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Abstract:

I characterize backward induction in an epistemic model of perfect informa-
tion games where players have common certain belief of the consistency of
preferences rather than the rationality of choice. In this approach, backward
induction corresponds to common certain belief of ‘belief in each subgame
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2 GEIR B. ASHEIM

1. Introduction

In recent years, two widely cited and influential contributions on back-
ward induction in finite perfect information games have appeared, namely
Aumann [6] and Ben-Porath [14]. These contributions — both of which
consider generic perfect information games (where all payoffs are different)
— reach opposite conclusions: While Aumann establishes that Common
Knowledge of Rationality implies that the backward induction outcome is
reached, Ben-Porath shows that the backward induction outcome is not the
only outcome that is consistent with Common Certainty of Rationality. The
models of Aumann and Ben-Porath are different. One such difference is that
Aumann makes use of ‘knowledge’ in the sense of ‘true knowledge’, while
Ben-Porath’s analysis is based on ‘certainty’ in the sense of ‘belief with
probability one’. Another is that the term ‘rationality’ is used in different
senses.

The present paper shows how the conclusions of Aumann and Ben-Porath
can be captured by imposing requirements on the players within the same
general framework. Furthermore, the interpretations of the present analysis
correspond closely to the intuitions that Aumann and Ben-Porath convey in
their discussions. Hence, the present contribution may increase our under-
standing of the differences between the analyses of Aumann and Ben-Porath,
and thereby enhance our understanding of the epistemic conditions underly-
ing backward induction. For ease of presentation, the analysis will be limited
to 2-player games. This is purely a matter of convenience as everything can
directly be generalized to n-player games (with n > 2).

Among the large literature on backward induction during the last couple
of decades,1 Reny’s [40] impossibiliy result is of special importance. Reny
associates a player’s ‘rationality’ in an extensive game with what can be
called ‘reachable subgame rationality’; i.e. that a player chooses rationally
in all subgames that are not precluded from being reached by the player’s
own strategy. He shows that there exist perfect information games where
the event that both players satisfy reachable subgame rationality cannot be
commonly believed in all subgames. E.g. in the centipede game that is illus-
trated in Fig. 1 of Sect. 4, common belief of reachable subgame rationality
cannot be held in the subgame defined by 2’s decision node. The reason is
that if 1 believes that 2 is rational in the subgame, and if 1 believes that 2
believes that 1 will be rational in the subgame defined by 1’s second decision
node, then 1 believes that 2 will choose d, implying that only D is a best
response for 1. Then the fact that the subgame defined by 2’s decision node
has been reached, contradicts 2’s belief that 1 is rational in the whole game.

1Among contributions that are not otherwise referred to here are Basu [10], Bicchieri
[15], Binmore [16, 17], Bonanno [21], Gul [31], Kaneko [32], Rabinowicz [39], Rosenthal
[41] and Vilks [47], as well as Asheim [4] and Schuhmacher [44].
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As a response, Ben-Porath [14] imposes that common belief of reachable
subgame rationality is held in the whole game only. However, reachable sub-
game rationality being commonly believed in the whole game only, does not
imply backward induction. In the centipede game of Fig. 1, the strategies
D and FD for player 1 and d and f for player 2 are consistent with such
common belief, while backward induction implies that down is played at any
decision node.

In order to obtain an epistemic characterization of backward induction,
Aumann [6] considers ‘all subgame rationality’ in the sense that a player
chooses rationally in all subgames. However, the event that players satisfy
all subgame rationality is somewhat problematic. If — in the centipede game
of Fig. 1 — 1 believes or knows that 2 chooses d, then only by choosing the
strategy DD will 1 satisfy all subgame rationality. However, what does it
mean that 1 chooses DD in the counterfactual event that player 2’s decision
node were reached? It is perhaps more natural — as suggested by Stalnaker
([45], Sect. 5) — to consider 2’s belief about 1’s subsequent action if 2’s
decision node were reached. Since Aumann [6] assumes knowledge of rational
choice in an S5 partition structure, such a question of belief revision cannot
be asked within Aumann’s model.

By imposing that each player takes all opponent strategies into account
(‘caution’), the present paper ensures that each player takes the possibility
of reaching any subgame of the extensive form into account. This means
that a rational choice in the whole game implies a rational choice in all
subgames that are not precluded from being reached by the player’s own
strategy. Hence, by imposing the strategic form restriction of ‘caution’,
one may consider ‘rationality’ instead of ‘reachable subgame rationality’ (as
established by Lemma 1 and the subsequent text).

The main distinguishing feature of the present analysis is, however, to
consider the event that a player believes in opponent rationality rather than
the event that the player himself is rational. Asheim & Dufwenberg [5]
(AD) show the following result (reproduced as Prop. 1 of Sect. 3.1): Strate-
gies surviving the Dekel-Fudenberg [27] procedure, where one round of weak
elimination is followed by iterated strong elimination, can be characterized
as maximal strategies when there is common certain belief that each player
satisfies ‘caution’ and believes in the whole game that the opponent chooses
rationally (‘belief of opponent rationality’). For generic perfect information
games, Ben-Porath shows that the set of outcomes consistent with common
belief of reachable subgame rationality corresponds to the set of outcomes
that survives the Dekel-Fudenberg procedure. Hence, maximal strategies
when there is common certain belief of ‘caution’ and ‘belief of opponent ra-
tionality’ correspond to outcomes that are promoted by Ben-Porath’s anal-
ysis.

An extensive game offers choice situations, not only in the whole game,
but also in proper subgames. In perfect information games (and, more gen-
erally, in multi-stage games) the subgames constitute an exhaustive set of
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such choice situations. Hence, in perfect information games one can argue
that ‘belief of opponent rationality’ should be replaced by ‘belief in each
subgame of opponent rationality’: Each player believes in each subgame that
his opponent chooses rationally in the subgame. The main results of the
present paper (Props. 2 and 3 of Sect. 5.2) show how, for generic per-
fect information games, common certain belief of ‘caution’ and ‘belief in
each subgame of opponent rationality’ is possible and uniquely determines
the backward induction outcome. Hence, by substituting ‘belief in each sub-
game of opponent rationality’ for ‘belief of opponent rationality’, the present
analysis provides an alternative route to Aumann’s conclusion, namely that
common knowledge (or certain belief) of an appropriate form of (belief of)
rationality implies the backward induction outcome.

This epistemic foundation for backward induction requires common cer-
tain belief of ‘caution’ and ‘belief in each subgame of opponent rationality’,
where the term ‘certain belief’ is being used in the sense that an event is
certainly believed if the complement is Savage-null (cf. Sect. 2.3). As shown
by a counterexample in Remark 2 of Sect. 5, the characterization does not
obtain if instead common belief (in a sense that generalizes belief with prob-
ability one) is considered. This, in turn, means that the event of which there
is common certain belief — namely ‘caution’ and ‘belief in each subgame
of opponent rationality’ — cannot be further restricted by considering the
intersection with ‘rationality’. The reason is that ‘caution’ is in general in-
consistent with certain belief of opponent ‘rationality’, as the latter prevents
a player from taking into account the possibility that the opponent does not
choose rationally.

Note that ‘caution’ and ‘belief (in each subgame) of opponent rationality’
are requirements on the beliefs of players. Thus, the analysis follows AD by
arguing that in deductive game theory, requirements should be imposed on
the beliefs of players rather than their choice. Since the beliefs of players
determine their preferences, this amounts to imposing requirements on pref-
erences.2 The present analysis allows, but do not require, subjective prob-
abilities, which are arguably not part of the backward induction argument
in generic perfect information games (cf. Aumann [6] and Brandenburger
[24]). Hence, preferences need not be complete. By not requiring subjective
probabilities, the analysis is related to the filter model of (conditional) belief
presented by Brandenburger [24].

The paper is organized as follows. Section 2 presents the formal frame-
work in which extensive games will be analyzed. AD’s characterization of

2Instead of imposing rational choice in the sense that a driver chooses to drive on the
right side of the road if he believes that his opponent chooses to drive on the right side of
the road, AD suggest to impose consistent preferences in the sense that a driver prefers
to drive on the right side of the road if he believes that his opponent prefers to drive on
the right side of the road. This follows a tradition in equilibrium analysis where Nash
(perfect/proper) equilibrium is defined as an equilibrium in conjectures (cf. Blume et al.
[19]).
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the Dekel-Fudenberg procedure is reviewed in Sect. 3. Section 4 applies
this result to generic extensive games of perfect information and compares,
by means of an example, the present analysis to that of Ben-Porath [14].
Section 5 introduces ‘belief in each subgame of opponent rationality’ as an
alternative epistemic condition and establishes the paper’s main results. Sec-
tion 6 interprets the analysis in view of Aumann [6] as well as Battigalli’s
[11] concept of a ‘rationality ordering’.

2. States, Types, Preferences, and Belief

The purpose of this section is to present a framework for extensive games
where each player is modeled as a decision maker under uncertainty. The
decision-theoretic analysis builds on Blume et al. [18]. For the analysis of
extensive games, continuity must be relaxed to allow each player to take into
account the possibility that any subgame can be reached. Moreover, by not
imposing completeness, the analysis does not require subjective probabilities.
The framework is summarized by the concept of a belief system (cf. Def. 1).
The Appendix contains a presentation of the decision-theoretic terminology,
notation and results that will be utilized.

2.1. An Extensive Game Form. Inspired by Osborne & Rubinstein ([38],
Ch. 6), a finite extensive game form of almost perfect information with 2
players and M − 1 stages can be described as follows. Both perfect infor-
mation games and finitely repeated games yield game forms that fit this
description. The sets of histories is determined inductively: The set of
histories at the beginning of the first stage 1 is H1 = {∅}. Let Hm de-
note the set of histories at the beginning of stage m. At h ∈ Hm, let,
for each player i ∈ N := {1, 2}, i’s action set be denoted Ai(h), where
i is inactive at h if Ai(h) is a singleton. Write A(h) := A1(h) × A2(h).
Define the set of histories at the beginning of stage m + 1 as follows:
Hm+1 := {(h, a) |h ∈ Hm and a ∈ A(h)}. This concludes the induction. Let
H :=

⋃M−1
m=1 H

m denote the set of subgames and let Z := HM denote the set
of outcomes.

A pure strategy for player i is a function si that assigns an action in Ai(h)
to any h ∈ H. Let Si denote player i’s finite set of pure strategies, and
write S := S1 × S2. Write p, r, and s (∈ S) for pure strategy vectors. Let
z : S → Z map strategy vectors into outcomes.3 Then ((Si)i∈N , z) is a finite
strategic two-player game form. For any h ∈ H∪Z, let S(h) = S1(h)×S2(h)
denote the set of strategy vectors that are consistent with h being reached.

3A pure strategy si ∈ Si can be viewed as an act on Sj that assigns z(si, sj) ∈ Z
to any sj ∈ Sj . The set of pure strategies Si is partitioned into equivalent classes of
acts since a pure strategy si also determines actions in subgames which si prevents from
being reached. Each such equivalent class corresponds to a plan of action in the sense
of Rubinstein [42]. As there is no need here to differentiate between identical acts, the
concept of a plan of action would have sufficed. Since completeness is not imposed, a type
of a player need not make any assessment concerning the relative likelihood of identical
acts.
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If h′ is the predecessor of h, then S(h′) ⊇ S(h). If si ∈ Si and h ∈ H, let si|h
denote the strategy in Si(h) satisfying si|h(h′) = si(h′) at any h′ ∈ H except
at h′ with S(h′) ⊃ S(h) where si|h(h′) is dictated by si|h being consistent
with h.

2.2. States and Types. When a strategic game form is turned into a
decision problem for each player (see Tan & Werlang [46]), the uncertainty
faced by a player concerns the strategy choice of his opponent, the belief of
his opponent about his own strategy choice, and so on. A type of a player
corresponds to a vNM utility function and a belief about the strategy choice
of his opponent, a belief about the belief of his opponent about his own
strategy choice, and so on.

Given an assumption of coherency, models of such infinite hierarchies
of beliefs (Armbruster & Böge [3], Böge & Eisele [20], Mertens & Zamir
[35], Brandenburger & Dekel [25], Epstein & Wang [30]) yield S × T as the
complete state space, where S is the underlying space of uncertainty and
where T = T1 × T2 is the set of all feasible type vectors. Furthermore, for
each i, there is a homeomorphism between Ti and the set of beliefs on S×Tj ,
where j denotes i’s opponent. Combined with a vNM utility function, the
set of beliefs on S × Tj corresponds to the set of “regular” binary relations
on the set of acts on S × Tj , where an act on S × Tj is a function that to
any element of S × Tj assigns an objective randomization on Z.

For each type of any player i, the type’s decision problem is to choose one
of i’s strategies. For the modeling of this problem, the type’s belief about his
own decision is not relevant and can be ignored. Hence, models of infinite
hierarchies of beliefs — in the setting of a strategic game form — imply that
each type of any player i corresponds to a “regular” binary relation on the
set of acts on Sj × Tj .

In conformity with the literature on infinite hierarchies of beliefs, let
• the set of states of the world (or simply states) be Ω := S × T ,
• each type ti of any player i correspond to a binary relation ti on the

set of acts on Sj × Tj .
However, like AD, I do not construct a complete state space by explicitly
modeling infinite hierarchies of beliefs. For tractability I instead directly
consider an implicit model — with a finite type set Ti for each player i —
from which infinite hierarchies of beliefs can be constructed.4 Moreover,
since completeness and continuity of preferences are not imposed, the “reg-
ularity” conditions on ti consist of reflexivity, transitivity, objective inde-
pendence, nontriviality, conditional completeness, conditional continuity and
non-null state independence, meaning that ti is conditionally represented

4This is not purely a matter of convenience as Brandenburger [24] and Brandenburger
& Keisler [26] have shown that a complete state space may not exist if beliefs are not
based on subjective probabilities. In contrast to Battigalli & Siniscalchi’s [13] epistemic
foundation for backward (and forward) induction, a complete state space is not needed
for the present analysis.
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by a vNM utility function υti
i : Z → R that assigns a payoff to any outcome

(cf. the Appendix).5 Being a vNM utility function, υti
i can be extended

to objective randomizations on Z. Since ti is conditionally represented, it
follows that strong and weak dominance are well-defined. The construction
is summarized by the following definition.

Definition 1. A belief system for a game form ((Si)i∈N , z) consists of
• for each player i, a finite set of types Ti,
• for each type ti of any player i, a binary relation ti (ti’s preferences)

on the set of acts on Sj × Tj , where ti is conditionally represented
by a vNM utility function υti

i on the set of objective randomizations
on Z.

2.3. Epistemic operators. When preferences are not continuous, one can
differentiate between belief and certain belief in a manner that will be ex-
plained below. Both ‘belief’ and ‘certain belief’ are subjective, as they are
derived from preferences (following the approach of Morris [37]); hence, nei-
ther operator satisfies the truth axiom. To state these operators, let, for
each player i and each state ω ∈ Ω, ti(ω) denote the projection of ω on Ti,
and let, for any event E ⊆ Ω, Eti

j := {(sj , tj) ∈ Sj × Tj |∃(s′1, s′2, t′1, t′2) ∈ E
s.t. (s′j , t

′
j) = (sj , tj) and t′i = ti} denote the set of opponent strategy-type

pairs that are consistent with ω ∈ E and ti(ω) = ti.
It is perhaps easier to introduce these concepts in the case when pref-

erences are complete and, thus, representable in terms of an LPS λti =
(µti

1 , . . . , µ
ti
L) ∈ L∆(Sj × Tj). Then an event is ‘certainly believed’ if no ele-

ment of the complement is assigned positive probability by some probability
distribution in λti :

KiE := {ω ∈ Ω|κti(ω)
j ⊆ E

ti(ω)
j },

where κti
j := suppλti (⊆ Sj × Tj). On the other hand, an event is ‘believed’

if no element of the complement is assigned positive probability by µti
1 :6

BiE := {ω ∈ Ω|βti(ω)
j ⊆ E

ti(ω)
j },

where βti
j := suppµti

1 (⊆ Sj × Tj). It follows that KiE ⊆ BiE (i.e. ‘certain
belief’ implies ‘belief’) since βti

j = suppµti
1 ⊆ κti

j = suppλti := ∪L

=1suppµti


 .
To generalize κti

j (and thus KiE) to incomplete preferences, let

κti
j := {(sj , tj) ∈ Sj × Tj |(sj , tj) is not Savage-null acc. to ti}

5If conditional completeness is strengthened to completeness, then it follows from
Blume et al. [18] that �ti is represented by υti

i and a lexicographic probability sys-
tem (LPS) λti = (µti

1 , . . . , µti
L ) ∈ L∆(Sj × Tj) (cf. Prop. A2 of the Appendix). If, in

addition, conditional continuity is strengthened to continuity, then �ti is represented by
υti

i and a subjective probability distribution µti ∈ ∆(Sj × Tj). Continuity is inconsistent
with the present analysis due to the requirement of ‘caution’. However, completeness,
implying a subjective probability representation through an LPS, is consistent with – but
not a necessary part of – the analysis.

6This notion of ‘belief’ in the case of complete preferences corresponds to Branden-
burger’s [23] ‘first-order knowledge’ and Ben-Porath’s [14] ‘certainty’.



8 GEIR B. ASHEIM

denote the set of opponent strategy-type pairs that ti does not deem Savage-
null.7 This generalizes the case of complete preferences, since in that case
suppλti is the set of opponent strategy-type pairs that ti does not deem
Savage-null.

To generalize βti
j (and thus BiE) to incomplete preferences, say that ti

is admissible on βj , where ∅ �= βj ⊆ Sj ×Tj , if x �ti y whenever xβj weakly
dominates yβj . If ti is admissible on βj , then any (s′j , t

′
j) ∈ βj is deemed

infinitely more likely than any (s′′j , t
′′
j ) ∈ Sj × Tj\βj . Since (s′j , t

′
j) being

infinitely more likely than (s′′j , t
′′
j ) implies that (s′′j , t

′′
j ) is not infinitely more

than (s′j , t
′
j), it follows that β′

j ⊆ β′′
j or β′

j ⊇ β′′
j whenever ti is admissible

on both β′
j and β′′

j . Since, in addition, ti is admissible on κti
j , it follows

that there exists a unique smallest (w.r.t. set inclusion) set on which ti is
admissible; let this set be denoted βti

j :8

ti is admissible on βti
j and βj ⊇ βti

j whenever ti is admissible on βj .

This generalizes the case of complete preferences, since in that case suppµti
1

is the unique smallest set of opponent strategy-type pairs on which ti

is admissible. Also with incomplete preferences it follows that KiE ⊆ BiE
since ti is admissible on κti

j ; i.e. βti
j ⊆ κti

j . If βti
j �= κti

j , then ti’s preferences
are not continuous.

In addition to KiE ⊆ BiE, it follows that the operators Bi and Ki satisfy

BiE ∩BiF = Bi(E ∩ F ) KiE ∩KiF = Ki(E ∩ F )

Bi∅ = ∅ KiΩ = Ω
BiE ⊆ KiBiE KiE ⊆ KiKiE

¬BiE ⊆ Ki(¬BiE) ¬KiE ⊆ Ki(¬KiE).

Since KiE ⊆ BiE implies that Ki∅ = ∅, BiΩ = Ω, BiE ⊆ BiBiE and
¬BiE ⊆ Bi(¬BiE), both operators Bi and Ki correspond to KD45 systems.
Since an event can be certainly believed even though the true state is an
element of the complement of the event, it follows that neither operator
satisfies the truth axiom (i.e. KiE ⊆ E and BiE ⊆ E need not hold).

Say that i believes the event E ⊆ Ω given ω if ω ∈ BiE (or equivalently,
β

ti(ω)
j ⊆ E

ti(ω)
j ). Write BE := B1E∩B2E. Say that there is mutual belief of

E ⊆ Ω given ω if ω ∈ BE. Write CBE := BE ∩BBE ∩BBBE ∩ . . . . Say
that there common belief of E ⊆ Ω given ω if ω ∈ CBE. Say that i certainly
believes the event E ⊆ Ω given ω if ω ∈ KiE (or equivalently, κti(ω)

j ⊆
E

ti(ω)
j ). Write KE := K1E ∩K2E. Say that there is mutual certain belief

of E ⊆ Ω given ω if ω ∈ KE. Write CKE := KE ∩KKE ∩KKKE ∩ . . . .
Say that there is common certain belief of E ⊆ Ω given ω if ω ∈ CKE.

7The term ‘certain belief’ for this notion is also used by Morris [37]. It is stronger than
Ben-Porath’s [14] ‘certainty’ as it does not allow the complement of a certainly believed
event to be taken into account, but weaker than Aumann’s [6] ‘knowledge’ as a certainly
believed event need not be true.

8This notion of ‘belief’ is related to, but differs from, Morris’ [37] ‘strong belief’.
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2.4. Preferences over Strategies. Let ti
Sj

denote the marginal of ti

on Sj . A pure strategy si ∈ Si can be viewed as an act xSj on Sj that
assigns z(si, sj) to any sj ∈ Sj . A mixed strategy xi ∈ ∆ (Si) corresponds
to an act xSj on Sj that assigns z(xi, sj) to any sj ∈ Sj . Hence, ti

Sj
is a

binary relation also on the subset of acts on Sj that correspond to i’s mixed
strategies. Thus, ti

Sj
can be referred to as ti’s preferences over i’s mixed

strategies. The set of mixed strategies ∆(Si) is the set of acts that are at
ti’s actual disposal.

Likewise, in any subgame h is ti
Sj(h)

ti’s conditional preferences over
i’s mixed strategies in h. Since ti is reflexive and transitive and satisfies
objective independence, ti

Sj(h)
shares these properties, and

Cti
i (h) := {si ∈ Si(h)|si is maximal w.r.t. ti

Sj(h)
in ∆(Si(h))}

is non-empty and supports any maximal mixed strategy. Refer to Cti
i (h)

as ti’s choice set in the subgame h, and refer to Cti
i : H → 2Si(h)\ {∅}

as ti’s choice function. Write Cti
i := Cti

i (∅), and write, for any h ∈ H,
Ct(h) := Ct1

1 (h) × Ct2
2 (h).

By the following lemma, if si is maximal in a subgame h, then si is
maximal in any later subgame that si is consistent with.

Lemma 1. If si ∈ Cti
i (h), then si ∈ Cti

i (h′) for any h′ ∈ H with si ∈
Si(h′) ⊆ Si(h).

Proof. Suppose that si is not maximal w.r.t. ti
Sj(h′) in ∆(Si(h′)). Then

there exists xSj such that xSj�ti
Sj(h′)ySj , where xSj assigns z(xi, sj) to any

sj ∈ Sj with xi ∈ ∆(Si(h′)), and where ySj assigns z(si, sj) to any sj ∈ Sj .
By Mailath et al. ([34], Defs. 2 and 3 and the if-part of Theorem 1),
S(h′) is a strategic independence for i. Hence, xSj can be chosen such that
xSj (sj) = ySj (sj) for all sj ∈ Sj\Sj(h′). This implies that xSj�ti

Sj(h)
ySj ,

which contradicts that si is maximal w.r.t. ti
Sj(h)

in ∆(Si(h)).

Under the assumption that κti
j ∩Sj(h)×Tj �= ∅ (which is implied if ti satisfies

‘caution’; cf. Sect. 3.1), it follows that ti
Sj(h)

is nontrivial.

2.5. An Extensive Game. Consider an extensive game form (cf. Sect.
2.1), and let, for each i, υi : Z → R be a vNM utility function that assigns
payoff to any outcome. Then the pair of the extensive game form and the
vNM utility functions (υi)i∈N is a finite extensive game of almost perfect
information, Γ. Let G = (Si, ui)i∈N be the corresponding finite strategic
game, where for each i, the vNM utility function ui : S → R is defined by
ui = υi ◦ z (i.e., ui(s) = υi(z(s)) for any s = (s1, s2) ∈ S). Assume that, for
each i, there exist r, s ∈ S such that ui(r) > ui(s).

The event that i plays the game G is given by

[ui] := {ω ∈ Ω|υti(ω)
i ◦ z is a positive affine transformation of ui} ,

while [u1] ∩ [u2] is the event that both players play G.
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3. Consistency of Preferences

Usually requirements in deductive game theory are imposed on choice.
E.g. rationality is a requirement on a pair (si, ti), where si is said to be a
‘rational choice’ by ti if si ∈ Cti

i , and where the event that i is rational is
defined as9

[rati] := {(s1, s2, t1, t2) ∈ Ω|si ∈ Cti
i }.

The present paper follows AD by imposing requirements on ti only. Since
ti corresponds to the preferences ti , such requirements will be imposed
on ti . In support of this alternative approach — which will be referred
to by the term ‘consistent preferences’ — one can note the following: The
approach allows

• ... requirements to be imposed on types rather than strategy-type
pairs.

• ... conventional concepts like ‘rationalizable strategies’ and strategies
surviving the Dekel-Fudenberg procedure to be characterized under
very weak and natural conditions (see e.g. Prop. 1 below).

• ... requirements like ‘caution’ and ‘belief (in each subgame) of opponent
rationality’ to be imposed in a straightforward manner. Under ‘rational
choice’ the notion of ‘certain belief’ must be weakened to accommodate
caution (cf. Börgers ([22], pp. 266–267) and Epstein ([29], p. 3)). It
is unclear how ‘belief in each subgame of opponent rationality’ can be
imposed under the ‘rational choice’ approach.

Here I will focus on showing how ‘consistent preferences’ as an approach to
deductive game-theoretic analysis can be used to shed light on the analyses of
Aumann [6] and Ben-Porath [14], and thereby enhance our understanding
of the epistemic conditions underlying backward induction. For this pur-
pose, it is useful to reproduce AD’s characterization of the Dekel-Fudenberg
procedure.

3.1. Admissible Consistency. The Dekel-Fudenberg procedure is made
up of one round of elimination of weakly dominated strategies followed by
iterated elimination of strongly dominated strategies. AD characterize this
procedure by imposing three requirements: The first of these ensures that
each player plays the game G, the second requirement ensures that each
player takes all opponent strategies into account, thereby taking into ac-
count the possibility that any subgame in an extensive game be reached
(caution), while the third requirement ensures that each player believes that
the opponent chooses rationally (belief of opponent rationality).

To impose these requirements, consider the following events

[caui] := {ω ∈ Ω|κti(ω)
j = Sj × T

ti(ω)
j }

Bi[ratj ] = {ω ∈ Ω|(rj , tj) ∈ β
ti(ω)
j implies rj ∈ C

tj
j } ,

9See e.g. Epstein ([29], Sect. 6) for a presentation of this approach in a general context.
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where T ti
j := projTj

κti
j denotes the set of opponent types that ti does not

deem Savage-null.10

• If ω ∈ [caui], then (sj , tj) is not deemed Savage-null acc. to ti(ω)

whenever tj is not deemed Savage-null. This means that, ∀(sj , tj) ∈
Sj × T

ti(ω)
j , ω /∈ Ki{(s′1, s′2, t′1, t′2) ∈ Ω|(s′j , t′j) �= (sj , tj)} (cf. Dekel &

Gul’s [28] definition of caution). It implies that the marginal of ti(ω)

on Sj (i.e., ti(ω)’s preferences over Si, ti(ω)
Sj

) is admissible on Sj .
• If ω ∈ Bi[ratj ], then i believes given ω that j is rational.

Say that i is admissibly consistent (with the game G and the preferences of
his opponent) given ω if ω ∈ Ai, where

Ai := [ui] ∩ [caui] ∩Bi[ratj ].

Refer to A := A1 ∩ A2 as the event of admissible consistency. The Dekel-
Fudenberg procedure can now be characterized as maximal strategies in
states where there is common certain belief of admissible consistency.

Proposition 1. (Asheim & Dufwenberg [5]) A pure strategy ri for i
survives the Dekel-Fudenberg procedure in a finite strategic game G if and
only if there exists a belief system with ri ∈ C

ti(ω)
i for some ω ∈ CKA.

4. Generic Games of Perfect Information

A finite extensive game is
• ... of perfect information if, at any h ∈ H, there exists at most one

player that has a non-singleton action set.
• ... generic if, for each i, υi(z) �= υi(z′) whenever z and z′ are different

outcomes.
Generic extensive games of perfect information have a unique subgame-
perfect equilibrium. Moreover, in such games the procedure of backward
induction yields in any subgame the unique subgame-perfect equilibrium
outcome. If p denotes the unique subgame-perfect equilibrium, then, for
any subgame h, z(p|h) is the backward induction outcome in the subgame
h, and S(z(p|h)) is the set of strategy vectors consistent with the backward
induction outcome in the subgame h.

Both Aumann [6] and Ben-Porath [14] analyze generic extensive games
of perfect information. As already pointed out, while Aumann establishes

10If ω ∈ [caui]∩Bi[ratj ] and �ti(ω) is complete, then �ti(ω) can be represented by υ
ti(ω)
i

and an LPS λti(ω) = (µ
ti(ω)
1 , . . . , µ

ti(ω)
L ) ∈ L∆(Sj ×Tj) satisfying suppλti(ω) = Sj ×T

ti(ω)
j

and µ
ti(ω)
1 (rj , tj) > 0 only if rj ∈ C

tj

j . Note that ω ∈ [caui] ∩ Bi[ratj ] does not imply —
but is consistent with — �ti(ω) being complete, while ω ∈ [caui]∩Bi[ratj ] is not consistent
with �ti(ω) being continuous.
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1 2 1 3
F f F 5

D d D
2 1 4
0 3 2

Figure 1. A centipede game

Table 1. A belief system for the game of Fig. 1.

t′1: t′2 t′′2 t′′1: t′2 t′′2
d

(
4
5 ,

7
10

) (
0, 1

10

)
d

(
3
5 ,

5
10

) (
0, 1

10

)
f

(
0, 1

10

) (
1
5 ,

1
10

)
f

(
0, 1

10

) (
2
5 ,

3
10

)
t′2: t′1 t′′1 t′′2: t′1 t′′1

D
(
1
2 ,

1
4

) (
0, 18

)
D

(
1, 12

)
(0, 0)

FD
(
0, 18

) (
1
2 ,

1
4

)
FD

(
0, 14

)
(0, 0)

FF
(
0, 18

) (
0, 18

)
FF

(
0, 14

)
(0, 0)

that common (true) knowledge of (all subgame) rationality11 implies that
the backward induction outcome is reached, Ben-Porath shows that the
backward induction outcome is not the only outcome that is consistent with
common belief (in the whole game) of (reachable subgame) rationality. The
purpose of the present section is to interpret the analysis of Ben-Porath by
applying Prop. 1 to the class of generic perfect information games.

Ben-Porath [14] establishes through his Theorem 1 that the set of out-
comes consistent with common belief (in the whole game) of (reachable
subgame) rationality corresponds to the set of outcomes that survive the
Dekel-Fudenberg procedure. Hence, by Prop. 1, maximal strategies when
there is common certain belief of admissible consistency correspond to the
outcomes promoted by Ben-Porath’s analysis.

4.1. An Example. To illustrate how common certain belief of admissible
consistency is consistent with outcomes other than the unique backward
induction outcome, consider the simple centipede game of Fig. 1 where
backward induction implies that down is being played at any decision node.
Let T1 = {t′1, t′′1} and T2 = {t′2, t′′2}. Assume that the preferences of each type
ti of any player i are represented by a vNM utility function υti

i satisfying
υti

i ◦ z = ui and a 2-level LPS on Sj × Tj . In Table 1, the first numbers in
the parentheses express primary probability distributions, while the second
numbers express secondary probability distributions. The strategies DD and
DF are merged as their relative likelihood does not matter; see footnote 3.
Note that all types satisfy ‘caution’. With these 2-level LPSs each type’s

11Aumann’s [6]) analysis is based on substantive rationality. See Aumann [6], pp. 14–
16, and Aumann [7].
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preferences over the player’s own strategies are given by

t′1 : D � FD � FF

t′′1 : FD � D � FF

t′2 : d � f

t′′2 : f � d

It is easy to check that all types satisfy ‘belief of opponent rationality’ (e.g.
both t′2 and t′′2 assign positive (primary) probability to an opponent strategy-
type pair only if it is a maximal strategy for the opponent type, i.e. D in
the case of t′1 and FD in the case of t′′1). Thus, with Ω = S × T1 × T2, it
follows that Ω = A = CKA. Hence, preferences consistent with common
certain belief of admissible consistency need not reflect backward induction
since FD and f are maximal strategies.

Note that type t′2, conditional on his decision node being reached (i.e. 1
choosing FD or FF ), updates his beliefs about the type of player 1 and
assigns (primary) probability one to 1 being of type t′′1. Consequently, the
conditional belief of type t′2 about 1’s strategy choice assigns (primary) prob-
ability one to FD. Type t′′2, on the other hand, does not admit the possibility
that 1 is of another type than t′1. Since the choice of F at 1’s first decision
node is not rational for t′1, there is no restriction concerning the conditional
belief of type t′′2 about the choice at 1’s second decision node. In the ter-
minology of Ben-Porath, a “surprise” has occurred. Subsequent to such a
surprise, a type need not believe that the opponent type chooses rationally
among his remaining strategies.

Remark 1. Ben-Porath uses the extensive form as a means of imposing that
the possibility of reaching any subgame is taken into account. Here, this
is ensured by the strategic form restriction that preferences be admissible
(cf. the requirement of ‘caution’ in Sect. 3.1 as well as the discussion by
Stalnaker ([45], Sect. 4)). Instead I will below explicitly use the extensive
form for making restrictions on the beliefs that types hold in subgames
concerning opponent rationality.

5. Belief in Each Subgame of Opponent Rationality

A simultaneous game offers only one choice situation. Hence, for a game
in this class, it seems reasonable that belief of opponent rationality is held
in the whole game only, as formalized by the requirement ‘belief of oppo-
nent rationality’. An extensive game with a nontrivial dynamic structure,
however, offers such choice situations, not only in the whole game, but also
in proper subgames. Moreover, for extensive games of almost perfect infor-
mation, the subgames constitute an exhaustive set of such choice situations.
This motivates imposing belief in each subgame of opponent rationality.

To reach a subgame h ∈ H is an objectively knowable event S1(h) ×
S2(h) × T1 × T2. Conditional on any such objectively knowable event, a
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conditional belief operator for each player i, Bi(h), can be defined. To state
this operator for any subgame h ∈ H, write Ωj(h) := Sj(h) × Tj , and let,
for any event E ⊆ Ω, Eti

j (h) := Eti
j ∩ Ωj(h).

In any subgame h is ti
Ωj(h)

the conditional preferences of ti in h. Say that
ti

Ωj(h)
is admissible on βj , where ∅ �= βj ⊆ Ωj(h), if x�ti

Ωj(h)
y whenever xβj

weakly dominates yβj . If ti
Ωj(h)

is admissible on βj , then any (s′j , t
′
j) ∈ βj

is deemed infinitely more likely than any (s′′j , t
′′
j ) ∈ Ωj(h)\βj . Since (s′j , t

′
j)

being infinitely more likely than (s′′j , t
′′
j ) implies that (s′′j , t

′′
j ) is not infinitely

more than (s′j , t
′
j), it follows that β′

j ⊆ β′′
j or β′

j ⊇ β′′
j whenever ti

Ωj(h)
is

admissible on both β′
j and β′′

j . If the set of opponent strategy-type pairs
that ti does not deem Savage-null in h, κti

j ∩Ωj(h), is non-empty — which is
implied by ti satisfying ‘caution’ — then ti

Ωj(h)
is admissible on κti

j ∩Ωj(h).
Hence, under this assumption, there exists a unique smallest (w.r.t. set
inclusion) set on which ti

Ωj(h)
is admissible; let this set be denoted βti

j (h):

ti
Ωj(h)

is adm. on βti
j (h) and βj ⊇ βti

j (h) whenever ti
Ωj(h)

is adm. on βj .

Otherwise, set βti
j (h) = ∅. Say that i believes an event E conditional on h

given ω if βti(ω)
j (h) ⊆ E

ti(ω)
j (h), or equivalently, ω ∈ Bi(h)E, where

Bi(h)E := {ω ∈ Ω|βti(ω)
j (h) ⊆ E

ti(ω)
j (h)}.

If h′ is a predecessor of h (i.e. S(h′) ⊇ S(h)) and βti
j (h′) ∩ Ωj(h) �= ∅,

then it follows from the above definitions that βti
j (h) = βti

j (h′) ∩ Ωj(h).
Furthermore, KiE ⊆ Bi(h)E (since βti

j (h) ⊆ κti
j ∩ Ωj(h)), and

Bi(h)E ∩Bi(h)F = Bi(h)(E ∩ F )

Bi(h)∅ = {ω ∈ Ω|κti(ω)
j ∩ Ωj(h) = ∅}

Bi(h)E ⊆ KiBi(h)E

¬Bi(h)E ⊆ Ki(¬Bi(h)E).

Since KiE ⊆ Bi(h)E implies that Bi(h)Ω = Ω, Bi(h)E ⊆ Bi(h)Bi(h)E
and ¬Bi(h)E ⊆ Bi(h)(¬Bi(h)E), the operator Bi(h) corresponds to a K45
system.

Note that i’s belief conditional on the subgame h is “well defined” (in the
sense that βti(ω)

i �= ∅) in any state ω where i deems it possible that h can be
reached (i.e., κti(ω)

j ∩ Ωj(h) �= ∅, meaning that ti
Ωj(h)

is nontrivial). Hence,
a “well defined” conditional belief in h is implied by ‘caution’ alone; it does
not require that h is actually being reached. This means that a requirement
on i’s belief conditional on h is a requirement on the type of player i only;
it does not impose that i makes a strategy choice consistent with h.

Say that sj is a ‘rational choice’ by tj in h if sj ∈ C
tj
j (h), and let the

event that j is rational in h be defined as

[ratj(h)] := {(s1, s2, t1, t2) ∈ Ω|sj ∈ C
tj
j (h)} (⊆ Si × Sj(h) × Ti × Tj).

Consider the event that i believes in h that j is rational in h:

Bi(h)[ratj(h)] = {ω ∈ Ω|(rj , tj) ∈ β
ti(ω)
j (h) implies rj ∈ C

tj
j (h)} .
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If ω ∈ ⋂
h∈H Bi(h)[ratj(h)], then, conditional on any subgame h, i believes

given ω that j is rational in h. In other words,
⋂

h∈H Bi(h)[ratj(h)] is the
event that player i believes in each subgame h that the opponent j is rational
in h.12

Consider a finite extensive game Γ of almost perfect information with
corresponding strategic game G. Say that i is admissibly subgame consistent
(with Γ and the preferences of his opponent) given ω if ω ∈ A∗

i , where

A∗
i := [ui] ∩ [caui] ∩

( ⋂
h∈H

Bi(h)[ratj(h)]

)
.

Refer to A∗ := A∗
1∩A∗

2 as the event of admissible subgame consistency. This
definition of admissible subgame consistency can be applied to any finite
extensive game of almost perfect information. However, in order to relate to
Aumann’s [6] Theorems A and B, the following analysis is concerned with
generic perfect information games.

5.1. The Example Revisited. In the belief system of Table 1, type t′′2
does not satisfy ‘belief in each subgame of opponent rationality’. By ‘belief
in each subgame of opponent rationality’, any type of player 2 must believe,
conditional on the subgame defined by 2’s decision node, that 1 chooses
his maximal strategy, FD, in the subgame. This means that any type of
player 2 prefers d to f , implying that no type of player 1 satisfying ‘belief in
each subgame of opponent rationality’ can prefer FD to D. Thus, common
certain belief of admissible subgame consistency entails that any types of
players 1 and 2 have the preferences

D � FD � FF

d � f

respectively, meaning that if any type of a player chooses a maximal strat-
egy in a subgame, then his choice is made in accordance with backward
induction. Demonstrating that this conclusion holds in general for generic
perfect information games is the main result of the present paper.

5.2. Main results. In analogy with Aumann’s [6] Theorems A and B, it is
established that

• ... any vector of maximal strategies in a subgame of a generic perfect
information game, in a state where there is common certain belief of ad-
missible subgame consistency, leads to the backward induction outcome
in the subgame (Prop. 2). Hence, by substituting

⋂
h∈H Bi(h)[ratj(h)]

for Bi[ratj ], the present analysis yields support to Aumann’s conclu-
sion, namely that if there is common knowledge (or certain belief) of an

12Note that the requirement of such ‘belief in each subgame of opponent rationality’
allows a player to update his belief about the type of his opponent. Hence, there is no
assumption of ‘epistemic independence’ between different agents in the sense of Stalnaker
[45]; cf. Remark 2 of Sect. 5.2. Still, the requirement can be considered a non-inductive
analogue to ‘forward knowledge of rationality’ as defined by Balkenborg & Winter [9].
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appropriate form of (belief of) rationality, then the backward induction
outcome results.

• ... for any generic perfect information game, common certain belief
of admissible subgame consistency is possible (Prop. 3). Hence, the
result of Prop. 2 is not empty.

Proposition 2. Consider a finite generic extensive game of perfect infor-
mation Γ with corresponding strategic game G. If, for some belief system
for G, ω ∈ CKA∗, then, for each h ∈ H, Ct(ω)(h) ⊆ S(z(p|h)), where p
denotes the unique subgame-perfect equilibrium.

Proof. Write K0E := E and, for each g ≥ 1, KgE := KKg−1E. Since
Ki(E ∩ F ) = KiE ∩KiF and KiKiE = KiE, it follows ∀g ≥ 2,

KgE = K1K
g−1E ∩K2K

g−1E

⊆ K1K1K
g−2E ∩K2K2K

g−2E

= K1K
g−2E ∩K2K

g−2E = Kg−1E .

Even though the truth axiom (KiE ⊆ E) is not satisfied, it follows that
mutual certain belief of A∗ implies that A∗ is true, since A∗ := A∗

1 ∩ A∗
2 is

an event that concerns the type vector: KA∗ = K1A
∗ ∩ K2A

∗ ⊆ K1A
∗
1 ∩

K2A
∗
2 = A∗

1 ∩ A∗
2 = A∗ since, for each i, KiA

∗
i = A∗

i . Hence, (i) ∀g ≥ 1,
KgA∗ ⊆ Kg−1A∗, and (ii) ∃g′ ≥ 0 such that KgA∗ = CKA∗ for g ≥ g′ since
Ω is finite.

In view of these properties, it is sufficient to show for any g = 0, . . . ,M−2
that if there exists a belief system with ω ∈ KgA∗, then Ct(ω)(h) ⊆ S(z(p|h))
for any h ∈ HM−1−g. This is established by induction.

(g = 0) Let h ∈ HM−1. First, consider j with a singleton action set at
h. Then trivially C

tj
j (h) = Sj(h) = Sj(z(p|h)). Now, consider i with a non-

singleton action set at h; since Γ has perfect information, there is at most
one such i. Let ti = ti(ω) for some ω ∈ K0A∗ = A∗. Then it follows that
Cti

i (h) = Si(z(p|h)) since Γ is generic and ω ∈ A∗ ⊆ [ui] ∩ [caui].
(g = 1, . . . ,M−2) Suppose that it has been established for g′ = 0, . . . , g−

1 that if there exists a belief system with ω ∈ Kg′A∗, then Ct(ω)(h′) ⊆
S(z(p|h′)) for any h′ ∈ HM−1−g′ . Let h ∈ HM−1−g. First, consider j with
a singleton action set at h. Let tj = tj(ω) for some ω ∈ Kg−1A∗. Then, by
Lemma 1 and the premise, Sj(h) = Sj(h, a) and

C
tj
j (h) ⊆ C

tj
j (h, a) ⊆ Sj(z(p|(h,a)))

if a is a feasible action vector at h. This implies that

C
tj
j (h) ⊆

⋂
a
Sj(z(p|(h,a))) ⊆ Sj(z(p|h)) .

Now, consider i with a non-singleton action set at h; since Γ has perfect
information, there is at most one such i. Let ti = ti(ω) for some ω ∈ KgA∗.
The preceding argument implies that C

tj
j (h) ⊆ ⋂

a Sj(z(p|(h,a))) whenever
tj ∈ T ti

j since ω ∈ KgA∗ ⊆ KiK
g−1A∗. Let si ∈ Si(h) be a strategy

that differs from pi|h by assigning a different action at h (i.e., z(si, pj |h) �=
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Figure 2. A four-legged centipede game

z(p|h) and si(h′) = pi|h(h′) whenever Si(h) ⊃ Si(h′)). Write xSj for the
act on Sj that pi|h can be viewed as, and write ySj for the act on Sj that
si can be viewed as. Let x and y be the acts on Sj × Tj that satisfy
x(sj , tj) = xSj (sj) and y(sj , tj) = ySj (sj) for all (sj , tj). Then (recalling
that Ωj(·) := Sj(·) × Tj),

x∩aΩj(z(p|(h,a))) strongly dominates y∩aΩj(z(p|(h,a)))

by backward induction since Γ is generic and ω ∈ KgA∗ ⊆ [ui]. Since
C

tj
j (h) ⊆ ⋂

a Sj(z(p|(h,a))) whenever tj ∈ T ti
j , it follows that, ∀tj ∈ T ti

j ,

x
C

tj
j (h)×{tj}

strongly dominates y
C

tj
j (h)×{tj}

,

and, thus, ω ∈ KgA∗ ⊆ Bi(h)[ratj(h)] implies that

x �ti
Sj(h)×Tj

y and xSj �ti
Sj(h)

ySj .

By Lemma 1 and the premise that Cti
i (h, a) ⊆ Si(z(p|(h,a))) if a is a feasible

action vector at h, it follows that Cti
i (h) ⊆ Si(z(p|h)).

Remark 2. It follows from the proof of Prop. 2 that, for a generic perfect
information game with M−1 stages, it is sufficient with M−2 order mutual
certain belief of admissible subgame consistency in order to obtain backward
induction. Hence, KM−2A∗ can be substituted for CKA∗.

Backward induction will not be obtained, however, if CBA∗ is substituted
for CKA∗. This can be shown by considering a counter-example that builds
on the four-legged centipede game of Fig. 2 and the belief system of Table
2. In the table the preferences of each type ti of any player i are represented
by a vNM utility function υti

i satisfying υti
i ◦ z = ui and a 1 or 3-level LPS

on Sj × Tj , where T1 = {t′1, t′′1, t′′′1 } and T2 = {t′2, t′′2}. Inspection shows that
A∗ = S×{t′1, t′′1}×{t′2, t′′2}, while type t′′′1 of player 1 satisfies neither ‘caution’
nor ‘belief in each subgame of opponent rationality’. Provided that i is of
a type in {t′i, t′′i }, it follows that i believes given (s, t1, t2) that the opponent
is of a type in {t′j , t′′j }. This implies that CBA∗ = A∗. Since FD is the
maximal strategy for t′′1 and fd is the maximal strategy for t′′2, it follows that
preferences consistent with common belief of admissible subgame consistency
need not reflect backward induction. However, 2 does not certainly believe
given (s, t1, t′′2) that the opponent is not of type t′′′1 . Therefore, KA∗ = A∗ =
S×{t′1, t′′1}×{t′2}, while KKA∗ = ∅. Hence, preferences that yield maximal
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Table 2. A belief system for the game of Fig. 2.

t′1 : t′′1 : t′′′1 :
t′2 t′′2 t′2 t′′2 t′2 t′′2

d
(

4
5 ,

7
10 ,

7
12

) (
0, 1

10 ,
1
12

)
d

(
3
5 ,

5
10 ,

5
12

) (
0, 1

10 ,
1
12

)
d (0) (0)

fd
(
0, 1

10 ,
1
12

) (
1
5 ,

1
10 ,

1
12

)
fd

(
0, 1

10 ,
1
12

) (
2
5 ,

3
10 ,

3
12

)
fd (0) (0)

f f
(
0, 0, 1

12

) (
0, 0, 1

12

)
f f

(
0, 0, 1

12

) (
0, 0, 1

12

)
f f

(
1
2

) (
1
2

)
t′2 : t′′2 :

t′1 t′′1 t′′′1 t′1 t′′1 t′′′1

D
(

1
2 ,

1
3 ,

1
4

) (
0, 1

6 ,
1
8

)
(0, 0, 0) D

(
1, 1

2 ,
1
3

)
(0, 0, 0)

(
0, 0, 1

12

)
FD

(
0, 1

6 ,
1
8

) (
1
2 ,

1
3 ,

1
4

)
(0, 0, 0) FD

(
0, 1

4 ,
1
6

)
(0, 0, 0)

(
0, 0, 1

12

)
FF

(
0, 0, 1

8

) (
0, 0, 1

8

)
(0, 0, 0) FF

(
0, 0, 1

6

)
(0, 0, 0)

(
0, 1

4 ,
1
6

)

strategies in contradiction with backward induction are not consistent with
common certain belief of admissible subgame consistency.

The example shows that ω ∈ A∗ is consistent with ti(ω) updating his
beliefs about the preferences of his opponent conditional on a subgame being
reached. I.e., if 1 is of type t′1, then in the whole game 1 assigns (primary)
probability 4

5 to 2 being of type t′2 with preferences d � fd � ff , while
in the subgame defined by 1’s second decision node 1 assigns (primary)
probability 1 to 2 being of type t′′2 with preferences fd � d ∼ ff . This shows
that Stalnaker’s [45] assumption of ‘epistemic independence’ is not made;
a player is in principle allowed to learn about the type of his opponent on
the basis of previous play. However, in a belief system with CKA∗ �= ∅,
ω ∈ CKA∗ implies that 1 certainly believes given ω that 2 is of a type with
preferences d � fd � ff . In other words, if there is common certain belief of
admissible subgame consistency, there is essentially nothing to learn about
the opponent.

Proposition 3. For any finite generic extensive games of perfect informa-
tion Γ with corresponding strategic game G, there exists a belief system for
G with CKA∗ �= ∅.
Proof. Construct a belief system with only one type of each player, and write
Ω := S × {(t1, t2)}. Write, ∀i ∈ N , ∀m ∈ {1, . . . ,M − 1}, Pm

j := {pj |h|h ∈
Hm} and, PM

j := Sj . Let, ∀i ∈ N , λti = (µti
1 , . . . , µ

ti
M ) ∈ L∆(Sj × {tj})

satisfy the following requirement: ∀m ∈ {1, . . . ,M}, suppµti
m = P k

j × {tj}.
By letting ti be represented by a vNM utility function υti

i satisfying υti
i ◦z =

ui and the LPS λti , then (1) ∀i ∈ N , [ui] ∩ [caui] = Ω. Let λti
Sj

denote the
marginal of λti on Sj , and let, ∀h ∈ H, λti

Sj(h)
= (µti

1 |Sj(h), ..., µ
ti
L |Sj(h))

denote the conditional of λti
Sj

on Sj(h) (see Blume et al. [18], Def. 4.2). By
the properties of a subgame-perfect equilibrium, ∀h ∈ H, µti

1 |Sj(h)(pj |h) = 1
and pi|h ∈ Cti

i (h). Hence, since likewise pj |h ∈ C
tj
j (h), we have that (2)

∀i ∈ N ,
⋂

h∈H Bi(h)[ratj(h)] = Ω. By (1) and (2), it follows that CKA∗ =
A∗ = Ω �= ∅.
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Remark 3. The constructive proof of Prop. 3 can be used to show, for any
game of almost perfect information and for any subgame-perfect equilibrium
(in strategies that are not weakly dominated), that the subgame-perfect
equilibrium outcome corresponds to a vector of maximal strategies in a state
where there is common certain belief of admissible subgame consistency.

6. Discussion

Consider a generic perfect information game. Say that a type’s preferences
are in accordance with backward induction if, in any subgame, a strategy is
maximal only if it is consistent with the backward induction outcome. Us-
ing this terminology, Prop. 2 can be restated as follows: Under common
certain belief of admissible subgame consistency in a generic perfect infor-
mation game, players are of types with preferences that are in accordance
with backward induction. Furthermore, common certain belief of admissible
subgame consistency implies that players cannot admit the possibility that
the opponent is of a type with preferences not in accordance with back-
ward induction. This reflects in spirit a conclusion that can be drawn from
Aumann’s analysis.

However, since admissible subgame consistency is imposed on preferences,
reaching 2’s decision node and 1’s second decision node in the centipede
game of Fig. 1 does not contradict common certain belief of admissible
subgame consistency. Of course, these decision nodes will not be reached if
players are rational (i.e. choose maximal strategies). But that players satisfy
‘belief in each subgame of opponent rationality’ does not imply that they
will actually choose maximal strategies; rather, it means that they ‘believe’
(in a sense that generalizes belief with probability one) in any subgame that
their opponent will be rational.

6.1. Certain Belief vs. Belief. The term ‘certain belief’ (cf. Sect. 2.3)
signifies, in the present paper, that the complement of a certainly believed
event is not taken into account. This notion of ‘certain belief’ is strong;
in fact, it is the strongest form considered by Morris [37]. Each of the
notions ‘approximate knowledge’ (Monderer & Samet [36], Börgers [22]),
‘first-order knowledge’ (Brandenburger [23]), and ‘certainty’ (Ben-Porath
[14]) represents an effective weakening of ‘certain belief’ exactly because the
complement of a believed event is allowed to be taken into account.13

The analysis in the present paper can use ‘certain belief’ in the sense that
the complement of a certainly believed event is not taken into account, since
certain belief of admissible (subgame) consistency concerns preferences and

13As the present notion of ‘certain belief’ is derived from preferences, it does not satisfy
the truth axiom. Hence, an event can be certainly believed even though the true state is
an element of the complement of the event. This is in line with the belief definitions of e.g.
Brandenburger & Dekel [25], Morris [37] (even in the strongest form that he considers),
and Epstein [29].
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not choice. When there is common certain belief of admissible (subgame)
consistency in the sense of Sect. 3 (5), then

• each player i certainly believes (in the sense of not taking into account
the complement) that his opponent is of a type with preferences that
satisfy ‘caution’ and ‘belief (in each subgame) of opponent rationality’,

• each player i certainly believes (in the sense of not taking into account
the complement) that his opponent certainly believes (in the sense of
not taking into account the complement) that he himself is of a type
with preferences that satisfy ‘caution’ and ‘belief (in each subgame) of
opponent rationality’,

and so on.
By ‘caution’ it is not the case that a player certainly believes that the

opponent will not play any particular strategy. On the contrary, ‘caution’
imposes that a player takes into account all opponent strategies, implying
that he deems possible that any subgame in the extensive game be reached.14

By ‘belief (in each subgame) of opponent rationality’ the type of any player
merely ‘believes’ (conditional on any subgame) that the opponent will choose
a maximal strategy, in the sense that the type’s preferences (in the subgame)
is admissible on a subset of the opponent’s set of maximal strategies (in the
subgame).

6.2. Rationality Orderings. The constructive proof of Prop. 3 shows
how common certain belief of admissible subgame rationality may lead a
type ti of player i to have preferences over i’s strategies that are repre-
sented by a vNM utility function υti

i satisfying υti
i ◦ z = ui and an LPS

λti
Sj

= (µti
1 , ..., µ

ti
L) ∈ L∆(Sj) with more than two levels of subjective prob-

ability distributions (i.e. L > 2). E.g., in the centipede game of Fig. 1,
common certain belief of admissible subgame rationality implies that any
type t2 of player 2 has preferences that can be represented by u2 and λt2

S1
=

(µt2
1 , µ

t2
2 , µ

t2
3 ) where suppµt2

1 = {D}, suppµt2
2 = {D,FD}, and suppµt2

3 = S1.
Within the ‘rational choice’ approach one may interpret suppµti

1 to consist of
strategies for j that are “most rational”, suppµti

L\
⋃


′<L suppµti

′ to consist of

strategies for j that are “completely irrational”, and suppµti

 \

⋃

′<
 suppµti


′ ,
for , = 2, . . . , L− 1, to consist of strategies for j that are at “intermediate

14Note that a hypothetical knowledge operator as suggested by Samet [43] is not needed
here since any player considers all paths through the game to be possible.

The present analysis is consistent with the following view expressed by Arló-Costa &
Bicchieri ([2], pp. 187–188): “A player who is considering alternative actions ... has
yet to move, hence her reasoning is hypothetical, and the statement ‘If I were to play
A, then ...’ is subjunctive, but not a counterfactual. Its antecedent is neither true or
false, since nothing has happened yet.” “Agents who face an interactive decision problem
usually start by assessing all their possible moves, and the possible counter-moves of other
players. They engage, that is, in hypothetical reasoning about what could possibly happen
after each of their and others’ counter moves.”

The distinction that I make between preferences and choice echoes a distinction made
by Kramarz [33] between “contemplating an action” and actually playing an action.
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degrees of rationality”. Furthermore, for any , = 2, . . . , L, ti deems any
strategy in

⋃

′<
 suppµti


′ infinitely more likely than any strategy not hav-
ing this property. This illustrates that (suppµti

1 , . . . , suppµti
L\

⋃

′<L suppµti


′)
corresponds closely to what Battigalli [11] calls a rationality ordering for j.

However, the present construction of such a rationality ordering differs
from the one proposed by Battigalli. This difference is along two dimensions:

1. Battigalli considers best responses in reachable subgames only (see
his Def. 2.1), while here belief of opponent rationality is held in all
subgames (cf. ‘belief in each subgame of opponent rationality’).

2. Battigalli considers best responses given beliefs where opponent strate-
gies that are less than “most rational” are given positive probability,
while here each player certainly believes that the opponent is of an
admissibly subgame consistent type and believes that he chooses ra-
tionally.

This difference has the following consequences:
• Although Battigalli’s construction of a rationality ordering also pro-

motes the backward induction outcome in any generic perfect informa-
tion game, his proof (cf. Battigalli [12]) is not as directly tied to the
procedure of backward induction.

• Battigalli’s construction of a rationality ordering promotes the forward
induction outcome in an extended version of the “Battle-of-the-Sexes”
(BoS) game where the BoS game is preceded by 1 being offered an
outside option that is preferred by 1 to 2’s most preferred outcome in
the BoS game. This conclusion is not reached in the present analysis
(see Remark 3 of Sect. 5) since there is no choice situation in which 1
under all circumstances will have a particular preference between his
BoS strategies.15

This also implies that the epistemic foundation for backward induction of-
fered here differs from the epistemic foundation for backward (and forward)
induction provided by Battigalli & Siniscalchi [13].

Appendix. The Decision-Theoretic Framework

The purpose of this appendix is to present the decision-theoretic terminology,
notation and results utilized and referred to in the main text.

Consider a decision maker under uncertainty. Let F be a finite set of states,
where the decision maker is uncertain about what state in F will be realized. Let Z
be a finite set of outcomes. In the tradition of Anscombe & Aumann [1], the decision
maker is endowed with a binary relation over all functions that to each element of
F assigns an objective randomization on Z. Any such function xF : F → ∆(Z) is
called an act on F . Write xF and yF for acts on F . A reflexive and transitive binary
relation on the set of acts on F is denoted by F , where xF F yF means that xF

is preferred or indifferent to yF . As usual, let �F (preferred to) and ∼F (indifferent

15AD show how the concept of admissible consistency can be strengthened so that the
forward induction outcome is promoted in the BoS game with an outside option.
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to) denote the asymmetric and symmetric parts of F . A binary relation F on
the set of acts on F is said to satisfy

• objective independence if x′
F �F (respectively ∼F ) x′′

F iff γx′
F +(1−γ)yF �F

(respectively ∼F ) γx′′
F + (1− γ)yF , whenever 0 < γ < 1 and yF is arbitrary.

• nontriviality if there exist xF and yF such that xF �F yF .
• continuity if there exist 0 < γ < δ < 1 such that δx′

F + (1 − δ)x′′
F �F yF �F

γx′
F + (1 − γ)x′′

F whenever x′
F �F yF �F x′′

F .

If E ⊆ F , let xE denote the restriction of xF to E. Define the conditional binary
relation E by x′

F E x′′
F if, for arbitrary yF , (x′

E ,y−E) F (x′′
E ,y−E), where −E

denotes F\E. Say that the state f ∈ F is Savage-null if xF ∼{f} yF for all acts
xF and yF on F . A binary relation F is said to satisfy

• conditional completeness if, ∀f ∈ F , {f} is complete.
• conditional continuity if, ∀f ∈ F , there exist 0 < γ < δ < 1 such that
δx′

F +(1−δ)x′′
F �{f} yF �{f} γx′

F +(1−γ)x′′
F whenever x′

F �{f} yF �{f} x′′
F .

• non-null state independence if xF �{e} yF iff xF �{f} yF whenever e and f
are not Savage-null and xF and yF satisfy xF (e) = xF (f) and yF (e) = yF (f).

If e, f ∈ F and F is conditionally complete, then e is deemed infinitely more likely
than f (e � f) if e is not Savage-null and xF �{e} yF implies (x−{f},x′

{f}) �{e,f}
(y−{f},y′

{f}) for all x′
F , y′

F . According to this definition, f may, but need not, be
Savage-null if e � f . Say that yF is maximal w.r.t. E if there is no xF such that
xF �E yF .

If υ : Z → R is a vNM utility function, abuse notation slightly by writing
υ(x) =

∑
z∈Z x(z)υ(z) whenever x ∈ ∆(Z) is an objective randomization. Say

that xE strongly dominates yE if, ∀f ∈ E, υ(xE(f)) > υ(yE(f)). Say that xE

weakly dominates yE if, ∀f ∈ E, υ(xE(f)) ≥ υ(yE(f)), with strict inequality for
some e ∈ E. Say that F is admissible on E if xF �F yF whenever xE weakly
dominates yE .

The following two representation results can now be stated. The first one —
which follows directly from the von Neumann-Morgenstern theorem on expected
utility representation — requires the notion of conditional representation: Say that
F is conditionally represented by υ if (a) F is nontrivial and (b) xF {f} yF iff
υ(xF (f)) ≥ υ(yF (f)) whenever f is not Savage-null.

Proposition A1. If F is reflexive and transitive, and satisfies objective indepen-
dence, nontriviality, conditional completeness, conditional continuity, and non-null
state independence, then there exists a vNM utility function υ : Z → R such that
F is conditionally represented by υ.

The second result, due to Blume et al. ([18], Theorem 3.1), requires the notion
of a lexicographic probability system (LPS) which consists of L levels of subjective
probability distributions: If L ≥ 1 and, ∀, ∈ {1, . . . , L}, µ� ∈ ∆(F ), then λ =
(µ1, ..., µL) is an LPS on F . Let L∆(F ) denote the set of LPSs on F , and let, for
two utility vectors v and w, v ≥L w denote that, whenever w� > v�, there exists
,′ < , such that v�′ > w�′ .

Proposition A2. If F is complete and transitive, and satisfies objective indepen-
dence, nontriviality, conditional continuity, and non-null state independence, then
there exists a vNM utility function υ : Z → R and an LPS λ = (µ1, ..., µL) ∈ L∆(F )
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such that xF F yF iff(∑
f∈F

µ�(f)υ(xF (f))
)L

�=1
≥L

(∑
f∈F

µ�(f)υ(yF (f))
)L

�=1
.

If F = F1 × F2 and F is a binary relation on the set of acts on F , then say
that F1 is the marginal of F on F1 if, xF1 F1 yF1 iff xF F yF whenever
xF1(f1) = xF (f1, f2) and yF1(f1) = yF (f1, f2) for all (f1, f2).
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