL) > s̄(bL). However, then, for any opponent strategy sj ,

PbLg (min {si(bL), sj(bH)}) + (1− P ) bLg (min {si(bL), sj(bL)})− csi(bL)

− [PbLg (min {s̄(bL), sj(bH)}) + (1− P ) bLg (min {s̄(bL), sj(bL)})− cs̄(bL)]

≤ PbLg (si(bL))) + (1− P ) bLg (si(bL))− csi(bL)

− [PbLg (s̄(bL)) + (1− P ) bLg (s̄(bL))− cs̄(bL)]

= bLg (si(bL))− csi(bL)− [bLg (s̄(bL))− cs̄(bL)] < 0 ,

where the weak inequality follows since g is increasing and the strict inequality follows

since, by the definition of s̄(bL) and the property that g is strictly concave, bLg(e) − ce is

a decreasing function of e for e > s̄(bL) = eL. This contradicts by (1) that (si, sj) in a

Bayesian equilibrium, for any si(bH), and shows that si(bL) ≤ s̄(bL).

Suppose that si(bH) > s̄(bH). Then it follows from the definition of s̄(bH) and the

first part of the proof that, for any opponent strategy sj that might be part of a Bayesian

equilibrium, it holds that sj(bL) ≤ s̄(bL) ≤ s̄(bH) < si(bH). This implies the equality below,

PbHg (min {si(bH), sj(bH)}) + (1− P ) bHg (min {si(bH), sj(bL)})− csi(bH)

− [PbHg (min {s̄(bH), sj(bH)}) + (1− P ) bHg (min {s̄(bH), sj(bL)})− cs̄(bh)]

= PbHg (min {si(bH), sj(bH)}) + (1− P ) bHg (sj(bL))− csi(bH)

− [PbHg (min {s̄(bH), sj(bH)}) + (1− P ) bHg (sj(bL))− cs̄(bH)]

≤ PbHg (si(bH))− csi(bH) − [PbHg (s̄(bH))− cs̄(bH)] < 0 ,

while the weak inequality follows since g is increasing and the strict inequality follows since,

by the definition of s̄(bH) and the property that g is strictly concave, PbHg(e) − ce is a

decreasing function of e for e > s̄(bH) ≥ eH . This contradicts by (2) that (si, sj) in a

Bayesian equilibrium, for any si(bL), and shows that si(bH) ≤ s̄(bH).

Proof of Proposition 2. Part (i). Assume that sj = s. Then clearly u (e, sj , bL) and

u (e, sj , bH) are decreasing in e for all e ≥ 0, establishing the result by (1) and (2).

Part (ii). Assume that sj = s̄. By Proposition 1 and (1) and (2), it is sufficient to show

that u (e, sj , bL) is increasing in e for all e ≤ s̄(bL), and u (e, sj , bH) is increasing in e for all

e ≤ s̄(bH). This follows from the definition of s̄.
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Part (iii). We have that 0 = u(s(bk), s, bk) ≤ u(si(bk), sj , bk), since u (0, sj , bL) = 0 and

u (0, sj , bH) = 0, independently of sj . Hence, each type of player i can always ensure himself

a non-negative payoff by setting ei = 0. To show that u(si(bk), sj , bk) ≤ u(s̄(bk), s̄, bk) for

each k = L, H, note that u (ei, sj , bk) is non-decreasing in both sj(bL) and sj(bH). Hence,

by Proposition 1, u (si(bL), sj , bL) and u (si(bH), sj , bH) are maximized for fixed si(bL) and

si(bH) by setting sj = s̄. Moreover, given sj = s̄, it follows from part (ii) that u (ei, sj , bL)

is maximized by setting ei = s̄(bL), and u (ei, sj , bH) is maximized by setting ei = s̄(bH).

Part (iv). For all e ∈ [0, s̄(bH)], let se be given by

se(bL) := min{eL, e}

se(bH) := e .

Then, for any e ∈ [0, s̄(bH)], u (e′, se, bL) is increasing in e′ for all e′ ≤ se(bL), and

u (e′, se, bH) is increasing in e′ for all e′ ≤ se(bH). Moreover, u (e′, se, bL) is decreasing

in e′ for all e′ ≥ se(bL), and u (e′, se, bH) is decreasing in e′ for all e′ ≥ se(bH). Hence, by

(1) and (2), (se, se) is a symmetric Bayesian equilibrium. Furthermore, u (se(bL), se, bL) and

u (se(bH), se, bH) are continuous functions of e, with u(s0(bL), s0, bL) = u(s0(bH), s0, bH) =

0, and, for k = L, H, u(ss̄(bH)(bk), ss̄(bH), bk) = u(s̄(bk), s̄, bk). This establishes part (iv).

Turn now to the case with a continuum of types considered in Sections 4 and 5. Let

B−i(bi) := {b−i ∈ Ω | bj ≥ bi for every j 6= i}

denote the set of opponent type profiles such that each opponent type j, bj ≥ bi, and let

A(ei, s−i) := {b−i ∈ Ω | sj(bj) ≥ ei for every j 6= i}

denote the set of opponent type profiles having the property that no opponent exert an effort

less than ei when their strategy profile is given by s−i. Then the function G (ei, s−i) :=∫
Ω

min{g(ei), g (minj 6=i {sj (bj)})}dΦ (b−i) can be written as

G (ei, s−i) =
∫

A(ei,s−i)

g (ei) dΦ (b−i) +
∫

Ω\A(ei,s−i)

g (minj 6=i {sj (bj)}) dΦ (b−i) .

As a function of ei, G has the following properties.

Lemma 1 For every s−i ∈ S−i, the following holds. (i) G is a continuous function of

ei. (ii) If e′i < e′′i , then 0 ≤ G(e′′i , s−i) − G(e′i, s−i) ≤ g(e′′i ) − g(e′i). (iii) If G(e′i, s−i) <

G(e′′i , s−i), then, for every λ ∈ (0, 1),

G(λe′i + (1− λ)e′′i , s−i) > λG(e′i, s−i) + (1− λ)G(e′′i , s−i) .
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Proof. (i) Fix ei and let ε > 0. Since g is continuous, there exists δ > 0 such that

|g(e′i) − g(ei)| < ε for all e′i satisfying |e′i − ei| < δ. This in turn implies that, for all

(e1, . . . , ei−1, ei+1, . . . , en),

|min{g(e′i), g (minj 6=i {ej})} − min{g(ei), g (minj 6=i {ej})}| < ε

for all e′i satisfying |e′i − ei| < δ. This in turn implies that, for fixed s−i,

|G (e′i, s−i)−G (ei, s−i) |

=
∣∣∣ ∫

Ω

min{g(e′i), g (minj 6=i {sj (bj)})}dΦ (b−i)

−
∫

Ω

min{g(ei), g (minj 6=i {sj (bj)})}dΦ (b−i)
∣∣∣ < ε

for all e′i satisfying |e′i − ei| < δ. This shows that G is a continuous function of ei.

(ii) Let e′i < e′′i , implying that, for fixed s−i, A(e′i, s−i) ⊇ A(e′′i , s−i). Hence, it follows

from the definition of G that

G (e′′i , s−i)−G (e′i, s−i) =
∫

A(e′′i ,s−i)

(g(e′′i )− g(e′i)) dΦ (b−i)

+
∫

A(e′i,s−i)\A(e′′i ,s−i)

(g (minj 6=i {sj (bj)})− g(e′i)) dΦ (b−i) .

Since g is increasing and g (minj 6=i {sj (bj)}) ≤ g(e′′i ) on Ω\A(e′′i , s−i) and A(e′i, s−i) ⊆ Ω,

we have that 0 ≤ G (e′′i , s−i)−G (e′i, s−i) ≤ g(e′′i )− g(e′i).

(iii) Assume G(e′i, s−i) < G(e′′i , s−i), and fix λ ∈ (0, 1). Write ei := λe′i+(1−λ)e′′i . Since

G is non-decreasing, we have that e′i < ei < e′′i , implying that, for fixed s−i, A(e′i, s−i) ⊇

A(ei, s−i) ⊇ A(e′′i , s−i). It follows from the definition of G that

G (e′′i , s−i)−G (ei, s−i) =
∫

A(e′′i ,s−i)

(g(e′′i )− g(ei)) dΦ (b−i)

+
∫

A(ei,s−i)\A(e′′i ,s−i)

(g (minj 6=i {sj (bj)})− g(ei)) dΦ (b−i) ,

G (ei, s−i)−G (e′i, s−i) =
∫

A(ei,s−i)

(g(ei)− g(e′i)) dΦ (b−i)

+
∫

A(e′i,s−i)\A(ei,s−i)

(g (minj 6=i {sj (bj)})− g(e′i)) dΦ (b−i) .
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Hence,

G(ei, s−i)− [λG(e′i, s−i) + (1− λ)G(e′′i , s−i)]

= λ

∫
A(ei,s−i)

(g(ei)− g(e′i)) dΦ (b−i) + (1− λ)
∫

A(e′′i ,s−i)

(g(ei)− g(e′′i )) dΦ (b−i)

+ λ

∫
A(e′i,s−i)\A(ei,s−i)

(g (minj 6=i {sj (bj)})− g(e′i)) dΦ (b−i)

+ (1− λ)
∫

A(ei,s−i)\A(e′′i ,s−i)

(g(ei)− g (minj 6=i {sj (bj)})) dΦ (b−i)

=
∫

A(e′′i ,s−i)

[g(ei)− (λg(e′i) + (1− λ)g(e′′i ))] dΦ (b−i)

+
∫

A(ei,s−i)\A(e′′i ,s−i)

[g(ei)− (λg(e′i) + (1− λ)g (minj 6=i {sj (bj)}))] dΦ (b−i)

+ λ

∫
A(e′i,s−i)\A(ei,s−i)

(g (minj 6=i {sj (bj)})− g(e′i)) dΦ (b−i) .

Since g is strictly concave, e′i < e′′i , and λ ∈ (0, 1), we have that

0 < g(ei)− (λg(e′i) + (1− λ)g(e′′i )) . (A1)

Furthermore, since g (minj 6=i {sj (bj)}) ≤ g(e′′i ) on Ω\A(e′′i , s−i), (A1) implies that

0 < g(ei)− (λg(e′i) + (1− λ)g (minj 6=i {sj (bj)}))

on Ω\A(e′′i , s−i). Hence, if A(ei, s−i) has non-zero measure, we have established that

G(ei, s−i)− [λG(e′i, s−i) + (1− λ)G(e′′i , s−i)] > 0 .

Moreover, this is trivially the case if A(ei, s−i) has zero measure, because then G(e′i, s−i) <

G(ei, s−i) = G(e′′i , s−i).

Proof of Proposition 3. Unique best response. By Lemma 1(i), u(e, s−i, bi) = biG(ei,

s−i) − cei attains a local maximum on [0, ē(bi)]. The strict concavity of g(·) and Lemma

1(ii) imply that any such local maximum is also a global maximum:

0 > big(ei)− cei − (big(ē(bi))− cē(bi)) ≥ biG(ei, s−i)− cei − (biG(ē(bi), s−i)− cē(bi))

if ei > ē(bi). Suppose that there exist e′i and e′′i , with 0 ≤ e′i < e′′i ≤ ē(bi), satisfying

biG(e′i, s−i)− ce′i = biG(e′′i , s−i)− ce′′i = maxebiG(e, s−i)− ce .
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Since c > 0, we must have bi

(
G(e′′i , s−i) − G(e′i, s−i)

)
= c(e′′i − e′i) > 0, implying that

G(e′i, s−i) < G(e′′i , s−i). However, then Lemma 1(iii) implies that

biG(λe′i + (1− λ)e′′i , s−i)− c (λe′i + (1− λ)e′′i )

> λ (biG(e′i, s−i)− ce′i) + (1− λ) (biG(e′′i , s−i)− ce′′i )

= maxebiG(e, s−i)− ce ,

which contradicts that e′i and e′′i are best responses. Hence, β(s−i)(bi) := arg maxebiG(e,

s−i)− ce exists and is unique.

β(s−i) is continuous. Suppose that β(s−i) is not a continuous function of bi. Then

there exists a sequence {bm
i }∞m=1 such that bm

i → b0
i and β(s−i)(bm

i ) 9 β(s−i)(b0
i ) as m →

∞. Since, for all m, β(s−i)(bm
i ) ∈ [0, ē(b̄)] (cf. the first part of the proof), there exists a

subsequence {b̃m
i }∞m=1 satisfying b̃m

i → b0
i and ẽm

i → ẽ0
i 6= e0

i as n → ∞, where we write

e0
i := β(s−i)(b0

i ) and, for all m, ẽm
i := β(s−i)(b̃m

i ). The definition of β(s−i) implies that the

following inequalities are satisfied for all m:

b̃m
i G(ẽm

i , s−i)− cẽm
i ≥ b̃m

i G(e0
i , s−i)− ce0

i

b0
i G(e0

i , s−i)− ce0
i ≥ b0

i G(ẽm
i , s−i)− cẽm

i .

Since G is a continuous function of ei, by taking limits and keeping in mind that b̃m
i → b0

i

and ẽm
i → ẽ0

i 6= e0
i as m →∞, we now obtain that

b0
i G(ẽ0

i , s−i)− cẽ0
i = b0

i G(e0
i , s−i)− ce0

i = maxeb
0
i G(e, s−i)− ce ,

where ẽ0
i 6= e0

i . This contradicts that β(s−i)(b0
i ) is unique and shows that β(s−i) is a

continuous function of bi.

β(s−i) is non-decreasing. Let b′i < b′′i , and write e′i := β(s−i)(b′i) and e′′i := β(s−i)(b′′i ).

The definition of β(s−i) implies the following inequalities:

b′iG(e′i, s−i)− ce′i ≥ b′iG(e′′i , s−i)− ce′′i (A2)

b′′i G(e′′i , s−i)− ce′′i ≥ b′′i G(e′i, s−i)− ce′i .

Hence,

(b′′i − b′i) [G(e′′i , s−i)−G(e′i, s−i)] ≥ 0 .

Since G is a non-decreasing function of e, this implies that G(e′i, s−i) = G(e′′i , s−i) if e′i > e′′i .

However, e′i > e′′i and G(e′i, s−i) = G(e′′i , s−i) contradicts (A2). Hence, e′i ≤ e′′i , showing

that β(s−i) is a non-decreasing function of bi.
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The observation that si(·) is a continuous and non-decreasing function if si is part of a

Bayesian equilibrium can be applied to show the following useful result.

Lemma 2 Any Bayesian equilibrium satisfies

(i) G(ei, s−i) − G(e′, s−i) ≤
(
g(ei) − g(e′)

)
(1 − F (b′))n−1 whenever e′ < ei and b′ ≤

sup
(
{b | sj(b) < e′ for all j 6= i} ∪ {b}

)
, and

(ii) G(e′′, s−i) − G(ei, s−i) ≥
(
g(e′′) − g(ei)

)
(1 − F (b′′))n−1 whenever ei < e′′ and b′′ ≥

sup
(
{b | sj(b) < e′′ for all j 6= i} ∪ {b}

)
.

Proof. Part (i). Assume e′ < ei and b′ ≤
(
sup{b | sj(b) < e′ for all j 6= i}∪{b}

)
. Since

sj(·) is non-decreasing for all j, the existence of k 6= i such that sk(bk) ≥ e′ and b ≤ bk < b′

would imply that bk is an upper bound for {b | sj(b) < e′ for all j 6= i} ∪ {b} and thus

contradict that b′ ≤ sup
(
{b | sj(b) < e′ for all j 6= i}∪{b}

)
. Hence, for all j 6= i, sj(bj) ≥ e′

implies bj ≥ b′; i.e., A(e′, s−i) ⊆ B−i(b′). It now follows from the definition of G that

G(ei, s−i)−G(e′, s−k)

=
∫

A(ei,s−i)

(
g(ei))− g(e′)

)
dΦ(b−i)

+
∫

A(e′,s−i)\A(ei,s−i)

(
g(minj 6=i{sj(bj)})− g(e′)

)
dΦ(b−i)

≤
∫

A(e′,s−i)

(
g(ei)− g(e′)

)
dΦ(b−i)

≤
∫

B−i(b′)

(
g(ei)− g(e′)

)
dΦ(b−i)

=
(
g(ei)− g(e′)

)
(1− F (b′))n−1,

since g(minj 6=i{sj(bj)}) ≤ g(ei) on Ω\A(ei, s−i).

Part (ii). Assume ei < e′′ and b′′ ≥ sup
(
{b | sj(b) < e′′ for all j 6= i} ∪ {b}

)
. Since sj(·)

is non-decreasing and continuous for all j, the existence of k 6= i such that sk(bk) < e′′ and

bk ≥ b′′ would imply that b′′ is not an upper bound for {b | sj(b) < e′′ for all j 6= i} ∪ {b}

and thus contradict that b′′ ≥ sup
(
{b | sj(b) < e′′ for all j 6= i} ∪ {b}

)
. Hence, for all j 6= i,

bj ≥ b′′ implies sj(bj) ≥ e′′; i.e., B−i(b′′) ⊆ A(e′′, s−i). It now follows from the definition of
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G that

G(e′′, s−i)−G(ei, s−k)

=
∫

A(e′′,s−i)

(
g(e′′))− g(ei)

)
dΦ(b−i)

+
∫

A(ei,s−i)\A(e′′,s−i)

(
g(minj 6=i{sj(bj)})− g(ei)

)
dΦ(b−i)

≥
∫

A(e′,s−i)

(
g(e′′)− g(ei)

)
dΦ(b−i)

≥
∫

B−i(b′′)

(
g(e′′)− g(ei)

)
dΦ(b−i)

=
(
g(e′′)− g(ei)

)
(1− F (b′′))n−1,

since g(minj 6=i{sj(bj)}) ≥ g(ei) on A(ei, s−i).

Proof of Proposition 4. Assume that s is a Bayesian equilibrium. Since the effort

set is [0,∞), it remains to be shown that for each type bi of every player i, si(bi) ≤ s̄(bi).

Part 1. First, we show this for b; i.e., for every player i, si(b) ≤ s̄(b). Suppose to the

contrary that there exists i such that si (b) > s̄(b). From Lemma 2 (ii),

G(si(b), s−i)−G(s̄(b), s−i) ≤ g(si(b))− g(s̄(b)).

Hence,

u(si(b), s−i, b)− u(s̄(b), s−i, b)

= bG(si(b), s−i)− csi(b)− [bG(s̄(b), s−i)− cs̄(b)]

≤ bg(si(b))− csi(b)− [bg(s̄(b))− cs̄(b)]

= bg(si(b))(1− F (b))n−1 − csi(b)− [bg(s̄(b))(1− F (b))n−1 − cs̄(b)] < 0 .

The second equality follows since F (b) = 0, while the strict inequality follows since g (·)

is strictly concave and s̄(b) = e(b). This contradicts that si can be played in a Bayesian

equilibrium if si (b) > s̄(b).

Part 2. Second, we show this for all types in (b, b̄]; i.e., for for each type bi ∈ (b, b̄]

of every player i, si(bi) ≤ s̄(bi). Suppose to the contrary that there exists b′ ∈
(
b, b̄

]
and i

such that si(b′) > s̄(b′). We divide this part into two cases; one case where there is a unique

player k maximizing sj(b′) over all j ∈ I, and another case where there are more than one

player maximizing sj(b′) over all j ∈ I.

Case 1: sk(b′) > max{maxj 6=k{sj(b′)}, s̄(b′)}. Choose any ek satisfying

max{max
j 6=k

{sj(b′), s̄(b′)} < ek < sk(b′) .
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Then b′ ≤ sup{b | sj(b) < ek for all j 6= k}, and it follows from Lemma 2 that

G(sk(b′), s−k)−G(ek, s−k) ≤
(
g(sk(b′))− g(ek)

)
(1− F (b′))n−1 .

Hence,

u(sk(b′), s−k, b′)− u(ek, s−k, b′)

= b′G(sk(b′), s−k)− csk(b′)− [b′G(ek, s−k)− cek]

≤ b′g(sk(b′))(1− F (b′))n−1 − csk(b′)−
[
b′g(ek)(1− F (b′))n−1 − cek

]
< 0 .

The strict inequality follows since −csk(b′) + cek < 0 if F (b′) = 1, and it follows since g (·)

is strictly concave and

sk(b′) > ek > max{max
j 6=k

{sj(b′)}, s̄(b′)} ≥ e(b′)

if F (b′) < 1. This contradicts that sk can be played in a Bayesian equilibrium if sk(b′) > max

{maxj 6=k{sj(b′)}, s̄(b′)}.

Case 2: K := arg maxj∈Isj(b′) is not a singleton and si(b′) > s̄(b′) if i ∈ K. It follows

from Proposition 3 that, for each i ∈ K, there exists

b′′i := min{bi | si(bi) = si(b′)}

Let b′′ := min{b′′i | i ∈ K}. It follows from Case 1 that there exist at least two players i ∈ K

for which b′′i = b′′. Let k denote one of these. Note that sk(b′′) = sk(b′) > s̄(b′) ≥ s̄(b′′) ≥

s̄(b). It follows from Part 1 that b′′ > b.

Consider a sequence {em}∞m=1 such that s̄(b) < em < em+1 < sk(b′′) for each m ∈ N

and em → sk(b′′) as m →∞. Let for each m ∈ N,

bm := sup{b | sj(b) < em for all j 6= k} ;

i.e., b > bm is equivalent to the existence of j 6= k with sj(bj) ≥ em and bj < b. Since

s̄(b) ≥ si(b) for all i (cf. Part 1 of this proof), si(·) is continuous (cf. Proposition 3 and the

definition of a Bayesian equilibrium), and the fact that maxj 6=k sj(b′′) = sk(b′′), it follows

that (i) b < bm < b′′, and (ii) bm → b′′ as m →∞.

For each m ∈ N it now follows from Lemma 2 that

G(sk(b′′), s−k)−G(em, s−k) ≤
(
g(sk(b′′))− g(em)

)
(1− F (bm))n−1 .
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Hence,

u(sk(b′′), s−k, b′′)− u(em, s−k, b′′)

= b′′G(sk(b′′), s−k)− csk(b′′)− [b′′G(em, s−k)− cem]

≤ b′′g(sk(b′′))(1− F (bm))n−1 − csk(b′′)−
[
b′′g(em)(1− F (bm))n−1 − cem

]
.

To show that this difference is negative for large m, note first that if b′′ > sup{b | F (b) < 1},

then there exists M ∈ N such that F (eM ) = 1 and u(sk(b′′), s−k, b′′) − u(em, s−k, b′′) ≤

−csk(b′′) + ceM < 0. Otherwise, F (em) < 1 for all m ∈ N, and we can let, for each m ∈ N,

e∗(bm) be defined by

e∗(bm) := arg maxeb
′′g(e)(1− F (bm))n−1 − ce .

By the assumptions on g(·) it follows that, for each m ∈ N, e∗(bm) is uniquely determined

by b′′g′(e∗(bm))(1 − F (bm))n−1 = c. Since F is absolutely continuous, we have from the

strict concavity of g(·) and the definition of e(·) that e∗(bm) → e(b′′) as m → ∞. Hence,

sk(b′′) > eM > e∗(bM ) > e(b′′) for sufficiently large M ∈ N, since sk(b′′) > s̄(b′′) ≥ e(b′′)

and em → sk(b′′) as m →∞. Therefore,

u(sk(b′′), s−k, b′′)− u(eM , s−k, b′′)

≤ b′′g(sk(b′′))(1− F (bM ))n−1 − csk(b′′)−
[
b′′g(eM )(1− F (bM ))n−1 − ceM

]
< 0

by the definition of e∗(bM ) and the strict concavity of g(·). This contradicts that sk can be

played in a Bayesian equilibrium if K := arg maxj∈Isj(b′) is not a singleton and si(b′) > s̄(b′)

if i ∈ K.

Proof of Proposition 5. Part (i). Assume that sj = s for every j 6= i. Then

G(e, s−i) = 0 for all e ≥ 0, which clearly implies that, for all bi ∈ [b, b̄], u(e, s−i, bi) is

decreasing in e for all e ≥ 0, establishing the result by Proposition 4.

Part (ii). Assume that sj = s̄ for every j 6= i. By Proposition 4 it is sufficient to show

that, for all bi ∈ [b, b̄ ], u(e′, s−i, bi) < u(e′′, s−i, bi) if e′ < e′′ ≤ s̄(bi).

Since F is absolutely continuous, the properties of g(·) and the definition of e(·) entail

that (a) e(·) is continuous and (b) e(bi) → 0 as bi ↑ sup{b | F (b) < 1}. The definition of s̄(·)

now implies that, for each bi ∈ [b, b̄ ], there exists b′′ satisfying b ≤ b′′ ≤ bi and F (b′′) < 1

such that e(b′′) = s̄(b′′) = s̄(bi). Hence, since s̄(·) is non-decreasing and sj = s̄ for every

j 6= i, we have that b′′ ≥ sup
(
{b | sj(b) < e′′ for all j 6= i} ∪ {b}

)
if e′′ ≤ s̄(bi). Hence, if
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e′ < e′′ ≤ s̄(bi), Lemma 2 implies that

G(e′′, s−i)−G(e′, s−i) ≥
(
g(e′′)− g(e′)

)
(1− F (b′′))n−1 > 0,

where the strict inequality follows since g(·) is increasing and F (b′′) < 1. By the definition

of e(·) and the strict concavity of g(·),

b′′G(e′′, s−i)− ce′′ −
[
b′′G(e′s−i)− ce′

]
≥ b′′g(e′′)(1− F (b′′))n−1 − ce′′ −

[
b′′g(e′)(1− F (b′′))n−1 − ce′

]
> 0 .

Since bi ≥ b′′ and G(e′′, s−i) > G(e′s−i), this implies that

u(e′′, s−i, bi)− u(e′, s−i, bi)

= biG(e′′, s−i)− ce′′ −
[
biG(e′s−i)− ce′

]
≥ b′′G(e′′, s−i)− ce′′ −

[
b′′G(e′s−i)− ce′

]
> 0

which establishes that u(e′, s−i, bi) < u(e′′, s−i, bi) if e′ < e′′ ≤ s̄(bi).

Part (iii). We have that, for each type bi of every player i,

0 = u
(
s(bi), (s, . . . , s)︸ ︷︷ ︸

n−1 times

, bi

)
≤ u

(
si(bi), s−i, bi

)
since, for each bi, u(0, s−i, bi) = 0, independently of s−i. Hence, each type bi of player i can

always ensure himself a non-negative payoff by setting ei = 0. To show that, for each type

bi of every player i,

u
(
si(bi), s−i, bi

)
≤ u

(
s̄(bi), (s̄, . . . , s̄)︸ ︷︷ ︸

n−1 times

, bi

)
,

note that, for each bi, the definition of u and Proposition 4 imply that u(si(bi), s−i, bi) is

maximized for fixed si over the set of opponent Bayesian equilibrium strategies by setting

sj = s̄ for all j 6= i. Moreover, given sj = s̄ for all j 6= i, it follows from part (ii) that, for

each bi, u(ei, sj , bi) is maximized by setting ei = s̄(bi).

Part (iv). For all e ∈ [0, s̄(b̄)], let se be given by

se(bi) := min{s̄(bi), e} .

for all bi ∈ [b, b̄ ]. Then, for any e ∈ [0, s̄(b̄)], it follows from part (i) that u(e′, s−i, bi) with

sj = se for all j 6= i reaches a local maximum on [0, e] at se(bi) and is decreasing in e′ for all

e′ ≥ e. Hence, (s1, . . . , sn) with si = se for all i ∈ I is a symmetric Bayesian equilibrium.
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Furthermore, for all bi, u(se, s−i, bi) with sj = se for all j 6= i is a continuous function of e,

with

0 = u
(
s(bi), (s, . . . , s)︸ ︷︷ ︸

n−1 times

, bi

)
= u(s0(bi), (s0, . . . , s0)︸ ︷︷ ︸

n−1 times

, bi) ,

u(ss̄(b̄), (ss̄(b̄), . . . , ss̄(b̄))︸ ︷︷ ︸
n−1 times

, bi) = u
(
s̄(bi), (s̄, . . . , s̄)︸ ︷︷ ︸

n−1 times

, bi

)
.

This establishes part (iv).

Proof of Proposition 6. For each m ∈ N, it follows from the definition of em : {b ∈

Bm | Fm(b) < 1} → [0,∞) that

em(bm) = ē(bm) (A3)

em(b) ≤ ē(b) ≤ ē(b̄m) for all b ∈ Bm such that Fm(b) < 1 , (A4)

keeping in mind that (1− Fm(b))n−1 ≤ 1 for all b ∈ Bm and ē(·) is an increasing function.

It follows from (A3) and (A4) and the definition of s̄m : Bm → [0,∞) that

ē(bm) ≤ s̄m(bi) ≤ ē(b̄m) for all bi ∈ Bm . (A5)

Since ē(·) is a continuous function and limm→∞bm = b = limm→∞b̄m, we have that

limm→∞ē(bm) = ē(b) = limm→∞ē(b̄m) ,

which in combination with (A5) entails that

limm→∞s̄m(bm) = ē(b) = limm→∞s̄m(b̄m) .

The result now follows from the properties of the payoff functions um, m ∈ N, and the CDFs

Φm, m ∈ N.
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