A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Biørn, Erik; Skjerpen, Terje; Wangen, Knut R. # **Working Paper** Can random coefficient Cobb-Douglas production functions be aggregated to similar macro functions? Memorandum, No. 2004,22 # **Provided in Cooperation with:** Department of Economics, University of Oslo *Suggested Citation:* Biørn, Erik; Skjerpen, Terje; Wangen, Knut R. (2004): Can random coefficient Cobb-Douglas production functions be aggregated to similar macro functions?, Memorandum, No. 2004,22, University of Oslo, Department of Economics, Oslo This Version is available at: https://hdl.handle.net/10419/63193 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # **MEMORANDUM** No 22/2004 Can Random Coefficient Cobb-Douglas Production Functions Be Aggregated to Similar Macro Functions? Erik Biørn, Terje Skjerpen and Knut R. Wangen ISSN: 0801-1117 ·MI Department of Economics University of Oslo This series is published by the **University of Oslo Department of Economics** P. O.Box 1095 Blindern N-0317 OSLO Norway Telephone: + 47 22855127 Fax: + 47 22855035 Internet: http://www.oekonomi.uio.no/ e-mail: econdep@econ.uio.no In co-operation with The Frisch Centre for Economic Research Gaustadalleén 21 N-0371 OSLO Norway Telephone: +47 22 95 88 20 Fax: +47 22 95 88 25 Internet: http://www.frisch.uio.no/ e-mail: frisch@frisch.uio.no # List of the last 10 Memoranda: | No | 21 | Atle Seierstad | |----|----|--| | | | Open mapping theorems for directionally differentiable functions. 13 pp. | | No | 20 | Contract Renewal | | | | Helge Holden, Lars Holden, and Steinar Holden. 44 pp. | | No | 19 | Jo Thori Lind | | | | Repeated surveys and the Kalman filter. 19 pp. | | No | 18 | Kari Eika | | | | When quality today affects service needs | | | | Tomorrow. 30 pp. | | No | 17 | Rolf Golombek and Michael Hoel | | | | Unilateral emission reductions when there are cross -country technology | | | | spillovers. 23 pp. | | No | 16 | Kjetil Bjorvatn and Alexander W. Cappelen | | | | Globalisation, inequality and redistribution. 17 pp. | | No | 15 | Alexander W. Cappelen and Bertil Tungodden | | | | Rewarding effort. 31 pp. | | No | 14 | Alexander W. Cappelen and Bertil Tungodden | | | | The liberal egalitarian paradox. 15 pp. | | No | 13 | John K. Dagsvik and Steinar Strøm | | | | Sectoral labor supply, choice restrictions and functional form. 15 pp. | | No | 12 | Tiziano Razzolini | | | | The Norwegian market for pharmaceuticals and the non-mandatory | | | | substitution reform of 2001: the case of enalapril. 58 pp. | A complete list of this memo-series is available in a PDF® format at: http://www.oekonomi.uio.no/memo/ # CAN RANDOM COEFFICIENT COBB-DOUGLAS PRODUCTION FUNCTIONS BE AGGREGATED TO SIMILAR MACRO FUNCTIONS? # ERIK BIØRN University of Oslo, Department of Economics E-mail: erik.biorn@econ.uio.no # TERJE SKJERPEN and KNUT R. WANGEN Statistics Norway, Research Department, E-mail: terje.skjerpen@ssb.no; knut.reidar.wangen@ssb.no Abstract: Parametric aggregation of heterogeneous micro production technologies is discussed. A four-factor Cobb-Douglas function with normally distributed firm specific coefficients and with log-normal inputs (which agrees well with the available data) is specified. Since, if the number of micro units is large enough, aggregates expressed as arithmetic means can be associated with expectations, we consider conditions ensuring an approximate relation of Cobb-Douglas form to exist between expected output and expected inputs. Similar relations in higher-order moments are also derived. It is shown how the aggregate input elasticities depend on the coefficient heterogeneity and the covariance matrix of the log-input vector and hence vary over time. An implementation based on firm panel data for two manufacturing industries gives estimates of industry level input elasticities and decomposition for expected output. Finally, aggregation errors which emerge when the correct aggregate elasticities are replaced by the expected micro elasticities, are explored. **Keywords:** Productivity. Panel Data. Random coefficients. Log-normal distribution. Aggregate production function. JEL classification: C23, C43, D21, L11 # 1 Introduction The production function is usually considered an essentially micro construct, and the existence, interpretation, and stability of a corresponding aggregate function are issues of considerable interest in macro-economic modelling and research, cf. the following quotations: "The benefits of an aggregate production model must be weighted against the costs of departures from the highly restrictive assumptions that underly the existence of an aggregate production function" [Jorgenson (1995, p. 76)] and "An aggregate production function is a function that maps aggregate inputs into aggregate output. But what exactly does this mean? Such a concept has been implicit in macroeconomic analyses for a long time. However, it has always been plagued by conceptual confusions, in particular as to the link between the underlying micro production functions and the aggregate macro production function, the latter thought to summarize the alleged aggregate technology" [Felipe and Fisher (2003, p. 209), our italics]. Three (related) questions are of particular interest: Can aggregation by analogy, in which estimated micro parameters, or averages of such elasticities, are inserted into a macro function of the same form, give an adequate representation of the 'aggregate technology'? Which are the most important sources of aggregation bias and instability of the macro function over time? Does the heterogeneity of the micro technologies or the spread in the input mix across firms affect the macro parameters, and if so, how? The last question was raised more than 30 years ago by Johansen (1972), in the context of aggregating 'putty-clay' micro technologies to smooth macro functions by utilizing information on the distribution of input coefficients across firms. Panel data is a necessity to examine such issues empirically in some depth. Yet, the intersection between the literature on aggregation and the literature on panel data econometrics is still very small. Our focus in this paper will be on the three questions raised above, using a rather restrictive parametric specification of the *average* micro technology, based on a four-factor Cobb-Douglas function, with *random coefficients* to represent technological heterogeneity. Although Cobb-Douglas restricts the pattern of input substitution strongly and has to some extent been rejected in statistical tests, the simplicity of this parametric form ¹A textbook exposition of theoretical properties of production functions aggregated from neo-classical micro functions is given in Mas-Colell, Whinston and Green (1995, Section 5.E). of the average technology is a distinctive advantage of this functional form over, e.g., Translog or CES. We assume that the random coefficients are jointly normal (Gaussian) and that the inputs are generated by a multivariate log-normal distribution, whose parameters may shift over time. To our knowledge, this is the first study exploring aggregate production functions by using firm-level (unbalanced) panel data in a full random coefficient setting by means of this form of the average micro technology. A model framework which is similar to ours, although denoted as 'cross-sectional aggregation of log-linear models' (our italics) is considered by van Garderen, Lee and Pesaran (2000, Section 4.2). However, they implement it, not on data from single firms, but on time series data from selected industries (p. 309), which is less consistent with the underlying micro theory. The expectation vector and covariance matrix of the coefficient vector are estimated from panel data for two Norwegian manufacturing industries. Log-normality of the inputs is tested and for the most part not rejected. This, in conjunction with a Cobb-Douglas technology with normally distributed coefficients, allows us to derive interpretable expressions for aggregate production. From the general literature on aggregation it is known that properties of relationships aggregated from relationships for micro units depend on the average functional form in the micro model, its heterogeneity, the distribution of the micro variables, and the form of the aggregation functions. Customarily, the aggregation functions are arithmetic means or sums. If the number of micro units is large enough to appeal to a statistical law of large numbers and certain additional statistical regularity conditions are satisfied, we can associate the arithmetic mean with the expectation [cf. Fortin (1991, Section 2),
Stoker (1993, Section 3), Hildenbrand (1998, Section 2), and Biørn and Skjerpen (2004, Section 2)], which is what we shall do here. However, we will be concerned not only with relationships expressed in terms of expected inputs and output, but also with relationships between higher-order moments. Given our stochastic assumptions, the marginal distribution of output will not be log-normal. van Garderen, Lee and Pesaran (2000, p. 307) derived a formula for the expectation of output under the same stochastic assumptions as we employ. Their formula can also be generalized to higher order origo moments of output, provided that the moments exist. The existence of these moments is guaranteed by an eigenvalue condition which involves the covariance matrices of the random coefficients and the log-inputs. Examining this condition for each year in the data period, we find that, generally, only the first and second origo moments of output exist. Besides the exact formulae, approximate expressions for the origo moments of output are considered. An advantage of the latter is that they allow us to derive interpretable relationships between origo moments of output and inputs, construct decompositions of expected output, of interest when for example predicting output changes from changes in inputs, and derive expressions for aggregate elasticities. In order to assess the quality of this approximation, a comparison of estimated origo moments of output based on the approximate formulae with those obtained by the exact formulae. A main objective of the paper is to compare correctly estimated aggregate input and scale elasticities with elasticities obtained from simple analogy. Since aggregate parameters are in general undefined unless the distribution of the micro variables is restricted in some way, we provide results for the limiting cases where the means of the log-inputs change and their dispersions are preserved, and the opposite case. While the expected micro elasticities, by construction, are time invariant, the correct macro elasticities are allowed to vary. For some elasticities we find a trending pattern. Besides, even when the variation over time is modest there are significant level differences between the aggregate elasticities calculated from the correct formulae and those obtained by analogy, as well as differences in the relative size of the elasticities for the different inputs. The following sections are organized as follows. The model is presented in Section 2, properties of the theoretical distribution of output are discussed, and approximative expressions for the moments of output are derived. From this we obtain, in Section 3, an approximate aggregate production function and expressions for the correct aggregate input elasticities, in the 'dispersion preserving' and 'mean preserving' cases. In Section 4, the econometric method and data are first described, and then estimates of aggregate input elasticities and other results are presented. Section 5 concludes. # 2 Model and output distribution # 2.1 Basic assumptions We consider an n factor Cobb-Douglas production function model for panel data of an arbitrary form, written in log-linear form as $$(1) y_{it} = x'_{it}\beta_i + u_{it} = \alpha_i + z'_{it}\gamma_i + u_{it},$$ where i is the firm index, t is the period index, $x_{it} = (1, z'_{it})'$ is an n+1 vector (including a one for the intercept) and $\beta_i = (\alpha_i, \gamma'_i)'$ is an n+1 vector (including the intercept), γ_i denoting the n vector of input elasticities. We interpret z_{it} as $\ln(Z_{it})$, where Z_{it} is the n dimensional input vector, and y_{it} as $\ln(Y_{it})$, where Y_{it} is output, and assume that (2) $$x_{it} \sim \mathcal{N}(\mu_{xt}, \Sigma_{xxt}) = \mathcal{N}\left(\begin{bmatrix} 1 \\ \mu_{zt} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & \Sigma_{zzt} \end{bmatrix}\right),$$ (3) $$\beta_i \sim \mathcal{N}(\mu_{\beta}, \Sigma_{\beta\beta}) = \mathcal{N}\left(\begin{bmatrix} \mu_{\alpha} \\ \mu_{\gamma} \end{bmatrix}, \begin{bmatrix} \sigma_{\alpha\alpha} & \sigma'_{\gamma\alpha} \\ \sigma_{\gamma\alpha} & \Sigma_{\gamma\gamma} \end{bmatrix} \right),$$ (4) $$u_{it} \sim \mathcal{N}(0, \sigma_{uu}),$$ (5) $$x_{it}, \beta_i, u_{it}$$ are stochastically independent, where $\sigma_{\alpha\alpha} = \text{var}(\alpha)$, $\sigma_{\gamma\alpha}$ is the *n* vector of covariances between α_i and γ_i , and $\Sigma_{\gamma\gamma}$ is the *n* dimensional covariance matrix of γ_i . The n+1 dimensional covariance matrix Σ_{xxt} is singular since x_{it} has a one element, while its *n* dimensional submatrix Σ_{zzt} is non-singular in general. The implementation of the model specifies four inputs (n = 4): capital (K), labour (L), energy (E), and materials (M), and includes a deterministic linear trend (t), intended to capture the level of the technology. We therefore parameterize (1) as (6) $$y_{it} = \alpha_i^* + \kappa t + z_{it}' \gamma_i + u_{it},$$ where α_i^* and γ_i are random parameters specific to firm i, and the trend coefficient κ is assumed to be firm invariant. We let $z_{it} = (z_{Kit}, z_{Lit}, z_{Eit}, z_{Mit})'$, $\gamma_i = (\gamma_{Ki}, \gamma_{Li}, \gamma_{Ei}, \gamma_{Mi})'$, collect all the random coefficients for firm i in the vector $\psi_i = (\alpha_i^*, \gamma_i')'$, and let $$\mathsf{E}(\psi_i) = \psi = (\mu_\alpha^*, \mu_K, \mu_L, \mu_E, \mu_M)', \quad \mathsf{E}[(\psi_i - \psi)(\psi_i - \psi)'] = \Omega,$$ where Ω is a symmetric, but otherwise unrestricted matrix, and $\mathsf{E}(\alpha_i^*) = \mu_\alpha^*$. # 2.2 The distribution of output It is convenient first to characterize the distribution of log-output. From (1)–(5) it follows that (7) $$(y_{it}|\beta_i) \sim \mathcal{N}(\mu'_{xt}\beta_i, \beta'_i \Sigma_{xxt}\beta_i + \sigma_{uu}), \quad (y_{it}|x_{it}) \sim \mathcal{N}(x'_{it}\mu_\beta, x'_{it}\Sigma_{\beta\beta}x_{it} + \sigma_{uu}),$$ and, by using the law of iterated expectations, that (8) $$\mu_{yt} = \mathsf{E}(y_{it}) = \mathsf{E}[\mathsf{E}(y_{it}|\beta_i)] = \mu'_{rt}\mu_{\beta},$$ (9) $$\sigma_{yyt} = \operatorname{var}(y_{it}) = \operatorname{\mathsf{E}}[\operatorname{var}(y_{it}|\beta_i)] + \operatorname{var}[\operatorname{\mathsf{E}}(y_{it}|\beta_i)] = \operatorname{\mathsf{E}}[\operatorname{tr}(\beta_i\beta_i'\Sigma_{xxt}) + \sigma_{uu}] + \operatorname{var}(\mu_{xt}'\beta_i)$$ $$= \operatorname{tr}[\operatorname{\mathsf{E}}(\beta_i\beta_i'\Sigma_{xxt})] + \sigma_{uu} + \mu_{xt}'\Sigma_{\beta\beta}\mu_{xt} = \operatorname{tr}[(\mu_{\beta}\mu_{\beta}' + \Sigma_{\beta\beta})\Sigma_{xxt}] + \sigma_{uu} + \mu_{xt}'\Sigma_{\beta\beta}\mu_{xt}$$ $$= \mu_{xt}'\Sigma_{\beta\beta}\mu_{xt} + \mu_{\beta}'\Sigma_{xxt}\mu_{\beta} + \operatorname{tr}(\Sigma_{\beta\beta}\Sigma_{xxt}) + \sigma_{uu}.$$ The four components of σ_{yyt} represent, respectively, (i) the variation in the coefficients $(\mu'_{xt}\Sigma_{\beta\beta}\mu_{xt})$, (ii) the variation in the log-inputs $(\mu'_{\beta}\Sigma_{xxt}\mu_{\beta})$, (iii) the interaction between the variation in the log-inputs and the coefficients $[\operatorname{tr}(\Sigma_{\beta\beta}\Sigma_{xxt})]$, and (iv) the disturbance variation (σ_{yyt}) . We next characterize the distribution of *output*. Since $Y_{it} = e^{y_{it}} = e^{x'_{it}\beta_i + u_{it}}$, we know from (7) that $(Y_{it}|x_{it})$ and $(Y_{it}|\beta_i)$ are log-normal. From Evans, Hastings, and Peacock (1993, Chapter 25), it therefore follows, for any positive integer r, that (10) $$\mathsf{E}(Y_{it}^{r}|\beta_{i}) = \mathsf{E}_{x_{it},u}(e^{ry_{it}}|\beta_{i}) = \exp[r\mu'_{xt}\beta_{i} + \frac{1}{2}r^{2}(\beta'_{i}\Sigma_{xxt}\beta_{i} + \sigma_{uu})],$$ (11) $$\mathsf{E}(Y_{it}^r|x_{it}) = \mathsf{E}_{\beta_i,u}(e^{ry_{it}}|x_{it}) = \exp[rx_{it}'\mu_{\beta} + \frac{1}{2}r^2(x_{it}'\Sigma_{\beta\beta}x_{it} + \sigma_{uu})],$$ which shows that any conditional finite-order moment of output exist. Marginally, however, Y_{it} is not log-normal, since $x'_{it}\beta_i$ is non-normal, and some of its finite-order moments may not exist. We now show that a closed form expression for the marginal origo moments of Y exist and can be derived from (10).² From (10) and the law of iterated expectations, from now on, for simplicity, omitting subscripts (i, t), we find that the marginal r'th-order origo moment of Y_{it} , when it exists, ²Following a similar argument, the same result can be derived from (11). A proof for the case r = 1, similar to the one below, but related to (11) and somewhat longer, is given in van Garderen, Lee, and Pesaran (2000, pp. 306-307). can be written as (12) $$\mathsf{E}(Y^r) = \exp[\frac{1}{2}r^2\sigma_{uu}]\mathsf{E}_{\beta}[\exp(r\mu_x'\beta + \frac{1}{2}r^2\beta_i'\Sigma_{xx}\beta)]$$ $$= \exp[r\mu_x'\mu_{\beta} + \frac{1}{2}r^2(\mu_{\beta}'\Sigma_{xx}\mu_{\beta} + \sigma_{uu})]\mathsf{E}_{\delta}\{\exp[(r\mu_x' + r^2\mu_{\beta}'\Sigma_{xx})\delta + \frac{1}{2}r^2\delta'\Sigma_{xx}\delta]\},$$ where $\delta = \beta - \mu_{\beta} \sim \mathcal{N}(0, \Sigma_{\beta\beta})$. Inserting for the density of δ , $f(\delta) = (2\pi)^{-\frac{n+1}{2}} |\Sigma_{\beta\beta}|^{-\frac{1}{2}} \exp[-\frac{1}{2}\delta'\Sigma_{\beta\beta}^{-1}\delta]$, we find that the last expectation in (12) can be written as (13) $$H_{r} = \mathsf{E}_{\delta} \{ \exp[(r\mu_{x}' + r^{2}\mu_{\beta}'\Sigma_{xx})\delta + \frac{1}{2}r^{2}\delta'\Sigma_{xx}\delta] \}$$ $$= \int_{\mathbb{R}^{n+1}} \exp[a(r)'\delta + \frac{1}{2}r^{2}\delta'\Sigma_{xx}\delta]f(\delta)d\delta = (2\pi)^{-\frac{n+1}{2}}|\Sigma_{\beta\beta}|^{-\frac{1}{2}}\int_{\mathbb{R}^{n+1}} \exp[\lambda_{r}(\delta)]d\delta,$$ where (14) $$\lambda_r(\delta) = a(r)'\delta - \frac{1}{2}\delta' M(r)\delta$$, $M(r) = \Sigma_{\beta\beta}^{-1} - r^2 \Sigma_{xx}$, $a(r) = r\mu_x + r^2 \Sigma_{xx}\mu_{\beta}$. Since an alternative way of writing $\lambda_r(\delta)$ is $$\lambda_r(\delta) =
\frac{1}{2}a(r)'M(r)^{-1}a(r) - \frac{1}{2}[\delta' - a(r)'M(r)^{-1}]M(r)[\delta - M(r)^{-1}a(r)],$$ and integration goes over \mathbb{R}^{n+1} , we can substitute $q = \delta - M(r)^{-1}a(r)$ and rewrite H_r as $$H_r = |\Sigma_{\beta\beta}|^{-\frac{1}{2}} \exp\left[\frac{1}{2}a(r)'M(r)^{-1}a(r)\right] \int_{\mathbb{R}^{n+1}} (2\pi)^{-\frac{n+1}{2}} \exp\left[-\frac{1}{2}q'M(r)q\right] dq.$$ The last integral has a formal similarity to the integral over a normal density function, with M(r) occupying the same place as the *inverse* of the covariance matrix of q. Because the latter integral is one for any q and any positive definite M(r), we know that $$\int_{\mathbb{R}^{n+1}} (2\pi)^{-\frac{n+1}{2}} \exp\left[-\frac{1}{2}q'M(r)q\right] dq = |M(r)^{-1}|^{\frac{1}{2}},$$ if M(r) is positive definite. Hence we can express H_r in closed form as $$H_r = |\Sigma_{\beta\beta}|^{-\frac{1}{2}} \exp\left[\frac{1}{2}a(r)'M(r)^{-1}a(r)\right]|M(r)|^{-\frac{1}{2}} = \exp\left[\frac{1}{2}a(r)'M(r)^{-1}a(r)\right]|\Sigma_{\beta\beta}M(r)|^{-\frac{1}{2}}.$$ Inserting this into (12) yields $$\mathsf{E}(Y^r) = |M(r)\Sigma_{\beta\beta}|^{-\frac{1}{2}} \exp[r\mu_x'\mu_\beta + \frac{1}{2}r^2(\mu_\beta'\Sigma_{xx}\mu_\beta + \sigma_{yy}) + \frac{1}{2}a(r)'M(r)^{-1}a(r)].$$ After inserting for M(r) and a from (14), we finally find that the r'th order moment of output can be written in closed form as (15) $$\mathsf{E}(Y^r) = |I_{n+1} - r^2 \Sigma_{\beta\beta} \Sigma_{xx}|^{-\frac{1}{2}} \exp[r\mu_x' \mu_\beta + \frac{1}{2}r^2(\mu_\beta' \Sigma_{xx} \mu_\beta + \sigma_{uu}) + \frac{1}{2}(r\mu_x' + r^2\mu_\beta' \Sigma_{xx})(\Sigma_{\beta\beta}^{-1} - r^2 \Sigma_{xx})^{-1}(r\mu_x + r^2 \Sigma_{xx} \mu_\beta)].$$ Obviously, the argument above relies on M(r) (and hence $M(r)^{-1}$) being positive definite. Hence, (16) $$H_r$$ and $\mathsf{E}(Y^r)$ exist $\iff \Sigma_{\beta\beta}^{-1} - r^2 \Sigma_{xx}$ is positive definite. Intuitively, such a condition must be imposed because both β and z have support from minus to plus infinity. If $\mathsf{E}(Y^r)$ exists, then all lower-order moments also exist. From (14) we have $$M(r-1) = M(r) + (2r-1)\Sigma_{xx}, \quad r = 2, 3, \dots,$$ so that if M(r) and Σ_{xx} are positive definite, then M(r-1) is also positive definite, since 2r > 1 and the sum of two positive definite matrices is positive definite. # 2.3 Approximations to the origo moments of output We now present a way of obtaining, from (12), an approximate formula for $\mathsf{E}(Y^r)$. Neglecting in the integral the effect of the dispersion in $\delta'\Sigma_{xx}\delta = \mathrm{tr}[\delta\delta'\Sigma_{xx}]$ by replacing it by its expectation, $\mathrm{tr}[\Sigma_{\beta\beta}\Sigma_{xx}]$, we get, provided that (16) holds, the following analytical approximation to the r'th origo moment of output: (17) $$\mathsf{E}(Y^r) \approx G_r(Y) = \exp[r\mu_x'\mu_\beta + \frac{1}{2}r^2(\mu_\beta'\Sigma_{xx}\mu_\beta + \operatorname{tr}[\Sigma_{\beta\beta}\Sigma_{xx}] + \sigma_{uu})]$$ $$\times \exp[\frac{1}{2}(r\mu_x' + r^2\mu_\beta'\Sigma_{xx})\Sigma_{\beta\beta}(r\mu_x + r^2\Sigma_{xx}\mu_\beta)]$$ $$= \exp[r\mu_x'\mu_\beta + \frac{1}{2}r^2(\mu_\beta'\Sigma_{xx}\mu_\beta + \mu_x'\Sigma_{\beta\beta}\mu_x + \operatorname{tr}[\Sigma_{\beta\beta}\Sigma_{xx}] + \sigma_{uu})$$ $$+ r^3\mu_\beta'\Sigma_{xx}\Sigma_{\beta\beta}\mu_x + \frac{1}{2}r^4\mu_\beta'\Sigma_{xx}\Sigma_{\beta\beta}\Sigma_{xx}\mu_\beta],$$ since $\operatorname{var}(a'\delta) = a'\Sigma_{\beta\beta}a$. When (16) does not hold, this approximation, of course, makes no sense. When applying this approximation we eliminate both the square root of the inverse of the determinant $|I_{n+1} - r^2\Sigma_{\beta\beta}\Sigma_{xx}|$ and all terms involving $\Sigma_{\beta\beta}^{-1}$ from the function. This is an obvious simplification when we use the function to derive and, more importantly, interpret expressions for the aggregate input elasticities below. A price we have to pay is that in deriving (17) we neglect the variance of a term occurring in the exponent. Since the exponential function is convex, intuition says that $G_r(Y)$ is likely to underestimate $\mathsf{E}(Y^r)$. The numerical calculations in Section 4 will support this intuition. We can then, using (8) and (9), write the analytical approximation to $E(Y^r)$ as (18) $$G_r(Y) = \Phi_r(y)\Gamma_r\Lambda_r,$$ where (19) $$\Phi_r(y) = \exp[r\mu_y + \frac{1}{2}r^2\sigma_{yy}]$$ is the 'first-order' approximation we would have obtained if we had proceeded as if y were normally and Y were log-normally distributed marginally [cf. (8) and (9)], and (20) $$\Gamma_r = \exp[r^3 \mu_x' \Sigma_{\beta\beta} \Sigma_{xx} \mu_{\beta}], \qquad \Lambda_r = \exp\left[\frac{1}{2} r^4 \mu_{\beta}' \Sigma_{xx} \Sigma_{\beta\beta} \Sigma_{xx} \mu_{\beta}\right]$$ can be considered correction factors to this first-order approximation.³ # 3 An approximate aggregate production # function in origo moments We next derive an approximate relationship between $\mathsf{E}(Y^r)$ and $\mathsf{E}(Z^r)$ to be used, for r=1, in examining aggregation biases when representing the aggregate variables by their arithmetic means. In doing this, we recall that $e^{\mathsf{E}[\ln(Y)]}$ and $e^{\mathsf{E}[\ln(Z_i)]}$ correspond to the geometric means, and $\mathsf{E}(Y)$ and $\mathsf{E}(Z_i)$ to the arithmetic means of the output and the i'th input, respectively. We first assume r arbitrarily large, still assuming that (16) is satisfied, and afterwards discuss the case r=1 in more detail. # 3.1 A Cobb-Douglas production function in origo moments Let (21) $$\theta_{yr} = \ln[G_r(Y)] - r\mu_y = \ln[\Phi_r(y)] + \ln[\Gamma_r] + \ln[\Lambda_r] - r\mu'_x\mu_\beta$$ $$= \frac{1}{2}r^2\sigma_{yy} + r^3\mu'_x\Sigma_{\beta\beta}\Sigma_{xx}\mu_\beta + \frac{1}{2}r^4\mu'_\beta\Sigma_{xx}\Sigma_{\beta\beta}\Sigma_{xx}\mu_\beta,$$ The approximation leading to (18) follows by applying the law of iterated expectations on (10). Proceeding in a similar way from (11) would have given a similar approximation, although with a different Λ_r component; see Biørn, Skjerpen and Wangen (2003, Sections 3.1 and 6.3). which can be interpreted as an approximation to $\ln[\mathsf{E}(Y^r)] - \mathsf{E}[\ln(Y^r)]$, and let Z_i denote the *i*'th element of Z, *i.e.*, the *i*'th input, and $z_i = \ln(Z_i)$. Since $z_i \sim \mathcal{N}(\mu_{zi}, \sigma_{zizi})$, where μ_{zi} is the *i*'th element of μ_z and μ_z is the *i*'th diagonal element of μ_z are μ_z . (22) $$\mathsf{E}(Z_i^r) = \mathsf{E}(e^{z_i r}) = \exp(\mu_{zi} r + \frac{1}{2} \sigma_{zizi} r^2), \quad r = 1, 2, \dots; \quad i = 1, \dots, n.$$ Let $\mu_{\gamma i}$ be the *i*'th element of μ_{γ} , *i.e.*, the expected elasticity of the *i*'th input. Since (22) implies $e^{\mu_{zi}\mu_{\gamma i}r} = \exp(-\frac{1}{2}\sigma_{zizi}r^2\mu_{\gamma i})[\mathsf{E}(Z_i^r)]^{\mu_{\gamma i}}$, it follows from (17) and (21) that (23) $$G_r(Y) = e^{\mu_{\alpha}r} A_r \prod_{i=1}^n [\mathsf{E}(Z_i^r)]^{\mu_{\gamma_i}},$$ where (24) $$A_r = \exp\left(\theta_{yr} - \frac{1}{2}r^2\sum_{i=1}^n \sigma_{zizi}\mu_{\gamma i}\right) = \exp(\theta_{yr} - \frac{1}{2}r^2\mu_{\gamma}'\sigma_{zz}),$$ and $\sigma_{zz} = \text{diagv}(\Sigma_{zz})^{4}$ Eq. (23) can be interpreted (approximately) as a Cobb-Douglas function in the r'th origo moments of Y and Z_1, \ldots, Z_n with exponents equal to the expected micro elasticities $\mu_{\gamma 1}, \ldots, \mu_{\gamma n}$ and an intercept $e^{\mu_{\alpha} r}$, adjusted by the factor A_r . The latter depends, via θ_{yr} , on the first and second moments of the log-input vector z and the coefficient vector β and σ_{uu} [cf. (8), (9) and (21)]. For $$r = 1$$, (23) gives $$G_1(Y) = e^{\mu_{\alpha}} A_1 \prod_{i=1}^n [\mathsf{E}(Z_i)]^{\mu_{\gamma_i}}.$$ Seemingly, this equation could be interpreted as a Cobb-Douglas function in the arithmetic means $\mathsf{E}(Y)$ and $\mathsf{E}(Z_1),\ldots,\mathsf{E}(Z_n)$, with elasticities coinciding with the expected micro elasticities $\mu_{\gamma_1},\ldots,\mu_{\gamma_n}$ and an intercept $e^{\mu_{\alpha}}$ adjusted by the factor A_1 . However, we will show that, due to the randomness of the micro coefficients, in combination with the non-linearity of the micro production function, the situation is not so simple. # 3.2 Aggregation by analogy and aggregation biases # in output and in input elasticities Assume that we, instead of (25), represent the aggregate production function simply by (26) $$\widehat{\mathsf{E}(Y)} = e^{\mu_{\alpha}} \prod_{i=1}^{n} [\mathsf{E}(Z_i)]^{\mu_{\gamma_i}}.$$ ⁴We let 'diagy' before a square matrix denote the column vector containing its diagonal elements. This can be said to mimic the aggregation by analogy often used by macro-economists and macro model builders. The resulting aggregation error in output, when we approximate $\mathsf{E}(Y)$ by $G_1(Y)$, is (27) $$\epsilon(Y) = G_1(Y) - \widehat{\mathsf{E}(Y)} = (A_1 - 1)e^{\mu_{\alpha}} \prod_{i=1}^{n} [\mathsf{E}(Z_i)]^{\mu_{\gamma_i}}.$$ Representing the aggregate Cobb-Douglas production function by (26) will bias not only its intercept, but also its derived input elasticities, because A_1 in (25) responds to changes in μ_z and Σ_{zz} . We see from (8), (9) and (21) that when $\Sigma_{\gamma\gamma}$ is non-zero, a change in μ_z affects not only expected log-output, μ_y , but also its variance σ_{yy} , as well as Γ_1 . Eqs. (8), (9), and (17) imply (28) $$\ln[G_1(Y)] = \mu_y + \frac{1}{2}\sigma_{yy} + \mu'_x \Sigma_{\beta\beta} \Sigma_{xx} \mu_\beta + \frac{1}{2}\mu'_\beta \Sigma_{xx} \Sigma_{\beta\beta} \Sigma_{xx} \mu_\beta.$$ Using the fact that $\Delta \ln[\mathsf{E}(Z)] = \Delta(\mu_z + \frac{1}{2}\sigma_{zz})$ [cf. (22)], we show in Appendix B that $$(29) \ \frac{\partial \ln[G_1(Y)]}{\partial \ln[\mathsf{E}(Z)]} = \begin{cases} \mu_{\gamma} + \sigma_{\gamma\alpha} +
\Sigma_{\gamma\gamma}(\mu_z + \Sigma_{zz}\mu_{\gamma}) & \text{when } \Sigma_{zz} \text{ is constant,} \\ \operatorname{diagv}[\mu_{\gamma}\mu_{\gamma}' + \Sigma_{\gamma\gamma} + \mu_{\gamma}\mu_{\gamma}'\Sigma_{zz}\Sigma_{\gamma\gamma} & \text{when } \mu_z \text{ and the} \\ + \Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma}\mu_{\gamma}' & \text{off-diagonal elements of} \\ + 2\mu_{\gamma}(\sigma_{\gamma\alpha}' + \mu_z'\Sigma_{\gamma\gamma})] & \Sigma_{zz} \text{ are constant.} \end{cases}$$ From this expression we can not uniquely define and measure an exact aggregate i'th input elasticity, $(\partial \ln[G_1(Y)])/(\partial \ln[E(Z_i)])$. The two parts of (29) are limiting cases, the former may be interpreted as a vector of dispersion preserving aggregate input elasticities, the latter as a vector of mean preserving elasticities. Anyway, μ_{γ} provides a biased measure of the aggregate elasticity vector. The bias vector implied by the dispersion preserving macro input elasticities, obtained from the first part of (29), is (30) $$\epsilon(\mu_{\gamma}) = \sigma_{\gamma\alpha} + \Sigma_{\gamma\gamma}(\mu_z + \Sigma_{zz}\mu_{\gamma}),$$ The bias vector for the mean preserving elasticities can be obtained from the second part in a similar way. Dispersion preserving elasticities may be of more practical interest than mean preserving ones, since constancy of the variance of the log-input i, i.e., σ_{zizi} , implies constancy of the coefficient of variation of the untransformed input i. This will be the situation when the *i*'th input of all micro units change proportionally.⁵ This follows from the fact that coefficient of variation of Z_i is [cf. (22) and Evans, Hastings, and Peacock (1993, Chapter 25)] (31) $$v(Z_i) = \frac{\text{std}(Z_i)}{\mathsf{E}(Z_i)} = (e^{\sigma_{zizi}} - 1)^{\frac{1}{2}},$$ which shows that constancy of σ_{zizi} implies constancy of $v(Z_i)$. # 4 Estimation, data, and empirical results # 4.1 Econometric method and data The unknown parameters are estimated by Maximum Likelihood (ML), using the PROC MIXED procedure in the SAS/STAT software [see Littell et al. (1996)] and imposing positive definiteness of Ω as an a priori restriction. Details are given in Appendix A. In this particular application we have used the ML estimation results in Biørn, Lindquist and Skjerpen (2002, cf. Section 2 and Appendix A). The data are from an unbalanced panel for the years 1972–1993 from two Norwegian manufacturing industries, Pulp and paper (2823 observations, 237 firms) and Basic metals (2078 observations, 166 firms). A further description is given in Appendix C. The estimates of ψ , Ω , and the expected scale elasticity $\mu = \sum_j \mu_j$ are given in Tables 1 and 2. # 4.2 Tests of the normality of the log-input distribution Since this study relies on log-normality of the inputs, we will comment briefly on tests of this hypothesis. Using univariate statistics which depend on skewness and excess kurtosis, Biørn, Skjerpen and Wangen (2003, Appendix D) report, for each year in the sample period, tests of normality of the log-inputs. In most cases, the result is non-rejection at the five per cent level. However, for Pulp and paper, there is some evidence of non-normality, especially at the start of the sample period. This is most pronounced for energy and materials, and normality is rejected at the 1 per cent level in the years 1972–1976. Despite these irregularities, we proceed by imposing normality of all log-inputs as a simplifying assumption. ⁵The mean preserving elasticities relate to a more 'artificial' experiment in which $\mathsf{E}[\ln(Z_i)]$ is kept fixed and $v(Z_i)$ is increased, *i.e.*, $\mathsf{std}(Z_i)$ is increased relatively more than $\mathsf{E}(Z_i)$. # 4.3 Decompositions of the origo moments of output Table 3 presents decompositions of the estimated $\ln[G_1(Y)]$, corresponding to (18), which may interesting in predicting annual changes in industry output from changes in inputs. Table 4 gives similar results for approximate second-order moment, $\ln[G_2(Y)]$, The latter may be useful in decomposing industry output volatility into contributions from the volatility of industry inputs. The last column in each panel gives the corresponding results based on the exact formula. The first column Table 3, $\ln[\Phi_1(y)]$, can be interpreted as the log of expected output if output were log-normally distributed, which is not in accordance with our assumptions. Adding to $\ln[\Phi_1(y)]$ the correction factors $\ln(\Gamma_1)$, which is uniformly negative (column 2), and $\ln(\Lambda_1)$, which is uniformly positive (column 3), generally reduces the discrepancy between results based on this 'first-order approximation' formula and the correct results (column 5). The only exception is Basic metals in the ultimate year. The approximation formula performs better for the first-order than for the second-order moment. Table 5 carries the decomposition a step further, by decomposing $\ln[\Phi_1(y)]$ and $\ln[\Phi_2(y)]$ into five sub-components. Comparing the first and sixth columns in this table shows the large downward bias that would have followed by the naive way of representing the expectation of a log-normal variable, say W, by $e^{\mathsf{E}[\ln(W)]}$. All sub-components [1]–[5] contribute positively to $\ln[\Phi_1(y)]$ and $\ln[\Phi_2(y)]$. For the first-order moment, the largest contribution comes from μ_y (column [1]), and the next largest, $\frac{1}{2}\mu'_x\Sigma_{\beta\beta}\mu_x$, from the variation in the random coefficients (column [2]). Smaller contributions are due to the variation in log-inputs, $\frac{1}{2}\mu'_{\beta}\Sigma_{xx}\mu_{\beta}$ (column [3]), the interaction term, $\frac{1}{2}\text{tr}(\Sigma_{\beta\beta}\Sigma_{xx})$ (column [4]), and the the disturbance variance, $\frac{1}{2}\sigma_{uu}$ (column [5]). Regarding the second-order moments, the contribution from the random variation in coefficients, $2\mu'_x\Sigma_{\beta\beta}\mu_x$ (column [2]), exceeds the contribution from the expectation term, $2\mu_y$ (column [1]), for Basic metals. # 4.4 Scale and input elasticities Table 6 reports summary statistics for the industry elasticities obtained by the two hypothetic experiments, giving dispersion preserving and mean preserving industry elasticities, respectively; cf. (29). The underlying year specific elasticities are given in Table 7. In both industries and for all the years, the estimated micro *scale elasticity* is smaller than the dispersion preserving scale elasticity, and larger than the mean preserving scale elasticity, but the aggregation biases are not dramatic. In Pulp and paper, the mean of the estimated dispersion preserving scale elasticity is 1.16, the estimated expected micro elasticity is 1.07 and the mean preserving elasticity is 0.9. The corresponding figures for Basic metals are 1.15, 1.11 and 1.00, respectively. The annual variation in the industry elasticities is rather small. However, when turning to the components of the scale elasticities, i.e., the input elasticities, we find more important aggregation biases. The estimate of the expected firm-level capital elasticity is 0.25 in Pulp and paper, which exceeds both the dispersion preserving and the mean preserving industry elasticities. The mean of the latter is 0.19, the former increases from 0.16 in 1972 to 0.20 in 1993. In Basic metals the dispersion preserving capital elasticity increases from about 0.05 in the first years to 0.15 in 1992, and then decreases substantially in the final year, 1993. Also, the mean preserving capital elasticity is relatively low in 1993, in the other years it is slightly higher than the expected firm elasticity which is 0.12. The estimate of the expected firm-level labour elasticity is 0.17 in Pulp and paper and 0.27 in Basic metals. The mean preserving elasticity is approximately constant in both industries, while the dispersion preserving elasticity decreases: for Pulp and paper from 0.19 in 1972 to 0.12 at the end of the data period, and for Basic metals from 0.36 to 0.19. For Pulp and paper the energy elasticity has the lowest estimate among the expected firm elasticities, 0.09. The dispersion preserving and mean preserving elasticities are about 0.12 and 0.03, respectively, and show almost no variation over time. For Basic metals the industry energy elasticity varies more, around a mean which is somewhat less than the expected firm elasticity. The materials elasticity is the largest elasticity according to all the three measures. In both sectors the dispersion preserving energy elasticity exceeds the expected firm elasticity; the mean preserving elasticity is substantially lower. Since both the mean and the covariance matrix of the log-input vector usually change from year to year, the assumptions underlying the dispersion and mean preserving elasticities are unrealistic. It may therefore be worthwhile to consider *intermediate cases* in which a weighting of the two extremes is involved. Some experiments along these lines suggest, contrary to what might be expected, that the expected micro elasticity is not invariably closer to this weighted aggregate elasticity than it is to the closest of the two extremes. Overall, the above results give ample evidence against using 'raw' micro elasticities to represent macro parameters. As basis for analyzing productivity issues, for instance estimating total factor productivity growth, and comparing growth rates across countries, annually as well as for longer periods, and for other policy related issues, they are potentially misleading. # 5 Conclusions This paper has been concerned with the aggregation of micro Cobb-Douglas production functions to the industry level when the firm specific production function parameters and the log-inputs are assumed to be independent and multinormally distributed. We have provided analytical approximations for the expectation and the
higher-order origo moments of output, as well as conditions for the existence of such moments. These existence conditions turn out to be rather strong in the present case: only the first and second moments exist. To some extent, this may be due to our simplifying normality assumption, so that products of two vectors, both with support extending from minus to plus infinity, will enter the exponent of the expression for the moments of output. This suggests that investigating truncated distributions, in particular for the coefficients, may be interesting topics for further research. Relaxation of normality and/or truncation is, however, likely to increase the analytical and numerical complexity of the aggregation procedures. We have shown how an industry level production function, expressed as a relationship between expected output and expected inputs, can be derived and how to quantify discrepancies between correctly aggregated input and scale elasticities and expected elasticities obtained from micro data. Obviously, the correctly aggregated coefficients are not strict technology parameters, as they also depend on the coefficient heterogeneity and the covariance matrix of the log-input vector; cf. the quotation from Felipe and Fisher (2003, p. 209) in the introduction. Our empirical decompositions give evidence of this. To indicate the possible range, as aggregate elasticities are undefined unless the input distribution is restricted, we have provided results for the limiting 'dispersion preserving' and 'mean preserving' cases. However, the experiment underlying our definition of the mean preserving elasticities is one in which the variances of the log-input distribution, but none of the covariances, are allowed to change. This simplifying assumption may have affected some of the above conclusions. An interesting modification may be to assume that the correlation matrix of the log-input vector, rather than the covariances, is invariant when the variances change. Different decompositions of the log of expected output have been demonstrated. One of the components, a kind of a first-order approximation, is what we would have obtained if we had proceeded as if output were log-normal marginally. The numerical values when additional terms are included, are closer to the correct ones. The dispersion preserving scale elasticity is substantially higher than the expected micro scale elasticity for both industries and in all the years. For the mean preserving counterpart the differences are smaller. For Pulp and paper the micro elasticity exceeds the aggregate elasticity in all years. It is worth noting that the ranking of the industry level and the mean firm level input elasticities do not coincide, and the former is allowed to change over time. An assumption not put into question in this paper is zero correlation between the production function parameters and the log-inputs. An interesting extension would be to relax this assumption, for instance to model the correlation. Simply treating all parameters as fixed and firm specific would, however, imply wasting a substantial part of the sample, since a minimal time series length is needed to estimate firm specific fixed parameters properly. Whether an extension of our approach to more flexible micro technologies, like the CES, the Translog, or the Generalized Leontief production functions, is practicable is an open question. Probably, it will be harder to obtain useful analytical approximations for expected output, from which aggregate parameters can be derived, and since both Translog and Generalized Leontief contain second-order terms, the problems related to the non-existence and numerical stability of higher-order origo moments of output, if normality of coefficients and log-inputs is retained, are likely to become more severe. In such cases it may be more promising to abandon the assumption that parameters and log-input variables are generated from specific parametric distributions. Acknowledgements: Earlier versions of the paper were presented at the 2nd Nordic Econometric Meeting, Bergen, May 2003, the 11th International Panel Data Conference, College Station (TX), June 2004, and the 19th Annual Congress of the European Economic Association, Madrid, August 2004. We are grateful to comments from participants at these meetings and to Johan Heldal, Zhiyang Jia, and Dag Einar Sommervoll for helpful and clarifying comments. Table 1: Estimates of parameters in the micro CD production functions | | Pulp and paper | | Basic m | netals | |---|---|--|---|--| | Parameter | Estimate | St.err. | Estimate | St.err. | | μ_{α}^{*} κ μ_{K} μ_{L} μ_{E} μ_{M} μ | -2.3021
0.0065
0.2503
0.1717
0.0854
0.5666
1.0740 | 0.2279
0.0013
0.0344
0.0381
0.0169
0.0309
0.0287 | -3.1177
0.0214
0.1246
0.2749
0.2138
0.4928
1.1061 | 0.2702
0.0021
0.0472
0.0550
0.0374
0.0406
0.0324 | Table 2: Covariance matrix of firm specific coefficients | Pulp and paper | | | | | | | |----------------|------------|------------|------------|------------|------------|--| | | α^* | γ_K | γ_L | γ_E | γ_M | | | α^* | 5.9336 | | | | | | | γ_K | -0.4512 | 0.1147 | | | | | | γ_L | -0.7274 | -0.0559 | 0.1515 | | | | | γ_E | 0.3968 | -0.4197 | -0.3009 | 0.0232 | | | | γ_M | 0.3851 | -0.6029 | -0.4262 | 0.1437 | 0.1053 | | | | | Basic | c metals | | | | | | α^* | γ_K | γ_L | γ_E | γ_M | | | α^* | 3.5973 | | | | | | | γ_K | -0.0787 | 0.1604 | | | | | | γ_L | -0.6846 | -0.5503 | 0.1817 | | | | | γ_E | 0.3040 | -0.6281 | 0.1366 | 0.1190 | | | | γ_M | 0.1573 | 0.1092 | -0.3720 | -0.6122 | 0.1200 | | Variances on the main diagonal and correlation coefficients below. Table 3: Decomposition of $ln[G_1(Y)]$ | | | Pulp a | and paper | | | |------|------------------|-----------------|------------------|---------------|-------------| | Year | $\ln[\Phi_1(y)]$ | $\ln(\Gamma_1)$ | $\ln(\Lambda_1)$ | $\ln[G_1(Y)]$ | $\ln[E(Y)]$ | | 1972 | 5.8221 | -0.1336 | 0.2241 | 5.9126 | 5.9410 | | 1973 | 5.8886 | -0.1301 | 0.2300 | 5.9885 | 6.0188 | | 1974 | 6.0399 | -0.1524 | 0.3090 | 6.1965 | 6.2423 | | 1975 | 5.9314 | -0.1559 | 0.3047 | 6.0802 | 6.1234 | | 1976 | 5.9413 | -0.1622 | 0.3085 | 6.0876 | 6.1304 | | 1977 | 5.8042 | -0.1485 | 0.2434 | 5.8991 | 5.9265 | | 1978 | 5.8231 | -0.1493 | 0.2450 | 5.9188 | 5.9472 | | 1979 | 5.9353 | -0.1263 | 0.2336 | 6.0426 | 6.0717 | | 1980 | 5.9900 | -0.1171 | 0.2125 | 6.0854 | 6.1116 | | 1981 | 6.0488 | -0.1184 | 0.2246 | 6.1550 | 6.1833 | | 1982 | 6.0927 | -0.1067 | 0.2440 | 6.2301 | 6.2656 | | 1983 | 6.1363 | -0.0792 | 0.1826 | 6.2397 | 6.2635 | | 1984 | 6.1470 | -0.0747 | 0.1779 | 6.2502 | 6.2735 | | 1985 | 6.2474 | -0.0752 | 0.1854 | 6.3577 | 6.3830 | | 1986 | 6.2395 | -0.0844 | 0.1923 | 6.3475 | 6.3722 | | 1987 | 6.2426 | -0.0742 | 0.2013 | 6.3696 | 6.3967 | | 1988 | 6.2859 | -0.0641 | 0.2126 | 6.4344 | 6.4668 | | 1989 | 6.2919 | -0.0647 | 0.1961 | 6.4232 | 6.4517 | | 1990 | 6.2698 | -0.0790 | 0.2047 | 6.3955 | 6.4243 | | 1991 | 6.3335 | -0.0687 | 0.2040 | 6.4688 | 6.4999 | | 1992 | 6.1708 | -0.0398 | 0.1114 | 6.2424 | 6.2568 | | 1993 | 6.2397 | -0.0725 | 0.1334 | 6.3007 | 6.3160 | | | | Basi | c metals | | | | Year | $\ln[\Phi_1(y)]$ | $\ln(\Gamma_1)$ | $\ln(\Lambda_1)$ | $\ln[G_1(Y)]$ | $\ln[E(Y)]$ | | 1972 | 6.5750 | -0.1186 | 0.2111 | 6.6675 | 6.6993 | | 1973 | 6.6588 | -0.1394 | 0.2302 | 6.7497 | 6.7792 | | 1974 | 6.6042 | -0.1211 | 0.1863 | 6.6694 | 6.6922 | | 1975 | 6.7501 | -0.1205 | 0.2440 | 6.8736 | 6.9049 | | 1976 | 6.5689 | -0.1446 | 0.2158 | 6.6401 | 6.6623 | | 1977 | 6.6196 | -0.1544 | 0.2387 | 6.7038 | 6.7243 | | 1978 | 6.3791 | -0.1339 | 0.1805 | 6.4258 | 6.4395 | | 1979 | 6.7926 | -0.1217 | 0.2084 | 6.8793 | 6.8972 | | 1980 | 6.8043 | -0.1425 | 0.1984 | 6.8602 | 6.8761 | | 1981 | 6.7392 | -0.1455 | 0.1898 | 6.7836 | 6.7979 | | 1982 | 6.6320 | -0.1415 | 0.1793 | 6.6698 | 6.6854 | | 1983 | 6.7103 | -0.1255 | 0.1757 | 6.7605 | 6.7816 | | 1984 | 6.9263 | -0.1300 | 0.1756 | 6.9718 | 6.9891 | | 1985 | 6.8837 | -0.1081 | 0.1482 | 6.9238 | 6.9505 | | 1986 | 6.9838 | -0.1014 | 0.1438 | 7.0261 | 7.0468 | | 1987 | 7.1013 | -0.1042 | 0.1664 | 7.1635 | 7.1920 | | 1988 | 7.2176 | -0.0732 | 0.1591 | 7.3036 | 7.3327 | | 1989 | 7.1698 | -0.0767 | 0.1480 | 7.2411 | 7.2733 | | 1990 | 7.2243 | -0.0766 | 0.1528 | 7.3004 | 7.3313 | | 1991 | 7.2103 | -0.1095 | 0.1645 | 7.2653 | 7.2878 | | 1992 | 7.0697 | -0.0712 | 0.0941 | 7.0927 | 7.1097 | | 1993 | 7.1142 | -0.3304 | 0.2801 | 7.0639 | 7.1722 | | | | | | | | Table 4: Decomposition of $\ln[G_2(Y)]$ | Year ln[Φ2(y)] ln(Γ2) ln(Λ2) ln[G2(Y)] ln[E(Y)] 1972 15.7045 -1.0688 3.5857 18.2214 21.48 1973 15.8728 -1.0408 3.6798 18.5118 22.04 1974 16.7528 -1.2192 4.9443 20.4779 27.30 1975 16.4704 -1.2468 4.8747 20.0983 26.64 1976 16.5261 -1.2974 4.9357 20.1643 26.76 1977 15.7070 -1.1880 3.8939 18.4128 22.30 1978 15.7740 -1.1946 3.9203 18.4996 22.45 1979 15.9206 -1.0106 3.7379 18.6479 22.36 1980 15.8562 -0.9369 3.3999 18.3193 21.46 1981 16.0864 -0.9472 3.5935 18.7327 22.20 1982 16.3489 -0.8535 3.9044 19.3998 23.67 1983 15.9355 -0.6338 | 73
73
87
60
225
337
59
63
383
57
65
53
225
116 |
--|---| | 1973 15.8728 -1.0408 3.6798 18.5118 22.04
1974 16.7528 -1.2192 4.9443 20.4779 27.30
1975 16.4704 -1.2468 4.8747 20.0983 26.64
1976 16.5261 -1.2974 4.9357 20.1643 26.76
1977 15.7070 -1.1880 3.8939 18.4128 22.30
1978 15.7740 -1.1946 3.9203 18.4996 22.45
1979 15.9206 -1.0106 3.7379 18.6479 22.36
1980 15.8562 -0.9369 3.3999 18.3193 21.46
1981 16.0864 -0.9472 3.5935 18.7327 22.20
1982 16.3489 -0.8535 3.9044 19.3998 23.67
1983 15.9355 -0.6338 2.9221 18.2239 20.59
1984 15.9089 -0.5973 2.8457 18.1573 20.42
1985 16.1904 -0.6013 2.9670 18.5561 21.03
1986 16.1914 -0.6748 3.0775 18.5940 21.24
1987 16.2786 -0.5938 3.2204 18.9051 21.83
1988 16.4840 -0.5127 3.4019 19.3733 22.76
1999 16.3813 -0.6320 3.2756 19.0249 22.08
1991 16.5299 -0.5499 3.2642 19.2442 22.34
1992 15.2931 -0.3184 1.7822 16.7569 17.77
1993 15.6447 -0.5797 2.1349 17.1999 18.51
Basic metals
Year $\ln[\Phi_2(y)] \ln[\Gamma_2) \ln[\Lambda_2) \ln[G_2(Y)] \ln[E(Y^2)]$
1972 20.1521 -0.9489 3.3775 22.5807 24.99
1973 20.5013 -1.1149 3.6837 23.0702 24.88
1974 19.8479 -0.9692 2.9816 21.8603 23.17
1975 20.9268 -0.9639 3.9046 23.8675 25.83 | 87
60
225
337
59
63
83
83
57
65
32
225
116 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 50
25
37
59
33
83
57
55
32
25
16 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 25
37
59
53
83
57
55
32
25
16 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 37
59
53
83
57
55
32
25
16 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 59
53
83
57
55
32
25
16 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 53
57
55
32
25
16 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 83
57
55
32
25
16
30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 57
55
32
25
16
30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 35
32
25
16
30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 32
25
16
30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 25
16
30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 16
30 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 30 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 35 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 26 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 33 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |)5 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 74 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 79 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 99 | | Year ln[Φ ₂ (y)] ln(Γ ₂) ln(Λ ₂) ln[G ₂ (Y)] ln[E(Y)] 1972 20.1521 -0.9489 3.3775 22.5807 24.99 1973 20.5013 -1.1149 3.6837 23.0702 24.88 1974 19.8479 -0.9692 2.9816 21.8603 23.17 1975 20.9268 -0.9639 3.9046 23.8675 25.83 | 39 | | 1972 20.1521 -0.9489 3.3775 22.5807 24.99 1973 20.5013 -1.1149 3.6837 23.0702 24.88 1974 19.8479 -0.9692 2.9816 21.8603 23.17 1975 20.9268 -0.9639 3.9046 23.8675 25.83 | | | 1973 20.5013 -1.1149 3.6837 23.0702 24.88 1974 19.8479 -0.9692 2.9816 21.8603 23.17 1975 20.9268 -0.9639 3.9046 23.8675 25.83 |)] | | 1973 20.5013 -1.1149 3.6837 23.0702 24.88 1974 19.8479 -0.9692 2.9816 21.8603 23.17 1975 20.9268 -0.9639 3.9046 23.8675 25.83 | 32 | | 1975 20.9268 -0.9639 3.9046 23.8675 25.83 | | | | 16 | | | 93 | | 1976 20.0598 -1.1567 3.4520 22.3552 23.84 | 36 | | 1977 20.3634 -1.2352 3.8186 22.9468 24.49 | 27 | | 1978 19.2740 -1.0711 2.8884 21.0912 21.94 | 35 | | 1979 20.4934 -0.9736 3.3345 22.8542 24.01 | 15 | | 1980 20.2736 -1.1398 3.1746 22.3084 23.36 | 35 | | 1981 20.0626 -1.1638 3.0372 21.9360 22.83 | 32 | | 1982 19.7675 -1.1319 2.8683 21.5039 22.37 | 77 | | 1983 19.8954 -1.0042 2.8118 21.7029 22.75 | | | 1984 20.2629 -1.0404 2.8094 22.0319 22.89 | | | 1985 19.7910 -0.8651 2.3718 21.2977 22.64 | 53 | | 1986 19.9254 -0.8115 2.3001 21.4140 22.29 | | | 1987 20.5655 -0.8332 2.6616 22.3939 23.86 | 33 | | 1988 20.6914 -0.5853 2.5458 22.6519 24.14 | 83
39 | | 1989 20.3009 -0.6138 2.3672 22.0542 23.54 | 83
39
36 | | 1990 20.5871 -0.6129 2.4445 22.4187 23.93 | 83
39
36
74 | | 1991 20.5945 -0.8760 2.6322 22.3508 23.41 | 83
39
36
74
13 | | 1992 19.0666 -0.5692 1.5062 20.0036 20.49 | 83
39
36
74
13 | | 1993 a) a) a) a) | 83
39
36
74
13 | a) The moment does not exist. Table 5: Decomposition of $\ln[\Phi_1(y)]$ and $\ln[\Phi_2(y)]$ | | | | Pulp | and pap | er | | | |----------------|-----------------|-------------------------|--------------------|-----------------|-----------------|------------------|-------------------| | Year | [1] | [2] | [3] | [4] | [5] | $\ln[\Phi_1(y)]$ | $\ln[\Phi_2(y)]$ | | 1972 | 3.7920 | 3.3244 | 0.4262 | 0.2688 | 0.0408 | 5.8221 | 15.7045 | | 1973 | 3.8408 | 3.3520 | 0.4322 | 0.2706 | 0.0408 | 5.8886 | 15.8728 | | 1974 | 3.7034 | 3.9220 | 0.4318 | 0.2784 | 0.0408 | 6.0399 | 16.7528 | | 1975 | 3.6275 | 3.8954 | 0.3946 | 0.2768 | 0.0408 | 5.9314 | 16.4704 | | 1976 | 3.6195 | 3.9310 | 0.3918 | 0.2800 | 0.0408 | 5.9413 | 16.5261 | | 1977 | 3.7550 | 3.4344 | 0.3738 | 0.2496 | 0.0408 | 5.8042 | 15.7070 | | 1978 | 3.7592 | 3.4454 | 0.3862 | 0.2554 | 0.0408 | 5.8231 | 15.7740 | | 1979 | 3.9103 | 3.3606 | 0.3970 | 0.2514 | 0.0408 | 5.9353 | 15.9206 | | 1980 | 4.0518 | 3.1770 | 0.3966 | 0.2618 | 0.0408 | 5.9900 | 15.8562 | | 1981 | 4.0545 | 3.2906 | 0.3986 | 0.2586 | 0.0408 | 6.0488 | 16.0864 | | 1982 | 4.0110 | 3.4624 | 0.3898 | 0.2706 | 0.0408 | 6.0927 | 16.3489 | | 1983 | 4.3047 | 2.9884 | 0.3908 | 0.2432 | 0.0408 | 6.1363 | 15.9355 | | 1984 | 4.3396 | 2.9464 | 0.3998 | 0.2278 | 0.0408 | 6.1470 | 15.9089 | | 1985 | 4.3996 | 3.0046 | 0.4196 | 0.2306 | 0.0408 | 6.2474 | 16.1904 | | 1986 | 4.3833 | 3.0366 | 0.4094 | 0.2256 | 0.0408 | 6.2395 | 16.1914 | | 1987 | 4.3458 | 3.1428 | 0.3908 | 0.2192 | 0.0408 | 6.2426 | 16.2786 | | 1988 | 4.3297 | 3.2454 | 0.3878 | 0.2384 | 0.0408 | 6.2859 | 16.4840 | | 1989 | 4.4065 | 3.0962 | 0.4002 | 0.2334 | 0.0408 | 6.2919 | 16.3544 | | 1990 | 4.3489 | 3.1534 | 0.4064 | 0.2410 | 0.0408 | 6.2698 | 16.3813 | | 1991 | 4.4020 | 3.1612 | 0.4046 | 0.2564 | 0.0408 | 6.3335 | 16.5299 | | 1992 | 4.6950 | 2.3084 | 0.3978 | 0.2046 | 0.0408 | 6.1708 | 15.2931 | | 1993 | 4.6571 | 2.4752 | 0.4356 | 0.2136 | 0.0408 | 6.2397 | 15.6447 | | | | | | sic metals | 3 | | | | Year | [1] | [2] | [3] | [4] | [5] | $\ln[\Phi_1(y)]$ | $\ln[\Phi_2(y)]$ | | 1972 | 3.0739 | 5.9854 | 0.5354 | 0.3826 | 0.0986 | 6.5750 | 20.1521 | | 1973 | 3.0670 | 6.1622 | 0.5546 | 0.3684 | 0.0986 | 6.6588 | 20.5013 | | 1974 | 3.2845 | 5.6614 | 0.5516 | 0.3278 | 0.0986 | 6.6042 | 19.8479 | | 1975 | 3.0368 | 6.4540 | 0.5192 | 0.3548 | 0.0986 | 6.7501 | 20.9268 | | 1976 | 3.1078 | 5.9772 | 0.5148 | 0.3316 | 0.0986 | 6.5689 | 20.0598 | | 1977 | 3.0574 | 6.2398 | 0.4806 | 0.3054 | 0.0986 | 6.6196 | 20.3634 | | 1978 | 3.1213 | 5.6736 | 0.4760 | 0.2672 | 0.0986 | 6.3791 | 19.2740 | | 1979 | 3.3385 | 6.0502 | 0.4828 | 0.2766 | 0.0986 | 6.7926 | 20.4934 | | 1980 | 3.4717 | 5.7764 | 0.5052 | 0.2850 | 0.0986 | 6.8043 | 20.2736 | | 1981 | 3.4472 | 5.7212 | 0.4862 | 0.2782 | 0.0986 | 6.7392 | 20.0626 | | 1982 | 3.3802 | 5.6322 | 0.4946 | 0.2782 | 0.0986 | 6.6320 | 19.7675 | | 1983 | 3.4730 | 5.5748 | 0.4974 | 0.3040 | 0.0986 | 6.7103 | 19.8954 | | 1984 | 3.7212 | 5.5218 | 0.5112 | 0.2788 | 0.0986 | 6.9263 | 20.2629 | | 1985 | 3.8718 | 5.0792 | 0.5294 | 0.3164 | 0.0986 | 6.8837 | 19.7910 | | 1986 | 4.0049 | 5.0532 | 0.5224 | 0.2836 | 0.0986 | 6.9838 | 19.9254 | | 1987 | 3.9199 | 5.4118 | 0.5460 | 0.3064 | 0.0986 | 7.1013 | 20.5655 | | $1988 \\ 1989$ | 4.0896 4.1892 | 5.3138 4.9344 | $0.5490 \\ 0.5934$ | 0.2948 0.3348 | 0.0986 0.0986 | 7.2176 7.1698 | 20.6914 20.3009 | | 1989 | 4.1892 4.1550 | $\frac{4.9344}{5.1612}$ | 0.5934 0.5820 | 0.3348 0.2968 | 0.0986 0.0986 | 7.1698 7.2243 | 20.3009 20.5871 | | 1990 | 4.1330 4.1233 | 5.1012 5.1818 | 0.5856 | 0.2908 0.3080 | 0.0986 | 7.2243 7.2103 | 20.5945 | | 1991 1992 | 4.1255 4.6061 | 3.9846 | 0.5850 0.5972 | 0.3080 0.2468 | 0.0986 | 7.2103 | 19.0666 | | 1992 | 4.0001 4.2915 | 4.1004 | 0.3972 0.7892 | 0.2408 0.6570 | 0.0986 | 7.0097 | 19.0000 | | | 1.2010 | 1.1004 | 0.1002 | 3.0010 | 3.0300 | 1.1142 | 10.0100 | $[1]: \ \mu_y; \ [2]: \ \mu_x' \Sigma_{\beta\beta} \mu_x; \ [3]: \ \mu_\beta' \Sigma_{xx} \mu_\beta; \ [4]: \ tr(\Sigma_{\beta\beta}
\Sigma_{xx}); \ [5]: \ \sigma_{uu}.$ $\ln[\Phi_1(y)] = [1] + 0.5 \times ([2] + [3] + [4] + [5]).$ $\ln[\Phi_2(y)] = 2 \times ([1] + [2] + [3] + [4] + [5]).$ Table 6: Comparison of different type of elasticities | | | | Pulp a | nd paper | | | | |------------|------------------|------------|--|--------------------|----------------------------------|-----------|----------------| | Type of | Expected | Dispersion | preservin | g macro elasticity | Mean prese | erving ma | cro elasticity | | elasticity | micro elasticity | Minimum | Mean | Maximum | Minimum | Mean | Maximum | | Scale | 1.07 | 1.13 | 1.16 | 1.19 | 0.86 | 0.90 | 0.93 | | Capital | 0.25 | 0.15 | 0.18 | 0.20 | 0.18 | 0.19 | 0.20 | | Labour | 0.17 | 0.12 | 0.16 | 0.19 | 0.19 | 0.19 | 0.20 | | Energy | 0.09 | 0.12 | 0.12 | 0.13 | 0.03 | 0.03 | 0.04 | | Materials | 0.57 | 0.67 | 0.70 | 0.72 | 0.44 | 0.48 | 0.52 | | | Basic metals | | | | | | | | Type of | Expected | Dispersion | Dispersion preserving macro elasticity | | Mean preserving macro elasticity | | | | elasticity | micro elasticity | Minimum | Mean | Maximum | Minimum | Mean | Maximum | | Scale | 1.11 | 1.11 | 1.15 | 1.19 | 0.96 | 1.00 | 1.02 | | Capital | 0.12 | 0.01 | 0.10 | 0.16 | 0.11 | 0.16 | 0.18 | | Labour | 0.27 | 0.15 | 0.25 | 0.36 | 0.24 | 0.27 | 0.31 | | Energy | 0.21 | 0.14 | 0.17 | 0.22 | 0.17 | 0.19 | 0.26 | | Materials | 0.49 | 0.60 | 0.63 | 0.68 | 0.34 | 0.38 | 0.41 | Table 7: Dispersion and mean preserving macro input and scale elasticities | | | | | | Pulp an | d paper | | | | | |------|---------|--------|-------------|-----------|---------|---------|------------|--------|-----------|-------| | | | Dispe | rsion prese | erving | | Me | an preserv | ing | | | | | Capital | Labour | Energy | Materials | Scale | Capital | Labour | Energy | Materials | Scale | | 1972 | 0.160 | 0.193 | 0.120 | 0.695 | 1.168 | 0.192 | 0.190 | 0.034 | 0.483 | 0.900 | | 1973 | 0.156 | 0.186 | 0.125 | 0.699 | 1.166 | 0.192 | 0.188 | 0.035 | 0.481 | 0.896 | | 1974 | 0.151 | 0.194 | 0.126 | 0.715 | 1.185 | 0.187 | 0.192 | 0.035 | 0.508 | 0.923 | | 1975 | 0.163 | 0.191 | 0.125 | 0.703 | 1.181 | 0.183 | 0.191 | 0.035 | 0.515 | 0.925 | | 1976 | 0.170 | 0.182 | 0.124 | 0.704 | 1.179 | 0.184 | 0.191 | 0.035 | 0.518 | 0.928 | | 1977 | 0.192 | 0.192 | 0.119 | 0.669 | 1.172 | 0.192 | 0.195 | 0.034 | 0.480 | 0.901 | | 1978 | 0.184 | 0.181 | 0.122 | 0.679 | 1.166 | 0.188 | 0.197 | 0.034 | 0.484 | 0.903 | | 1979 | 0.173 | 0.177 | 0.125 | 0.690 | 1.165 | 0.187 | 0.195 | 0.035 | 0.482 | 0.899 | | 1980 | 0.180 | 0.174 | 0.121 | 0.688 | 1.163 | 0.189 | 0.197 | 0.034 | 0.471 | 0.891 | | 1981 | 0.183 | 0.160 | 0.122 | 0.696 | 1.162 | 0.189 | 0.194 | 0.034 | 0.477 | 0.895 | | 1982 | 0.172 | 0.152 | 0.124 | 0.714 | 1.162 | 0.179 | 0.192 | 0.035 | 0.504 | 0.910 | | 1983 | 0.186 | 0.148 | 0.120 | 0.701 | 1.155 | 0.188 | 0.191 | 0.034 | 0.477 | 0.889 | | 1984 | 0.180 | 0.146 | 0.121 | 0.705 | 1.152 | 0.188 | 0.190 | 0.034 | 0.475 | 0.887 | | 1985 | 0.178 | 0.141 | 0.123 | 0.713 | 1.154 | 0.189 | 0.191 | 0.034 | 0.474 | 0.887 | | 1986 | 0.184 | 0.149 | 0.123 | 0.702 | 1.159 | 0.190 | 0.194 | 0.034 | 0.469 | 0.886 | | 1987 | 0.183 | 0.144 | 0.123 | 0.709 | 1.159 | 0.185 | 0.192 | 0.034 | 0.486 | 0.896 | | 1988 | 0.180 | 0.127 | 0.128 | 0.720 | 1.154 | 0.181 | 0.187 | 0.035 | 0.499 | 0.902 | | 1989 | 0.181 | 0.127 | 0.127 | 0.716 | 1.151 | 0.183 | 0.188 | 0.035 | 0.486 | 0.893 | | 1990 | 0.183 | 0.127 | 0.126 | 0.714 | 1.151 | 0.184 | 0.190 | 0.035 | 0.484 | 0.892 | | 1991 | 0.185 | 0.120 | 0.129 | 0.716 | 1.150 | 0.183 | 0.189 | 0.035 | 0.487 | 0.895 | | 1992 | 0.194 | 0.115 | 0.122 | 0.697 | 1.127 | 0.186 | 0.185 | 0.034 | 0.459 | 0.865 | | 1993 | 0.198 | 0.117 | 0.122 | 0.697 | 1.134 | 0.195 | 0.189 | 0.033 | 0.444 | 0.862 | Basic metals Dispersion preserving Mean preserving CapitalScale Labour Energy Materials Capital Labour Energy Materials Scale 1972 0.008 0.360 0.206 0.6061.1800.1670.2700.1860.3791.0021973 0.028 0.358 0.1830.618 1.187 0.1690.2800.1820.3751.005 1974 0.2600.0560.3250.1690.6271.177 0.1770.1740.3830.9941975 0.0440.3260.6410.2680.4051.0220.1721.183 0.1640.1841976 0.0490.3260.1890.610 1.1740.1610.2780.1950.3711.0041977 0.0490.3270.1990.5981.1740.1610.2850.1870.3861.0191978 0.266 0.604 0.254 0.178 0.396 1.002 0.0960.1871.1520.1730.0720.275 0.618 0.262 1979 0.195 1.159 0.1670.1830.400 1.0110.9981980 0.073 0.2900.1960.603 1.162 0.1650.2760.1910.3661981 0.1060.2760.1830.5951.1600.1720.2670.1830.3700.9921982 0.1400.2400.1650.6061.1510.1750.2580.1800.3790.9911983 0.1260.224 0.176 0.618 1.144 0.165 0.260 0.187 0.392 1.004 1984 0.2370.1830.6130.1650.268 0.1910.3710.9950.1161.148 1985 0.1530.2190.1440.6321.1490.1720.2620.1790.3780.9921986 0.1430.2130.1610.6271.144 0.1690.2590.1860.3740.9881987 0.159 0.202 0.649 0.2610.1780.390 1.000 0.1391.1490.1710.139 0.403 0.150 0.190 0.667 0.253 0.1791.004 1988 0.1701.145 1989 0.1390.1850.1380.679 0.1600.2660.1860.4011.013 1.1411990 0.1440.1750.1470.6721.1380.1630.2570.1870.3981.0061991 0.123 0.188 0.170 0.654 1.135 0.155 0.269 0.198 0.384 1.007 1992 0.1540.1450.640 0.163 0.243 0.2040.353 0.963 0.1741.113 0.6410.3060.336 1993 0.062 0.1850.2231.1100.1090.2571.008 #### APPENDIX A: Details on the ML estimation We consider our unbalanced panel data set [cf. Appendix C] as a data set where the firms are observed in at least 1 and at most P years, and arrange the observations in groups according to the time series lengths [a similar ordering is used in Biørn (2004)]. Let N_p be the number of firms which are observed in p years (not necessarily the same and consecutive), let (ip) index the i'th firm among those observed in p years, and let t index the observation number (t = 1, ..., p). The production function (1), can be written as (A.1) $$y_{(ip)t} = x'_{(ip)t}\beta_{(ip)} + u_{(ip)t}, \quad p = 1, \dots, P; \ i = 1, \dots, N_p; \ t = 1, \dots, p,$$ where $\beta_{(ip)}$ is the coefficient vector of firm (ip). Inserting $\beta_{(ip)} = \mu_{\beta} + \delta_{(ip)}$ we get (A.2) $$y_{(ip)t} = x'_{(ip)t}\mu_{\beta} + \psi_{(ip)t}, \qquad \psi_{(ip)t} = x'_{(ip)t}\delta_{(ip)} + u_{(ip)t}.$$ Stacking the p realisations from firm (ip) in $y_{(ip)} = [y_{(ip)1}, \ldots, y_{(ip)p}]',$ $X_{(ip)} = [x_{(ip)1}, \ldots, x_{(ip)p}], \ u_{(ip)} = [u_{(ip)1}, \ldots, u_{(ip)p}]', \ \text{and} \ \psi_{(ip)} = [\psi_{(ip)1}, \cdots, \psi_{(ip)p}]', \ \text{we}$ can write (A.2) as (A.3) $$y_{(ip)} = X'_{(ip)}\mu_{\beta} + \psi_{(ip)}, \qquad \psi_{(ip)} = X'_{(ip)}\delta_{(ip)} + u_{(ip)}.$$ where (A.4) $$\psi_{(ip)}|X_{(ip)} \sim \mathcal{N}(0,\Omega_{(ip)}), \quad \Omega_{(ip)} = X'_{(ip)}\Omega X_{(ip)} + \sigma_{uu}I_p,$$ and I_p is the p-dimensional identity matrix. The log-likelihood function is therefore (A.5) $$\mathcal{L} = -\frac{m}{2}\ln(2\pi) - \frac{1}{2}\sum_{p=1}^{P}\sum_{i=1}^{N_p} \{\ln|\Omega_{(ip)}| + [y_{(ip)} - X'_{(ip)}\mu_{\beta}]'\Omega_{(ip)}^{-1}[y_{(ip)} - X'_{(ip)}\mu_{\beta}]\},$$ where $m = \sum_{p=1}^{P} pN_p$. The ML estimators of $(\mu_{\beta}, \sigma_{uu}, \Omega)$ follow by maximising \mathcal{L} . The solution may be simplified by concentrating \mathcal{L} over μ_{β} and maximising the resulting function with respect to σ_{uu} and the unknown elements of Ω . # APPENDIX B: Proof of Eq. (29) The first three components of $\ln[G_1(Y)]$, as given by (28), respond to changes in μ_z and the last three elements respond to changes in Σ_{zz} . Inserting in (9) from (2) and (3), we obtain $$\sigma_{yy} = \sigma_{\alpha\alpha} + 2\mu_z \sigma_{\gamma\alpha} + \mu_z' \Sigma_{\gamma\gamma} \mu_z + \mu_\gamma' \Sigma_{zz} \mu_\gamma + \text{tr}(\Sigma_{\gamma\gamma} \Sigma_{zz}) + \sigma_{uu},$$ $$\mu_x' \Sigma_{\beta\beta} \Sigma_{xx} \mu_\beta = \sigma_{\gamma\alpha}' \Sigma_{zz} \mu_\gamma + \mu_z' \Sigma_{\gamma\gamma} \Sigma_{zz} \mu_\gamma, \quad \mu_\beta' \Sigma_{xx} \Sigma_{\beta\beta} \Sigma_{xx} \mu_\beta = \mu_\gamma' \Sigma_{zz} \Sigma_{\gamma\gamma} \Sigma_{zz} \mu_\gamma.$$ Differentiating the various terms in (28) with respect to μ_z and Σ_{zz} [using Lütkepohl (1996, Section 10.3.2, eqs. (2), (5) and (21))], we get $$(B.1) \quad \frac{\partial \mu_{y}}{\partial \mu_{z}} = \frac{\partial(\mu'_{x}\mu_{\beta})}{\partial \mu_{z}} = \frac{\partial(\mu'_{z}\mu_{\gamma})}{\partial \mu_{z}} = \mu_{\gamma},$$ $$(B.2) \quad \frac{\partial \sigma_{yy}}{\partial \mu_{z}} = 2\frac{\partial(\mu'_{z}\sigma_{\alpha\gamma})}{\partial \mu_{z}} + \frac{\partial(\mu'_{z}\Sigma_{\gamma\gamma}\mu_{z})}{\partial \mu_{z}} = 2(\sigma_{\gamma\alpha} + \Sigma_{\gamma\gamma}\mu_{z}),$$ $$(B.3) \quad \frac{\partial(\mu'_{x}\Sigma_{\beta\beta}\Sigma_{xx}\mu_{\beta})}{\partial \mu_{z}} = \frac{\partial(\mu'_{z}\Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma})}{\partial \mu_{z}} = \Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma},$$ $$(B.4) \quad \frac{\partial\sigma_{yy}}{\partial \Sigma_{zz}} = \frac{\partial(\mu'_{\gamma}\Sigma_{zz}\mu_{\gamma})}{\partial \Sigma_{zz}} + \frac{\partial\operatorname{tr}(\Sigma_{\gamma\gamma}\Sigma_{zz})}{\partial \Sigma_{zz}} = \mu_{\gamma}\mu'_{\gamma} + \Sigma_{\gamma\gamma},$$ $$(B.5) \quad \frac{\partial(\mu'_{x}\Sigma_{\beta\beta}\Sigma_{xx}\mu_{\beta})}{\partial \Sigma_{zz}} = \frac{\partial(\sigma'_{\gamma\alpha}\Sigma_{zz}\mu_{\gamma})}{\partial \Sigma_{zz}} + \frac{\partial(\mu'_{z}\Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma})}{\partial \Sigma_{zz}} = \mu_{\gamma}\sigma'_{\gamma\alpha} + \mu_{\gamma}\mu'_{z}\Sigma_{\gamma\gamma},$$ $$(B.6) \quad \frac{\partial(\mu'_{\beta}\Sigma_{xx}\Sigma_{\beta\beta}\Sigma_{xx}\mu_{\beta})}{\partial \Sigma_{zz}} = \frac{\partial(\mu'_{\gamma}\Sigma_{zz}\Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma})}{\partial \Sigma_{zz}} = \frac{\partial\operatorname{tr}(\mu'_{\gamma}\Sigma_{zz}\Sigma_{\gamma\gamma}\Sigma_{zz}\mu_{\gamma})}{\partial \Sigma_{zz}}$$ It follows from (28) and (B.1)–(B.6), that $$\begin{split} &(\text{B.7}) \ \frac{\partial
\ln[G_1(Y)]}{\partial \mu_z} = \mu_\gamma + \sigma_{\gamma\alpha} + \Sigma_{\gamma\gamma}(\mu_z + \Sigma_{zz}\mu_\gamma), \\ &(\text{B.8}) \ \frac{\partial \ln[G_1(Y)]}{\partial \Sigma_{zz}} = \frac{1}{2}(\mu_\gamma \mu_\gamma' + \Sigma_{\gamma\gamma} + \mu_\gamma \mu_\gamma' \Sigma_{zz} \Sigma_{\gamma\gamma} + \Sigma_{\gamma\gamma} \Sigma_{zz} \mu_\gamma \mu_\gamma') + \mu_\gamma (\sigma_{\gamma\alpha}' + \mu_z' \Sigma_{\gamma\gamma}). \end{split}$$ Since, from (22), $\Delta \ln[\mathsf{E}(Z)] = \Delta(\mu_z + \frac{1}{2}\sigma_{zz})$, we have $$(\mathrm{B.9}) \, \frac{\partial \ln[G_1(Y)]}{\partial \ln[\mathsf{E}(Z)]} = \left\{ \begin{array}{ll} \mu_\gamma + \sigma_{\gamma\alpha} + \Sigma_{\gamma\gamma} (\mu_z + \Sigma_{zz} \mu_\gamma) & \text{when } \Sigma_{zz} \text{ is constant,} \\ \mathrm{diagv}[\mu_\gamma \mu_\gamma' + \Sigma_{\gamma\gamma} + \mu_\gamma \mu_\gamma' \Sigma_{zz} \Sigma_{\gamma\gamma} & \text{when } \mu_z \text{ and the} \\ + \; \Sigma_{\gamma\gamma} \Sigma_{zz} \mu_\gamma \mu_\gamma' & \text{off-diagonal elements of} \\ + \; 2\mu_\gamma (\sigma_{\gamma\alpha}' + \mu_z' \Sigma_{\gamma\gamma})] & \; \Sigma_{zz} \text{ are constant,} \end{array} \right.$$ which completes the proof. # **APPENDIX C: Data** The data are from the years 1972–1993 and represent two Norwegian manufacturing industries, *Pulp and paper* and *Basic metals*. Table C.1, classifying the observations by the number of years, and Table C.2, sorting the firms by the calendar year in which they are observed, shows the unbalanced structure of the data set. There is a negative trend in the number of firms for both industries. The primary data source is the Manufacturing Statistics database of Statistics Norway, classified under the Standard Industrial Classification (SIC)-codes 341 Manufacture of paper and paper products (Pulp and paper, for short) and 37 Manufacture of basic metals (Basic metals, for short). Both firms with contiguous and non-contiguous time series are included. In the description below, MS indicates firm data from the Manufacturing Statistics, NNA indicates that the data are from the Norwegian National Accounts and are identical for firms classified in the same National Account industry. ``` Y: Output, 100 tonnes (MS) ``` K = KB + KM: Total capital stock (buildings/structures plus machinery/transport equipment), 100 000 1991-NOK (MS,NNA) L: Labour input, 100 man-hours (MS) E: Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS) M = CM/QM: Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS,NNA) CM: Total material cost (incl. motor gasoline) (MS) QM: Price of materials (incl. motor gasoline), 1991=1 (NNA) Output: The firms in the Manufacturing Statistics are in general multi-output firms and report output of a number of products measured in both NOK and primarily tonnes or kg. For each firm, an aggregate output measure in tonnes is calculated. Hence, rather than representing output in the two industries by deflated sales, which may be affected by measurement errors [see Klette and Griliches (1996)], our output measures are actual output in physical units, which are in several respects preferable. Capital stock: The calculations of capital stock data are based on the perpetual inventory method assuming constant depreciation rates. We combine firm data on gross investment with fire insurance values for each of the two categories Buildings and structures and Machinery and transport equipment from the MS. The data on investment and fire insurance are deflated using industry specific price indices of investment goods from the NNA (1991=1). In both industries, the depreciation rate is set to 0.02 for Buildings and structures and 0.04 for Machinery and transport equipment. For further documentation, see Biørn, Lindquist and Skjerpen (2000, Section 4, and 2003). Table C.1: Number of firms by number of replications | | Pulp a | and paper | Basic | metals | |-----|--------|-----------|-------|---------| | p | N_p | $N_p p$ | N_p | $N_p p$ | | 22 | 60 | 1320 | 44 | 968 | | 21 | 9 | 189 | 2 | 42 | | 20 | 5 | 100 | 4 | 80 | | 19 | 3 | 57 | 5 | 95 | | 18 | 1 | 18 | 2 | 36 | | 17 | 4 | 68 | 5 | 85 | | 16 | 6 | 96 | 5 | 80 | | 15 | 4 | 60 | 4 | 60 | | 14 | 3 | 42 | 5 | 70 | | 13 | 4 | 52 | 3 | 39 | | 12 | 7 | 84 | 10 | 120 | | 11 | 10 | 110 | 7 | 77 | | 10 | 12 | 120 | 6 | 60 | | 09 | 10 | 90 | 5 | 45 | | 08 | 7 | 56 | 2 | 16 | | 07 | 15 | 105 | 13 | 91 | | 06 | 11 | 66 | 4 | 24 | | 05 | 14 | 70 | 5 | 25 | | 04 | 9 | 36 | 6 | 24 | | 03 | 18 | 54 | 3 | 9 | | 02 | 5 | 10 | 6 | 12 | | 01 | 20 | 20 | 20 | 20 | | Sum | 237 | 2823 | 166 | 2078 | $p={ m no.}$ of observations per firm. $N_p=$ no. of firms observed p times Table C.2: Number of firms by calendar year | Year | Pulp and paper | Basic metals | |------|----------------|--------------| | 1972 | 171 | 102 | | 1973 | 171 | 105 | | 1974 | 179 | 105 | | 1975 | 175 | 110 | | 1976 | 172 | 109 | | 1977 | 158 | 111 | | 1978 | 155 | 109 | | 1979 | 146 | 102 | | 1980 | 144 | 100 | | 1981 | 137 | 100 | | 1982 | 129 | 99 | | 1983 | 111 | 95 | | 1984 | 108 | 87 | | 1985 | 106 | 89 | | 1986 | 104 | 84 | | 1987 | 102 | 87 | | 1988 | 100 | 85 | | 1989 | 97 | 83 | | 1990 | 99 | 81 | | 1991 | 95 | 81 | | 1992 | 83 | 71 | | 1993 | 81 | 83 | | Sum | 2823 | 2078 | Other inputs: From the MS we get the number of man-hours used, total electricity consumption in kWh, the consumption of a number of fuels in various denominations, and total material costs in NOK for each firm. The different fuels are transformed to the common denominator kWh by using estimated average energy content of each fuel [Statistics Norway (1995, p. 124)]. This enables us to calculate aggregate energy use in kWh for each firm. Total material costs is deflated by the price index (1991=1) of material inputs from the NNA. This price is identical for all firms classified in the same National Account industry. Observations with missing values of output or inputs have been removed. This reduced the number of observations by 6–8 per cent in the two industries. # References - Biørn, E. (2004): Regression Systems for Unbalanced Panel Data: a Stepwise Maximum Likelihood Procedure. *Journal of Econometrics* 122, 281-291. - Biørn, E., K.-G. Lindquist, and T. Skjerpen (2000): Micro Data on Capital Inputs: Attempts to Reconcile Stock and Flow Information. Discussion Paper No. 268, Statistics Norway. - Biørn, E., K.-G. Lindquist, and T. Skjerpen (2002): Heterogeneity in Returns to Scale: A Random Coefficient Analysis with Unbalanced Panel Data. *Journal of Productivity Analysis* 18, 39-57. - Biørn, E., K.-G. Lindquist, and T. Skjerpen (2003): Random Coefficients in Unbalanced Panels: An Application on Data From Chemical Plants. *Annales d'Économie et de Statistique* 69, 55-83. - Biørn, E., and T. Skjerpen (2004): Aggregation and Aggregation Biases in Production Functions: A Panel Data Analysis of Translog Models. *Research in Economics* 58, 31-57. - Biørn, E., T. Skjerpen, and K.R. Wangen (2003): Parametric Aggregation of Random Coefficient Cobb-Douglas Production Functions: Evidence from Manufacturing Production Functions. Discussion Paper No. 342, Statistics Norway. - Evans, M., N. Hastings, and B. Peacock (1993): Statistical Distributions, Second Edition. New York: Wiley. - Fortin, N.M. (1991): Fonctions de production et biais d'agrégation. Annales d'Économie et de Statistique 20/21, 41-68. - Felipe, J., and F.M. Fisher (2003): Aggregation in Production Functions: What Applied Economists Should Know. *Metroeconomica* 54, 208-262. - Hildenbrand, W. (1998): How Relevant Are Specifications of Behavioral Relations on the Micro Level for Modelling the Time Path of Population Aggregates? *European Economic Review* 42, 437-458. - Johansen, L. (1972): Production Functions. An Integration of Micro and Macro, Short Run and Long Run Aspects. Amsterdam: North-Holland. - Jorgenson, D.W. (1995): Productivity. Volume 2: International Comparisons of Economic Growth. Cambridge, MA: MIT Press. - Klette, T.J., and Z. Griliches (1996): The Inconsistency of Common Scale Estimators when Output Prices Are Unobserved and Endogenous. *Journal of Applied Econometrics* 11, 343-361. - Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger (1996): SAS System for Mixed Models. Cary, NC: SAS Institute. - Lütkepohl, H. (1996): Handbook of Matrices. Chichester: Wiley. - Mas-Colell, A., M.D. Whinston, and J.R. Green (1995): *Microeconomic Theory*. New York: Oxford University Press. - Statistics Norway (1995): Energy Statistics 1995. Official Statistics of Norway, NOS C 347. - Stoker, T.M. (1993): Empirical Approaches to the Problem of Aggregation Over Individuals. *Journal of Economic Literature* 31, 1827-1874. - van Garderen, K.J., K. Lee, and M.H. Pesaran (2000): Cross-Sectional Aggregation of Non-linear Models. *Journal of Econometrics* 95, 285-331.