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Abstract

Lund (2002a) showed in a CAPM-type model how tax depreciation schedules

affect required expected returns after taxes. Even without leverage higher tax rates

implied lower betas when tax deductions were risk free. Here they are risky, and

marginal investment is taxed together with inframarginal in an analytical model

of decreasing returns. With imperfect loss offset tax claims are analogous to call

options. The beta of equity is still decreasing in the tax rate, but increasing in the

underlying volatility. The results are important if market data are used to infer

required expected returns, and in discussions of tax design.
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1 Introduction

This paper presents an analytical model of imperfect loss offset, values tax claims based on

capital market equilibrium relationships, and explores the consequences for the systematic

risk of the net after-tax cash flow of a firm. The paper extends Lund (2002a), who showed

how corporate income tax rates and depreciation schedules affect the required returns to

equity after corporate taxes. While it has long been recognized that corporate taxes affect

the required returns to equity and debt when there is leverage, Lund (2002a) analyzed a

mostly neglected effect which occurs also in a fully equity-financed firm. The intuition is

that a pure cash flow tax, with payout of negative taxes, does not affect required returns,

since it acts cash-flow-wise as just another shareholder. Compared with this, a depreciation

schedule acts risk-wise in the opposite way of leverage, thus reducing the required expected

return to equity after corporate taxes.

Most of the analysis in Lund (2002a) assumed that the tax value of future deductions,

such as depreciation, is risk free. While such an assumption has been seen as a good

approximation in much of the literature (e.g., Gordon and Wilson (1986), Summers (1987)),

many firms are, especially in recessions, out of tax position for one or more years. Since the

riskiness of the tax position is crucial for the results, the present paper sets up an analytical

model of this risk. The required return is a characteristic of the marginal investment, but

the tax position depends also on infra-marginal investment. Thus a simple production

function with decreasing returns to scale is introduced. Results are presented both for the

case when a marginal investment is taxed alone, and for the case when it is taxed together

with infra-marginal investment.

Both in this and the previous paper the results are driven by the fact that future deduc-

tions are less risky than the operating cash flow of the firm. When marginal investment is

taxed together with infra-marginal investment, the effect depends on the (scale) elasticity

of the production function. With highly decreasing returns to scale, the approximation of

risk free deductions holds very closely, and the beta of equity after a corporate income tax

is almost as low as 1− t multiplied by the before-tax beta, where t is the tax rate. A higher

elasticity, closer to constant returns to scale, is equivalent to approaching a situation where
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the marginal project is taxed alone. Even in that limiting case, the after-tax beta of equity

is substantially less than the before-tax beta, but the ratio of the two betas is closer to

(1 − t)/2, not 1 − t, for typical values of other exogenous parameters. The quantitative

importance of the results is, however, strengthened by the fact that the after-tax beta is a

convex function of the scale elasticity. Only when this elasticity is fairly close to unity, is

the after-tax beta substantially higher than its value when deductions are risk free.

Many recent studies consider the risk of each element of a cash flow separately, avoiding

a characterization of the net cash flow. This raises the question whether such a charac-

terization is interesting at all. Treating different elements separately is known in public

finance from, e.g., Fane (1987) and Bond and Devereux (1995). In corporate finance it

is known since Myers (1974), and this method for capital budgeting is recommended by

many textbooks.

Nevertheless, most firms still apply a single risk-adjusted discount rate to their expected

net after-tax cash flows, as shown in the survey by Graham and Harvey (2001). Lund

(2002a) showed that this does not conform with standard theory when firms operate under

more than one tax system. Furthermore, tax authorities often analyze alternative corporate

tax systems using similar methods, while the discount rate should really be tax dependent

and thus endogenous in such an analysis. These two practices could possibly be improved

upon by considering elements of cash flows separately, and if this is implemented, the

present paper merely serves to illustrate the magnitude of mistakes which have been made.

There is a third practice for which the risk of net cash flows is crucial, however, making

the topic of the present paper unavoidable. It is commonly recommended in corporate

finance textbooks to use observed returns to equity as the basis for calculating required

expected returns in similar activities in the future. Observed returns reflect net after-

corporate-tax cash flows. In this connection it is well known that one should “unlever”

observed returns if a different degree of leverage will be used in the future.1 Lund (2002a)

pointed out the need to “untax” the observed returns if the future application is under

a different tax system. The present paper makes this more realistic, and also shows that

there may be a need to “unaverage” the returns.
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The paper is a supplement to the empirical work on estimating marginal tax rates of

firms taking tax carry-forward and carry-back into consideration. Some central references

are Shevlin (1990), Graham (1996), and Shanker (2000). While the empirical studies are

more realistic by taking multi-period effects into account, the present model gives analytical

solutions, identifying which factors are likely to have important effects.

Previous theoretical papers which observe similar effects include Levy and Arditti

(1973), who observe that taxes with depreciation schedules affect the required expected

rate of return after tax. Their model is an extension of Modigliani and Miller (1963),

introducing depreciable assets in that model, but maintaining the assumptions of constant

perpetual expected cash flows and full loss offset. Lund (2003a) discusses their model and

claims that a more realistic alternative turns their results around.2

Galai (1988) (very briefly, p. 81) and Derrig (1994) both discuss the effect of a corporate

income tax on the systematic risk of equity based on the CAPM. Derrig does not observe

the necessity of solving for the expected rate of return of an after-tax marginal project.3

Both Levy and Arditti (1973) and Derrig (1994) consider only one simple tax system,

and assume that the firm is certain to be in tax position. The present paper (like Lund

(2002a)) is an extension in both respects. Galai (1988) considers both risky debt and a

risky tax position. None of the previous studies consider decreasing returns to scale, i.e.,

an analytical model of imperfect loss offset.

Section 2 presents a two-period model in which the firm produces with decreasing

returns to scale and pays taxes with certainty. Section 3 introduces uncertainty about

whether taxes are paid. While these two sections focus on the after-tax cost of capital,

section 4 gives results on the cost of capital before taxes. Section 5 generalizes the tax

system, allowing different tax treatments of the entry cost. Section 6 contains additional

discussion of some aspects of the model. Section 7 concludes. Some proofs and additional

details are in the appendix.
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2 The model when the tax position is certain

A firm invests in period 0 and produces in period 1, only.4 The firm considers an investment

project with decreasing returns to scale. It is free to choose the scale of investment. The

optimal choice is endogenous, determined by the tax system and other parameters in each

case below. In this way we also characterize the minimum required expected return to

equity in each case.

Assumption 1: The firm maximizes its market value according to the Capital Asset

Pricing Model,

E(ri) = r + βi[E(rm) − r], (1)

where r > 0.5

When various tax systems are considered below, these are assumed not to affect the cap-

ital market equilibrium. This will be a good approximation if they apply in small sectors of

the economy (e.g., natural resource extraction), or abroad in economies (“host countries”)

which are small in relation to the domestic one.6 This is thus a partial equilibrium analysis.

The (“home”) economy where the firm’s shares are traded may have a tax system,

which is exogenously given in the analysis, and reflected in r.7

A consequence of the CAPM is that the claim to any uncertain cash flow X, to be

received in period 1, has a period-0 value of

ϕ(X) =
1

1 + r
[E(X) − λ cov(X, rm)], (2)

where λ = [E(rm)− r]/ var(rm). Equation (2) defines a valuation function ϕ to be applied

below.

A product price, P , will most likely not have an expected rate of price increase which

satisfies the CAPM.8 A claim on one unit of the product will satisfy the CAPM, however,

so that the beta value of P should be defined in relation to the return P/ϕ(P ),

βP =
cov( P

ϕ(P )
, rm)

var(rm)
. (3)

Assumption 2: In period 0 the firm invests an amount I > 0 in a project. In period

1 the project produces a quantity Q = f(I) = ωIα to be sold at an uncertain price P . The
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production function f has ω > 0, α ∈ (0, 1). The joint probability distribution of (P, rm)

is exogenous to the firm, and cov(P, rm) > 0. There is no production flexibility; Q is fixed

after the project has been initiated.

The assumption of cov(P, rm) > 0 can easily be relaxed. It is only a convenience in

order to simplify the verbal discussions below.

Assumption 3: An entry cost M0 is paid for the right to undertake the investment

project. This is competitively determined among firms with the same tax position (see

Assumption 4), so that the net value after taxes to the firm of paying this entry cost,

undertaking the project in optimal scale, and paying taxes, is zero. The sequence of events

in period 0 is as follows: (a) The authorities determine the tax system for both periods.

(b) The firm pays the entry cost M0. (c) The firm determines how much to invest, I.

The entry cost seems to be the most satisfactory way to include decreasing returns to

scale in an equilibrium model. The entry cost could be an R& D expenditure, a patent or

license, an investment in a plant, or something else. Without this cost, pure profits would

be freely available, which is not an equilibrium situation. However, under Assumption 3

there is no economic difference between the two costs, M0 and I. Only their sum matters

to the firm, and the produced quantity might as well have been written as a function of

their sum, M0+I. With no difference between the two, the model would fail to capture the

idea of imperfect loss offset under decreasing returns, i.e., with the marginal investment

project being taxed together with inframarginal investment.

In order to let the model have this feature, while at the same time including the entry

cost and thus the equilibrium character of the model, a difference is introduced in the tax

treatment of the two costs. The entry cost could be immediately deductible, deductible in

the production period, not deductible at all, or some combination of these. Assumption 4

implies an immediate deduction. Section 5 considers a more general formulation.

Assumption 4: A tax at rate t ∈ [0, 1) will be paid with certainty in the production

period. The tax base is operating revenue less cI. There is also a tax relief of t(M0 + aI)

in period 0. The constants a and c are in the interval [0, 1]; moreover, t[a + c/(1 + r)] < 1.
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This general formulation allows for accelerated depreciation with, e.g., a > 0 and

a + c = 1, or a standard depreciation interpreted (since there is only one period with

production) as a = 0, c = 1. The requirement t[a + c/(1 + r)] < 1 precludes “gold plating

incentives,” i.e., the tax system carrying more, in present value terms, than one hundred

percent of an investment cost.9

Assumption 4 implies that a negative tax base gives a negative tax paid out by the

authorities. While this is unrealistic for most tax systems when the project stands alone,

it is not at all unrealistic when the marginal project is added to other activity which is

more profitable. An alternative assumption for the second period is considered in section 3.

For the first period, however, no alternative is considered. This could rely on an assump-

tion that firms only start projects in periods in which they are in tax position to benefit

immediately from deductions allowed in the first period. This does not explain how most

firms get started in the first place.

The points to be made in this paper do not rely on debt financing. For simplicity

it is therefore assumed that the firm is one hundred percent equity financed. If debt is

introduced, as in Lund (2002a), it is clear that the analysis is mainly relevant to characterize

the return on equity, explaining the title of the paper.10

2.1 Case F: Tax deductions are risk free

This first case (F for risk Free deductions) is considered to demonstrate as simply as

possible the method used in Lund (2002a), applied both to the problem solved there and

to the case with decreasing returns to scale. This will show the distinction between two

concepts, marginal beta and average beta, which is important when t > 0.

In the case FC (C for CRS) of a marginal project alone, considered in Lund (2002a),

the cash flow to equity in period 1 is

XFC = PQ(1 − t) + tcI, (4)

where Q in the CRS model replaces f(I) in the DRS model. For each set of tax and other

parameters, Q is set so that the project is exactly marginal. The market value of a claim
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to this is

ϕ(XFC) = ϕ(P )Q(1 − t) +
tcI

1 + r
. (5)

For a marginal project the expression must be equal to the financing need after bor-

rowing and taxes, I(1 − ta), so that Q is determined by

I(1 − ta) = ϕ(XFC) = ϕ(P )Q(1 − t) +
tcI

1 + r
, (6)

which implies
ϕ(P )Q

I
=

1 − ta − t c
1+r

1 − t
. (7)

The beta value of equity is a value-weighted average of the beta values of the elements

of the cash flow. From (4) this is

βFC =
ϕ(P )Q(1 − t)

ϕ(XFC)
βP =

1 − ta − t c
1+r

1 − ta
βP , (8)

cf. Lund (2002a), eq. (9) and (12). The main conclusion in that paper is that due to the

tax depreciation schedule, the beta of equity is decreasing in the tax rate under a corporate

income tax. Under a pure cash flow tax there is no such effect of the tax rate.

The intuition behind the tax effect is as follows: A pure cash flow tax (a = 1, c = 0)

does not affect the beta of equity. As compared with a cash flow tax, the typical corporate

income tax postpones some deductions in the form of a tax depreciation schedule, and

these will be less risky at the margin than the future operating income. Risk-wise this

postponement is similar to a loan from the firm to the authorities, and thus it has the

opposite effect of leverage: It reduces the systematic risk of equity.

One main assumption in this and what follows is that the underlying systematic risk,

βP , is unaffected by changes in the tax system. This follows from the partial-equilibrium

assumption made in relation to the capital market, Assumption 1.

Consider now the DRS case, FD. Instead of technically adjusting Q to find the charac-

teristics of a marginal project, there is now a first-order condition which determines I, and

one can then solve for the entry cost which makes the overall addition to net value equal

to zero.

The cash flow to equity in period 1 is

XFD = Pf(I)(1 − t) + tcI, (9)
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The market value of a claim to this is

ϕ(XFD) = ϕ(P )f(I)(1 − t) +
tcI

1 + r
. (10)

The firm chooses the optimal scale in order to maximize π1D(I) = ϕ(XFD)− I(1− ta).

The first-order condition for a maximum is

ϕ(P )f ′(I) =
1 − ta − t c

1+r

1 − t
. (11)

The entry cost will be set so that M0(1 − t) ≡ M = π1D(I) = ϕ(XFD) − I(1 − ta)

(defining M), which implies that the total payment in period 0 is

M + I(1 − ta) = ϕ(XFD). (12)

The beta value of equity is a value-weighted average of the beta values of the elements

of the cash flow. From (9) this is

βFD =
ϕ(P )f(I)(1 − t)

ϕ(XFD)
βP . (13)

The parameterized production function together with the first order condition (11) gives

βFD =
1 − ta − t c

1+r

1 − ta − t c
1+r

(1 − α)
βP , (14)

which again is decreasing in the tax rate as long as c > 0. As α approaches unity (i.e.,

CRS), βFD approaches βFC (and equilibrium M approaches zero).

Observe that βFC < βFD when tc(1 − α) > 0. The two different expressions for the

beta of equity will be called marginal beta and average beta, respectively. They are both

relevant as descriptions of systematic risk within the same project. The average beta will

describe the systematic risk of the project as a whole, and in particular, the systematic

risk of the shares in a firm with only this project. The marginal beta is still the relevant

one for decision making at the margin, which may be decentralized within the firm. After

the cost M0 has been sunk, the correct beta for calculating the required expected rate of

return is the marginal beta.

The expressions for the two betas will be somewhat more complicated in the cases which

follow, in particular when the tax position is uncertain. But the difference will reappear.
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So far we can observe that the origin of the difference is the tax depreciation schedule.

Only if tc > 0, will the difference depend on α.

There is no fundamental distinction between M0 and I from the firm’s point of view.

They are both paid in the same period, and the output next period, Q, could have been

written as a function of their sum. Both betas are equal to βP if the tax rate is zero,

but also if the tax rate is positive while c is zero. In the present model with a sunk cost

and DRS thereafter, it is the difference in tax treatment of these costs which creates the

two different betas of equity. This will also be the case below when the tax position is

uncertain.

When capital budgeting is presented in standard textbooks, this distinction between

marginal and average beta is not mentioned. There may be good reasons for this: There

are many details of projects and tax systems which have to be left out in a textbook. Lund

(2002a, 2003a) emphasizes the importance of tax systems for after-tax required expected

rates of return. If firms continue to rely mainly on one such required rate for their net

after-tax cash flow, they should be aware of tax effects, and not only on the value of debt,

which has been the traditional focus. If they want to infer the requirement from capital

market data for their own shares, they should be aware that these data (if the model is

true) reflect average beta, not marginal beta. In addition to the need to “unlever” and

“untax” betas, there is now a need to “unaverage” betas.

3 Case R: Uncertain tax position

The results for case F above are based on the assumption that the firm is certain to be

in tax position in period 1. While the tax element tPQ is perfectly correlated with the

operating revenue, the depreciation deductions were assumed to be risk free, relying on the

firm being in a certain tax position.

Most corporate income taxes have imperfect loss offset. If the tax base is negative

one year, there is no immediate refund. The loss may under many systems be carried

back and/or forward, but there are usually limitations to this, and the present value is not

maintained. In a two-period model a realistic multi-period loss carry-back or carry-forward
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cannot be represented in detail. An extreme assumption which may be useful as a starting

point, and which is meaningful if the two-period model is taken literally and the tax code

does not allow carry-backs, is that in these cases, there is no loss offset at all. One purpose

of the present paper is to see whether the results of case F vanish when deductions are

risky. Thus it is relevant to consider this most extreme riskiness. The cash flow to equity

in period 1 is then

PQ − B(1 + r) − tχ(PQ − gBr − cI), (15)

where χ is an indicator variable, χ = 1 when the firm is in tax position in period 1, χ = 0

if not.

Lund (2002a) arrived at an analytical solution for marginal beta in this case under the

assumption that the marginal investment constitutes the whole tax base for the firm.11

Option valuation techniques were used to find a formula for the value of the uncertain cash

flow in period 1, following Ball and Bowers (1983) and Green and Talmor (1985).

A marginal beta may now take different meanings. A more realistic marginal beta

recognizes that the marginal project is part of a larger activity, and that the probability

of being in tax position depends on the outcome of that larger activity. This will be

analyzed in line with the model of the previous section: The larger activity consists of

a DRS investment project, the output of which is being sold at a single stochastic price

in the single future period. An even more realistic model would include more stochastic

variables (not perfectly correlated) and/or more periods.

Let case R (for Risky deductions) denote the case with an uncertain tax position. The

following assumption replaces Assumption 4 above:

Assumption 5: The tax base in period 1 is operating revenue less cI. When this is

positive, there is a tax paid at a rate t. When it is negative, the tax system gives no loss

offset at all. There is also a tax relief of t(M0 + aI) in period 0. We have c ∈ (0, 1],

a ∈ [0, 1], and t[a + c/(1 + r)] < 1.

To have c strictly positive is necessary to obtain true uncertainty about the tax position

(as long as Pr(PQ > 0) = 1), and for some of the formulae below to hold. The valuation

of the non-linear cash flow is specified as follows:
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Assumption 6: A claim to a period-1 cash flow max(0, P − K), where K is any

positive constant, has a period-0 market value according to the model in McDonald and

Siegel (1984). The value can be written as

ϕ(P )N(z1) − K

1 + r
N(z2), (16)

where

z1 =
ln(ϕ(P )) − ln(K/(1 + r))

σ
+ σ/2, z2 = z1 − σ, (17)

N is the standard normal distribution function, and σ is the instantaneous standard devi-

ation of the price.

In what follows it is assumed that the exogenous variables βP and σ can be seen as

unrelated as long as σ > 0, cf. footnote 14 in McDonald and Siegel (1986). A change

in σ could be interpreted as, e.g., additive or multiplicative noise in P , stochastically

independent of the previous (P, rm).12

It is shown in the appendix that the marginal beta is

βRM =
1 − ta − tN(z2D) c

1+r

1 − ta
βP , (18)

where z2D is given by

z2D =
1

σ

[
ln

(
1 − ta − tN(z2D)

c

1 + r

)
− ln(1 − tN(z2D + σ)) − ln

(
c

1 + r

)
− ln(α)

]
− σ

2
.

(19)

Although this equation cannot be solved explicitly, it determines (one or more values for)

z2D implicitly13 as function(s) of t, a, c/(1 + r), σ, and α.

Furthermore it is shown that the average beta is

βRA =
1 − ta − tN(z2D) c

1+r

1 − ta − tN(z2D) c
1+r

(1 − α)
βP . (20)

This means that the relationship between marginal and average beta is just as in the

previous case, which had full certainty about the tax position. There is an extra term

containing tc(1 − α) subtracted in the denominator.

The two equations (18) and (20) should be compared with (8) and (14). Clearly the

effect of the uncertainty in the tax position is similar to a reduced tax rate in period 1,
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reflecting that the probability of receiving the tax deductions is less than one hundred

percent.

For comparison, the marginal beta in the stand-alone CRS case can be found by solving

for z2C from the following equation, also shown in the appendix,

z2C =
1

σ

[
ln

(
1 − ta − tN(z2C)

c

1 + r

)
− ln(1 − tN(z2C + σ)) − ln

(
c

1 + r

)]
− σ

2
, (21)

which is the limit of (19) as α → 1. This subcase yields,

βRC =

(
1 − tN(z2C)

c

(1 − ta)(1 + r)

)
βP . (22)

This is the case considered in Lund (2002a), except that equation (21) was not given

there. Table 1 summarizes the five subcases considered. The rightmost column gives the

ratio of βi (the beta of the cash flow to equity) to βP in each subcase i. TABLE

1

HERE.

To find the derivatives of the betas with respect to t, a, c/(1 + r), σ, α, one can use

implicit differentiation of z2D as given in (19) . This is done in the appendix for the

case a = 0. In order to determine the signs of the derivatives, some restrictions on the

parameters are assumed. One basic restriction, cf. footnote 9, is

Assumption 7: The deductions following a unit investment cost are less than unity

in present value terms: a + c/(1 + r) < 1.

It is then found that βRA is increasing in σ, decreasing in t, while it may be increasing

or decreasing in α, depending on parameters.

A further investigation has been done through numerical solutions of non-linear equa-

tions. The purpose of the investigation has been to trace out how the marginal and average

betas depend on t, σ, and α.

The numerical investigation has only considered cases with a set to zero, and the ratio

c/(1+r) fixed at 1/1.05. The central parameter configuration considered is t = 0.3, σ = 0.3.

These are not unreasonable numbers (when the time unit is one year). For simplicity the

verbal discussion below will assume βP = 1. The five equity betas for the cases with no

borrowing, divided by βP , are shown in Figure 1 as functions of the scale elasticity α.14 A

sixth relevant curve for comparison would be βP itself, horizontal at 1.0 in the diagram.

This would be the beta of equity without taxation or with true cash flow taxation. FIGURE

1

HERE.
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Figure 1 shows that the betas have the expected properties. The two dotted curves

show the marginal β when the value of tax deductions is risk free, βFC , and also when a

marginal project stands alone with risky deductions (no loss offset), βRC . These do not

depend upon the scale elasticity, α. They are both substantially lower than βP , but the

uncertainty of the tax position increases marginal β from 72 percent to 83 percent. This

reflects that the depreciation schedule reduces the systematic risk of equity, and that the

uncertain tax position counteracts this to some extent, but not completely.

The two dashed curves show two DRS cases, the average β when deductions are risk

free, βFD, and the marginal when they are risky, βRM . The former falls from unity to βFC

as α is increased. This simply reflects the difference in tax treatment of M0 and I, and the

fact that M0 becomes relatively smaller as α → 1−. βRM , however, rises from βFC to βRC

as α is increased. This follows from the increased probability of being out of tax position.

When α is low enough, the tax position is virtually certain, and the marginal β under DRS

is not different from that under CRS and a certain tax position. But as α increases, so

does the uncertainty about the tax position, and as α → 1−, there is no gain anymore for

the marginal project of being taxed together with a DRS project. It approaches the case

where the marginal project is taxed alone.

The solid curve shows the average βRA in the DRS case with uncertain tax position.

For low α values, the tax position is virtually certain, so there is no discernible difference

from βFD of the case of risk free deductions. Then as α exceeds (about) 0.5, the effect of

the uncertain tax position is that βRA takes on higher values than βFD, while still being

decreasing in α. For even higher α values, however, the curve becomes increasing, as it

approaches βRM , which is increasing. This possibility is also seen from the discussion of

equation (A24) in the appendix.

Clearly, even the DRS case with risky deductions can have betas substantially lower

than βP . In this case the marginal beta curve, βRM , satisfies the intuition that it has less

risk than the stand-alone marginal beta, βRC , as an effect of being taxed together with

an infra-marginal cash flow. But the average beta, βRA, does not exhibit this property

uniformly, and in fact, the difference between marginal and average beta is just as large in

this case as in the case with risk free deductions if only α is low enough.
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Figures 2 and 3 show some sensitivities to changes in the tax rate, t, and the volatility, σ.

The three non-constant curves from Figure 1 are reproduced as (similarly) dotted curves,

and the corresponding three curves for the new value of t or σ are drawn as dashed or solid.

The values of the constant βFC and βRC are now only shown implicitly, as the endpoint

values for the curves.15

Figure 2 shows that all betas are increased if the tax rate is lowered (and vice versa),

which was also the main point in Lund (2002a) for the cases considered there. The effect FIGURE

2

HERE.

on the lowest values (βFC , which is the limit of βRM for low α, and of βFD for high α)

seems to be proportional to (1− t), which is almost correct when c/(1+r) is close to unity,

cf. equation (8), see also Corollary 2.2 in Lund (2002a). But the higher beta values do not

change as much in absolute terms.16

Figure 3 shows only one βFD curve, as this is unaffected by a change in volatility. The FIGURE

3

HERE.

figure shows that except for this, a lower σ works in the same direction as a higher t. But

the effects of changes in σ are only discernible for higher values of α, and the magnitudes

of the effects are not very large.

4 Cost of capital before taxes

In the previous two sections the effects of the tax system on the beta of equity were

analyzed. Via the CAPM equation, (1), this also gives the effects on the cost of equity

after corporate taxes, which is reflected in the stock market (but observe the distinction

between marginal and average beta).

The cost of capital before corporate taxes, on the other hand, is the traditional measure

for the effects of the tax system on the acceptance or rejection of real (non-financial)

investment projects. This determines the possible distortionary effects of the tax system,

although the present paper does not discuss what would be the relevant basis for comparison

in various circumstances. Implicitly the comparison is with a situation without corporate

taxation. Also, as stated in the introduction, no general equilibrium effects are considered.

The cost of capital for investment decisions relates to marginal profitability, so the

return should be seen in relation to the investment cost I, neglecting the entry cost M0.
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The expected rate of return before corporate taxes, plus 1, is E(P )Q/I, which can be

rewritten as
E(P )Q

I
=

E(P )

ϕ(P )
· ϕ(P )Q

I
. (23)

Of the two fractions on the right hand side, the first is assumed to be exogenous, and is

given by (1) and (3). The second is determined by the requirement under CRS that the

project should be marginal after tax, or, under DRS, that its scale should be optimal after

tax. For case F above, these requirements are given by (7) and (11), which means that one

plus the required expected rate of return before corporate taxes is

E(P )

ϕ(P )
· 1 − ta − t c

1+r

1 − t
, (24)

cf. Hall and Jorgenson (1969), p. 395. The distortion in “one plus the expected rate of

return” is the second fraction, which is independent of (total and systematic) risk, only a

function of tax parameters and the risk free interest rate. The distortion is decreasing in

a and c/(1 + r). Under Assumption 7 it is increasing in the tax rate.

For case R with an uncertain tax position, the relevant first-order condition is given in

equation (A6) in the appendix. One plus the required expected rate of return is

E(P )

ϕ(P )
· 1 − ta − tN(z2D) c

1+r

1 − tN(z1D)
. (25)

Again the distortion is independent of systematic risk, but now it depends on total risk

through the N(·) expressions.

In the appendix it is shown that when a = 0, the endogenous part of expression (25),

the second fraction, is increasing in α and σ. A higher α reduces the probability of being

in tax position, and thus the expected value of depreciation deductions. This increases

distortions. A higher σ has a similar effect, and works additionally by increasing the

option value of the authorities’ tax claim (i.e., it enhances the effect of the asymmetry),

increasing distortions. Furthermore, the distortion goes up if t goes up, and likewise if c

goes down, as the direct effects known from (24) are dominating. These results on the cost

of capital before taxes should be useful. However, they only formalize what is (more or

less) known from before, whereas the results on the cost of capital after taxes are more

important as corrections of current knowledge and practice.
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5 Tax deduction for entry costs

In addition to the tax deductions aI in period 0 and cI in period 1, assume now that there

are deductions bM0 in period 0 and hM0 in period 1, where b and h are constants in the

interval [0, 1]. The extension of case R will be developed, while the similar extension of

case F can be found by setting the probabilities (the N(·) expressions) equal to unity.

In order to distinguish the expressions from those above, this will be called case G (for

Generalized tax system). The cash flow to equity in period 1 is

XGD = Pf(I) − t · max(Pf(I) − cI − hM0, 0). (26)

The valuation, as of one period earlier, of a claim to this is

ϕ(XGD) = ϕ(P )f(I) − t

[
ϕ(P )f(I)N(z1GD) − cI + hM0

1 + r
N(z2GD)

]
, (27)

where

z1GD =
ln(ϕ(P )f(I)) − ln

(
cI+hM0

1+r

)
σ

+
σ

2
, (28)

and

z2GD = z1GD − σ. (29)

Again, the expression in square brackets in (27) can be rewritten in terms of the standard

Black and Scholes’ formula for option pricing as C(ϕ(P )f(I), cI + hM0, 1, r, σ), i.e.,

ϕ(XGD) = ϕ(P )f(I) − tC(ϕ(P )f(I), cI + hM0, 1, r, σ). (30)

The firm chooses I to maximize πGD(I) ≡ ϕ(XGD) − I(1 − ta). From the first-order

condition follows

ϕ(P )f(I)(1 − tN(z1GD)) =
f(I)

(
1 − ta − tc

1+r
N(z2GD)

)
f ′(I)

. (31)

Introducing the constant-elasticity production function gives

ϕ(P )f(I)(1 − tN(z1GD)) =
I

α

(
1 − ta − tc

1 + r
N(z2GD)

)
. (32)

Equilibrium M0 is given by

M0(1 − tb) = ϕ(XGD) − I(1 − ta)
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=
I

α

(
1 − ta − tc

1 + r
N(z2GD)

)
+

tcIN(z2GD)

1 + r
− I(1 − ta) +

thM0N(z2GD)

1 + r
, (33)

which can be solved for

M0 = I
(1 − α)[1 − t(a + cN(z2GD)

1+r
)]

α[1 − t(b + hN(z2GD)
1+r

)]
. (34)

The ratio of the expressions in square brackets in the numerator and the denominator

contains the effect of the different tax treatment (if any) of I and M0, respectively, in

risk-adjusted expected present value terms.

We can now solve for ϕ(XGD) =

I

α


1 − ta − tcN(z2GD)

1 + r
(1 − α) +

thN(z2GD)

1 + r
· (1 − α)[1 − t(a + cN(z2GD)

1+r
)]

[1 − t(b + hN(z2GD)
1+r

)]


 . (35)

This gives the average beta for this case,

βGD =
1 − ta − tcN(z2GD)

1+r

1 − ta − tcN(z2GD)
1+r

(1 − α) + thN(z2GD)
1+r

· (1−α)[1−t(a+
cN(z2GD)

1+r
)]

[1−t(b+
hN(z2GD)

1+r
)]

βP . (36)

Furthermore, we can express z2GD (and thus also z1GD = z2GD+σ) in terms of the exogenous

parameters implicitly through z2GD =

1

σ


ln


 1 − ta − tN(z2GD)c

1+r

1 − tN(z2GD + σ)
(1 + r)


 − ln


c + h

(1 − α)[1 − t(a + cN(z2GD)
1+r

)]

α[1 − t(b + hN(z2GD)
1+r

)]


 − ln(α)


− σ

2
.

(37)

While this general formulation is not immediately transparent, there are some inter-

esting special cases. Assumption 4 gave the case of b = 1, h = 0, and was analyzed in

section 3.

Consider the case where the two costs in period 0, M0 and I, are treated equally by

the tax system. This amounts to a = b and c = h. It can be shown that this makes

α vanish from both (36) and (37), so that z2GD = z2C , and βGD = βRC , found in (22).

When the two costs are treated equally, the firm’s whole activity can be seen as a marginal

investment project. In relation to the issues analyzed in this paper, there is nothing

which distinguishes this from a case of constant returns to scale, except that the scale of

production is determined.
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Even without specifying b, it turns out that h = 0 is an interesting special case. The

fraction
(1 − α)[1 − t(a + cN(z2GD)

1+r
)]

[1 − t(b + hN(z2GD)
1+r

)]
,

which appears in both (36) and (37), vanishes, since it is multiplied by h. We find z2GD =

z2D (of equation (19)), and βGD = βRA (of equation (20)). This means that b does not

matter for the results when h = 0, which is due to the fact that the equilibrium M0(1− tb)

is determined endogenously. A higher (lower) b will lead to a higher (lower) M0, keeping

equilibrium M0(1− tb) unaffected, and when h = 0, only M0(1− tb) matters, not M0 itself.

For instance, the two subcases (b = 0, h = 0) and (b = 1, h = 0) give the same beta of

equity, βRA, despite the very different tax treatment of M0.

In relation to the issues analyzed, the equality of tax treatment, a = b and c = h, is an

extreme case. While many other configurations of a, b, c, and h are possible, case R above

covers at least two interesting possibilities, that the entry cost is immediately deductible,

and that it is not deductible at all.

6 Discussion

The distinction between an average and a marginal beta is one of the novelties of this

paper. It has been shown that this distinction should be made even if the firm pays taxes

at the margin with full certainty, given that the tax system treats the fixed cost M0 and

the variable cost I differently. Since uncertainty in the model originates from only one

project-related stochastic variable, and since the project without tax has no option(-like)

characteristics, there is no difference between marginal and average beta if there are no

taxes. But with taxes this distinction appears, even in the simplest case with full certainty

about the tax position, if there are decreasing returns to scale.

Whether the distinction between marginal and average beta is important in practice, is

another question. Most firms may be happy with a rough estimate of the firm’s systematic

risk, and may not worry too much about the details determining the required expected

rate of return. Since different projects have different risk characteristics in practice, it is

impossible to come up with an exact number to be used for a new project. Nevertheless the
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mechanisms described here should be known by the practitioners, who may then evaluate

if, when, and how to take them into account. A thirty percent reduction in beta is hardly

negligible.

A seemingly critical assumption in the paper is Assumption 6 on option-like valuation

of non-linear cash flows. The underlying assumptions were not detailed, since they are

well known. It should be observed, however, that the approach is more general than it

seems. It is not necessary to rely on the geometric Brownian motion which is the basis for

the standard option valuation theory. Any price process which does not allow arbitrage

opportunities will do. But the exact solutions will of course be different with different price

processes.

Likewise, Assumption 1 on the CAPM can be relaxed. The crucial assumption is the

linear risk measure, which could even be related to more than one factor.

There are of course several limitations of the analysis. The uncertainty is multiplicative,

which may not be necessary for the model to work (cf. Lund (2003a)), but for the simplicity

of the results, in particular in the case of risky deductions. The source of uncertainty is a

single stochastic variable in a single period, and there is no carry-forward or carry-back of

losses, all of which exaggerates the risk of the deductions. As presented, the model does

not allow for risky inflation, the effect of which would depend on the systematic risk of

nominally risk free claims. In spite of all this, the model should be a step in the direction

of more realism, while retaining the possibility of an analytical solution.

7 Conclusion

Lund (2002a) showed that even in a fully equity financed firm, the beta of equity is de-

creasing in the tax rate under a typical corporate income tax. The main intuition was

that a tax depreciation schedule acts risk-wise in the opposite direction of leverage: It is

similar to a loan from the firm to the authorities. In light of this it has been important to

consider a more realistic model for the uncertainty of the firm’s tax position. The effect of

a corporate income tax system on the systematic risk of equity after tax depends critically

on loss offset provisions and the probability that the firm will be in tax position in future
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periods. This will depend on the total activities of a firm. This has been modelled as

a decreasing-returns-to-scale technology, which has been acquired at an equilibrium entry

cost, so that the total net value of the activity is zero. The model is a stylized quantifi-

cation of the claim in, e.g., Gordon and Wilson (1986) and Summers (1987) that the tax

value of deductions is close to risk free.

When the entry cost and the subsequent investment cost are treated differently by the

tax system, there is a difference between the average and marginal beta of a project. The

average beta will be reflected (if the model is true) in the stock market data for the firm’s

stock, while the marginal beta is relevant for each investment decision within the project.

If required rates of return are to be derived from market data, this distinction has to be

recognized.

When the firm is not certain to be in tax position at the margin in the future period,

the valuation is similar to option valuation. Numerical techniques were used to solve for

the systematic risk of equity in these cases. Even in this case the systematic risk of equity

is less than the underlying systematic risk (relevant for a no-tax situation), it is decreasing

in the tax rate, and increasing in the underlying volatility.

The methods and results demonstrated are crucial for discussions on reforms of corpo-

rate income taxation. In particular, the results on after-tax required returns are at odds

with current practices. Only if the authorities and firms (and other participants) agree on

these methods can there be meaningful discussions. In particular, if firms continue to rely

on using required expected rates of return after tax which are fixed irrespective of taxes,

there may be beneficial reforms which look bad in the eyes of these firms, cf. Lund (2002b).
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Appendix

Derivation of equations (18)–(22)

This derivation starts with the average beta in case R. In case R the cash flow to equity

in period 1 is

XRD = Pf(I) − t · max(Pf(I) − cI, 0). (A1)

Under Assumption 6 the valuation, as of one period earlier, of a claim to this is

ϕ(XRD) = ϕ(P )f(I) − t
[
ϕ(P )f(I)N(z1D) − cI

1 + r
N(z2D)

]
, (A2)

where

z1D =
ln(ϕ(P )f(I)) − ln

(
cI

1+r

)
σ

+
σ

2
, (A3)

and

z2D = z1D − σ. (A4)

The expression in square brackets in (A2) can be rewritten in terms of the standard Black

and Scholes’ formula for option pricing as C(ϕ(P )f(I), cI, 1, r, σ), so that

ϕ(XRD) = ϕ(P )f(I) − tC(ϕ(P )f(I), cI, 1, r, σ). (A5)

The C function has derivatives ∂C/∂(ϕ(P )f(I)) = N(z1D) and ∂C/∂(cI) = −N(z2D)/(1+

r), to be used below.17

The firm chooses I to maximize πRD(I) ≡ ϕ(XRD)−I(1−ta). The first-order condition

is

ϕ(P )f ′(I) =

(
1 − ta − tN(z2D) c

1+r

)
(1 − tN(z1D))

. (A6)

Introducing the constant-elasticity production function gives

ϕ(P )f(I)(1 − tN(z1D)) =
I

α

(
1 − ta − tN(z2D)

c

1 + r

)
. (A7)

Again, M has an equilibrium value equal to πRD, so that the total outlay for a firm to

obtain the claim to the cash flow XRD is M + I(1− ta) = πRD + I(1− ta) = ϕ(XRD). The

claim is equivalent to holding a portfolio with f(I)(1− tN(z1D)) claims on P , and the rest

risk free. The beta is a value-weighted average of the betas of these two elements, i.e.,

βRA =
ϕ(P )f(I)(1 − tN(z1D))

ϕ(XRD)
βP . (A8)
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Here, the subscript RA is introduced to show that this is the average beta in case R. By

introducing the expression for ϕ(XRD) from (A2) and the constant-elasticity production

function, this can be simplified as

βRA =
1 − ta − tN(z2D) c

1+r

1 − ta − tN(z2D) c
1+r

(1 − α)
βP . (A9)

It is also possible to express z1D and z2D in terms of exogenous variables, including the elas-

ticity α, avoiding the decision variables of the firm. Plug in from the first-order condition

(A7) into (A3)–(A4) to find equation (19) in the main text.

In order to derive the marginal beta for the same case, consider first the marginal beta

derived in Lund (2002a) for the case with an uncertain tax position, equation (24) in that

paper. That paper’s equation (23) becomes

γ =
1 − ta − tN(z2C) c

1+r

1 − tN(z1C)
, (A10)

and the marginal beta can be written

βRC =
(
1 − ta − tN(z2C)

c

1 + r

)
βP . (A11)

The subscript RC (C for CRS) is used here since the case considered in Lund (2002a) did

not include the marginal project with some other activity, i.e., as if the case had constant

returns to scale.

Again it is possible to express z2C in terms of the exogenous parameters. In this case

there is no first-order condition for an interior profit maximum, but the definition of a

marginal CRS project, which gives

ϕ(P )Q

I
=

1 − ta − tN(z2C) c
1+r

1 − tN(z1C)
, (A12)

cf. equations (5) and (23) in Lund (2002a). This leads to equation (21) in the main text.

What then about the marginal beta for the DRS case? This can be seen as a mixture

of the two cases just considered. The marginal beta characterizes a small investment

which has a net value of zero. Under imperfect loss offset the value will depend upon the

probability of being in tax position. In particular this is crucial in case R, for which it

is assumed that after period one there are no more periods, so that the loss cannot be
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carried forward (nor backward). The criterion for the project being marginal looks similar

to (A12), but in this case the valuation of the option-like cash flow to the marginal project

in period 1 is based on the risk-adjusted probabilities N(z1D) and N(z2D), not N(z1C) and

N(z2C), since they should now reflect the probabilities that the whole DRS project is in

tax position at the margin. The project which invests I to yield Q, and which is taxed

together with the optimally scaled DRS project, is marginal when

ϕ(P )Q

I
=

1 − ta − tN(z2D) c
1+r

1 − tN(z1D)
. (A13)

The marginal beta in the DRS case becomes

βRM =
1 − ta − tN(z2D) c

1+r

1 − ta
βP , (A14)

with z2D given from (19) in the main text.

Partial derivatives of βRA

This section considers the partial derivatives of βRA with respect to the parameters t, c/(1+

r), σ, and α, and determines the signs of these for broad ranges of values of the parameters.

However, in order to restrict the discussion, it will be assumed (a bit further below) that

a = 0. To simplify the notation, define ĉ ≡ c/(1 + r), and in this section write z for z2D

defined in (19).

Implicit differentiation of that equation gives

∂z

∂σ
=

1

σ


 −tĉn(z) ∂z

∂σ

1 − ta − tĉN(z)
+

tn(z + σ)
(

∂z
∂σ

+ 1
)

1 − tN(z + σ)


 (A15)

− 1

σ2
[ln(1 − ta − tĉN(z)) − ln(1 − tN(z + σ)) − ln(ĉ) − ln(α)] − 1

2
, (A16)

where n(·) denotes the standard normal density function.

This can be solved for

∂z

∂σ
=

−(z + σ) + tn(z+σ)
1−tN(z+σ)

σ + t
[

ĉn(z)
1−ta−tĉN(z)

− n(z+σ)
1−tN(z+σ)

] . (A17)

Although difficult to prove analytically, it seems that the numerator is negative, while

the denominator is positive. This has been verified numerically for a = 0 and ĉ = 1/1.05,
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considering a grid of 800 (α, σ, t) vectors, covering the reasonable ranges α ∈ [0.1, 1], t ∈
[0, 0.7], σ ∈ [0.05, 0.5]. On this basis it is concluded that ∂z/∂σ < 0 for reasonable param-

eter values. The sign of the denominator is also needed below for the sign of the remaining

partial derivatives. As verified numerically, it is assumed to be positive:

Assumption 8: There is no immediate tax relief for investment, i.e., a = 0. Moreover,

σ + t

[
ĉn(z)

1 − ta − tĉN(z)
− n(z + σ)

1 − tN(z + σ)

]
> 0.

Consider now the partial derivative with respect to α. Using the same method as above,

we can show that
∂z

∂α
=

−(1/α)

σ + t
[

ĉn(z)
1−ta−tĉN(z)

− n(z+σ)
1−tN(z+σ)

] , (A18)

which is negative under Assumption 8.

Furthermore, we find

∂z

∂t
=

− a+ĉN(z)
1−t(a+ĉN(z))

+ N(z+σ)
1−tN(z+σ)

σ + t
[

ĉn(z)
1−ta−tĉN(z)

− n(z+σ)
1−tN(z+σ)

] . (A19)

It can be shown that the sign of the numerator is positive if and only if

N(z + σ) − a − ĉN(z) > 0. (A20)

This restriction is implied by Assumption 7, but is somewhat weaker, since N(z + σ) >

N(z). Under Assumption 7 (or the weaker restriction (A20)) and Assumption 8, we find

∂z/∂t > 0.

Next, we have

∂z

∂a
=

− t
1−t(a+ĉN(z))

σ + t
[

ĉn(z)
1−ta−tĉN(z)

− n(z+σ)
1−tN(z+σ)

] , (A21)

which has the same sign as ∂z/∂σ and ∂z/∂α, negative under Assumption 8. The same is

true for

∂z

∂ĉ
=

− tN(z)
1−t(a+ĉN(z))

− 1
ĉ

σ + t
[

ĉn(z)
1−ta−tĉN(z)

− n(z+σ)
1−tN(z+σ)

] , (A22)

which has an additional term compared with ∂z/∂a, since a higher c affects the probability

of being in tax position directly, not only via the optimal investment behavior.
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Consider now the partial derivatives of βRA from (A9). Let the denominator in (A9)

be D ≡ 1 − tĉN(z)(1 − α). Then we find

∂βRA

∂t
=

αĉ

D2

[
−tn(z)

∂z

∂t
− N(z)

]
βP , (A23)

which is negative under Assumption 8.

Next, we get

∂βRA

∂α
=

−tĉ

D2

[
αn(z)

∂z

∂α
+ (1 − tĉN(z))N(z)

]
βP . (A24)

The sign of this is indeterminate: The expression in square bracket contains two terms

of which the first is negative, while the second is positive. As a rough approximation,

(∂z/∂α) · α ≈ −(1/σ), so that (since n(z) < 0.4) the positive term may dominate if σ

is sufficiently large, making the whole equation negative. The numerical illustration in

Figures 1–5 shows that the sign of this derivative changes from negative to positive as α

increases. However, it can be shown that this does not have to happen when σ is sufficiently

large, in which case βRA becomes everywhere decreasing in α.

Next, we find
∂βRA

∂σ
=

−αtĉn(z)

D2
· ∂z

∂σ
βP , (A25)

which is positive under Assumption 8.

Finally, there is
∂βRA

∂c
=

−tα

D2

[
ĉn(z)

∂z

∂c
+ N(z)

]
βP , (A26)

which has an indeterminate sign, even under Assumption 8. If σ is not too small, the term

containing N(z) will dominate, making the derivative negative.

Partial derivatives of before-tax cost of capital

The cost of capital before taxes in the no-borrowing cases is the exogenous E(P )/ϕ(P )

multiplied by

γ(t, a, ĉ, σ, α) ≡ 1 − ta − tĉN(z)

1 − tN(z + σ)
, (A27)

given as expression (25) in the main text. As in the previous section of this appendix, the

notation is simplified by writing ĉ for c/(1+ r) and z for z2D defined in (19). Although not
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shown in the above equation, z is itself a function of the same five variables, with partial

derivatives given in equations (A17)–(A22). Case F with risk free deductions is obtained

by letting both N(·) expressions equal to unity, and the CRS case is obtained when α → 1.

It would be interesting to determine the signs of the partial derivatives of this γ function.

The simplest expression is found for ∂γ/∂α, since α only has an effect via z. At first glance

it may seem clear that a higher α leads to a lower z, thus a lower N(z) and a lower N(z+σ),

which works just as a lower tax rate, reducing γ. But the facts that the arguments of the

two N(·) expressions are different, and that N is concave for positive argument values,

imply that the reduction in N(z) may exceed the reduction in N(z +σ) sufficiently to lead

to the opposite effect: It may happen that the reduction in the expected present tax value

of the depreciation deduction has the higher impact, not the reduction in the conditional

expected present value of the marginal tax rate on the revenue side.

Analytically: The derivative is

∂γ

∂α
=

[1 − tN(z + σ)](−tĉn(z) ∂z
∂α

) + [1 − ta − tĉN(z)]tn(z + σ) ∂z
∂α

(1 − tN(z + σ))2
. (A28)

The numerator can be written as

t
∂z

∂α
{[1 − ta − tĉN(z)] n(z + σ) − ĉ [1 − tN(z + σ)] n(z)} . (A29)

Even when a = 0 it seems impossible to determine the sign of this expression analytically.

While the first expression in square brackets is greater than ĉ multiplied by the second, we

will have n(z + σ) < n(z) as long as z > −σ/2.

A numerical investigation for a = 0, ĉ = 1/1.05, and the reasonable intervals α ∈
[0.1, 1], t ∈ [0, 0.7], σ ∈ [0.05, 0.5], shows that ∂γ/∂α > 0 everywhere (on a grid of 800

points), while ∂z/∂α < 0 (meaning that Assumption 8 is satisfied). This means that the

expression in curly braces is negative, due to n(z + σ) < n(z).

The economic interpretation is that even though a higher α lowers the probability of

being in tax position, also when we take the optimal adjustment in I into consideration,

this does not correspond to a uniformly reduced tax rate. The impact on the marginal tax

rate on deductions exceeds that on the marginal tax rate on revenue, which implies that

the cost of capital is actually increased.
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The difficulty of determining the sign of ∂z/∂α analytically carries over to the other

four first-order partial derivatives, since the expression in curly braces reappears in all of

them. Let Γ be the expression in curly braces in (A29), and remember that a numerical

investigation has shown that it is negative for the reasonable parameter values which

were applied. The partial derivatives are fractions with a positive denominator, as in

(A28), so we concentrate on the numerators. In connection with equations (A17)–(A22)

it was concluded under Assumption 8 that ∂z/∂σ < 0, ∂z/∂t > 0 (under Assumption 7),

∂z/∂a < 0, and ∂z/∂ĉ < 0.

The numerator of ∂γ/∂σ is

t
∂z

∂σ
Γ + [1 − ta − tĉN(z)] tn(z + σ). (A30)

From the discussions above it is reasonable to assume that the first term is positive, and

the same clearly holds for the second. The whole expression is thus positive.

The numerator of ∂γ/∂t is

t
∂z

∂t
Γ + [N(z + σ) − a − ĉN(z)] . (A31)

The first term is negative, cf. above. The second is positive (under Assumption 7), so the

sign of the total effect is difficult to determine analytically. The numerical investigation

showed that ∂γ/∂t > 0 everywhere on the grid.

The numerator of ∂γ/∂a is

t
∂z

∂a
Γ − t [1 − tN(z + σ)] . (A32)

The first term is positive, cf. above. The second term, including its minus sign, is negative,

so the sign of the total is indeterminate.

The numerator of ∂γ/∂ĉ is

t
∂z

∂ĉ
Γ − tN(z) [1 − tN(z + σ)] . (A33)

The first term is positive, cf. above. The second term, including its minus sign, is negative,

so the sign of the total cannot be determined analytically. The numerical investigation

showed that ∂γ/∂ĉ < 0 everywhere on the grid.
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For the parameter ranges investigated, the indirect effects of t and ĉ on γ via changes

in z counteract the direct effects found from the case of risk free deductions, cf. (24). But

the indirect effects are of second order importance, and cannot overturn the direct effects.
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Notes

1See, e.g., Brealey and Myers (2003), section 19.3.

2The present paper extends Lund (2002a). Lund (2003a) uses a different set of assump-

tions, more general in some respects, more specialized in others. One main difference is

that Lund (2003a) does not specify a CAPM relationship, only a more general model with

value additivity, like in Modigliani and Miller (1963). It is also more general in that it does

not assume multiplicative uncertainty, PQ with Q deterministic, as do Lund (2002a) and

the present paper. On the other hand, Lund (2003a) relies on very specific multi-period

profiles for production, depreciation and borrowing, and does not allow for uncertainty in

tax positions or decreasing returns to scale. An appendix in Lund (2003b) shows the exact

relationship between the models of the present paper and Lund (2002a) on the one hand,

and those of Lund (2003a) on the other.

3The divergence between the results of Derrig (1994) and of the present paper is spelt

out in Lund (2001).

4Lund (2002a) has a multiperiod extension for the case with a risk free tax position.

5Of course, ri is the rate of return of shares in firm i, r may be thought of as the

riskless interest rate (but see footnote 7), rm is the rate of return on the market portfolio,

βi ≡ cov(ri, rm)/ var(rm), and E is the expectation operator. The original model is derived

in Sharpe (1964), Lintner (1965), and Mossin (1966).

All variables are nominal. As long as the tax system is based on nominal values, the

model is only consistent with a rate of inflation which is known with certainty, and fixed

exchange rates. The underlying real CAPM would then be

1 + E(ri)

1 + ṗ
=

1 + r

1 + ṗ
+ βi

[
1 + E(rm)

1 + ṗ
− 1 + r

1 + ṗ

]
,

where ṗ is the rate of inflation.
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6In Bulow and Summers (1984) it is assumed that even a change in the U.S. corporate

tax system can be meaningfully analyzed with partial equilibrium methods, since the firms

traded in the U.S. capital market have their activities world wide, and the “U.S. corporate

sector represents less than one-tenth of the world free market wealth” (their footnote 3).

7In fact r could be the riskless interest rate multiplied by a factor θ which corrects for

differences in the tax treatment on the hands of the firm’s owners of income from equity

and income from riskless bonds, reflected in the tax parameter θ. This is included in Lund

(2002a). A tax-adjusted CAPM appears, e.g., in Sick (1990) or Benninga and Sarig (2003).

In a discussion of taxation and the CAPM it seems reasonable to allow for θ < 1, but it has

no consequences for the results which follow. The standard CAPM with θ = 1 is all that

is needed. In the present paper there is no borrowing, so the riskless rate has no separate

significance apart from its appearance in the CAPM equation. Thus r is simply defined as

the intercept in the CAPM equation. Lund (2002a) allows riskless debt and θ < 1.

8The product price has what McDonald and Siegel (1984) call an (expected-)rate-of-

return shortfall.

9In parts of the literature, such as King (1977), p. 232, the nominal sum of deductions,

here a + c, is set to unity. But there “is not need to restrict the sum” of deductions “to

unity,” according to King and Fullerton (1984), p. 19, who observe that at “certain times

it exceeds unity (for example, when accelerated depreciation does not reduce the base

for standard depreciation allowances).” In the present paper, a and c are considered as

separate, exogenous variables, so that an increase in a is analyzed as if c is kept constant,

and vice versa.

10It would certainly be interesting to consider leverage and uncertain tax positions in

the same model. However, the analysis which follows, and in particular the extension to

more general tax deductions in the appendix, is sufficiently complicated as it is. After

all, it is well known that the beta of equity depends on the tax rate in the presence of

leverage, and one main point of Lund (2002a) and the present paper is to establish that

this also holds in the absence of leverage. Two starting points for extending this research to
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combine leverage and an uncertain tax position are Galai (1988) with risky debt and Lund

(2002a) with default-free debt. Assumptions 3 and 5 in Lund (2002a) may be somewhat

unrealistic when taken together. They imply that the debt is repaid with certainty, for

instance by a parent company if the firm analyzed has insufficient cash flow. At the same

time the tax value of the interest deduction is only obtained to the extent that the firm

is in tax position. One could imagine instead that the parent company also obtains an

interest deduction, but perhaps at a different tax rate.

11The present paper improves upon the solution for the case considered in Lund (2002a),

by pointing out that the variables z1 and z2, called x1 and x2 in equation (19) in that paper,

can be rewritten in terms of the exogenous parameters, given that the production function

has a constant elasticity. Observe in particular that whereas the option value in general

depends on a rate-of-return shortfall (in an unconstrained equilibrium often identified as

a convenience yield), this dependency disappears here, given that the first-order condition

of the firm is satisfied.

12Specifically, additive noise could be ε, stochastically independent of (P, rm), with

E(ε) = 0. Then cov(P + ε, rm) = cov(P, rm). Multiplicative noise could be ψ, stochas-

tically independent of (P, rm), with E(ψ) = 1. Then cov(Pψ, rm) = cov(P, rm). These

reasonable cases show that the correlation coefficient of (P, rm) should not (always) be

assumed unaffected if P becomes more risky. This points out an important reservation to

the discussion in Dixit and Pindyck (1994), in particular the claim on p. 179 that “when

the σ of the P asset increases, µ must increase” (where µ is the required expected rate

of return according to the CAPM). This is not true in general (but it can be true due to

non-linear taxation). Of course, the argument made here does not mean that σ could be

zero while β is different from zero. See also the discussion in section 4 of Lund (2005).

13The solutions (when a = 0 and c/(1 + r) = 1/1.05) show that z2D is negative approxi-

mately when σ− t−2(1−α) ≥ 0.3, an (approximate) linear relationship. To interpret this,

recall that N(z2D) is the risk-adjusted probability of being in tax position. This will be

less than 0.5 if σ and α are large, while t is small. Since the formula relies on the first order

condition, the effect via optimal investment is included here. Optimal investment increases
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when t is small, even though this increases the probability of being out of tax position at

the margin. A high α reduces the infra-marginal profit. The effect of an increased σ may

not be so obvious, since the probability of P being less than its median is unaffected (and

equal to 0.5). But the tax base also includes a negative constant term, which explains the

effect.

14For each numerical version of each of the nonlinear equation systems (19) and (21)

the solution method identified one solution which might not be a unique solution. The

program then did a grid search through 400 values of z2 for other solutions, but these

were never found. It seems reasonable to conclude that the solutions found are likely to

be unique. For equation (21) the uniqueness may depend on α being a constant. A more

general version with a non-constant α(I) might lead to several solutions.

15So far no indications have been found that the dependency on t or σ should be non-

monotonous. But these are solutions to non-linear equations, and the possibility has not

been ruled out. For the parameters shown, however, there is every reason to believe that

the solutions are unique.

16This effect of a different tax rate becomes particularly pronounced under some systems

of taxation of natural resource rents, in which marginal tax rates on firms have been

between 50 and 85 percent. When these systems have investment based deductions spread

over several years, such as depreciation deductions, the beta of equity becomes quite low.

Serious mistakes could be made if firms apply the same cost of equity under such tax

systems as under others, cf. Lund (2002b).

17The partial derivatives of Black and Scholes’ formula can be found, e.g., in Haug (1998),

or in most textbooks on option theory. They look as if they neglect the dependence of z1

and z2 on the arguments, but they do not.
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N(z2) α marginal βi βi/βP

vs. average

Case

F
1

1 marginal βFC

1 − ta − t c
1+r

1 − ta

∈ (0, 1) average βFD

1 − ta − t c
1+r

1 − ta − t c
1+r

(1 − α)

Case

R
∈ (0, 1)

1 marginal βRC

1 − ta − tN(z2C) c
1+r

1 − ta

∈ (0, 1) marginal βRM

1 − ta − tN(z2D) c
1+r

1 − ta

∈ (0, 1) average βRA

1 − ta − tN(z2D) c
1+r

1 − ta − tN(z2D) c
1+r

(1 − α)

Equations implicitly defining z2C and z2D:

z2C =
1

σ

[
ln

(
1 − ta − tN(z2C)

c

1 + r

)
− ln(1 − tN(z2C + σ)) − ln

(
c

1 + r

)]
− σ

2

z2D =
1

σ

[
ln

(
1 − ta − tN(z2D)

c

1 + r

)
− ln(1 − tN(z2D + σ)) − ln

(
c

1 + r

)
− ln(α)

]
− σ

2

Table 1: Beta of equity for the five subcases, divided by βP
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Figure 1: βi/βP as functions of scale elasticity, α; t = σ = 0.3, c/(1 + r) = 1/1.05
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Figure 2: βi/βP as functions of scale elasticity, α; varying the tax rate
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Figure 3: βi/βP as functions of scale elasticity, α; varying the volatility
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