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ESTIMATING REGRESSION SYSTEMS

FROM UNBALANCED PANEL DATA:

A STEPWISE MAXIMUM

LIKELIHOOD PROCEDURE �)

by

ERIK BI�RN

ABSTRACT

In this paper, we consider the formulation and estimation of systems of regression equations

with random individual e�ects in the intercept terms from unbalanced panel data, i.e., panel

data where the individual time series have unequal length. Generalized Least Squares (GLS)

estimation and Maximum Likelihood (ML) estimation are discussed. A stepwise algorithm for

solving the ML problem is developed.

Keywords: Panel Data. Unbalanced panels. Regression equation systems.

Maximum Likelihood. Heterogeneity. Covariance estimation

JEL classi�cation: C13, C23, C33
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1 Introduction

Systems of regression equations and methods for estimating such systems have a rather

long history in econometrics. Notable examples, with cross equational coe�cient con-

straints, are linear systems of factor demand equations derived from producers' cost

minimizing or pro�t maximizing behaviour and systems of demand functions for con-

sumption commodities derived from consumers' cost minimizing or utility maximizing

behaviour. The reduced form of a linear structural model is also, formally, a system of

regression equations, since the left hand variable is the only endogenous variable in each

equation.

In this paper, we consider the speci�cation and estimation of regression systems with

random individual e�ects from unbalanced panel data, i.e., panel data where the indi-

vidual time series have unequal length. This approach is more general than the standard

approach to the estimation of regression equations from panel data. A large number of

papers and textbook chapters discuss single equation models with balanced panel data

and random e�ects [see, e.g., Greene (1997, chapter 14)]. Single equation models with

unbalanced panel data and random individual e�ects are discussed in Bi�rn (1981) and

Baltagi (1985). Systems of regression equations for balanced panel data with random

individual and period speci�c e�ects are discussed in Avery (1977) and Baltagi (1980).1

The model and methods to be considered in the present paper is a generalization of the

models and methods in the papers above, except that time speci�c random e�ects are

ignored.2

The model and notation is presented in Section 2, and we take a �rst look at the

estimation of the covariance matrices of the error terms. Two versions of (feasible)

Generalized Least Squares (GLS) estimation { considered as a preliminary to Maximum

Likelihood (ML) estimation { are discussed in Section 3. In Section 4, we �rst describe

the ML problem, in two variants, and next derive a stepwise switching algorithm for

implementing their solution.3 The relationship to the GLS problem is discussed.

1Models with randomly varying coe�cients in addition to randomly varying intercepts will not be

considered in this paper. Bi�rn (1999) elaborates Maximum Likelihood estimation for such, more general

models for unbalanced panel data.
2The joint occurrence of unbalanced panel data and random two-way e�ects raises special problems

and will not be considered here. For most practical problems, random individual heterogeneity is far

more important than random time speci�c heterogeneity { at least for genuine micro data for individuals,

households, or �rms. Quadratic unbiased and Maximum Likelihood estimation of a single equation com-

bining unbalanced panel data and random two-way e�ects is considered in Wansbeek and Kapteyn (1989).

Fixed period speci�c e�ects can be included without notable problems.
3This algorithm may be programmed in matrix oriented software codes, e.g., Gauss.
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2 Model and notation

Consider a system of G regression equations, indexed by g = 1; : : : ; G, with observations

from an unbalanced panel with N individuals, indexed by i = 1; : : : ; N . The individuals

are observed in at least one and at most P periods. Let Np denote the number of indi-

viduals observed in p periods (not necessary the same and not necessarily consecutive),

p = 1; : : : ; P , and let n be the total number of observations, i.e., N =
PP

p=1Np and

n =
PP

p=1Npp.

Assume that the individuals are ordered in P groups such that the N1 individuals

observed once come �rst, the N2 individuals observed twice come second, : : :, the NP

individuals observed P times come last. Let Mp be the cumulated number of individuals

observed up to p times, i.e.,

Mp = N1 +N2 + � � �+Np; p = 1; : : : ; P:

In particular, M1 = N1 and MP = N . Let Ip denote the index set of the individuals

observed p times, i.e., 8>>>>>><>>>>>>:

I1 = [1; : : : ;M1];

I2 = [M1+1; : : : ;M2];
...

IP = [MP�1+1; : : : ;MP ]:

(1)

We may formally consider I1 as a cross section and I2; I3; : : : ; IP as balanced subpanels

with 2; 3; : : : ; P observations of each individual, respectively.

The g'th equation for individual i, observation t { specifying Hg regressors (includ-

ing a one to represent the intercept term) and unobserved, additive, random individual

heterogeneity { is

ygit = xgit�g + �gi + ugit; g = 1; : : : ; G; i 2 Ip; t = 1; : : : ; p; p = 1; : : : ; P;(2)

where ygit is the left hand side variable, xgit, of dimension (1 � Hg), is the regressor

vector, and ugit is the genuine disturbance in the g'th equation speci�c to individual i,

observation t. Finally, �g is the (Hg�1) coe�cient vector in the g'th equation (including

the intercept term), common to all individuals, and �gi is a latent e�ect speci�c to

individual i in the g'th equation.

Stacking the G equations for each observation (i; t), we have2664
y1it
...

yGit

3775 =

26664
x1it � � � 0
...

. . .
...

0 � � � xGit

37775
2664
�1
...
�G

3775+
2664

�1i
...

�Gi

3775+
2664

u1it
...

uGit

3775 ;(3)
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or in compact notation,4

yit = X it� + �i + uit = X it� + �it;(4)

where

�it =

2664
�1it
...

�Git

3775 = �i + uit:(5)

The dimension of the stacked (block-diagonal) regressor matrix Xit and the coe�cient

vector � are (G�H) and (H � 1), respectively, where H =
PG

g=1Hg. We assume5

E(�i) = 0G;1; E(�i�
0

j) = �ij��;(6)

E(uit) = 0G;1; E(uitu
0

js) = �ij�ts�u;(7)

Xit;�i;uit are uncorrelated:(8)

where the �'s are Kronecker deltas and

�� =

2664
��11 � � � ��1G
...

...
��G1 � � � ��GG

3775 ; �u =

2664
�u11 � � � �u1G
...

...
�uG1 � � � �uGG

3775 :
It follows from (6) { (8) that the composite disturbance vectors (5) satisfy

E(�it) = 0G;1; E(�it�js) = �ij(�� + �ts�u):(9)

The individual speci�c mean of the �'s for individual i is given by

��i� =

8>>>>>><>>>>>>:

�i1 for i 2 I1;

(1=2)
P2

t=1 �it for i 2 I2;
...

(1=P )
PP

t=1 �it for i 2 IP ;

(10)

and its global mean is

�� =
1

n

PX
p=1

X
i2Ip

pX
t=1

�it =
1

n

PX
p=1

X
i2Ip

p ��i� :(11)

4This way of writing the model can be given an interpretation which is more general than (3), since

some kinds of cross-equational constraints may be included. If the coe�cient vectors are not disjoint

across equations because at least one coe�cient occurs in at least two equations, we can (i) rede�ne �

as the complete coe�cient vector (without duplication) and (ii) rede�ne the regressor matrix as Xit =

[x01it; : : : ;x
0

Git]
0, where the k'th element of xgit is rede�ned to contain the observations on the variable in

the g'th equation which corresponds to the k'th coe�cient in �. If the latter coe�cient does not occur

in the g'th equation, the k'th element of xgit is set to zero.
5Without loss of generality, we can set E(�i) to zero, since a non-zero value can be included in the

intercept term.
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The (G�G) matrices of total, within individual, and between individual (co)variation

in the �'s of the di�erent equations can be expressed as

T �� =
PX
p=1

X
i2Ip

pX
t=1

(�it � ��)(�it � ��) 0;(12)

W �� =
PX
p=1

X
i2Ip

pX
t=1

(�it � ��i�)(�it � ��i�)
0;(13)

B�� =
PX
p=1

X
i2Ip

p (��i� � ��)(��i� � ��) 0;(14)

respectively.6 These de�nitions imply that the total variation can be decomposed into

variation within and between individuals as

T �� =W �� +B��;(15)

in the same way as for a balanced data set. The total, within, and between matrices of

the y's and x's are de�ned and decomposed similarly.

We show in Appendix A that

E(W ��) = (n�N)�u;(16)

E(B��) = (N � 1)�u +

 
n �

PP
p=1Npp

2

n

!
��:(17)

Hence,

b�u =
W ��

n�N
;(18)

b�� =
B�� �

N � 1

n�N
W ��

n�

PP
p=1Npp

2

n

(19)

would be unbiased estimators of �u and �� if the disturbances �it were known.7

The total, within individual, and between individual (co)variation in the �'s of the

individuals observed p times are expressed as8

T ��(p) =
X
i2Ip

pX
t=1

(�it � ��(p))(�it � ��(p))
0;(20)

6The double sum
PP

p=1

P
i2Ip

in (11) { (14) corresponds to the summation across individuals (e.g.,PN

i=1
) for a standard balanced design, in which only one Ip is non-empty.

7Consistent residuals can replace the �'s in (18) and (19) to obtain consistent estimates of �u and ��

in practice. See Sections 3 and 4.
8Note, by comparing (12) { (14) with (20) { (22), thatW �� =

PP

p=1
W ��(p), but similar relationships

do not exist between B�� and the B��(p)'s and between T �� and the T ��(p)'s, because the unweighted

group means occur in the latter and the global means (weighted group means) occur in the former.
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W ��(p) =
X
i2Ip

pX
t=1

(�it � ��i�)(�it � ��i�)
0;(21)

B��(p) = p
X
i2Ip

(��i� � ��(p))(��i� � ��(p))
0;(22)

respectively, where

��(p) =
1

Npp

X
i2Ip

pX
t=1

�it =
1

Np

X
i2Ip

p ��i�;(23)

and we �nd that the total variation of the individuals observed p times can be decomposed

into within and between individual variation as

T ��(p) =W ��(p) +B��(p):(24)

The total, within, and between matrices of the y's and x's are de�ned similarly.

We �nd9

E(W ��(p)) = Np(p�1)�u;(25)

E(B��(p)) = (Np � 1)�u + p(Np � 1)��;(26)

and hence

b�u(p) =
W ��(p)

Np(p�1)
;(27)

b��(p) =
1

p

"
B��(p)

Np � 1
�

W ��(p)

Np(p�1)

#
;(28)

b�(p) =
b�u(p) + p b��(p) =

B��(p)

Np � 1
(29)

would be unbiased estimators of �u, ��, and �(p) based on the disturbances �it from

the individuals observed p times if these disturbances were known.

Let now y
i(p), Xi(p), and �i(p) be the stacked (Gp� 1) vector, (Gp�H) matrix, and

(Gp� 1) vector of y's, X 's, and �'s, respectively, corresponding to the p observations of

individual i 2 Ip, i.e.,

yi(p) =

2664
yi1
...
yip

3775 ; X i(p) =

2664
X i1

...
X ip

3775 ; �i(p) =
2664
�i1
...
�ip

3775 for i 2 Ip; p = 1; : : : ; P:(30)

Then (4) can be rewritten as

yi(p) = Xi(p)� + (ep 
 �i) + ui(p) = Xi(p)� + �i(p);(31)

9These expressions can be obtained by, e.g., replacing N , n, and
PP

p=1
Npp

2 in (16) and (17) by

respectively Np, Npp, and Npp
2.
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where ep is the (p� 1) vector of ones. From (9) it follows that

E(�i(p)) = 0Gp;1; E(�i(p)�
0

i(p)) = Ip 
�u +Ep 
�� = 
�(p);(32)

where Ip is the p dimensional identity matrix, Ep = epe
0

p is the (p � p) matrix with all

elements equal to one, and 
�(p) is the (Gp � Gp) matrix de�ned by the last equality.

The expression for this disturbance covariance matrix can be rewritten as


�(p) = Bp 
�u +Ap 
 (�u + p��);(33)

where Ap = (1=p)Ep and Bp = Ip � (1=p)Ep. The latter two matrices are symmetric

and idempotent and have orthogonal columns.

In Sections 3 and 4, we discuss stepwise procedures for Generalized Least Squares

and Maximum Likelihood estimation of the coe�cient vector �.

3 Generalized Least Squares estimation

The Generalized Least Squares (GLS) problem for estimating the joint coe�cient vector

� when the covariance matrices �u and �� are known is to minimize the quadratic form

Q =
PX
p=1

X
i2Ip

� 0i(p)

�1
�(p)�i(p) =

PX
p=1

X
i2Ip

(yi(p) �X i(p)�)
0
�1

�(p)(yi(p) �X i(p)�)(34)

with respect to � for given �u and ��. Since it follows from the properties of Ap and

Bp that


�1
�(p) = Bp 
��1

u +Ap 
 (�u + p��)
�1;(35)

we can rewrite Q as

Q =
PX
p=1

X
i2Ip

� 0i(p)[Bp 
��1
u ]�i(p) +

PX
p=1

X
i2Ip

� 0i(p)[Ap 
��1
(p)]�i(p);(36)

where

�(p) = �u + p��; p = 1; : : : ; P:(37)

Let us consider the GLS problem (i) when we utilize the full data set, and (ii) when

we utilize the data from the individuals observed p times only.

GLS estimation for all observations

The solution to the problem of minimizing Q obtained from @Q=@� = 0, i.e., the GLS

estimator of � for known �u and ��, is

b�GLS =

24 PX
p=1

X
i2Ip

X 0

i(p)

�1
�(p)Xi(p)

35�1 24 PX
p=1

X
i2Ip

X 0

i(p)

�1
�(p)yi(p)

35(38)

6



=

24 PX
p=1

X
i2Ip

X 0

i(p)[Bp 
��1
u ]Xi(p) +

PX
p=1

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]Xi(p)

35�1

�

24 PX
p=1

X
i2Ip

X 0

i(p)[Bp 
��1
u ]yi(p) +

PX
p=1

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]yi(p)

35 :
Its covariance matrix, which can be obtained from the standard GLS formula, is

V(b�GLS) =
24 PX
p=1

X
i2Ip

X 0

i(p)

�1
�(p)X i(p)

35�1(39)

=

24 PX
p=1

X
i2Ip

X 0

i(p)[Bp 
��1
u ]X i(p) +

PX
p=1

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]Xi(p)

35�1 :
Usually, �u and �� are unknown. Then the following stepwise GLS procedure can

be used for estimating �, �u, and �� jointly:

Step 1: Run OLS separately on all G equations in (2), using all observations on yit

and X it. Stacking the estimators, we get the joint estimator vector b�OLS . Form the

corresponding vectors of residuals b�it = yit �X it
b�OLS for all i and t. These residuals

are consistent.

Step 2: Compute within and between matrices of residuals by inserting �it = b�it in (13)

and (14). Let the estimators obtained be denoted as W �̂�̂ and B �̂�̂.

Step 3: Estimate �u, ��, and �(p) by inserting W �� = W �̂�̂ and B�� = B �̂�̂ in (18),

(19), and (37) for p = 1; : : : ; P . Let the estimators obtained be denoted as b�u,
b��, andb�(p).

Step 4: Compute the (feasible) GLS estimator of � by inserting �u = b�u and �(p) =b�(p) for p = 1; : : : ; P in (38).

This algorithm can be iterated by recomputing the residuals from the GLS estimators

and repeating steps 2 { 4 until convergence, according to some criterion.

GLS estimation for the individuals observed p times

We may alternatively { or as a preliminary to full GLS estimation { apply GLS on the

observations for the individuals observed p times, in the following denoted as group p,

and do this separately for p = 1; : : : ; P . We then minimize the part of the quadratic form

Q which relates to the individuals observed p times, i.e.,

Q(p) =
X
i2Ip

� 0i(p)[Bp 
��1
u ]�i(p) +

X
i2Ip

� 0i(p)[Ap 
��1
(p)]�i(p):(40)

7



The solution to the (conditional) problem of minimizing Q(p) obtained from @Q(p)=@� =

0, i.e., the GLS estimator of � for group p for known �u and ��, is

b�GLS(p) =
24X
i2Ip

X 0

i(p)

�1
�(p)X i(p)

35�1 24X
i2Ip

X 0

i(p)

�1
�(p)yi(p)

35(41)

=

24X
i2Ip

X 0

i(p)[Bp 
��1
u ]Xi(p) +

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]Xi(p)

35�1

�

24X
i2Ip

X 0

i(p)[Bp 
��1
u ]yi(p) +

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]yi(p)

35 :
Its covariance matrix is

V(b�GLS(p)) =
24X
i2Ip

X 0

i(p)

�1
�(p)X i(p)

35�1(42)

=

24X
i2Ip

X 0

i(p)[Bp 
��1
u ]Xi(p) +

X
i2Ip

X 0

i(p)[Ap 
��1
(p)]Xi(p)

35�1 :
Note that since A1 = 1 and B1 = 0, we have 
�1

�(1) = ��1
(1) = (�u + ��)

�1 and Q(1) =P
i2I1

� 0
i(1)(�u + ��)�1�i(1). The expressions for b�GLS(1) and V(b�GLS(1)) are simpli�ed

accordingly.

If �u and �� are unknown, we can proceed as follows:

Step 1(p): Run OLS separately on all G equations in (2) using the observations for

i 2 Ip and all t. Stacking the estimators, we get the joint estimator vector b�OLS(p). Form
the corresponding vectors of residuals b�it = yit �X it

b�OLS(p) for i 2 Ip and all t. These

residuals are consistent.

Step 2(p): Compute within and between matrices of residuals by for group p by inserting

�it = b�it in (21) and (22) for i 2 Ip. Let the values be denoted asW �̂�̂(p) and B�̂�̂(p).

Step 3(p): Estimate�u,��, and�(p), by insertingW ��(p) =W �̂�̂(p) andB��(p) = B�̂�̂(p)

in (27), (28), and (29) if p = 2; : : : ; P . Let the estimators obtained be denoted as b�u(p),b��(p), and
b�(p). If p = 1, �(1) = �u +�� is estimable, but not �u and ��.

Step 4(p): Compute the (feasible) GLS estimator of � for group p by inserting �u =b�u(p) and �(p) =
b�(p) for p = 2; : : : ; P and b�(1) for p = 1 in (41).

This algorithm can be iterated by recomputing the residuals from the GLS estimators

and repeating steps 2(p) { 4(p) until convergence, according to some criterion.

8



It follows from (38), (39), (41), and (42) that the overall estimator b�GLS can be

interpreted as a compromise, a matrix weighted average of the group speci�c estima-

tors b�GLS(1); : : : ; b�GLS(P ).10 Their weights are the inverse of their respective covariance

matrices:

b�GLS =

24 PX
p=1

V(b�GLS(p))�1
35�1 24 PX

p=1

V(b�GLS(p))�1b�GLS(p)
35 :(43)

4 Maximum Likelihood estimation

In this section, we consider the Maximum Likelihood method for joint estimation of the

coe�cient vectors and the disturbance covariance matrices. We make the assumption of

normality of the individual e�ects and the disturbances and replace (6) and (7) by

�i � IIN (0G;1;��); uit � IIN (0G;1;�u):(44)

Then, the �i(p)jXi(p)'s are stochastically independent across i(p) and distributed as

N(0Gp;1;
�(p)), where 
�(p) is de�ned in (33). This implies that the log-density function

of yi(p)jX i(p), i.e., for individual i; i 2 Ip, is

Li(p) = �
Gp

2
ln(2�)�

1

2
ln j
�(p)j �

1

2
[yi(p) �X i(p)�]

0
�1
�(p)[yi(p) �X i(p)�];(45)

where j
�(p)j = j�(p)jj�uj
p�1 [cf. (B.2)] and 
�1

�(p) is given by (35). The log-likelihood

function of all y's conditional on all X 's for the individuals which are observed p times

then becomes

L(p) =

NpX
i=1

Li(p) = �
GNpp

2
ln(2�)�

Np

2
ln j
�(p)j(46)

�
1

2

X
i2Ip

[yi(p) �Xi(p)�]
0
�1

�(p)[yi(p) �Xi(p)�];

and the log-likelihood function of all y's conditional on all X 's in the full data set is

L =
PX
p=1

L(p) = �
Gn

2
ln(2�)�

1

2

PX
p=1

Np ln j
�(p)j(47)

�
1

2

PX
p=1

X
i2Ip

[yi(p) �Xi(p)�]
0
�1

�(p)[yi(p) �Xi(p)�]:

Two related Maximum Likelihood (ML) estimation problems will be considered. The

�rst is the ML problem based on the balanced subsample of the individuals in group

10These P group speci�c estimators are independent.

9



p only. The ML estimators of (�;��;�u; ) for these individuals are the values that

maximize L(p). The second is the ML problem based on the complete data set. The

ML estimators of (�;��;�u) in the latter case are obtained by maximizing L, and,

like the corresponding GLS estimators, they may be interpreted as compromise values

of the (conditional) group speci�c estimators for p = 1; 2; : : : ; P . The structure of the

�rst problem (when p > 1) is similar to the ML problem for a system of regression

equations for balanced panel data since group p formally represents a balanced data set.

The structure of the second, full ML, problem is more complicated since the individuals

included are observed a varying number of times, and hence di�erent `gross' disturbance

covariance matrices, 
�(p), all of which are functions of the same `basic' matrices, ��

and �u, are involved.

We now elaborate the solution to both problems.

The ML problem for group p

We write the log-density function L(p) as

L(p) = �
GNpp

2
ln(2�)�

Np

2
ln(j
�(p)j)�

1

2
Q(p)(�;�u;��);(48)

where

Q(p) = Q(p)(�;�u;��) =
X
i2Ip

[yi(p) �X i(p)�]
0
�1

�(p)[yi(p) �X i(p)�]:(49)

We split the problem of maximizing Lp into two conditional subproblems:

Subproblem A: Maximization of L(p) with respect to � for given �u and ��.

Subproblem B: Maximization of L(p) with respect to �u and �� for given �.

The joint solution to A and B de�nes the solution to the problem of maximizing Lp.

For solving subproblem B, it is convenient to arrange the disturbances from individual

i; i 2 Ip, in all G equations and p observations in the (G� p) matrix

eEi(p) = [�i1; : : : ; �ip] =

26664
�1i1 � � � �1ip
...

...

�Gi1 � � � �Gip

37775 ; i 2 Ip;(50)

so that the (Gp� 1)-vector �i(p); i 2 Ip, de�ned in (30), can be written as

�i(p) = vec( eEi(p)); i 2 Ip;(51)

10



where `vec' is the vectorization operator. Then we have

eEi(p)
eE0

i(p) =

26664
P

t �
2
1it � � �

P
t �1it�Git

...
...P

t �Git�1it � � �
P

t �
2
Git

37775 ;

eEi(p)Bp
eE0

i(p) =

26664
P

t(�1it���1i�)
2 � � �

P
t(�1it���1i�)(�Git���Gi�)

...
...P

t(�Git���Gi�)(�1it���1i�) � � �
P

t(�Git���Gi�)
2

37775 ;

eEi(p)Ap
eE0

i(p) =

26664
p��21i� � � � p��1i���Gi�
...

...

p��Gi���1i� � � � p��2Gi�

37775 ;
i 2 Ip;

where ��gi� = (1=p)
Pp

t=1 �git; i 2 Ip. Adding each of these three expressions across

i; i 2 Ip, we obtain, respectively,

eT ��(p) =
X
i2Ip

eEi(p)
eE0

i(p);(52)

fW ��(p) =
X
i2Ip

eEi(p)Bp
eE0

i(p);(53)

fB��(p) =
X
i2Ip

eEi(p)Ap
eE0

i(p):(54)

We see that fB��(p) +
fW ��(p) =

eT ��(p) since Ap and Bp add to the identity matrix Ip,

and that fW ��(p) =W ��(p), where W ��(p) is the within individual matrix de�ned in (21).

We also see that fB��(p) and
eT ��(p) di�er from the between individual and total matrices

B��(p) and T ��(p) as de�ned in (22) and (20), but coincide with them when the group

mean vector ��(p) (which is zero asymptotically) is omitted from both expressions.

Subproblem A is identical with the GLS problem for group p, since maximization

of L(p) with respect to � for given �u and �� is equivalent to minimization of Q(p),

considered in section 3. This gives (41) as the expression for the ML estimator of �

conditionally on �u and �� for group p.

To solve subproblem B, we need expressions for the derivatives of L(p) with respect

to �u and ��. In Appendix B, we show that

@L(p)

@�u

= �
1

2
[Np�

�1
(p) +Np(p�1)��1

u ���1
(p)
fB��(p)�

�1
(p) ���1

u
fW ��(p)�

�1
u ];

@L(p)

@��

= �
1

2
[Npp�

�1
(p) � p��1

(p)
fB��(p)�

�1
(p)]:

(55)
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From the �rst order conditions which solve subproblem B, i.e., @L(p)=@�u = @L(p)=@�� =

0GG, we get

Np�
�1
(p) +Np(p�1)��1

u = ��1
(p)
fB��(p)�

�1
(p) +��1

u
fW ��(p)�

�1
u ;

Npp�
�1
(p) = p��1

(p)
fB��(p)�

�1
(p);

(56)

which give the ML estimators of the covariance matrices conditionally on � for group p,

b�(p) =
b�(p)(�) =

fB��(p)

Np

;(57)

b�u(p) =
b�u(p)(�) =

fW ��(p)

Np(p�1)
:(58)

From this it follows, using (37), that

b��(p) = b��(p)(�) =
1

Npp

24fB��(p) �
fW ��(p)

p�1

35 ;(59)

b�u(p) + b��(p) =
eT ��(p)

Npp
:(60)

The above estimators of �u, ��, and �(p) are approximately equal to the \estimators"

given in (27), (28), and (29) when Np is not too small.

The complete stepwise, switching algorithm for solving jointly subproblems A and B

of the ML problem for group p then consists of switching between the GLS estimator (41)

and the estimators of the covariance matrices (58) and (59). This algorithm is iterated

until convergence. Under certain conditions, this kind of zig-zag procedure will converge

to the ML estimator; see Oberhofer and Kmenta (1974).

The ML problem for the complete data set

We write the complete log-density function L as

L = �
Gn

2
ln(2�)�

1

2

X
p=1

Np ln(j
�(p)j)�
1

2
Q(�;�u;��);(61)

where

Q = Q(�;�u;��) =
PX
p=1

X
i2Ip

[yi(p) �X i(p)�]
0
�(p)[yi(p) �Xi(p)�]:(62)

We split the problem of maximizing L into two conditional subproblems:

Subproblem A: Maximization of L with respect to � for given �u and ��.

Subproblem B: Maximization of L with respect to �u and �� for given �.

12



The joint solution to A and B de�nes the solution to the problem of maximizing L.

Subproblem A is identical with the GLS problem for all individuals, since maximiza-

tion of L with respect to � for given �u and �� is equivalent to minimization of Q,

considered in section 3. This gives (38) as the expression for the conditional ML estima-

tor of �.

To solve subproblem B, we need expressions for the derivatives of L with respect to

�u and ��. From (47) and (55) we �nd

@L

@�u

= �
1

2

PX
p=1

[Np�
�1
(p) +Np(p�1)��1

u ���1
(p)
fB��(p)�

�1
(p) ���1

u
fW ��(p)�

�1
u ];

@L

@��

= �
1

2

PX
p=1

[Npp�
�1
(p) � p��1

(p)
fB��(p)�

�1
(p)]:

(63)

The �rst order conditions which solve subproblem B, i.e., @L=@�u = @L=@�� = 0GG,

then reduce to

PX
p=1

[Np�
�1
(p) +Np(p�1)��1

u ] =
PX
p=1

[��1
(p)
fB��(p)�

�1
(p) +��1

u
fW ��(p)�

�1
u ];

PX
p=1

Npp�
�1
(p) =

PX
p=1

p��1
(p)
fB��(p)�

�1
(p):

(64)

To obtain the ML estimators, these two sets of non-linear equations, with �(p) = �u +

p�� inserted [cf. (37)], have to be solved jointly for �u and ��. Unlike the situation

with group speci�c estimation [cf. (57) { (60)], no closed form solution to subproblem B

exists.

Inserting for fW ��(p) and fB��(p) from (57) and (58) we can express the �rst order

conditions (64) in terms of the group speci�c estimators of �(p) and �u, denoted as b�(p)

and b�u(p). We then get

PX
p=1

Np�
�1
(p)[IG � b�(p)�

�1
(p)] = �

PX
p=1

Np(p� 1)��1
u [IG � b�u(p)�

�1
u ];

PX
p=1

Npp�
�1
(p)[IG � b�(p)�

�1
(p)] = 0GG;

(65)

where �(p) = �u + p��. This way of writing the �rst order conditions shows more

explicitly than (64) the compromise nature of the overall estimators of �u and ��.

The complete stepwise, switching algorithm for solving jointly subproblems A and B

of the ML problem for the complete unbalanced data set consists of switching between

GLS estimator (38) and the solution to (64). This algorithm is iterated until convergence.

The solution to the non-linear subproblem (64) may require separate iteration loops.
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In the single equation case, G = 1, in which �u and �� are scalars, denoted as �2u and

�2�, respectively, things become a little more transparent. Then (64) can be simpli�ed to

PX
p=1

�
Np

�2u + p�2�
+
Np(p�1)

�2u

�
=

PX
p=1

24 fB��(p)

(�2u + p�2�)
2
+
fW ��(p)

(�2u)
2

35 ;
PX
p=1

�
Npp

�2u + p�2�

�
=

PX
p=1

24 pfB��(p)

(�2u + p�2�)
2

35 ;
(66)

where now fB��(p) and
fW ��(p) are scalars. Let �

2 = �2u + �2� be the variance of the total

disturbance and � = �2�=�
2 be the share of this variance which represents individual

heterogeneity. Multiplying through (66) by �2, we can rewrite the �rst order conditions

as two non-linear equations in �2 and �:

�2
PX
p=1

�
Np

1� �+ p�
+
Np(p�1)

1� �

�
=

PX
p=1

24 fB��(p)

(1� �+ p�)2
+

fW ��(p)

(1� �)2

35 ;
�2

PX
p=1

�
Npp

1� �+ p�

�
=

PX
p=1

24 pfB��(p)

(1� �+ p�)2

35 :
(67)

Eliminating �2, we get the following non-linear equation in the share variable �:

PX
p=1

�
Np

1� �+ p�
+
Np(p�1)

1� �

� PX
p=1

24 pfB��(p)

(1� �+ p�)2

35
=

PX
p=1

�
Npp

1� �+ p�

� PX
p=1

24 fB��(p)

(1� �+ p�)2
+

fW ��(p)

(1� �)2

35 :
(68)

In practical applications, this equation can, for instance, be solved, in a �rst stage, by

a grid-search procedure across � = (0; 1). In the second stage, we can insert the value

obtained from the �rst stage into (67) and solve for �2. This gives

�2 =

PX
p=1

24 pfB��(p)

(1� �+ p�)2

35
PX
p=1

�
Npp

1� �+ p�

� =

PX
p=1

24 fB��(p)

(1� �+ p�)2
+

fW ��(p)

(1� �)2

35
PX
p=1

�
Np

1� �+ p�
+
Np(p�1)

1� �

� :(69)
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Appendix A: Proof of (16) and (17)

In this appendix, we demonstrate (16) and (17), which are used in deriving unbiased
estimators of the covariance matrices �u and ��. We consider the �it's as observable.
Let Ti denote the number of observations of individual i, i.e., Ti = p for i 2 Ip. The
within individual and the between individual variation, de�ned in (13) and (14), can then
be written as

W �� =
NX
i=1

TiX
t=1

(�it � ��i�)(�it � ��i�)
0; B�� =

NX
i=1

Ti(��i� � ��)(��i� � ��)0;(A.1)

where

��i� =
1

Ti

TiX
t=1

�it; �� =

NX
i=1

TiX
t=1

�it

NX
i=1

Ti

=

NX
i=1

Ti��i�

NX
i=1

Ti

:(A.2)

We will �rst show that

E(W ��) = (
P
Ti �N)�u = (n�N)�u;(A.3)

E(B��) = (N � 1)�u +

 P
Ti �

P
T 2
iP
Ti

!
�� = (N � 1)�u +

 
n �

P
T 2
i

n

!
��:(A.4)

The proof of (A.3) { (A.4) is as follows: Since the �i's and the uit's are independent,

E(W ��) = E(W uu);(A.5)

E(B��) = E(B��) + E(Buu);(A.6)

where

W uu =
NX
i=1

TiX
t=1

(uit � �ui�)(uit � �ui�)
0 =

NX
i=1

TiX
t=1

uitu
0

it �
NX
i=1

Ti�ui��u
0

i�;

Buu =
NX
i=1

Ti(�ui� � �u)(�ui� � �u)0 =
NX
i=1

Ti�ui��u
0

i� �

 
NX
i=1

Ti

!
�u�u0;

B�� =
NX
i=1

Ti(�i � ��)(�i � ��)0 =
NX
i=1

Ti�i�
0

i �

 
NX
i=1

Ti

!
�� ��0;

�ui� =
1

Ti

TiX
t=1

uit; �u =

NX
i=1

Ti�ui�

NX
i=1

Ti

; �� =

NX
i=1

Ti�i

NX
i=1

Ti

:

From (6) { (8) it follows that

E(�ui��u
0

i�) =
�u

Ti
; E(�u�u0) =

�uP
i Ti

; E(����0) =
(
P
T 2
i )��

(
P
Ti)2

:

15



This implies

E(W uu) = (
P
Ti �N)�u = (n�N)�u;

E(Buu) = (N � 1)�u;

E(B��) =

 P
Ti �

P
T 2
iP
Ti

!
�� =

 
n�

P
T 2
i

n

!
��:

Combining these expressions with (A.5) and (A.6) completes the proof of (A.3) and (A.4).
Inserting

PN
i=1 Ti =

PP
p=1Npp = n and

PN
i=1 T

2
i =

PP
p=1Npp

2, we �nally get

E(W ��) = (n�N)�u;(A.7)

E(B��) = (N � 1)�u +

 
n �

PP
p=1Npp

2

n

!
��:(A.8)

This completes the proof of (16) and (17).

Appendix B: Proof of (55)

In this appendix, we give a proof of the equations for the �rst derivatives of the log-
likelihood function L(p) with respect to the covariance matrices �u and ��.

For this purpose, we exploit four matrix results on traces, determinants, and deriva-
tives:

(a) tr(ABCD) = tr(CDAB) = vec(A0)0(D0 
B)vec(C) = vec(C0)0(B0 
D)vec(A);

see L�utkepohl (1996, pp. 41 { 42),

(b) jAp 
C +Bp 
Dj = jCj jDjp�1;

where Ap = (1=p)Ep, with rank 1, and Bp = Ip � (1=p)Ep, with rank p � 1, which
follows from Magnus (1982, Lemma 2.1),

(c)
@ ln jAj

@A
= (A0)�1;

see Magnus and Neudecker (1988, p. 179) or L�utkepohl (1996, p. 182), and

(d)
@tr(CB�1)

@B
= � (B�1CB�1) 0;

see Magnus and Neudecker (1988, p. 178) or L�utkepohl (1996, p. 179).
Let the part of the quadratic form Q(p), de�ned in (40), which relates to individual i

be

Qi(p) = b�0i(p)
�1
�(p)b�i(p) = b�0i(p)[Bp
�

�1
u ]b�i(p) + b�0i(p)[Ap
�

�1
(p)]b�i(p)

= vec( eEi(p))
0[Bp
�

�1
u ]vec( eEi(p))

+ vec( eEi(p))
0[Ap
�

�1
(p)]vec(

eEi(p)));
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when using (51). Using (a), we �nd by addition

Q(p) =
X
i2Ip

tr(Qi(p)) =
X
i2Ip

h
tr[ eE0

i(p)�
�1
(p)
eEi(p)Ap] + tr[ eE0

i(p)�
�1
u
eEi(p)Bp]

i
=

X
i2Ip

h
tr[ eEi(p)Ap

eE0

i(p)�
�1
(p)] + tr[ eEi(p)Bp

eE0

i(p)�
�1
u ]
i
;

which, when using (53) and (54), can be rewritten as

Q(p) = tr[fB��(p)�
�1
(p)] + tr[fW ��(p)�

�1
u ]:(B.1)

Using (b), we �nd the following expression for the determinant of 
�(p)

j
�(p)j = jAp
�(p) +Bp
�uj = j�(p)jj�uj
p�1:(B.2)

From (c) and (d) we �nally obtain

@Q(p)

@�u

= ���1
(p)
fB��(p)�

�1
(p) � ��1

u
fW ��(p)�

�1
u ;

@Q(p)

@��

= � p��1
(p)
fB��(p)�

�1
(p);

(B.3)

and
@ ln j
�(p)j

@�u

=
@ ln j�(p)j

@�u

+ (p�1)
@ ln j�uj

@�u

= ��1
(p) + (p�1)��1

u ;

@ ln j
�(p)j

@��

=
@ ln j�(p)j

@��

= p��1
(p):

(B.4)

Collecting these results, we �nd

@L(p)

@�u

= �
1

2
[Np�

�1
(p) +Np(p�1)��1

u ���1
(p)
fB��(p)�

�1
(p) ���1

u
fW ��(p)�

�1
u ];

@L(p)

@��

= �
1

2
[Npp�

�1
(p) � p��1

(p)
fB��(p)�

�1
(p)]:

(B.5)

These are the expressions given in (55).
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