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Abstract: Parametric aggregation of heterogeneous micro production technologies is
discussed. A four-factor Cobb-Douglas function with normally distributed firm specific
coefficients and with log-normal inputs (which agrees well with the available data) is
specified. Since, if the number of micro units is large enough, aggregates expressed as
arithmetic means can be associated with expectations, we consider conditions ensuring
an approximate relation of Cobb-Douglas form to exist between expected output and
expected inputs. Similar relations in higher-order moments are also derived. It is shown
how the aggregate input elasticities depend on the coefficient heterogeneity and the co-
variance matrix of the log-input vector and hence vary over time. An implementation
based on firm panel data for two manufacturing industries gives estimates of industry
level input elasticities and decomposition for expected output. Finally, aggregation errors
which emerge when the correct aggregate elasticities are replaced by the expected micro
elasticities, are explored.
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1 Introduction

The production function is usually considered an essentially micro construct, and the

existence, interpretation, and stability of a corresponding aggregate function are issues

of considerable interest in macro-economic modelling and research, cf. the following quo-

tations: “The benefits of an aggregate production model must be weighted against the

costs of departures from the highly restrictive assumptions that underly the existence of

an aggregate production function” [Jorgenson (1995, p. 76)] and “An aggregate produc-

tion function is a function that maps aggregate inputs into aggregate output. But what

exactly does this mean? Such a concept has been implicit in macroeconomic analyses for

a long time. However, it has always been plagued by conceptual confusions, in particu-

lar as to the link between the underlying micro production functions and the aggregate

macro production function, the latter thought to summarize the alleged aggregate tech-

nology” [Felipe and Fisher (2003, p. 209), our italics].1 Three (related) questions are of

particular interest: Can aggregation by analogy, in which estimated micro parameters, or

averages of such elasticities, are inserted into a macro function of the same form, give an

adequate representation of the ‘aggregate technology’? Which are the most important

sources of aggregation bias and instability of the macro function over time? Does the

heterogeneity of the micro technologies or the spread in the input mix across firms affect

the macro parameters, and if so, how? The last question was raised more than 30 years

ago by Johansen (1972), in the context of aggregating ‘putty-clay’ micro technologies to

smooth macro functions by utilizing information on the distribution of input coefficients

across firms. Panel data is a necessity to examine such issues empirically in some depth.

Yet, the intersection between the literature on aggregation and the literature on panel

data econometrics is still very small.

Our focus in this paper will be on the three questions raised above, using a rather re-

strictive parametric specification of the average micro technology, based on a four-factor

Cobb-Douglas function, with random coefficients to represent technological heterogene-

ity. Although Cobb-Douglas restricts the pattern of input substitution strongly and has

to some extent been rejected in statistical tests, the simplicity of this parametric form
1A textbook exposition of theoretical properties of production functions aggregated from neo-classical

micro functions is given in Mas-Colell, Whinston and Green (1995, Section 5.E).
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of the average technology is a distinctive advantage of this functional form over, e.g.,

Translog or CES. We assume that the random coefficients are jointly normal (Gaus-

sian) and that the inputs are generated by a multivariate log-normal distribution, whose

parameters may shift over time. To our knowledge, this is the first study exploring

aggregate production functions by using firm-level (unbalanced) panel data in a full ran-

dom coefficient setting by means of this form of the average micro technology. A model

framework which is similar to ours, although denoted as ‘cross-sectional aggregation of

log-linear models’ (our italics) is considered by van Garderen, Lee and Pesaran (2000,

Section 4.2). However, they implement it, not on data from single firms, but on time

series data from selected industries (p. 309), which is less consistent with the underlying

micro theory. The expectation vector and covariance matrix of the coefficient vector are

estimated from panel data for two Norwegian manufacturing industries. Log-normality

of the inputs is tested and for the most part not rejected. This, in conjunction with

a Cobb-Douglas technology with normally distributed coefficients, allows us to derive

interpretable expressions for aggregate production.

From the general literature on aggregation it is known that properties of relationships

aggregated from relationships for micro units depend on the average functional form in

the micro model, its heterogeneity, the distribution of the micro variables, and the form of

the aggregation functions. Customarily, the aggregation functions are arithmetic means

or sums. If the number of micro units is large enough to appeal to a statistical law of large

numbers and certain additional statistical regularity conditions are satisfied, we can asso-

ciate the arithmetic mean with the expectation [cf. Fortin (1991, Section 2), Stoker (1993,

Section 3), Hildenbrand (1998, Section 2), and Biørn and Skjerpen (2004, Section 2)],

which is what we shall do here. However, we will be concerned not only with relationships

expressed in terms of expected inputs and output, but also with relationships between

higher-order moments.

Given our stochastic assumptions, the marginal distribution of output will not be

log-normal. van Garderen, Lee and Pesaran (2000, p. 307) derived a formula for the

expectation of output under the same stochastic assumptions as we employ. Their formula

can also be generalized to higher order origo moments of output, provided that the

moments exist. The existence of these moments is guaranteed by an eigenvalue condition
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which involves the covariance matrices of the random coefficients and the log-inputs.

Examining this condition for each year in the data period, we find that, generally, only

the first and second origo moments of output exist.

Besides the exact formulae, approximate expressions for the origo moments of output

are considered. An advantage of the latter is that they allow us to derive interpretable

relationships between origo moments of output and inputs, construct decompositions of

expected output, of interest when for example predicting output changes from changes

in inputs, and derive expressions for aggregate elasticities. In order to assess the quality

of this approximation, a comparison of estimated origo moments of output based on the

approximate formulae with those obtained by the exact formulae.

A main objective of the paper is to compare correctly estimated aggregate input

and scale elasticities with elasticities obtained from simple analogy. Since aggregate

parameters are in general undefined unless the distribution of the micro variables is

restricted in some way, we provide results for the limiting cases where the means of

the log-inputs change and their dispersions are preserved, and the opposite case. While

the expected micro elasticities, by construction, are time invariant, the correct macro

elasticities are allowed to vary. For some elasticities we find a trending pattern. Besides,

even when the variation over time is modest there are significant level differences between

the aggregate elasticities calculated from the correct formulae and those obtained by

analogy, as well as differences in the relative size of the elasticities for the different

inputs.

The following sections are organized as follows. The model is presented in Section 2,

properties of the theoretical distribution of output are discussed, and approximative

expressions for the moments of output are derived. From this we obtain, in Section 3,

an approximate aggregate production function and expressions for the correct aggregate

input elasticities, in the ‘dispersion preserving’ and ‘mean preserving’ cases. In Section 4,

the econometric method and data are first described, and then estimates of aggregate

input elasticities and other results are presented. Section 5 concludes.
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2 Model and output distribution

2.1 Basic assumptions

We consider an n factor Cobb-Douglas production function model for panel data of an

arbitrary form, written in log-linear form as

yit = x′itβi + uit = αi + z′itγi + uit,(1)

where i is the firm index, t is the period index, xit = (1, z′it)
′ is an n+1 vector (including

a one for the intercept) and βi = (αi, γ′i)
′ is an n + 1 vector (including the intercept), γi

denoting the n vector of input elasticities. We interpret zit as ln(Zit), where Zit is the n

dimensional input vector, and yit as ln(Yit), where Yit is output, and assume that

xit ∼ N (µxt, Σxxt) = N




 1

µzt


 ,


 0 0

0 Σzzt





 ,(2)

βi ∼ N (µβ,Σββ) = N




 µα

µγ


 ,


 σαα σ′γα

σγα Σγγ





 ,(3)

uit ∼ N (0, σuu),(4)

xit, βi, uit are stochastically independent,(5)

where σαα = var(α), σγα is the n vector of covariances between αi and γi, and Σγγ is

the n dimensional covariance matrix of γi. The n + 1 dimensional covariance matrix

Σxxt is singular since xit has a one element, while its n dimensional submatrix Σzzt is

non-singular in general.

The implementation of the model specifies four inputs (n = 4): capital (K), labour

(L), energy (E), and materials (M), and includes a deterministic linear trend (t), intended

to capture the level of the technology. We therefore parameterize (1) as

yit = α∗i + κt + z′itγi + uit,(6)

where α∗i and γi are random parameters specific to firm i, and the trend coefficient κ is as-

sumed to be firm invariant. We let zit = (zKit, zLit, zEit, zMit)′, γi = (γKi, γLi, γEi, γMi)′,

collect all the random coefficients for firm i in the vector ψi = (α∗i , γ
′
i)
′, and let

E(ψi) = ψ = (µ∗α, µK , µL, µE , µM )′, E[(ψi − ψ)(ψi − ψ)′] = Ω,

where Ω is a symmetric, but otherwise unrestricted matrix, and E(α∗i ) = µ∗α.
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2.2 The distribution of output

It is convenient first to characterize the distribution of log-output. From (1)–(5) it follows

that

(yit|βi) ∼ N (µ′xtβi, β
′
iΣxxtβi + σuu), (yit|xit) ∼ N (x′itµβ, x′itΣββxit + σuu),(7)

and, by using the law of iterated expectations, that

µyt = E(yit) = E[E(yit|βi)] = µ′xtµβ,(8)

σyyt = var(yit) = E[var(yit|βi)] + var[E(yit|βi)] = E[tr(βiβ
′
iΣxxt) + σuu] + var(µ′xtβi)(9)

= tr[E(βiβ
′
iΣxxt)] + σuu + µ′xtΣββµxt = tr[(µβµ′β + Σββ)Σxxt] + σuu + µ′xtΣββµxt

= µ′xtΣββµxt + µ′βΣxxtµβ + tr(ΣββΣxxt) + σuu.

The four components of σyyt represent, respectively, (i) the variation in the coefficients

(µ′xtΣββµxt), (ii) the variation in the log-inputs (µ′βΣxxtµβ), (iii) the interaction between

the variation in the log-inputs and the coefficients [tr(ΣββΣxxt)], and (iv) the disturbance

variation (σuu).

We next characterize the distribution of output. Since Yit = eyit = ex′itβi+uit , we

know from (7) that (Yit|xit) and (Yit|βi) are log-normal. From Evans, Hastings, and

Peacock (1993, Chapter 25), it therefore follows, for any positive integer r, that

E(Y r
it |βi) = Exit,u(eryit |βi) = exp[rµ′xtβi + 1

2
r2(β′iΣxxtβi + σuu)],(10)

E(Y r
it |xit) = Eβi,u(eryit |xit) = exp[rx′itµβ + 1

2
r2(x′itΣββxit + σuu)],(11)

which shows that any conditional finite-order moment of output exist. Marginally, how-

ever, Yit is not log-normal, since x′itβi is non-normal, and some of its finite-order moments

may not exist. We now show that a closed form expression for the marginal origo mo-

ments of Y exist and can be derived from (10).2

From (10) and the law of iterated expectations, from now on, for simplicity, omitting

subscripts (i, t),we find that the marginal r’th-order origo moment of Yit, when it exists,
2Following a similar argument, the same result can be derived from (11). A proof for the case r = 1,

similar to the one below, but related to (11) and somewhat longer, is given in van Garderen, Lee, and

Pesaran (2000, pp. 306-307).
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can be written as

E(Y r) = exp[1
2
r2σuu]Eβ[exp(rµ′xβ + 1

2
r2β′iΣxxβ)](12)

= exp[rµ′xµβ + 1

2
r2(µ′βΣxxµβ + σuu)]Eδ{exp[(rµ′x + r2µ′βΣxx)δ+ 1

2
r2δ′Σxxδ]},

where δ = β − µβ ∼ N (0,Σββ).

Inserting for the density of δ, f(δ) = (2π)−
n+1

2 |Σββ |−
1
2 exp[− 1

2 δ′Σ−1
ββδ], we find that

the last expectation in (12) can be written as

Hr = Eδ{exp[(rµ′x + r2µ′βΣxx)δ + 1

2
r2δ′Σxxδ]}(13)

=
∫

Rn+1
exp[a(r)′δ + 1

2
r2δ′Σxxδ]f(δ)dδ = (2π)−

n+1
2 |Σββ|−

1
2

∫

Rn+1
exp[λr(δ)]dδ,

where

λr(δ) = a(r)′δ − 1

2
δ′M(r)δ, M(r) = Σ−1

ββ − r2Σxx, a(r) = rµx + r2Σxxµβ.(14)

Since an alternative way of writing λr(δ) is

λr(δ) = 1

2
a(r)′M(r)−1a(r)− 1

2
[δ′ − a(r)′M(r)−1]M(r)[δ −M(r)−1a(r)],

and integration goes over Rn+1, we can substitute q = δ−M(r)−1a(r) and rewrite Hr as

Hr = |Σββ |−
1
2 exp[1

2
a(r)′M(r)−1a(r)]

∫

Rn+1
(2π)−

n+1
2 exp[−1

2
q′M(r)q]dq.

The last integral has a formal similarity to the integral over a normal density function,

with M(r) occupying the same place as the inverse of the covariance matrix of q. Because

the latter integral is one for any q and any positive definite M(r), we know that

∫

Rn+1
(2π)−

n+1
2 exp[−1

2
q′M(r)q]dq = |M(r)−1| 12 ,

if M(r) is positive definite. Hence we can express Hr in closed form as

Hr = |Σββ|−
1
2 exp[1

2
a(r)′M(r)−1a(r)]|M(r)|− 1

2 = exp[1
2
a(r)′M(r)−1a(r)]|ΣββM(r)|− 1

2 .

Inserting this into (12) yields

E(Y r) = |M(r)Σββ |−
1
2 exp[rµ′xµβ + 1

2
r2(µ′βΣxxµβ + σuu) + 1

2
a(r)′M(r)−1a(r)].
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After inserting for M(r) and a from (14), we finally find that the r’th order moment of

output can be written in closed form as

E(Y r) = |In+1 − r2ΣββΣxx|−
1
2 exp[rµ′xµβ + 1

2
r2(µ′βΣxxµβ + σuu)(15)

+1

2
(rµ′x + r2µ′βΣxx)(Σ−1

ββ − r2Σxx)−1(rµx + r2Σxxµβ)].

Obviously, the argument above relies on M(r) (and hence M(r)−1) being positive

definite. Hence,

Hr and E(Y r) exist ⇐⇒ Σ−1
ββ − r2Σxx is positive definite.(16)

Intuitively, such a condition must be imposed because both β and z have support from

minus to plus infinity. If E(Y r) exists, then all lower-order moments also exist. From

(14) we have

M(r − 1) = M(r) + (2r − 1)Σxx, r = 2, 3, . . . ,

so that if M(r) and Σxx are positive definite, then M(r−1) is also positive definite, since

2r > 1 and the sum of two positive definite matrices is positive definite.

2.3 Approximations to the origo moments of output

We now present a way of obtaining, from (12), an approximate formula for E(Y r). Ne-

glecting in the integral the effect of the dispersion in δ′Σxxδ = tr[δδ′Σxx] by replacing it

by its expectation, tr[ΣββΣxx], we get, provided that (16) holds, the following analytical

approximation to the r’th origo moment of output:

E(Y r) ≈ Gr(Y ) = exp[rµ′xµβ + 1

2
r2(µ′βΣxxµβ + tr[ΣββΣxx] + σuu)](17)

× exp[1
2
(rµ′x + r2µ′βΣxx)Σββ(rµx + r2Σxxµβ)]

= exp[rµ′xµβ + 1

2
r2(µ′βΣxxµβ + µ′xΣββµx + tr[ΣββΣxx] + σuu)

+r3µ′βΣxxΣββµx + 1

2
r4µ′βΣxxΣββΣxxµβ],

since var(a′δ) = a′Σββa. When (16) does not hold, this approximation, of course, makes

no sense. When applying this approximation we eliminate both the square root of the

inverse of the determinant |In+1− r2ΣββΣxx| and all terms involving Σ−1
ββ from the func-

tion. This is an obvious simplification when we use the function to derive and, more

importantly, interpret expressions for the aggregate input elasticities below. A price we
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have to pay is that in deriving (17) we neglect the variance of a term occurring in the

exponent. Since the exponential function is convex, intuition says that Gr(Y ) is likely to

underestimate E(Y r). The numerical calculations in Section 4 will support this intuition.

We can then, using (8) and (9), write the analytical approximation to E(Y r) as

Gr(Y ) = Φr(y)ΓrΛr,(18)

where

Φr(y) = exp[rµy + 1

2
r2σyy](19)

is the ‘first-order’ approximation we would have obtained if we had proceeded as if y

were normally and Y were log-normally distributed marginally [cf. (8) and (9)], and

Γr = exp[r3µ′xΣββΣxxµβ], Λr = exp[1
2
r4µ′βΣxxΣββΣxxµβ](20)

can be considered correction factors to this first-order approximation.3

3 An approximate aggregate production

function in origo moments

We next derive an approximate relationship between E(Y r) and E(Zr) to be used, for

r = 1, in examining aggregation biases when representing the aggregate variables by

their arithmetic means. In doing this, we recall that eE[ln(Y )] and eE[ln(Zi)] correspond to

the geometric means, and E(Y ) and E(Zi) to the arithmetic means of the output and the

i’th input, respectively. We first assume r arbitrarily large, still assuming that (16) is

satisfied, and afterwards discuss the case r = 1 in more detail.

3.1 A Cobb-Douglas production function in origo moments

Let

θyr = ln[Gr(Y )]− rµy = ln[Φr(y)] + ln[Γr] + ln[Λr]− rµ′xµβ

= 1
2 r2σyy + r3µ′xΣββΣxxµβ + 1

2 r4µ′βΣxxΣββΣxxµβ,
(21)

3The approximation leading to (18) follows by applying the law of iterated expectations on (10).

Proceeding in a similar way from (11) would have given a similar approximation, although with a different

Λr component; see Biørn, Skjerpen and Wangen (2003, Sections 3.1 and 6.3).
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which can be interpreted as an approximation to ln[E(Y r)]−E[ln(Y r)], and let Zi denote

the i’th element of Z, i.e., the i’th input, and zi = ln(Zi). Since zi ∼ N (µzi, σzizi), where

µzi is the i’th element of µz and σzizi is the i’th diagonal element of Σzz [cf. (2)], we have

E(Zr
i ) = E(ezir) = exp(µzir + 1

2
σzizir

2), r = 1, 2, . . . ; i = 1, . . . , n.(22)

Let µγi be the i’th element of µγ , i.e., the expected elasticity of the i’th input. Since

(22) implies eµziµγir = exp(− 1
2 σzizir

2µγi)[E(Zr
i )]µγi , it follows from (17) and (21) that

Gr(Y ) = eµαrAr

n∏

i=1

[E(Zr
i )]µγi ,(23)

where

Ar = exp

(
θyr − 1

2
r2

n∑

i=1

σziziµγi

)
= exp(θyr − 1

2
r2µ′γσzz),(24)

and σzz = diagv(Σzz).4 Eq. (23) can be interpreted (approximately) as a Cobb-Douglas

function in the r’th origo moments of Y and Z1, . . . , Zn with exponents equal to the

expected micro elasticities µγ1, . . . , µγn and an intercept eµαr, adjusted by the factor Ar.

The latter depends, via θyr, on the first and second moments of the log-input vector z

and the coefficient vector β and σuu [cf. (8), (9) and (21)].

For r = 1, (23) gives

G1(Y ) = eµαA1

n∏

i=1

[E(Zi)]µγi .(25)

Seemingly, this equation could be interpreted as a Cobb-Douglas function in the arith-

metic means E(Y ) and E(Z1), . . . ,E(Zn), with elasticities coinciding with the expected

micro elasticities µγ1, . . . , µγn and an intercept eµα adjusted by the factor A1. However,

we will show that, due to the randomness of the micro coefficients, in combination with

the non-linearity of the micro production function, the situation is not so simple.

3.2 Aggregation by analogy and aggregation biases

in output and in input elasticities

Assume that we, instead of (25), represent the aggregate production function simply by

Ê(Y ) = eµα

n∏

i=1

[E(Zi)]
µγi .(26)

4We let ‘diagv’ before a square matrix denote the column vector containing its diagonal elements.
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This can be said to mimic the aggregation by analogy often used by macro-economists and

macro model builders. The resulting aggregation error in output, when we approximate

E(Y ) by G1(Y ), is

ε(Y ) = G1(Y )− Ê(Y ) = (A1 − 1)eµα

n∏

i=1

[E(Zi)]
µγi .(27)

Representing the aggregate Cobb-Douglas production function by (26) will bias not

only its intercept, but also its derived input elasticities, because A1 in (25) responds to

changes in µz and Σzz. We see from (8), (9) and (21) that when Σγγ is non-zero, a change

in µz affects not only expected log-output, µy, but also its variance σyy, as well as Γ1.

Eqs. (8), (9), and (17) imply

ln[G1(Y )] = µy + 1

2
σyy + µ′xΣββΣxxµβ + 1

2
µ′βΣxxΣββΣxxµβ.(28)

Using the fact that ∆ ln[E(Z)] = ∆(µz + 1
2σzz) [cf. (22)], we show in Appendix B that

∂ ln[G1(Y )]
∂ ln[E(Z)]

=





µγ + σγα + Σγγ(µz + Σzzµγ) when Σzz is constant,

diagv[µγµ′γ + Σγγ + µγµ′γΣzzΣγγ when µz and the
+ ΣγγΣzzµγµ′γ off-diagonal elements of
+ 2µγ(σ′γα + µ′zΣγγ)] Σzz are constant.

(29)

From this expression we can not uniquely define and measure an exact aggregate i’th

input elasticity, (∂ ln[G1(Y )])/(∂ ln[E(Zi)]). The two parts of (29) are limiting cases, the

former may be interpreted as a vector of dispersion preserving aggregate input elasticities,

the latter as a vector of mean preserving elasticities. Anyway, µγ provides a biased

measure of the aggregate elasticity vector. The bias vector implied by the dispersion

preserving macro input elasticities, obtained from the first part of (29), is

ε(µγ) = σγα + Σγγ(µz + Σzzµγ),(30)

The bias vector for the mean preserving elasticities can be obtained from the second part

in a similar way.

Dispersion preserving elasticities may be of more practical interest than mean preserv-

ing ones, since constancy of the variance of the log-input i, i.e., σzizi, implies constancy

of the coefficient of variation of the untransformed input i. This will be the situation
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when the i’th input of all micro units change proportionally.5 This follows from the fact

that coefficient of variation of Zi is [cf. (22) and Evans, Hastings, and Peacock (1993,

Chapter 25)]

v(Zi) =
std(Zi)
E(Zi)

= (eσzizi − 1)
1
2 ,(31)

which shows that constancy of σzizi implies constancy of v(Zi).

4 Estimation, data, and empirical results

4.1 Econometric method and data

The unknown parameters are estimated by Maximum Likelihood (ML), using the PROC

MIXED procedure in the SAS/STAT software [see Littell et al. (1996)] and imposing

positive definiteness of Ω as an a priori restriction. Details are given in Appendix A. In

this particular application we have used the ML estimation results in Biørn, Lindquist

and Skjerpen (2002, cf. Section 2 and Appendix A). The data are from an unbalanced

panel for the years 1972–1993 from two Norwegian manufacturing industries, Pulp and

paper (2823 observations, 237 firms) and Basic metals (2078 observations, 166 firms). A

further description is given in Appendix C. The estimates of ψ, Ω, and the expected scale

elasticity µ =
∑

j µj are given in Tables 1 and 2.

4.2 Tests of the normality of the log-input distribution

Since this study relies on log-normality of the inputs, we will comment briefly on tests

of this hypothesis. Using univariate statistics which depend on skewness and excess

kurtosis, Biørn, Skjerpen and Wangen (2003, Appendix D) report, for each year in the

sample period, tests of normality of the log-inputs. In most cases, the result is non-

rejection at the five per cent level. However, for Pulp and paper, there is some evidence

of non-normality, especially at the start of the sample period. This is most pronounced for

energy and materials, and normality is rejected at the 1 per cent level in the years 1972–

1976. Despite these irregularities, we proceed by imposing normality of all log-inputs as

a simplifying assumption.
5The mean preserving elasticities relate to a more ‘artificial’ experiment in which E[ln(Zi)] is kept

fixed and v(Zi) is increased, i.e., std(Zi) is increased relatively more than E(Zi).
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4.3 Decompositions of the origo moments of output

Table 3 presents decompositions of the estimated ln[G1(Y )], corresponding to (18), which

may interesting in predicting annual changes in industry output from changes in inputs.

Table 4 gives similar results for approximate second-order moment, ln[G2(Y )], The latter

may be useful in decomposing industry output volatility into contributions from the

volatility of industry inputs. The last column in each panel gives the corresponding

results based on the exact formula. The first column Table 3, ln[Φ1(y)], can be interpreted

as the log of expected output if output were log-normally distributed, which is not in

accordance with our assumptions.

Adding to ln[Φ1(y)] the correction factors ln(Γ1), which is uniformly negative (col-

umn 2), and ln(Λ1), which is uniformly positive (column 3), generally reduces the discrep-

ancy between results based on this ‘first-order approximation’ formula and the correct

results (column 5). The only exception is Basic metals in the ultimate year. The approx-

imation formula performs better for the first-order than for the second-order moment.

Table 5 carries the decomposition a step further, by decomposing ln[Φ1(y)] and

ln[Φ2(y)] into five sub-components. Comparing the first and sixth columns in this table

shows the large downward bias that would have followed by the naive way of representing

the expectation of a log-normal variable, say W , by eE[ln(W )]. All sub-components [1]–[5]

contribute positively to ln[Φ1(y)] and ln[Φ2(y)].

For the first-order moment, the largest contribution comes from µy (column [1]),

and the next largest, 1
2 µ′xΣββµx, from the variation in the random coefficients (column

[2]). Smaller contributions are due to the variation in log-inputs, 1
2 µ′βΣxxµβ (column

[3]), the interaction term, 1
2 tr(ΣββΣxx) (column [4]), and the the disturbance variance,

1
2 σuu (column [5]). Regarding the second-order moments, the contribution from the

random variation in coefficients, 2µ′xΣββµx (column [2]), exceeds the contribution from

the expectation term, 2µy (column [1]), for Basic metals.

4.4 Scale and input elasticities

Table 6 reports summary statistics for the industry elasticities obtained by the two hy-

pothetic experiments, giving dispersion preserving and mean preserving industry elastic-

ities, respectively; cf. (29). The underlying year specific elasticities are given in Table 7.
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In both industries and for all the years, the estimated micro scale elasticity is smaller

than the dispersion preserving scale elasticity, and larger than the mean preserving scale

elasticity, but the aggregation biases are not dramatic. In Pulp and paper, the mean of

the estimated dispersion preserving scale elasticity is 1.16, the estimated expected micro

elasticity is 1.07 and the mean preserving elasticity is 0.9. The corresponding figures for

Basic metals are 1.15, 1.11 and 1.00, respectively. The annual variation in the industry

elasticities is rather small.

However, when turning to the components of the scale elasticities, i.e., the input

elasticities, we find more important aggregation biases. The estimate of the expected

firm-level capital elasticity is 0.25 in Pulp and paper, which exceeds both the dispersion

preserving and the mean preserving industry elasticities. The mean of the latter is 0.19,

the former increases from 0.16 in 1972 to 0.20 in 1993. In Basic metals the dispersion

preserving capital elasticity increases from about 0.05 in the first years to 0.15 in 1992,

and then decreases substantially in the final year, 1993. Also, the mean preserving capital

elasticity is relatively low in 1993, in the other years it is slightly higher than the expected

firm elasticity which is 0.12. The estimate of the expected firm-level labour elasticity

is 0.17 in Pulp and paper and 0.27 in Basic metals. The mean preserving elasticity

is approximately constant in both industries, while the dispersion preserving elasticity

decreases: for Pulp and paper from 0.19 in 1972 to 0.12 at the end of the data period,

and for Basic metals from 0.36 to 0.19. For Pulp and paper the energy elasticity has the

lowest estimate among the expected firm elasticities, 0.09. The dispersion preserving and

mean preserving elasticities are about 0.12 and 0.03, respectively, and show almost no

variation over time. For Basic metals the industry energy elasticity varies more, around a

mean which is somewhat less than the expected firm elasticity. The materials elasticity is

the largest elasticity according to all the three measures. In both sectors the dispersion

preserving energy elasticity exceeds the expected firm elasticity; the mean preserving

elasticity is substantially lower.

Since both the mean and the covariance matrix of the log-input vector usually change

from year to year, the assumptions underlying the dispersion and mean preserving elas-

ticities are unrealistic. It may therefore be worthwhile to consider intermediate cases in

which a weighting of the two extremes is involved. Some experiments along these lines
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suggest, contrary to what might be expected, that the expected micro elasticity is not

invariably closer to this weighted aggregate elasticity than it is to the closest of the two

extremes.

Overall, the above results give ample evidence against using ‘raw’ micro elasticities

to represent macro parameters. As basis for analyzing productivity issues, for instance

estimating total factor productivity growth, and comparing growth rates across coun-

tries, annually as well as for longer periods, and for other policy related issues, they are

potentially misleading.

5 Conclusions

This paper has been concerned with the aggregation of micro Cobb-Douglas production

functions to the industry level when the firm specific production function parameters

and the log-inputs are assumed to be independent and multinormally distributed. We

have provided analytical approximations for the expectation and the higher-order origo

moments of output, as well as conditions for the existence of such moments. These

existence conditions turn out to be rather strong in the present case: only the first and

second moments exist. To some extent, this may be due to our simplifying normality

assumption, so that products of two vectors, both with support extending from minus to

plus infinity, will enter the exponent of the expression for the moments of output. This

suggests that investigating truncated distributions, in particular for the coefficients, may

be interesting topics for further research. Relaxation of normality and/or truncation is,

however, likely to increase the analytical and numerical complexity of the aggregation

procedures.

We have shown how an industry level production function, expressed as a relation-

ship between expected output and expected inputs, can be derived and how to quantify

discrepancies between correctly aggregated input and scale elasticities and expected elas-

ticities obtained from micro data. Obviously, the correctly aggregated coefficients are not

strict technology parameters, as they also depend on the coefficient heterogeneity and the

covariance matrix of the log-input vector; cf. the quotation from Felipe and Fisher (2003,

p. 209) in the introduction. Our empirical decompositions give evidence of this. To

indicate the possible range, as aggregate elasticities are undefined unless the input distri-
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bution is restricted, we have provided results for the limiting ‘dispersion preserving’ and

‘mean preserving’ cases. However, the experiment underlying our definition of the mean

preserving elasticities is one in which the variances of the log-input distribution, but none

of the covariances, are allowed to change. This simplifying assumption may have affected

some of the above conclusions. An interesting modification may be to assume that the

correlation matrix of the log-input vector, rather than the covariances, is invariant when

the variances change.

Different decompositions of the log of expected output have been demonstrated. One

of the components, a kind of a first-order approximation, is what we would have obtained

if we had proceeded as if output were log-normal marginally. The numerical values when

additional terms are included, are closer to the correct ones. The dispersion preserving

scale elasticity is substantially higher than the expected micro scale elasticity for both

industries and in all the years. For the mean preserving counterpart the differences are

smaller. For Pulp and paper the micro elasticity exceeds the aggregate elasticity in all

years. It is worth noting that the ranking of the industry level and the mean firm level

input elasticities do not coincide, and the former is allowed to change over time.

An assumption not put into question in this paper is zero correlation between the

production function parameters and the log-inputs. An interesting extension would be

to relax this assumption, for instance to model the correlation. Simply treating all pa-

rameters as fixed and firm specific would, however, imply wasting a substantial part of

the sample, since a minimal time series length is needed to estimate firm specific fixed

parameters properly. Whether an extension of our approach to more flexible micro tech-

nologies, like the CES, the Translog, or the Generalized Leontief production functions,

is practicable is an open question. Probably, it will be harder to obtain useful analytical

approximations for expected output, from which aggregate parameters can be derived,

and since both Translog and Generalized Leontief contain second-order terms, the prob-

lems related to the non-existence and numerical stability of higher-order origo moments

of output, if normality of coefficients and log-inputs is retained, are likely to become

more severe. In such cases it may be more promising to abandon the assumption that

parameters and log-input variables are generated from specific parametric distributions.
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Table 1: Estimates of parameters in the micro CD production functions

Pulp and paper Basic metals

Parameter Estimate St.err. Estimate St.err.

µ∗α -2.3021 0.2279 -3.1177 0.2702
κ 0.0065 0.0013 0.0214 0.0021
µK 0.2503 0.0344 0.1246 0.0472
µL 0.1717 0.0381 0.2749 0.0550
µE 0.0854 0.0169 0.2138 0.0374
µM 0.5666 0.0309 0.4928 0.0406
µ 1.0740 0.0287 1.1061 0.0324

Table 2: Covariance matrix of firm specific coefficients

Pulp and paper

α∗ γK γL γE γM

α∗ 5.9336
γK -0.4512 0.1147
γL -0.7274 -0.0559 0.1515
γE 0.3968 -0.4197 -0.3009 0.0232
γM 0.3851 -0.6029 -0.4262 0.1437 0.1053

Basic metals

α∗ γK γL γE γM

α∗ 3.5973
γK -0.0787 0.1604
γL -0.6846 -0.5503 0.1817
γE 0.3040 -0.6281 0.1366 0.1190
γM 0.1573 0.1092 -0.3720 -0.6122 0.1200

Variances on the main diagonal and correlation coefficients below.
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Table 3: Decomposition of ln[G1(Y )]

Pulp and paper

Year ln[Φ1(y)] ln(Γ1) ln(Λ1) ln[G1(Y )] ln[E(Y )]

1972 5.8221 -0.1336 0.2241 5.9126 5.9410
1973 5.8886 -0.1301 0.2300 5.9885 6.0188
1974 6.0399 -0.1524 0.3090 6.1965 6.2423
1975 5.9314 -0.1559 0.3047 6.0802 6.1234
1976 5.9413 -0.1622 0.3085 6.0876 6.1304
1977 5.8042 -0.1485 0.2434 5.8991 5.9265
1978 5.8231 -0.1493 0.2450 5.9188 5.9472
1979 5.9353 -0.1263 0.2336 6.0426 6.0717
1980 5.9900 -0.1171 0.2125 6.0854 6.1116
1981 6.0488 -0.1184 0.2246 6.1550 6.1833
1982 6.0927 -0.1067 0.2440 6.2301 6.2656
1983 6.1363 -0.0792 0.1826 6.2397 6.2635
1984 6.1470 -0.0747 0.1779 6.2502 6.2735
1985 6.2474 -0.0752 0.1854 6.3577 6.3830
1986 6.2395 -0.0844 0.1923 6.3475 6.3722
1987 6.2426 -0.0742 0.2013 6.3696 6.3967
1988 6.2859 -0.0641 0.2126 6.4344 6.4668
1989 6.2919 -0.0647 0.1961 6.4232 6.4517
1990 6.2698 -0.0790 0.2047 6.3955 6.4243
1991 6.3335 -0.0687 0.2040 6.4688 6.4999
1992 6.1708 -0.0398 0.1114 6.2424 6.2568
1993 6.2397 -0.0725 0.1334 6.3007 6.3160

Basic metals

Year ln[Φ1(y)] ln(Γ1) ln(Λ1) ln[G1(Y )] ln[E(Y )]

1972 6.5750 -0.1186 0.2111 6.6675 6.6993
1973 6.6588 -0.1394 0.2302 6.7497 6.7792
1974 6.6042 -0.1211 0.1863 6.6694 6.6922
1975 6.7501 -0.1205 0.2440 6.8736 6.9049
1976 6.5689 -0.1446 0.2158 6.6401 6.6623
1977 6.6196 -0.1544 0.2387 6.7038 6.7243
1978 6.3791 -0.1339 0.1805 6.4258 6.4395
1979 6.7926 -0.1217 0.2084 6.8793 6.8972
1980 6.8043 -0.1425 0.1984 6.8602 6.8761
1981 6.7392 -0.1455 0.1898 6.7836 6.7979
1982 6.6320 -0.1415 0.1793 6.6698 6.6854
1983 6.7103 -0.1255 0.1757 6.7605 6.7816
1984 6.9263 -0.1300 0.1756 6.9718 6.9891
1985 6.8837 -0.1081 0.1482 6.9238 6.9505
1986 6.9838 -0.1014 0.1438 7.0261 7.0468
1987 7.1013 -0.1042 0.1664 7.1635 7.1920
1988 7.2176 -0.0732 0.1591 7.3036 7.3327
1989 7.1698 -0.0767 0.1480 7.2411 7.2733
1990 7.2243 -0.0766 0.1528 7.3004 7.3313
1991 7.2103 -0.1095 0.1645 7.2653 7.2878
1992 7.0697 -0.0712 0.0941 7.0927 7.1097
1993 7.1142 -0.3304 0.2801 7.0639 7.1722

18



Table 4: Decomposition of ln[G2(Y )]

Pulp and paper

Year ln[Φ2(y)] ln(Γ2) ln(Λ2) ln[G2(Y )] ln[E(Y 2)]

1972 15.7045 -1.0688 3.5857 18.2214 21.4873
1973 15.8728 -1.0408 3.6798 18.5118 22.0487
1974 16.7528 -1.2192 4.9443 20.4779 27.3060
1975 16.4704 -1.2468 4.8747 20.0983 26.6425
1976 16.5261 -1.2974 4.9357 20.1643 26.7637
1977 15.7070 -1.1880 3.8939 18.4128 22.3059
1978 15.7740 -1.1946 3.9203 18.4996 22.4563
1979 15.9206 -1.0106 3.7379 18.6479 22.3683
1980 15.8562 -0.9369 3.3999 18.3193 21.4657
1981 16.0864 -0.9472 3.5935 18.7327 22.2065
1982 16.3489 -0.8535 3.9044 19.3998 23.6732
1983 15.9355 -0.6338 2.9221 18.2239 20.5925
1984 15.9089 -0.5973 2.8457 18.1573 20.4216
1985 16.1904 -0.6013 2.9670 18.5561 21.0330
1986 16.1914 -0.6748 3.0775 18.5940 21.2485
1987 16.2786 -0.5938 3.2204 18.9051 21.8326
1988 16.4840 -0.5127 3.4019 19.3733 22.7633
1989 16.3544 -0.5177 3.1375 18.9742 21.8505
1990 16.3813 -0.6320 3.2756 19.0249 22.0874
1991 16.5299 -0.5499 3.2642 19.2442 22.3479
1992 15.2931 -0.3184 1.7822 16.7569 17.7799
1993 15.6447 -0.5797 2.1349 17.1999 18.5189

Basic metals

Year ln[Φ2(y)] ln(Γ2) ln(Λ2) ln[G2(Y )] ln[E(Y 2)]

1972 20.1521 -0.9489 3.3775 22.5807 24.9982
1973 20.5013 -1.1149 3.6837 23.0702 24.8810
1974 19.8479 -0.9692 2.9816 21.8603 23.1716
1975 20.9268 -0.9639 3.9046 23.8675 25.8393
1976 20.0598 -1.1567 3.4520 22.3552 23.8486
1977 20.3634 -1.2352 3.8186 22.9468 24.4927
1978 19.2740 -1.0711 2.8884 21.0912 21.9435
1979 20.4934 -0.9736 3.3345 22.8542 24.0145
1980 20.2736 -1.1398 3.1746 22.3084 23.3635
1981 20.0626 -1.1638 3.0372 21.9360 22.8382
1982 19.7675 -1.1319 2.8683 21.5039 22.3777
1983 19.8954 -1.0042 2.8118 21.7029 22.7532
1984 20.2629 -1.0404 2.8094 22.0319 22.8900
1985 19.7910 -0.8651 2.3718 21.2977 22.6453
1986 19.9254 -0.8115 2.3001 21.4140 22.2983
1987 20.5655 -0.8332 2.6616 22.3939 23.8639
1988 20.6914 -0.5853 2.5458 22.6519 24.1436
1989 20.3009 -0.6138 2.3672 22.0542 23.5474
1990 20.5871 -0.6129 2.4445 22.4187 23.9313
1991 20.5945 -0.8760 2.6322 22.3508 23.4116
1992 19.0666 -0.5692 1.5062 20.0036 20.4955
1993 a) a) a) a) a)

a) The moment does not exist.
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Table 5: Decomposition of ln[Φ1(y)] and ln[Φ2(y)]

Pulp and paper

Year [1] [2] [3] [4] [5] ln[Φ1(y)] ln[Φ2(y)]

1972 3.7920 3.3244 0.4262 0.2688 0.0408 5.8221 15.7045
1973 3.8408 3.3520 0.4322 0.2706 0.0408 5.8886 15.8728
1974 3.7034 3.9220 0.4318 0.2784 0.0408 6.0399 16.7528
1975 3.6275 3.8954 0.3946 0.2768 0.0408 5.9314 16.4704
1976 3.6195 3.9310 0.3918 0.2800 0.0408 5.9413 16.5261
1977 3.7550 3.4344 0.3738 0.2496 0.0408 5.8042 15.7070
1978 3.7592 3.4454 0.3862 0.2554 0.0408 5.8231 15.7740
1979 3.9103 3.3606 0.3970 0.2514 0.0408 5.9353 15.9206
1980 4.0518 3.1770 0.3966 0.2618 0.0408 5.9900 15.8562
1981 4.0545 3.2906 0.3986 0.2586 0.0408 6.0488 16.0864
1982 4.0110 3.4624 0.3898 0.2706 0.0408 6.0927 16.3489
1983 4.3047 2.9884 0.3908 0.2432 0.0408 6.1363 15.9355
1984 4.3396 2.9464 0.3998 0.2278 0.0408 6.1470 15.9089
1985 4.3996 3.0046 0.4196 0.2306 0.0408 6.2474 16.1904
1986 4.3833 3.0366 0.4094 0.2256 0.0408 6.2395 16.1914
1987 4.3458 3.1428 0.3908 0.2192 0.0408 6.2426 16.2786
1988 4.3297 3.2454 0.3878 0.2384 0.0408 6.2859 16.4840
1989 4.4065 3.0962 0.4002 0.2334 0.0408 6.2919 16.3544
1990 4.3489 3.1534 0.4064 0.2410 0.0408 6.2698 16.3813
1991 4.4020 3.1612 0.4046 0.2564 0.0408 6.3335 16.5299
1992 4.6950 2.3084 0.3978 0.2046 0.0408 6.1708 15.2931
1993 4.6571 2.4752 0.4356 0.2136 0.0408 6.2397 15.6447

Basic metals

Year [1] [2] [3] [4] [5] ln[Φ1(y)] ln[Φ2(y)]

1972 3.0739 5.9854 0.5354 0.3826 0.0986 6.5750 20.1521
1973 3.0670 6.1622 0.5546 0.3684 0.0986 6.6588 20.5013
1974 3.2845 5.6614 0.5516 0.3278 0.0986 6.6042 19.8479
1975 3.0368 6.4540 0.5192 0.3548 0.0986 6.7501 20.9268
1976 3.1078 5.9772 0.5148 0.3316 0.0986 6.5689 20.0598
1977 3.0574 6.2398 0.4806 0.3054 0.0986 6.6196 20.3634
1978 3.1213 5.6736 0.4760 0.2672 0.0986 6.3791 19.2740
1979 3.3385 6.0502 0.4828 0.2766 0.0986 6.7926 20.4934
1980 3.4717 5.7764 0.5052 0.2850 0.0986 6.8043 20.2736
1981 3.4472 5.7212 0.4862 0.2782 0.0986 6.7392 20.0626
1982 3.3802 5.6322 0.4946 0.2782 0.0986 6.6320 19.7675
1983 3.4730 5.5748 0.4974 0.3040 0.0986 6.7103 19.8954
1984 3.7212 5.5218 0.5112 0.2788 0.0986 6.9263 20.2629
1985 3.8718 5.0792 0.5294 0.3164 0.0986 6.8837 19.7910
1986 4.0049 5.0532 0.5224 0.2836 0.0986 6.9838 19.9254
1987 3.9199 5.4118 0.5460 0.3064 0.0986 7.1013 20.5655
1988 4.0896 5.3138 0.5490 0.2948 0.0986 7.2176 20.6914
1989 4.1892 4.9344 0.5934 0.3348 0.0986 7.1698 20.3009
1990 4.1550 5.1612 0.5820 0.2968 0.0986 7.2243 20.5871
1991 4.1233 5.1818 0.5856 0.3080 0.0986 7.2103 20.5945
1992 4.6061 3.9846 0.5972 0.2468 0.0986 7.0697 19.0666
1993 4.2915 4.1004 0.7892 0.6570 0.0986 7.1142 19.8738

[1]: µy; [2]: µ′xΣββµx; [3]: µ′βΣxxµβ ; [4]: tr(ΣββΣxx); [5]: σuu.

ln[Φ1(y)] = [1] + 0.5× ([2] + [3] + [4] + [5]).

ln[Φ2(y)] = 2× ([1] + [2] + [3] + [4] + [5]).
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Table 6: Comparison of different type of elasticities

Pulp and paper

Type of Expected Dispersion preserving macro elasticity Mean preserving macro elasticity

elasticity micro elasticity Minimum Mean Maximum Minimum Mean Maximum

Scale 1.07 1.13 1.16 1.19 0.86 0.90 0.93
Capital 0.25 0.15 0.18 0.20 0.18 0.19 0.20
Labour 0.17 0.12 0.16 0.19 0.19 0.19 0.20
Energy 0.09 0.12 0.12 0.13 0.03 0.03 0.04
Materials 0.57 0.67 0.70 0.72 0.44 0.48 0.52

Basic metals

Type of Expected Dispersion preserving macro elasticity Mean preserving macro elasticity

elasticity micro elasticity Minimum Mean Maximum Minimum Mean Maximum

Scale 1.11 1.11 1.15 1.19 0.96 1.00 1.02
Capital 0.12 0.01 0.10 0.16 0.11 0.16 0.18
Labour 0.27 0.15 0.25 0.36 0.24 0.27 0.31
Energy 0.21 0.14 0.17 0.22 0.17 0.19 0.26
Materials 0.49 0.60 0.63 0.68 0.34 0.38 0.41
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Table 7: Dispersion and mean preserving macro input and scale elasticities

Pulp and paper

Dispersion preserving Mean preserving

Capital Labour Energy Materials Scale Capital Labour Energy Materials Scale

1972 0.160 0.193 0.120 0.695 1.168 0.192 0.190 0.034 0.483 0.900
1973 0.156 0.186 0.125 0.699 1.166 0.192 0.188 0.035 0.481 0.896
1974 0.151 0.194 0.126 0.715 1.185 0.187 0.192 0.035 0.508 0.923
1975 0.163 0.191 0.125 0.703 1.181 0.183 0.191 0.035 0.515 0.925
1976 0.170 0.182 0.124 0.704 1.179 0.184 0.191 0.035 0.518 0.928
1977 0.192 0.192 0.119 0.669 1.172 0.192 0.195 0.034 0.480 0.901
1978 0.184 0.181 0.122 0.679 1.166 0.188 0.197 0.034 0.484 0.903
1979 0.173 0.177 0.125 0.690 1.165 0.187 0.195 0.035 0.482 0.899
1980 0.180 0.174 0.121 0.688 1.163 0.189 0.197 0.034 0.471 0.891
1981 0.183 0.160 0.122 0.696 1.162 0.189 0.194 0.034 0.477 0.895
1982 0.172 0.152 0.124 0.714 1.162 0.179 0.192 0.035 0.504 0.910
1983 0.186 0.148 0.120 0.701 1.155 0.188 0.191 0.034 0.477 0.889
1984 0.180 0.146 0.121 0.705 1.152 0.188 0.190 0.034 0.475 0.887
1985 0.178 0.141 0.123 0.713 1.154 0.189 0.191 0.034 0.474 0.887
1986 0.184 0.149 0.123 0.702 1.159 0.190 0.194 0.034 0.469 0.886
1987 0.183 0.144 0.123 0.709 1.159 0.185 0.192 0.034 0.486 0.896
1988 0.180 0.127 0.128 0.720 1.154 0.181 0.187 0.035 0.499 0.902
1989 0.181 0.127 0.127 0.716 1.151 0.183 0.188 0.035 0.486 0.893
1990 0.183 0.127 0.126 0.714 1.151 0.184 0.190 0.035 0.484 0.892
1991 0.185 0.120 0.129 0.716 1.150 0.183 0.189 0.035 0.487 0.895
1992 0.194 0.115 0.122 0.697 1.127 0.186 0.185 0.034 0.459 0.865
1993 0.198 0.117 0.122 0.697 1.134 0.195 0.189 0.033 0.444 0.862

Basic metals

Dispersion preserving Mean preserving

Capital Labour Energy Materials Scale Capital Labour Energy Materials Scale

1972 0.008 0.360 0.206 0.606 1.180 0.167 0.270 0.186 0.379 1.002
1973 0.028 0.358 0.183 0.618 1.187 0.169 0.280 0.182 0.375 1.005
1974 0.056 0.325 0.169 0.627 1.177 0.177 0.260 0.174 0.383 0.994
1975 0.044 0.326 0.172 0.641 1.183 0.164 0.268 0.184 0.405 1.022
1976 0.049 0.326 0.189 0.610 1.174 0.161 0.278 0.195 0.371 1.004
1977 0.049 0.327 0.199 0.598 1.174 0.161 0.285 0.187 0.386 1.019
1978 0.096 0.266 0.187 0.604 1.152 0.173 0.254 0.178 0.396 1.002
1979 0.072 0.275 0.195 0.618 1.159 0.167 0.262 0.183 0.400 1.011
1980 0.073 0.290 0.196 0.603 1.162 0.165 0.276 0.191 0.366 0.998
1981 0.106 0.276 0.183 0.595 1.160 0.172 0.267 0.183 0.370 0.992
1982 0.140 0.240 0.165 0.606 1.151 0.175 0.258 0.180 0.379 0.991
1983 0.126 0.224 0.176 0.618 1.144 0.165 0.260 0.187 0.392 1.004
1984 0.116 0.237 0.183 0.613 1.148 0.165 0.268 0.191 0.371 0.995
1985 0.153 0.219 0.144 0.632 1.149 0.172 0.262 0.179 0.378 0.992
1986 0.143 0.213 0.161 0.627 1.144 0.169 0.259 0.186 0.374 0.988
1987 0.159 0.202 0.139 0.649 1.149 0.171 0.261 0.178 0.390 1.000
1988 0.150 0.190 0.139 0.667 1.145 0.170 0.253 0.179 0.403 1.004
1989 0.139 0.185 0.138 0.679 1.141 0.160 0.266 0.186 0.401 1.013
1990 0.144 0.175 0.147 0.672 1.138 0.163 0.257 0.187 0.398 1.006
1991 0.123 0.188 0.170 0.654 1.135 0.155 0.269 0.198 0.384 1.007
1992 0.154 0.145 0.174 0.640 1.113 0.163 0.243 0.204 0.353 0.963
1993 0.062 0.185 0.223 0.641 1.110 0.109 0.306 0.257 0.336 1.008
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APPENDIX A: Details on the ML estimation

We consider our unbalanced panel data set [cf. Appendix C] as a data set where the firms

are observed in at least 1 and at most P years, and arrange the observations in groups

according to the time series lengths [a similar ordering is used in Biørn (2004)]. Let

Np be the number of firms which are observed in p years (not necessarily the same and

consecutive), let (ip) index the i’th firm among those observed in p years, and let t index

the observation number (t = 1, . . . , p). The production function (1), can be written as

y(ip)t = x′(ip)tβ(ip) + u(ip)t, p = 1, . . . , P ; i = 1, . . . , Np; t = 1, . . . , p,(A.1)

where β(ip) is the coefficient vector of firm (ip). Inserting β(ip) = µβ + δ(ip) we get

y(ip)t = x′(ip)tµβ + ψ(ip)t, ψ(ip)t = x′(ip)tδ(ip) + u(ip)t.(A.2)

Stacking the p realisations from firm (ip) in y(ip) = [y(ip)1, . . . , y(ip)p]
′,

X(ip) = [x(ip)1, . . . , x(ip)p], u(ip) = [u(ip)1, . . . , u(ip)p]
′, and ψ(ip) = [ψ(ip)1, · · · , ψ(ip)p]′, we

can write (A.2) as

y(ip) = X ′
(ip)µβ + ψ(ip), ψ(ip) = X ′

(ip)δ(ip) + u(ip).(A.3)

where

ψ(ip)|X(ip) ∼ N (0,Ω(ip)), Ω(ip) = X ′
(ip)ΩX(ip) + σuuIp,(A.4)

and Ip is the p-dimensional identity matrix. The log-likelihood function is therefore

L = −m

2
ln(2π)− 1

2

P∑

p=1

Np∑

i=1

{ln |Ω(ip)|+ [y(ip) −X ′
(ip)µβ]′Ω−1

(ip)[y(ip) −X ′
(ip)µβ]},(A.5)

where m =
∑P

p=1 pNp. The ML estimators of (µβ, σuu, Ω) follow by maximising L. The

solution may be simplified by concentrating L over µβ and maximising the resulting

function with respect to σuu and the unknown elements of Ω.

APPENDIX B: Proof of Eq. (29)

The first three components of ln[G1(Y )], as given by (28), respond to changes in µz and

the last three elements respond to changes in Σzz. Inserting in (9) from (2) and (3), we

obtain

σyy = σαα + 2µzσγα + µ′zΣγγµz + µ′γΣzzµγ + tr(ΣγγΣzz) + σuu,

µ′xΣββΣxxµβ = σ′γαΣzzµγ + µ′zΣγγΣzzµγ , µ′βΣxxΣββΣxxµβ = µ′γΣzzΣγγΣzzµγ .
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Differentiating the various terms in (28) with respect to µz and Σzz [using Lütkepohl (1996,

Section 10.3.2, eqs. (2), (5) and (21))], we get

∂µy

∂µz

=
∂(µ′xµβ)

∂µz

=
∂(µ′zµγ)

∂µz

= µγ ,(B.1)

∂σyy

∂µz

= 2
∂(µ′zσαγ)

∂µz

+
∂(µ′zΣγγµz)

∂µz

= 2(σγα + Σγγµz),(B.2)

∂(µ′xΣββΣxxµβ)
∂µz

=
∂(µ′zΣγγΣzzµγ)

∂µz

= ΣγγΣzzµγ ,(B.3)

∂σyy

∂Σzz
=

∂(µ′γΣzzµγ)
∂Σzz

+
∂tr(ΣγγΣzz)

∂Σzz
= µγµ′γ + Σγγ ,(B.4)

∂(µ′xΣββΣxxµβ)
∂Σzz

=
∂(σ′γαΣzzµγ)

∂Σzz

+
∂(µ′zΣγγΣzzµγ)

∂Σzz

(B.5)

=
∂tr(σ′γαΣzzµγ)

∂Σzz

+
∂tr(µ′zΣγγΣzzµγ)

∂Σzz

= µγσ′γα + µγµ′zΣγγ ,

∂(µ′βΣxxΣββΣxxµβ)
∂Σzz

=
∂(µ′γΣzzΣγγΣzzµγ)

∂Σzz

=
∂tr(µ′γΣzzΣγγΣzzµγ)

∂Σzz

(B.6)

= µγµ′γΣzzΣγγ + ΣγγΣzzµγµ′γ .

It follows from (28) and (B.1)–(B.6), that

∂ ln[G1(Y )]
∂µz

= µγ + σγα + Σγγ(µz + Σzzµγ),(B.7)

∂ ln[G1(Y )]
∂Σzz

= 1

2
(µγµ′γ + Σγγ + µγµ′γΣzzΣγγ + ΣγγΣzzµγµ′γ) + µγ(σ′γα + µ′zΣγγ).(B.8)

Since, from (22), ∆ ln[E(Z)] = ∆(µz + 1
2σzz), we have

∂ ln[G1(Y )]
∂ ln[E(Z)]

=





µγ + σγα + Σγγ(µz + Σzzµγ) when Σzz is constant,

diagv[µγµ′γ + Σγγ + µγµ′γΣzzΣγγ when µz and the
+ ΣγγΣzzµγµ′γ off-diagonal elements of
+ 2µγ(σ′γα + µ′zΣγγ)] Σzz are constant,

(B.9)

which completes the proof.

APPENDIX C: Data

The data are from the years 1972–1993 and represent two Norwegian manufacturing

industries, Pulp and paper and Basic metals. Table C.1, classifying the observations by

the number of years, and Table C.2, sorting the firms by the calendar year in which they

are observed, shows the unbalanced structure of the data set. There is a negative trend

in the number of firms for both industries.
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The primary data source is the Manufacturing Statistics database of Statistics Nor-

way, classified under the Standard Industrial Classification (SIC)-codes 341 Manufacture

of paper and paper products (Pulp and paper, for short) and 37 Manufacture of basic

metals (Basic metals, for short). Both firms with contiguous and non-contiguous time

series are included.

In the description below, MS indicates firm data from the Manufacturing Statistics,

NNA indicates that the data are from the Norwegian National Accounts and are identical

for firms classified in the same National Account industry.

Y : Output, 100 tonnes (MS)

K = KB + KM : Total capital stock (buildings/structures plus

machinery/transport equipment), 100 000 1991-NOK (MS,NNA)

L: Labour input, 100 man-hours (MS)

E: Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS)

M = CM/QM : Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS,NNA)

CM : Total material cost (incl. motor gasoline) (MS)

QM : Price of materials (incl. motor gasoline), 1991=1 (NNA)

Output: The firms in the Manufacturing Statistics are in general multi-output firms

and report output of a number of products measured in both NOK and primarily tonnes

or kg. For each firm, an aggregate output measure in tonnes is calculated. Hence, rather

than representing output in the two industries by deflated sales, which may be affected

by measurement errors [see Klette and Griliches (1996)], our output measures are actual

output in physical units, which are in several respects preferable.

Capital stock: The calculations of capital stock data are based on the perpetual in-

ventory method assuming constant depreciation rates. We combine firm data on gross

investment with fire insurance values for each of the two categories Buildings and struc-

tures and Machinery and transport equipment from the MS. The data on investment

and fire insurance are deflated using industry specific price indices of investment goods

from the NNA (1991=1). In both industries, the depreciation rate is set to 0.02 for

Buildings and structures and 0.04 for Machinery and transport equipment. For further

documentation, see Biørn, Lindquist and Skjerpen (2000, Section 4, and 2003).
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Table C.1: Number of firms by number of replications

Pulp and paper Basic metals

p Np Npp Np Npp

22 60 1320 44 968
21 9 189 2 42
20 5 100 4 80
19 3 57 5 95
18 1 18 2 36
17 4 68 5 85
16 6 96 5 80
15 4 60 4 60
14 3 42 5 70
13 4 52 3 39
12 7 84 10 120
11 10 110 7 77
10 12 120 6 60
09 10 90 5 45
08 7 56 2 16
07 15 105 13 91
06 11 66 4 24
05 14 70 5 25
04 9 36 6 24
03 18 54 3 9
02 5 10 6 12
01 20 20 20 20

Sum 237 2823 166 2078

p = no. of observations per firm.

Np = no. of firms observed p times

Table C.2: Number of firms by calendar year

Year Pulp and paper Basic metals

1972 171 102
1973 171 105
1974 179 105
1975 175 110
1976 172 109
1977 158 111
1978 155 109
1979 146 102
1980 144 100
1981 137 100
1982 129 99
1983 111 95
1984 108 87
1985 106 89
1986 104 84
1987 102 87
1988 100 85
1989 97 83
1990 99 81
1991 95 81
1992 83 71
1993 81 83

Sum 2823 2078
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Other inputs: From the MS we get the number of man-hours used, total electricity

consumption in kWh, the consumption of a number of fuels in various denominations,

and total material costs in NOK for each firm. The different fuels are transformed to

the common denominator kWh by using estimated average energy content of each fuel

[Statistics Norway (1995, p. 124)]. This enables us to calculate aggregate energy use

in kWh for each firm. Total material costs is deflated by the price index (1991=1) of

material inputs from the NNA. This price is identical for all firms classified in the same

National Account industry.

Observations with missing values of output or inputs have been removed. This re-

duced the number of observations by 6–8 per cent in the two industries.
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