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Abstract

Known results on the identi…cation of structural duration dependence

in the presence of unobserved heterogeneity depend crucially on the propor-

tional hazards assumption. Here, I show that variation in covariates over

time, combined with variation across observations, is su¢cient to ensure

identi…cation without the proportional hazards assumption. The required

variation over time is minimal.

JEL Classi…cation: C41.
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1 Introduction

In the analysis of duration data, the econometrician is usually interested in some

behavioral structure governing the distributions of duration spells. Such behav-

ioral structure often takes the form of optimal stopping decisions in stochastic

frameworks. Durations then follow from sequences of decisions of whether to end

e.g. a strike “now” or whether to continue striking. With a behavioral structure

of this sort, it is a fruitful and common approach to represent the distributions of

durations through the hazard rate, which may be interpreted as proportional to

the probability of a spell to end in a short interval following t, given a duration of

at least t. There is then a direct link between the hazard rate and the probability

of ending a spell from the perspective of an individual economic agent.

Duration dependence is de…ned as dependence of the hazard rate on the

elapsed duration. In economic applications, such as in the study of unemployment

durations, duration dependence will usually be of both theoretical interest and of

more direct practical interest to policymakers. Here, I will consider the problem

of recovering duration dependence from duration data. This is a well known and

far from trivial problem, a general discussion is given in Heckman (1991), and

a more comprehensive survey is given in Heckman and Taber (1994). The main

obstacle to recovering duration dependence is heterogeneity in the underlying

distributions.

A decrease over time in the relative frequency of durations ending at time

2



t, given survival to at least t, may be given several interpretations. Such sam-

ple duration dependence may be due to duration dependence in the underlying

distributions, or “structural duration dependence.” However, sample duration

dependence may also be due to heterogeneity in the sample. Units with low

hazard rates tend to have longer durations than units with high hazard rates.

Consequently, units with low hazard rates constitute an increasing proportion

of the sample over time, causing the average hazard rate in the sample to de-

crease over time. In the study of unemployment durations, one will usually …nd

decreasing hazard rates over time in the sample. Thus, one cannot in general con-

clude whether this is because long term unemployment cause low hazard rates or

because individuals with low hazard rates become long term unemployed?

While it may be possible to control for some heterogeneity through observed

covariates, there are usually still reasons to expect some sample heterogeneity

to remain unobserved. My purpose here is to show how variation in covariates

over time may be used to relax some of the assumptions that has until now

been considered necessary for identi…cation of structural duration dependence

in the presence of unobserved heterogeneity. The following section provides the

necessary background for describing the results.
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2 Preliminaries

The hazard rate, µ (t) ; associated with a random variable T with support on the

positive scale is de…ned as

µ (t) = lim
¢t!0+

Pr (t · T < t+¢tjT ¸ t)
¢t

: (1)

The hazard rate is an exhaustive description of the distribution of the random

variable in question. The hazard rate is often speci…ed in come way conditional

on a vector of covariates x, e.g. as in the proportional hazards model in Cox

(1972), where the hazard rate as a function of x is speci…ed as

µ (t; x) = Ã (t)Á (x) ; (2)

where Ã (t) and Á (x) are functions taking values on the positive real line. To the

econometrician, elements of the vector x may be unobserved. Lancaster (1979)

extended the proportional hazards model to take into account the possibility of

such unobserved heterogeneity by the mixed proportional hazard model (MPH),

µ (t;x; v) = vÃ (t)Á (x) ; (3)

where v is a random variable with an unknown distribution function F (v), with

support on the positive real line, interpreted as an analogue to the residual term
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in standard regression analysis.

Lancaster and Nickel (1980) observed that without variation in x, it is impos-

sible to distinguish between di¤erent combinations of Ã and F from a sample of

durations. However, Elbers and Ridder (1982) and Heckman and Singer (1984)

showed under di¤erent regularity conditions that variation over observations in

the covariates is su¢cient to identify the MPH model. Ridder (1990) and Heck-

man and Honoré (1989), in a slightly di¤erent context, have also shown that this

holds for the larger class of generalized accelerated failure-time (GAFT) models.

The problem with these results for applied work is that all of them are crucially

dependent on the proportional hazards assumption, for which there is, in general,

no theoretical basis. As the proportional hazards assumption has been consid-

ered necessary for identi…cation, it has not in general been testable. However,

see McCall (1994b) for a test of the proportional hazards assumption within an

identi…ed model that nests versions of the MPH model.

My purpose here is to demonstrate how variation over time (within durations)

in observed covariates, combined with variation in covariates across observations,

may help us identify structural duration dependence in the presence of unob-

served heterogeneity without invoking the proportional hazards assumption. In

particular, I demonstrate how nonparametric identi…cation is partially achieved

in a GAFT-like model and how full nonparametric identi…cation is achieved in a

MPH-like model without assuming proportional hazards.
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3 The GGAFT class and the MH model

The class of models that I will call generalized GAFT (GGAFT) can be described

in the following way. Denote the “structural hazard function” by ¸ (t; x) > 0:

The “integrated structural hazard function” is now given by

¤ (t;x) =

Z t

0

¸ (s; x) dx: (4)

In a model without unobserved heterogeneity, the survival function of T is given

by

G (t;x) = exp (¡¤ (t; x)) : (5)

This is not generally the case in the presence of unobserved heterogeneity. The

GGAFT model involves a generalization of the equation above. The survival

function may now be any continuously di¤erentiable strictly decreasing function,

K, in the “integrated structural hazard function,”

G (t; x) = K (¤ (t; x)) ; (6)

such that K (0) = 1 and K (1) = 0. However, without further speci…cation,

the argument of K does not in general have the interpretation of an integrated

structural hazard function. Models in the GGAFT class belong to the class of
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GAFT models if there exist functions ª(t) and Á (x) that satisfy

¤ (t; x) = ª (t)Á (x) (7)

for all x and t ¸ 0. Models in the GAFT class are under mild regularity conditions

identi…ed, see Ridder (1990). This is not in general the case for models in the

wider GGAFT class.

I will further consider a particular model in the GGAFT class, the Mixed

Hazard (MH) model, discussed in Lancaster (1990), Heckman (1991) and McCall

(1994a). The hazard rate of the MH model is speci…ed as

µ (t; x; v) = v¸ (t; x) ; (8)

¸ (t; x) is any positive function and v is a random term with a distribution func-

tion F (v) with support on the positive real line. The MH model is obviously a

generalization of the MPH model. The survival function of the model is given by

G (t; x) = L (¤ (t; x)) ; (9)

where L is the Laplace transform of F . The MH model provides interpretability

to the GGAFT class. In the GGAFT class, the “integrated structural hazard

rate” is in general not interpretable, while in the MH model, it is interpretable

as an integrated strucutral hazard rate. The MH model also provides restrictions
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in that L must be the Laplace transform of a distribution function.

The introduction of time-varying covariates in these models is straightforward.

Just substitute (4) with

¤ (t; ex) = Z t

0

¸ (s; x (s)) ds; (10)

where ex = fx (t) ; t ¸ 0g : Regularity conditions are required as the covariate

processes must be exogenous to the durations they are supposed to explain, see

Yashin and Arjas (1988).

In the identi…cation results below, I have chosen a particular speci…cation of

the covariate process. The covariates are speci…ed as a jump process such that a

single value is realized in the interval t 2 [0; t1), where t1 is a constant, and then

another single value is realized in the interval t 2 [t1;1). This speci…cation is

chosen to emphasize how little variation over time is needed for the results. The

results can easily be generalized to include further jumps after t1. It also seems

straightforward to extend the results to covariate jump processes with random

waiting times.

4 Identi…cation results

In this section two identi…cation results will be provided. Both identi…cation

results show how variation over time in covariates may substitute for the propor-
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tional hazards assumption, in the sense that the models considered would not be

identi…ed in the absence of time-varying covariates, but would be identi…ed in

the absence of time-varying covariates if we were willing to assume proportional

hazards. Theorem 1 considers identi…cation in the GGAFT class.

For the discussion of identi…cation, it is as usual assumed that we observe an

unlimited number of (T; ex), such that G (t; ex) can be considered observable. The
identi…cation problem then amounts to recovering K and ¤ from G.

Assumption 1: Let ex = fx (t) ; t > 0g be a covariate process such that

x (t) = x1 for t 2 [0; t1) and x (t) = x2 for t 2 [t1;1), t1 > 0: (x1; x2) is drawn

from a probability distribution that has a density on an open set S2 = S£S ½ R2.

Assumption 2: ¸ (s; x) > 0 for all (t; x) 2 R+ £ S; and is continuously

di¤erentiable and non-constant in x.

Assumption 3: (GGAFT class) The durations T are generated by some

distribution function such that the conditional survival function of T is given by

G (t; ex) = K (¤ (t; ex)) ; (11)

where K is continuously di¤erentiable and strictly decreasing with K (0) = 1;

K (1) = 0 and

¤ (t; ex) = Z t

0

¸ (s; x) dx: (12)
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Theorem 1 Let A = f(t; ex) : ex 2 S2; t 2 R+; G (t; ex) · maxx12S G (t1; ex)g. Un-
der assumptions 1, 2 and 3, ¸ (t;x) is identi…ed up to a scale parameter C1 > 0

for (t; ex) 2 A. ¤ is identi…ed up to a location parameter C0 > 0 and a scale

parameter C1 for (t; ex) 2 A: K is identi…ed up to a linear transformation of the
argument for (t; ex) 2 A.
Proof. For any (x1; x2) 2 S2and t ¸ t1,

@G (t; ex) =@t
@G (t; ex) =@x1 = ¸ (t; x2)R t1

0
¸02 (s; x1) ds

: (13)

By normalizing the denominator in (13) for a particular value of x1, we can trace

out ¸ (t; x) for t ¸ t1, by varying x2 and t. Thus, ¸ (t; x) is identi…ed up to a

scale parameter for t ¸ t1:

Let x01 = argmaxx12S G (¤ (t; ex)). For any (t0; ex0) and ¡t00 ; ex00¢ such that t0 ¸ 0;
t
00 ¸ t1; ex0 2 S2; ex00 2 S2; x001 = x01 and G (¤ (t0; ex0)) = G ¡¤ ¡t00; ex00¢¢, we obtain

@G (t0; ex0) =@t
@G (t00 ; ex00) =@t = ¸ (t0; x0 (t0))

¸ (t00; x002)
: (14)

Since t
00 ¸ t1, the denominator is identi…ed subject to a normalization of the

scale. Thus, the numerator is also identi…ed for all
¡
t0; x

0
(t0)
¢
such that the

requirements for observing this ratio can be satis…ed. The requirements can be
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satis…ed for any (t0; ex0) such that G (t0; ex0) · maxx12S G (t1; ex), that is, for all
(t0; ex0) 2 A. Denote the identi…ed version of ¸ (t;x) by ¸¤ (t; x). Thus

¸ (t; x) = C1¸
¤ (t; x) ; (15)

where C1 is a positive scale parameter.

De…ne a function tc (x1) ; x1 2 S, implicitly by the equation

G (tc (x1) ; x1) = G
¡
t1; x

0
1

¢
: (16)

This is possible since G is strictly decreasing in its …rst argument. Let C0 =

¤(t1; x
0
1) : Now, we can write

¤ (t; ex) = C0 + C1 Z t

tC(x1)

¸¤ (s; x (s)) ds; (t; ex) 2 A:
Given a choice of C0 and C1, K is trivially identi…ed from (11) for arguments

in the part of the domain of K where ¤ is identi…ed.

I will now proceed with Theorem 2 before commenting on the results. Theo-

rem 2 considers identi…cation in the MH model.

Assumption 3’: (Mixed Hazard model) The durations T are generated from
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a conditional probability distribution characterized by a hazard function given by

µ (t; ex; v) = v¸ (t; x (t)) ; (17)

where v is a random term, independent of ex, with an unknown distribution func-
tion F (v) with support on the positive scale.

Assumption 4: E (v) = 1:

The last assumption serves to identify the scale parameter in the structural

hazard function.

Theorem 2 Under assumptions 1, 2, 3’ and 4, the functions ¸ (t; x) and F (v)

are fully identi…ed from G (t; ex) :
Proof. In the mixed hazards model, the function K given in (11) is the

Laplace transform of F; and Assumption 3’ implies that Assumption 3 is satis…ed.

We can then use the identi…cation results from Theorem 1 directly.

Standard results on Laplace transforms, see Feller (1966), include their an-

alyticity. In other words, the Laplace transform L possesses derivatives of all

orders. From Theorem 1 above, the Laplace transform of F is identi…ed (up

to a scale and location parameter on the argument) in an open interval. From

analyticity, the Laplace transform is then identi…ed in its full domain. The scale

and location parameters are identi…ed by L (0) = 1, which is a requirement on
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the Laplace transform of a distribution function and L0 (0) = ¡1; which follows

from Assumption 4.

When the Laplace transform of F (v) is identi…ed, identi…cation of F (v) and

¸ (t;x) is trivial.

Note that some of the Assumptions can easily be relaxed with respect to

Theorem 2, as the only results we require from Theorem 1 is the identi…cation of

the structural hazard rate in any arbitrarily small open interval. In particular,

the requirements on the joint distribution of (x1; x2) in Assumption 1 and the

di¤erentiability and nonconstantness of ¸ (t; x) in assumption 2 need only be

satisi…ed in an arbitrarily small open subset of S2.

Even though identi…cation is only partially achieved for the GGAFT class,

Theorem 1 is fairly strong in that only a minimal variation over time is required.

It is instructive to see how variation over time in covariates substitutes for the

proportional hazards assumption in the GAFT model. In models in the GGAFT

class without variation in covariates over time, the analogue of (13) is

@G (t; ex) =@t
@G (t; ex) =@x = ¸ (t; x)R t

0
¸02 (s; x) ds

; (18)

where both the numerator and the denominator depends on both t and x, so that

the ratio will not be helpful for identi…cation purposes. In the case of the GAFT
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class, this equation looks like

@G (t; ex) =@t
@G (t; ex) =@x = Ã (t)Á (x)R t

0
Ã (s) dsÁ0 (x)

; (19)

and by appropriate normalizations, identi…cation of ¸ and Á is straightforward.

I will provide further interpretation on how identi…cation is achieved through

variation over time in the context of the MH model. Consider the “observed

hazard function,” the relative frequency of spells with duration at least t that

end at t;

eµ (t; x) = @G (t; ex) =@t
G (t; ex) = E (vjT ¸ t; ex)¸ (t;x (t)) : (20)

For t > t1, there are observed covariates, x1, that only a¤ect the observed hazard

rate through the conditional expectation of v. Since

E (vjT ¸ t; ex) = L0 (¤ (t; ex))
L (¤ (t; ex)) ; (21)

there is a one-to-one relationship between the integrated structural hazard rate,

¤; at t and the conditional expectation of v at t. There is of course also a one-

to-one relationship between the integrated structural hazard rate at t and the

observed survival probability to t: By varying t in (20), both the conditional

expectation of v and the structural hazard rate ¸ (t; x) may change. However,

by varying x1 appropriately along with t, we can keep the probability of survival
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to t and thus the conditional expectation of v constant, and …nd the changes in

eµ (t; ex) due to changes in the structural hazard rate. Equation (20) also suggests
a simple way of testing for unobserved heterogeneity by testing for e¤ects of past

covariates in the “observed hazard function.”

The identi…cation result presented here may be viewed as an analogue to the

instrumental variable approach. By assuming that past realizations of the covari-

ates do not directly a¤ect the structural hazard rate, we can use the observed

relationship between past covariates and the present “observed hazard rate” to

deduce the e¤ects of the past on the present.

As the observant reader will note, this interpretation only covers the part of

the identi…cation results that are given in Theorem 1. It seems much harder to

give a simple interpretation of the identi…cation results in Theorem 2, as these

are due to the analyticity of the Laplace transform. A suggestion may be that

the analyticity property of the survival function provides us with a theoretical

foundation for extrapolation of the survival function. However, any number of

derivatives may still be necessary for a su¢ciently close Taylor approximation.

Even though Theorem 2 may seem to of most direct relevance to applied

duration analysis, Theorem 1 is also of some importance. First, Theorem 1

provides identi…ability for a wider class of models, and as such provides us with

testable restrictions for the MHmodel. Secondly, and more important, Theorem 1

teaches us that identi…cation of structural duration dependence in the MH model

is, in a potentially large region, identi…ed independently of our ability to identify
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the distribution of unobserved heterogeneity. This is important for practical

purposes, as we will rarely be able to …nd good estimates on the distribution of

unobserved heterogeneity even if it is identi…ed.

Identi…cation in the mixed hazards model has previously been studied by

Heckman (1991) and McCall (1994a). In Heckman (1991) it is showed that in

the MH model without time-varying covariates, the structural hazard function is

identi…ed for t = 0, as

eµ (t;x) = E (v¸ (t; x) ;T ¸ t; x) = ¸ (t; x) ; (22)

for t = 0.

In McCall (1994a) the result above is generalized to the case with time-varying

covariates. His results rely on the following argument: If (i) ex = fx (t) ; t ¸ 0g is
a stochastic jump process with random waiting times, such that the probability

for a jump in any period of positive length is positive, and (ii) ¸ (t; x) ! 0 for

some x, then

eµ (t; ex) = E (v¸ (t; x) ;T ¸ t; ex) = ¸ (t; x) ;
for all ex such that ¸ (s; x) ! 0 for all s < t. It is only necessary to use this

argument for very small t, as the identi…cation of ¸ (t; x) in an arbitrarily small

interval is su¢cient for full identi…cation through the analyticity of the Laplace
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transform, as in Theorem 2 above. It should also be noted that McCall (1996) has

provided further identi…cation results for a particular version of the MH model

in absence of time-varying covariates.

The results provided in this paper are stronger than the results in McCall

(1994a) in the sense that less variation over time is required and that ¸ is not

required to approach zero for any x, though the results are not nested as McCall

(1994a) does not require di¤erentiability of the function ¸. The results provided

here also show that the identi…cation of structural duration dependence does

not rely on identi…cation of the distribution of unobserved heterogeneity in a

potentially large region.

5 Concluding discussion

The results here establish how variation over time in covariates may be used to

relax the proportional hazards assumption that pervades identi…cation results in

the literature on structural duration dependence and unobserved heterogeneity.

This is important for applied research as the proportional hazards assumption is

usually introduced without theoretical support while it is crucial to the results

obtained. The results provided here should have clear implications. For decom-

position of sample duration dependence into structural duration dependence and

unobserved heterogeneity, relevant time-varying covariates are crucial as they

allow us to relax the proportional hazards assumption.
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