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1 Introduction

In this paper we revisit a question posed by Mitra (1983): What patterns of pop-

ulation growth are consistent with the attainment of some well-known social ob-

jectives (i.e., maximin and classical utilitarianism) in the presence of exhaustible

resource constraints? Prior to Mitra’s (1983) investigation it was known—as shown

by Solow (1974) and Stiglitz (1974)—that non-decreasing per capita consumption

is infeasible under exponential population growth when exhaustible resources are

essential inputs in production and there is no technological progress. Mitra (1983),

however, established that non-decreasing per capita consumption is feasible under

quasi-arithmetic population growth1 in a discrete time version of the Cobb-Douglas

Dasgupta-Heal-Solow-Stiglitz (DHSS) model of capital accumulation and resource

depletion (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974).

Mitra (1983) analyzed this question without imposing a specific parametric struc-

ture on population growth, while considering quasi-arithmetic growth in examples.

Since in this paper we aim for explicit closed form solutions, we concentrate on

the case of quasi-arithmetic population growth. To further facilitate such tractabil-

ity, we consider the original continuous time version of the Cobb-Douglas DHSS

model. It is well-known that the Cobb-Douglas production function is of particular

interest in the context of the DHSS model since—in the case with no population

growth and no technological progress—it is the only CES specification that allows

for non-decreasing per capita consumption without making the resource inessential.

We illustrate in this paper the feasibility of paths with non-decreasing per capita

consumption in spite of population growth by presenting closed-form solutions. In

contrast to Mitra (1983), we also include the case of population decline. This paper

substantially extends Mitra’s (1983) analysis by showing the equivalence between

efficiency and constant (gross and net of population growth) savings rates, on the one

hand, and quasi-arithmetic population growth and the social objectives of maximin

and classical (undiscounted) utilitarianism, on the other hand.

In a neglected paper, Hoel (1977) provides—what appears to be—the first anal-

ysis of constant savings rates in the Cobb-Douglas DHSS model.2 He characterizes

paths arising from constant savings rates (also in the case with exponential tech-

nological progress), but does not discuss the optimality of such paths and does not

1See Definition 3 of Section 2.2 for the definition of quasi-arthmetic population growth.

2This may motivate the term “the Hoel rule” for such savings behavior.
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consider population growth. Conversely, Solow (1974) and Stiglitz (1974) (in the

case of maximin) and Dasgupta and Heal (1979, pp. 303–308) (in the case of clas-

sical utilitarianism) show that optimal growth paths may exhibit constant savings

rates in the Cobb-Douglas DHSS model, although they do not emphasize this prop-

erty. Recently, paths with constant savings rates in this particular model have at-

tracted some attention (Asheim and Buchholz, 2004; Hamilton and Withagen, 2004;

Pezzey, 2004). This paper presents a complete characterization of constant savings

rate paths in a setting with population growth—but without technological progress—

and emphasizes their relationship to the social objectives of maximin and classical

utilitarianism.

In the Cobb-Douglas DHSS model, the Hartwick rule—prescribing that resource

rents be reinvested in reproducible capital—entails a constant savings rate equaling

the constant relative functional share of resource input. An efficient path that

develops according to the Hartwick rule in a setting where there is no population

growth and no technological progress attains constant consumption and is a maximin

optimum. Moreover, since Hartwick’s (1977) original contribution, there has been

much interest in the converse result: whether a maximin objective leads to paths

following the Hartwick rule, and thus having a constant savings rate in this particular

model (Dixit, Hammond and Hoel, 1980; Withagen and Asheim, 1998; Mitra, 2002;

Withagen, Asheim and Buchholz, 2003; Buchholz, Dasgupta and Mitra, 2004). This

paper generalizes the literature on the Hartwick rule and its converse, by considering

also the case where population growth is non-zero and by including also classical

utilitarianism as an objective.3

Due to the Cobb-Douglas production function, the relative functional share of

capital is constant. It turns out to be a necessary condition for the existence of

paths with constant savings rates that the gross of population growth savings rate is

smaller than the relative functional share of capital. This means that the functional

share of capital must not only cover the accumulation of per capita capital, but

also the “drag” on per capita capital accumulation caused by population growth.

This paper thereby generalizes a well-known condition for the feasibility of positive

3Even though a path developing according to the Hartwick rule in the Cobb-Douglas DHSS

model has a constant savings rate, we refrain from referring to other constant savings rate paths as

paths following a “generalized” Hartwick’s rule. The reason is that the term ‘generalized Hartwick

rule’ has already been given a different meaning by Dixit, Hammond and Hoel (1980), namely that

the present value of net investments is constant (see also Hamilton, 1995; Asheim, Buchholz and

Withagen, 2003; Hamilton and Hartwick, 2005).
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constant consumption, shown by Solow (1974) and Stiglitz (1974) in the case with

no population growth and no technological progress.4

The paper is organized as follows. In Section 2 we introduce the model and

present preliminary results. In Section 3 we show that if an efficient path has

constant (gross and net of population growth) savings rates, then population growth

is quasi-arithmetic and the path is a maximin or classical utilitarian optimum. In

Section 4 we then establish a converse result: If a feasible path is optimal according

to maximin or classical utilitarianism (with constant elasticity of marginal utility)

under quasi-arithmetic population growth, then the (gross and net of population

growth) savings rates converge to constants asymptotically. In Section 5 we consider

quasi-arithmetic technological progress and show that the implications of this are

similar but not identical to quasi-arithmetic population decline. In Section 6 we end

by offering concluding remarks.

2 The setting

2.1 The model

Consider the Cobb-Douglas version of the DHSS model:

Q = AKαRβN1−α−β = C + I ,

where we denote by Q non-negative production, by A positive state of technology, by

K non-negative capital, by R non-negative resource input, by N positive population,

and by C non-negative consumption, and where I := K̇ and

α > 0 , β > 0 , α + β < 1 .

The assumption that α+β < 1 means that labor inputs are productive. Most results

hold also if α + β = 1. Let the lower-case variables, q, c, k, r, i, refer to per capita

values so that

q = Akαrβ = c + i = c + Ṅ
N k + k̇ . (1)

For exogenously given absolutely continuous paths of the state of technology

and population, {A(t)}∞t=0 and {N(t)}∞t=0, and positive initial stocks of capital and

4Stiglitz (1974) obtains the same result also for “steady state paths” in the case of exponential

population growth and exponential technological progress.
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resource, (K0, S0) À 0, the path {q(t), c(t), k(t), r(t)}∞t=0 is feasible if

N(0)k(0) = K0 (2)
∫ ∞

0
N(t)r(t)dt ≤ S0 (3)

are satisfied, and (1) holds for a.e. t > 0. We assume that {k(t)}∞t=0 is absolutely

continuous and that {q(t)}∞t=0, {c(t)}∞t=0, and {r(t)}∞t=0 are piecewise continuous (cf.

Seierstad and Sydsæter, 1987, pp. 72–73). Henceforth, a ‘path’ will always refer to a

feasible path. A path {q(t), c(t), k(t), r(t)}∞t=0 is interior if (q(t), c(t), k(t), r(t)) À 0

for a.e. t > 0.

Denote by ν(t) := Ṅ(t)/N(t) the rate of population growth. For an interior

path, denote by x(t) := k(t)/q(t) the capital-output ratio, and by z(t) := ν(t)x(t)

the “drag” on capital accumulation caused by population growth. Then

a(t) :=
i(t)
q(t)

b(t) :=
k̇(t)
q(t)

= a(t)− z(t) (4)

are the gross of population growth and net of population growth savings rates, re-

spectively (where the last equality in (4) follows from (1)).

2.2 Definitions

In Section 3 and 4 we show the equivalence between efficiency and constant (gross

and net of population growth) savings rates, on the one hand, and quasi-arithmetic

population growth and the social objectives of maximin and classical utilitarianism,

on the other hand. In this subsection we formally define these concepts.

Definition 1 The economy has constant gross of population growth savings rate if

a(t) = a∗, a constant, for all t > 0.

Definition 2 The economy has constant net of population growth savings rate if

b(t) = b∗, a constant, for all t > 0.

Definition 3 Population growth is quasi-arithmetic if N(t) = N(0)(1+µt)ϕ for all

t ≥ 0, where µ > 0 and ϕ are constants.
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Definition 4 A path {q(t), c(t), k(t), r(t)}∞t=0 is optimal under a maximin objective

if inft≥0 c(t) > 0 and
inft≥0 c(t) ≥ inft≥0 c̄(t)

for any path {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0.

Definition 5 A path {q(t), c(t), k(t), r(t)}∞t=0 is optimal under a classical utilitarian

objective with utility function u if

limsupT→∞

(∫ T

0
N(t)u(c̄(t))dt−

∫ T

0
N(t)u(c(t))dt

)
≤ 0

for any path {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0.

Definition 3 includes the cases where population grows (ϕ > 0), is constant

(ϕ = 0), and declines (ϕ < 0). With a constant population, the gross and and net of

population growth savings rates coincide. In this case, the assumption of a constant

savings rate has a long tradition in growth-theoretic literature. Note in particular

that, without population growth and with a constant savings rate, the model de-

scribed above coincides with a simple Solow-Swan model (Solow, 1956; Swan, 1956)

if β = 0. In the Cobb-Douglas version of the DHSS model, the assumption of a con-

stant savings rate (which does not necessarily equal β) was introduced and analyzed

by Hoel (1977).

With a growing population, it follows from Definition 3 that population is a

convex (concave) function of time if ϕ > 1 (0 < ϕ < 1). In either case, population

increases beyond all bounds, while the rate of population growth is a hyperbolic

function of time, approaching zero as time goes to infinity.

Definition 4 entails that a maximin optimum is non-trivial in the sense of main-

taining a positive per capita consumption level. When applying the classical utili-

tarian objective, we will assume constant elasticity of marginal utility:

u(c) = c1−η/(1− η) ,

where η > 0, with η = 1 corresponding to the case where u(c) = ln c.

2.3 Sufficient and necessary conditions for efficiency

A path is efficient if there is no path with at least as much consumption everywhere

and larger consumption on a subset of the time interval with positive measure. An

interior path satisfies the Hotelling rule if the inverse of the marginal productivity

of resource input
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p(t) :=
1

β q(t)
r(t)

(5)

is absolutely continuous and, for a.e. t > 0,

α
q(t)
k(t)

= − ṗ(t)
p(t)

. (6)

The Hotelling rule ensures no profitable arbitrage of resource input, and implies that

{q(t)}∞t=0 and {r(t)}∞t=0 are absolutely continuous. A path satisfies resource exhaus-

tion if (3) is binding. A path satisfies the capital value transversality condition if

limt→∞ p(t)N(t)k(t) = 0 . (7)

The following results provide sufficient and necessary conditions for the efficiency

of interior paths. The sufficiency result builds on Malinvaud (1953).

Lemma 1 Let {q(t), c(t), k(t), r(t)}∞t=0 be an interior path. The path {q(t), c(t), k(t),

r(t)}∞t=0 is efficient if it satisfies the Hotelling rule, resource exhaustion, and the

capital transversality condition.

Proof. By (5) and the fact that the path satisfies the Hotelling rule, it follows

that −ṗ/p = αq/k = αQ/K (i.e., the marginal product of capital) and 1/p = βq/r =

βQ/R (i.e., the marginal product of resource input). Hence, if Q̄ = AK̄αR̄βN1−α−β,

the concavity of the production function implies that

Q + ṗ
pK − 1

pR ≥ Q̄ + ṗ
pK̄ − 1

pR̄ ,

which can be rewritten (using Q = C + K̇ and Q̄ = C̄ + ˙̄K) as

p
(
C̄ − C

) ≤ − d
dt

(
p(K̄ −K)

)
+ R̄−R .

Let {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0 be any path. Then, for all T > 0, (by integrating

and using K(0) = K̄(0) = K0, C = Nc, C̄ = Nc̄, K = Nk, K̄ = Nk̄, R = Nr, and

R̄ = Nr̄)
∫ T

0
p(t)N(t)

(
c̄(t)− c(t)

)
dt

≤ p(T )N(T )
(
k(T )− k̄(T )

)
+

∫ T

0
N(t)(r̄(t)− r(t))dt .

(8)

It follows that {q(t), c(t), k(t), r(t)}∞t=0 is efficient since it satisfies resource exhaus-

tion and (7), while {r̄(t)}∞t=0 satisfies (3) and pNk̄ is non-negative.
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Lemma 2 Let {q(t), c(t), k(t), r(t)}∞t=0 be an interior path. If the path {q(t), c(t),
k(t), r(t)}∞t=0 is efficient, then it satisfies the Hotelling rule and resource exhaustion.

Proof. Suppose
∫∞
0 N(t)r(t)dt < S0. This obviously contradicts the efficiency

of {q(t), c(t), k(t), r(t)}∞t=0. Hence, the path satisfies resource exhaustion, and it also

solves the so-called minimum resource use problem, i.e., for any path {q̄(t), c(t), k̄(t),

r̄(t)}∞t=0 we have
∫∞
0 N(t)r̄(t)dt ≥ ∫∞

0 N(t)r(t)dt. The Hamiltonian of the minimum

resource use problem reads

H(c, k, r, t, λ) = −Nr + λ
(
Akαrβ − c− ν(t)k

)
.

The problem has an interior solution {q(t), c(t), k(t), r(t)}∞t=0 with {k(t)}∞t=0 be-

ing absolutely continuous and {r(t)}∞t=0 and {c(t)}∞t=0 being piecewise continuous.

Hence, among the necessary conditions we have that {λ(t)}∞t=0 is absolutely contin-

uous and
∂H

∂r
= 0 and

∂H

∂k
= −λ̇ ,

from which the Hotelling rule follows by setting λ(t) = p(t)N(t).

2.4 Sufficient conditions for optimality

An interior path satisfies the Ramsey rule if {c(t)}∞t=0 is absolutely continuous and,

for a.e. t > 0,

η
ċ(t)
c(t)

= α
q(t)
k(t)

, (9)

recalling our assumption that the elasticity of marginal utility is constant. The

Ramsey rule ensures no welfare enhancing arbitrage of consumption under classical

utilitarianism.

The following result provides sufficient conditions for the optimality of interior

paths.

Lemma 3 Let {q(t), c(t), k(t), r(t)}∞t=0 be an interior path that satisfies the Hotelling

rule, resource exhaustion, and the capital transversality condition. If {q(t), c(t), k(t),

r(t)}∞t=0 has constant per capita consumption, then it is the unique maximin opti-

mum. If {q(t), c(t), k(t), r(t)}∞t=0 satisfies the Ramsey rule, then it is the unique

classical utilitarian optimum.
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Proof. Maximin optimum. Let {q(t), c(t), k(t), r(t)}∞t=0 be an interior path sat-

isfying the Hotelling rule, resource exhaustion, and the capital transversality condi-

tion. By Lemma 1, {q(t), c(t), k(t), r(t)}∞t=0 is efficient. If the path has constant con-

sumption, then inft≥0 c(t) > 0 since the path is interior, and inft≥0 c(t) ≥ inft≥0 c̄(t)

for any path {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0 since the path is efficient.

Classical utilitarian optimum. Let {q(t), c(t), k(t), r(t)}∞t=0 be an interior path

satisfying the Hotelling rule, resource exhaustion, the capital transversality condi-

tion, and the Ramsey rule. Then

η
ċ(t)
c(t)

= − ṗ(t)
p(t)

for a.e. t > 0, and we obtain

c(t)−η = λ0p(t)

for all t ≥ 0 by setting λ0 = c(0)−η/p(0). Hence, with u(c) = c1−η/(1−η) and η > 0

(η = 1 corresponding to u(c) = ln c), u(c̄(t)) − u(c(t)) ≤ λ0p(t)
(
c̄(t) − c(t)

)
for all

t ≥ 0, and any {c̄(t)}∞t=0. It now follows from the proof of Lemma 1 that

limsupT→∞

(∫ T

0
N(t)

(
u(c̄(t))− u(c(t)

)
dt

)

≤ λ0 limsupT→∞

(∫ T

0
p(t)N(t)

(
c̄(t)− c(t)

)
dt

)
≤ 0

for any path {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0.

Uniqueness follows from the strict concavity of the production function. I.e.,

the inequality in (8) is strict if {q̄(t), c̄(t), k̄(t), r̄(t)}∞t=0 differs from {q(t), c(t), k(t),

r(t)}∞t=0 on a subset of [0, T ] with positive measure.

3 Sufficiency of constant savings rates

In this section we explore the properties of efficient paths with constant savings

rates in the case with a stationary technology (setting A(t) = 1 for all t > 0). We

establish the following two theorems.

Theorem 1 There exists an interior and efficient path with constant gross of pop-

ulation savings rate, a, and a constant net of population savings rate, b, if and only

if α > a and population growth is quasi-arithmetic with

9



µ = σ
[
(α− a)βKα−1

0 Sβ
0 N(0)1−α−β

] 1
1−β (10)

ϕ =
a− b

σ
(11)

where
σ =

(1− α− β)b + αβ

1− β
. (12)

Theorem 2 If an interior and efficient path has constant gross of population savings

rate, a, and a constant net of population savings rate, b, then the path is optimal

under a maximin objective if b = β and optimal under a classical utilitarian objective

with constant elasticity of marginal utility given by

η =
1− β

b− β
(13)

if b > β.

It will turn out to be useful to rearrange (12) as follows:

(1− β)(b− σ) = α(b− β) . (14)

To prove Theorems 1 and 2, we first report a proposition.

Proposition 1 For an interior path satisfying the Hotelling rule, the following

holds:

(a) The time derivative of the capital-output ratio, x, exists a.e. and is given by

ẋ(t) =
(1− α− β)b(t) + αβ

1− β
. (15)

(b) If the path has a constant net of population growth savings rate, b, then the

capital-output ratio is an affine function of time:

x(t) = x(0) + σt = x(0)(1 + µt) , (16)

where σ is given by (12) and

µ = σ
x(0) = σ q(0)

k(0) = σk(0)α−1r(0)β . (17)

(c) If the path has constant gross of population growth savings rate, a, and constant

net of population growth savings rate, b, then

(i) the path has quasi-arithmetic population growth with ϕ given by (11),

10



(ii) per capita output, consumption, capital stock and resource input are given

by
q(t) = q(0)(1 + µt)

b
σ
−1 , (18)

c(t) = (1− a)q(0)(1 + µt)
b
σ
−1 , (19)

k(t) = K0
N(0)(1 + µt)

b
σ , (20)

r(t) = r(0)(1 + µt)−
α−b

σ
−1 , (21)

Proof. Part (a). Since the path satisfies the Hotelling rule, {q(t)}∞t=0 and

{r(t)}∞t=0 are absolutely continuous. Feasibility (equation (1)) implies

q̇

q
= α

k̇

k
+ β

ṙ

r
. (22)

The Hotelling rule (equation (6)) implies

α
q

k
=

q̇

q
− ṙ

r
. (23)

By eliminating ṙ/r from (22) and (23) and rearranging, we obtain

k

q

(
k̇

k
− q̇

q

)
=

(1− α− β) k̇
q + αβ

1− β
.

Since, by the definition of x,

ẋ =
d

dt

(
k

q

)
=

k

q

(
k̇

k
− q̇

q

)
,

the result follows by applying (4).

Part (b). This follows from Part (a) through integration.

Part (c). Since z(t) = ν(t)x(t), it follows from (4) that

Ṅ(t)
N(t)

= ν(t) =
z(t)
x(t)

=
a− b

x(t)
. (24)

Hence,

N(t) = N(0)(1 + µt)
a−b

σ (25)

is obtained by solving (24) and applying (16), thus establishing (i).

Combining q(t) = k(t)/x(t), k̇(t) = bq(t), (15), and (12) yields

q̇(t)
q(t)

=
b− σ

x(t)
. (26)

11



By solving (26) and applying (16), we obtain (18). Furthermore, (19) follows from

(18) and c(t) = q(t)− i(t) = (1− a)q(t), while (20) follows from (2), (16), (18), and

k(t) = x(t)q(t). Note that it follows from (12) that q(t) and c(t) are increasing and

k(t) is a convex function of time if and only if b > β. Finally, since q(t) = k(t)αr(t)β

and (by applying (14)) (b/σ − 1− αb/σ)/β = −(α− b)/σ − 1, we obtain (21).

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. (Necessity.) Assume the existence of a path {q(t), c(t),
k(t), r(t)}∞t=0 that is interior and efficient with a constant gross of population savings

rate, a, and a constant net of population savings rate, b. Then, by Lemma 2, the path

satisfies the Hotelling rule (so, by Proposition 1, the path is partially characterized

by equations (25), (18)–(21)) and resource exhaustion.

Resource exhaustion combined with (25) and (21) yield

N(0)r(0)
∫ ∞

0
(1 + µt)−

α−a
σ
−1dt = S0 . (27)

This entails α > a and implies

r(0) =
µ(α− a)S0

σN(0)
, (28)

while it follows from (2) and (17) that

q(0) =
µK0

σN(0)
. (29)

With α > a, the parameter µ as given by (10) is determined by eliminating r(0)

from (17) and (28). In turn, this value of µ inserted in (29) determines q(0), and

inserted in (28) it determines r(0), giving closed form solutions for (18)–(21).

(Sufficiency.) Assume that α > a, and let population growth be quasi-arithmetic

with µ and ϕ given by (10)–(12). It has already been demonstrated that, with α > a

and such quasi-arithmetic population growth, there exists an interior path charac-

terized by equations (25), (18)–(21), and (28)–(29). This path satisfies resource

exhaustion and has a constant gross of population savings rate, a, and a constant

net of population savings rate, b. It remains to show that the path is efficient. Since

p(t) =
1

β q(t)
r(t)

= r(0)
βq(0)(1 + µt)−

α
σ ,

it follows from (18) and (20) that the Hotelling rule is satisfied and from (25) and

(20) that the capital value transversality condition is satisfied. Hence, by Lemma 1

the constructed path is efficient.

12



Proof of Theorem 2. By Theorem 1, the premise is not vacuous and any

path satisfying the premise is characterized by α > a, (10)–(12), (25), (18)–(21),

and (28)–(29), and satisfies the Hotelling rule, resource exhaustion, and the capital

transversality condition. We have two cases to consider.

Case 1: b = β. Since b = σ = β, it follows from (19) that per capita consumption

is constant. Since the path satisfies the Hotelling rule, resource exhaustion, and the

capital transversality condition, Lemma 3 implies that it is optimal under a maximin

objective.

Case 2: b > β. Since b > σ, it follows from (19) that per capita consumption

increases:
ċ(t)
c(t)

=
b− σ

x(t)
.

By (9) the Ramsey rule holds if η satisfies

α

ηx(t)
=

b− σ

x(t)
.

By eliminating σ by means of (14), we obtain that η is given by (13). Since the

path satisfies the Hotelling rule, resource exhaustion, and the capital transversality

condition, Lemma 3 implies that it is optimal under a classical utilitarian objective

with constant elasticity of marginal utility given by (13).

In the special case of a constant population (ϕ = 0), the results of Theorems

1 and 2 have been reported elsewhere. Hoel (1977) shows the result of Theorem 1

when ϕ = 0, or equivalently, a = b. Solow (1974, Sections 9–10) and Stiglitz (1974,

Propositions 5a and 5b) show that a = b = β corresponds to a maximin optimum,

thereby establishing maximin part of Theorem 2 when ϕ = 0. The utilitarian part

of Theorem 2 with zero population growth is implied by the analysis of Dasgupta

and Heal (1979, pp. 303–308).

The analysis of this section (see (18) and (20)) implies that per capita output is

an increasing function of time and per capita capital is a convex function of time if

b > β, corresponding to classical utilitarianism, while per capita output is constant

and per capita capital is a linear function if b = β, corresponding to maximin. In

either case, the capital-output ratio is a linear function of time (cf. (16)), and the

growth rates of per capita output and capital approach zero as time goes to infinity.

The path described in Proposition 1(c) can be used to illuminate the meaning of

the concept of a “genuine savings indicator” (cf. Hamilton, 1994) in the presence of

population growth. “Genuine savings” must be zero along the constant per capita

13



consumption path that is optimal under maximin. However, the value of changes in

per capita stocks, d(K/N)/dt + (1/p)d(S/N)/dt, equals

k̇(t)− 1
p(t)r(t)− ν(t)

p(t)

∫ ∞

t
r(τ)dτ =

(
1− 1− ν(t)σ

µ(α−a)

)
βq(t) = − ν(t)σ

µ(α−a)βq(t)

and is negative along the maximin path with positive quasi-arithmetic population

growth, as there is no compensation for the spread of the remaining resource stock

on more people. This illustrates the qualitative result obtained in Proposition 6 of

Asheim (2004), with the following intuitive interpretation: When the rate of popula-

tion growth is decreasing, it is not necessary for the current generation to compensate

fully for current population growth in order to ensure sustainable development.

Theorem 1 shows that the existence of an interior and efficient path with constant

savings rates does not only imply that population growth is quasi-arithmetic, but

also that the parameters of the exogenous population path satisfy (10)–(12). What

happens if population growth is quasi-arithmetic, but without satisfying the strong

parameter restrictions that (10)–(12) entail? This motivates the analysis of the

next section, where we consider optimal paths that has quasi-arithmetic population

growth satisfying a weak parameter restriction.

4 Necessity of constant savings rates

In this section we turn to a converse result that takes as its premise that paths have

quasi-arithmetic population growth and are optimal under a maximin or classical

utilitarian objective. We establish the following two theorems in the case with a

stationary technology (setting A(t) = 1 for all t > 0). Theorem 3 presents conditions

under which there exist paths having quasi-arithmetic population growth and being

optimal under a maximin or classical utilitarian objective, thereby establishing that

the premise is not vacuous. Theorem 4 shows that any such path has gross and net

of population growth savings rates that converge asymptotically to constants.

Theorem 3 Let population growth be quasi-arithmetic with

−1 ≤ ϕ < α
β − 1 . (30)

There exists a unique path that is optimal under a maximin objective. There exists

a unique path that is optimal under a classical utilitarian objective if the constant

elasticity of marginal utility satisfies

η > (1−β)+(1−α−β)ϕ
α−β(1+ϕ) . (31)

14



Theorem 4 If a path has quasi-arithmetic population growth satisfying (30) and

is optimal under a maximin objective or under a classical utilitarian objective with

constant elasticity of marginal utility satisfying (31), then the path is interior and

efficient, and the gross of population growth and net of population growth savings

rates converge asymptotically to the constants

a∗ = β(1 + ϕ) + (1−β)+(1−α−β)ϕ
η (32)

b∗ = β + 1−β
η . (33)

where η = ∞ corresponds to the maximin objective, and η < ∞ is the constant

elasticity of marginal utility under the classical utilitarian objective.

In the case with rapid population decline (i.e., ϕ < −1), the resource is not

essential: the initial stock of capital can give rise to positive and non-decreasing

consumption without resource inputs. Hence, since our purpose is to study savings

behavior under exhaustible resource constraints, we choose to exclude this case.

To prove Theorems 3 and 4, we first report two propositions, in which we consider

interior paths where the rate of per capita consumption growth is given by

ċ(t)
c(t)

=
α

ηx(t)
. (34)

Equation (34) includes the case of constant consumption by setting η = ∞.

Proposition 2 Consider an interior path that satisfies the Hotelling rule and has

quasi-arithmetic population growth with ϕ 6= 0. If the rate of per capita consumption

growth given by (34), then the gross of population growth savings rate, a(t), and the

“drag” on capital accumulation caused by population growth, z(t), are governed by

ȧ(t) = α(1−a(t))ν(t)
(1−β)z(t)

(
a(t)− z(t)−

(
β + 1−β

η

))
(35)

ż(t) = (1−α−β)ν(t)
(1−β)

(
a(t)−

(
1 + 1−β

(1−α−β)ϕ

)
z(t) + αβ

1−α−β

)
. (36)

Proof. First, note that it follows from k̇(t) = b(t)q(t) = b(t)k(t)/x(t) that

k̇(t)
k(t)

=
b(t)
x(t)

. (37)

Since 1− a(t) = c(t)/q(t) = c(t)x(t)/k(t), it follows that

ȧ(t)
1− a(t)

= − ċ(t)
c(t)

− ẋ(t)
x(t)

+
k̇(t)
k(t)

= α
(1−β)x(t)

(
b(t)−

(
β + 1−β

η

))
,
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where the last equation follows from (34), (15), and (37). Since b(t) = a(t) − z(t)

and z(t) = ν(t)x(t), we obtain (35) if ϕ 6= 0.

With quasi-arithmetic population growth, we have that ν(t) = ϕµ/(1 + µt) and

ν̇(t)
ν(t)

= −ν(t)
ϕ

(38)

if ϕ 6= 0. Since z(t) = ν(t)x(t) it follows from (15) and (38) that

ż(t) = ν(t)
(
ẋ(t) + ν̇(t)

ν(t)x(t)
)

= ν(t)
(

(1−α−β)b(t)+αβ
1−β − ν(t)x(t)

ϕ

)

if ϕ 6= 0. Since b(t) = a(t)− z(t) and z(t) = ν(t)x(t), we obtain (36).

Proposition 3 Let population growth be quasi-arithmetic with ϕ 6= 0 satisfying

(30) and assume that η = ∞ or η satisfies (31). There exists a path satisfying

resource exhaustion and equations (34), (35) and (36), and having the property that

the gross of population growth and net of population growth savings rates converge

asymptotically to the constants given by (32) and (33). This path is interior and

satisfies the Hotelling rule and the capital value transversality condition.

Proof. Let z∗ = a∗ − b∗ = βϕ + (1− α − β)ϕ/η, where a∗ and b∗ are given by

(32) and (33). Rewrite equations (35) and (36) as follows:

ȧ(t) = ν(t)f(a(t), z(t))

ż(t) = ν(t)g(a(t), z(t)) .

Then (a∗, z∗) is the (unique) solution to f(a, z) = g(a, z) = 0. For (a, z) such that

g(a, z) 6= 0, define

h(a, z) =
f(a, z)
g(a, z)

.

By L’Hôpital’s rule, lima→a∗ h(a, z∗) exists. Consider the differential equation

da

dz
= h(a, z) .

Fix (a0, z0) = (a∗, z∗). Solve the differential equation to find a function â(z) passing

through (a∗, z∗). The function â is uniquely determined, and it defines the stable

manifold in (a, z) space for a < 1 and z > 0 if ϕ > 0, and a < 1 and z < 0 if ϕ < 0.

This stable manifold is invariant with respect to time. A phase diagram analysis

is therefore warranted. If the pair (a(0), z(0)) of initial values is chosen on the
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Figure 1: Phase diagrams for ϕ < 0 and ϕ > 0.

manifold, convergence to (a∗, z∗) occurs. On the other hand, if the pair (a(0), z(0))

is chosen above or below the manifold, then (a(t), z(t) diverges. See Figure 1.

Since the converging path is interior and satisfies the Hotelling rule and the

capital transversality condition, it remains to be shown that the pair of initial values

can be chosen on the stable manifold such that exact resource exhaustion takes

place. For given K0 and N(0), there exists S∗0 such that (10)–(12) are satisfied when

a(t) = a∗ and b(t) = b∗ for all t. If S0 = S∗0 , then the path stays at (a∗, z∗) and

satisfies resource exhaustion by choosing a(0) = a∗ and z(0) = z∗. Refer to this

solution as the steady state path, and denote it by {q∗(t), c∗(t), k∗(t), r∗(t)}∞t=0.

If S0 6= S∗0 , then a converging path satisfies resource exhaustion only if the pair

(a(0), z(0)) of initial values does not equal (a∗, z∗). In terms of the original variables

of the model we can write

a(0) = 1− c(0)
q(0) = 1− c(0)

k(0)αr(0)β ,

z(0) = ν(0)x(0) = ν(0)k(0)
q(0) = ν(0)k(0)1−α

r(0)β ,
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implying that

c(0) = ν(0)k(0)
1− a(0)

z(0)
, (39)

r(0) =
(

ν(0)k(0)1−α 1
z(0)

)1/β

. (40)

Furthermore, (34) implies that

ċ(t)
c(t)

=
αν(t)

η

(
1

z(t)

)
, (41)

while it follows from (22), (15), and (37) that

ṙ(t)
r(t)

= −αν(t)
1− β

(
1− a(t)

z(t)
+ 1

)
. (42)

Finally, (35), (36), (40), and (42) imply that total resource extraction is a continuous

function of z(0).

Consider first the cases where ϕ > 0 and S0 6= S∗0 .

Let S0 > S∗0 . Choose a(0) < a∗ and z(0) < z∗ on the stable manifold leading to

(a∗, z∗) (i.e., a(0) = â(z(0))). By (39), initial consumption can be made arbitrarily

large by choosing z(0) sufficiently small. Since, by (41), consumption grows at least

as fast as in the steady state, total resource extraction can be made arbitrarily large

by choosing z(0) sufficiently small. Because total resource extraction is a continuous

function of z(0), it follows that there exists a pair (a(0), z(0)) on the stable manifold,

with a(0) < a∗ and z(0) < z∗, such that exact exhaustion of S0 takes place.

The case where ϕ > 0 and S0 < S∗0 is analogous, since, by (39), c(0) can be made

arbitrarily small by choosing z(0) sufficiently large.

Consider next the cases where ϕ < 0 and S0 6= S∗0 . In these cases, z < 0.

Let S0 > S∗0 . Since η = ∞ or, by (30) and (31), η > 1, it follows that β + (1 −
β)/η < 1. Hence, the stable manifold has the property that

lim
|z|→0

â(z) ≤ β + 1−β
η < 1 ; (43)

see the left panel of Figure 1. Choose a(0) < a∗ and |z(0)| < |z∗| on the stable

manifold leading to (a∗, z∗) (i.e., a(0) = â(z(0))). By (39) and (43), initial con-

sumption can be made arbitrarily large by choosing |z(0)| sufficiently small. Hence,

the argument above when ϕ > 0 goes through.

The case where ϕ < 0 and S0 < S∗0 is analogous, provided that we can show that

lim
|z|→∞

1− â(z)
|z| = 0 , (44)
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since then, by (39), c(0) can be made arbitrarily small by choosing |z(0)| sufficiently

large. This can be shown under −1 ≤ ϕ < 0 (implying by (30) and (31) that η > 1)

by transforming (35) and (36) to

d
dt

(
ln 1−a(t)

z(t)

)
= − ȧ(t)

1−a(t) − ż(t)
z(t) = ν(t)

(
1−a(t)

z(t) −
(
1− α

η

)
1

z(t) +
(
1 + 1

ϕ

))
(45)

d
dt

(
ln 1

z(t)

)
= − ż(t)

z(t) = ν(t)
(

1−α−β
1−β

1−a(t)
z(t) − (1− α) 1

z(t) +
(

1−α−β
1−β + 1

ϕ

))
. (46)

For suppose that (44) does not hold, i.e., lim sup|z|→∞(1− â(z))/|z| ≥ ε > 0. Then,

using (45) and (46), it can be shown that there exists a sufficiently large |z(0)| such

that the path with (â(z(0), z(0))) as initial values satisfies

1− a(t)
|z(t)| >

1− a∗

|z∗| and
d

dt

(
1− a(t)
|z(t)|

)
> 0

for all t beyond some T ≥ 0. This contradicts that, by definition of the function â,

any path with (â(z(0), z(0))) as initial values converges to (a∗, z∗).

We are now in a position to prove Theorems 3 and 4.

Proof of Theorem 3. Maximin. Case 1: ϕ = 0. Consider the path character-

ized by (10)–(12), (25), (18)–(21), (28)–(29), and a = b = β. Since 0 = ϕ < α/β− 1

and a = β, so that α > a, it follows from Theorem 1 that this zero population

growth path exists. Furthermore, it is an interior path that satisfies the Hotelling

rule, resource exhaustion, and the capital transversality condition, and has constant

per capita consumption. By Lemma 3, it is the unique maximin optimum.

Case 2: ϕ 6= 0. The path established in Proposition 3 with η = ∞ is an

interior path that satisfies the Hotelling rule, resource exhaustion, and the capital

transversality condition, and has constant per capita consumption. By Lemma 3, it

is the unique maximin optimum.

Classical utilitarianism. Case 1: ϕ = 0. Consider the path characterized by

(10)–(12), (25), (18)–(21), (28)–(29), and a = b = β + (1 − β)/η. Since 0 = ϕ <

α/β − 1, a = β + (1 − β)/η and η > (1 − β)/(α − β), so that α > a, it follows

from Theorem 1 that this zero population growth path exists. Furthermore, it

is an interior path that satisfies the Hotelling rule, resource exhaustion, the capital

transversality condition, and the Ramsey rule. By Lemma 3, it is the unique classical

utilitarian optimum.

Case 2: ϕ 6= 0. The path established in Proposition 3 with η satisfying (31)

is an interior path that satisfies the Hotelling rule, resource exhaustion, the capital
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transversality condition, and the Ramsey rule. By Lemma 3, it is the unique classical

utilitarian optimum.

Proof of Theorem 4. By Theorem 3, there exists a unique optimal path,

which is interior and (since it satisfies the Hotelling rule, resource exhaustion, and

the capital transversality condition) efficient. By Proposition 3 and the proof of

Theorem 3, the gross of population growth and net of population growth savings

rates along this path converge asymptotically to the constants given by (32) and

(33).

5 Quasi-arithmetic technological progress

As shown by Pezzey (2004), there exist constant savings rate paths also in the

case where technological progress is quasi-arithmetic, while population is constant,

provided that the quasi-arithmetic technological progress satisfies parameter restric-

tions. We include this case to

• provide a link between this paper’s main results and Pezzey’s (2004) analysis,

• demonstrate that such paths are maximin or classical utilitarian, and

• point out that quasi-arithmetic technological progress does not correspond to

quasi-arithmetic population decline.

Definition 6 Technological progress is quasi-arithmetic if A(t) = A(0)(1 + µt)θ for

all t ≥ 0, where µ > 0 and θ are constants.

We establish the following result in the case with a constant population (setting

N(t) = 1 for all t > 0). In this case, the gross and net of population growth

savings rates coincide; therefore we denote by s the constant savings rate (where

s = a = b). Also, since total and per capita values coincide, it follows that lower

case variables also correspond to total production, total consumption, total capital,

and total resource input.

Theorem 5 There exists an interior and efficient path with a constant savings rate,

s, if α > s and technological progress is quasi-arithmetic with µ and θ satisfying

(1− β + θ)µ =
(
(1− α− β)s + αβ

) [
(α− s)βA(0)Kα−1

0 Sβ
0

] 1
1−β

. (47)
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The path is optimal under a maximin objective if s = σ and optimal under a classical

utilitarian objective with constant elasticity of marginal utility given by

η =
α

s− σ
(48)

if s > σ, where

σ =
(1− α− β)s + αβ

1− β + θ
. (49)

Proof. For the first part of the theorem, assume that α > s, and let population

growth be quasi-arithmetic with µ and θ satisfying (47). With α > s and such

quasi-arithmetic technological progress, there exists a path characterized by

q(t) = q(0)(1 + µt)
s
σ
−1 , (50)

c(t) = (1− s)q(0)(1 + µt)
s
σ
−1 , (51)

k(t) = K0(1 + µt)
s
σ , (52)

r(t) = r(0)(1 + µt)−
α−s

σ
−1 , (53)

q(0) =
µK0

σ
, (54)

r(0) =
µ(α− s)S0

σ
, (55)

where σ is given by (49). To show this, take (50) as given. Then, (50) and c(t) =

q(t) − k̇(t) = (1 − s)q(t) imply (51). By letting the capital-output ratio x(t) =

k(t)/q(t) be given by

x(t) = x(0) + σt = x(0)(1 + µt) ,

so that

µ = σ
x(0) = σ q(0)

K0
= σA(0)Kα−1

0 r(0)β , (56)

we obtain (52) and (54). Finally, (53) follows from q(t) = A(t)k(t)αr(t)β by applying

(49), while (55) follows by, in addition, imposing resouce exhaustion. By eliminating

r(0) from (55) and (56), it follows that the path exists if α > s and the parameters

µ and θ satisfy (47).

The path is clearly interior. It remains to show that the path is efficient. Since

p(t) =
1

β q(t)
r(t)

= r(0)
βq(0)(1 + µt)−

α
σ ,

it follows from (50) and (52) that the Hotelling rule is satisfied and from (52) that

the capital value transversality condition is satisfied. Since, by construction, the

path satisfies resource exhaustion, Lemma 1 implies that it is efficient.
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For the second part of the theorem, we have two cases to consider.

Case 1: s = σ. It follows from (51) that per capita consumption is constant.

Since the path satisfies the Hotelling rule, resource exhaustion, and the capital

transversality condition, Lemma 3 implies that it is optimal under a maximin ob-

jective.

Case 2: s > σ. It follows from (51) that per capita consumption increases:

ċ(t)
c(t)

=
s− σ

x(t)
.

By (9) the Ramsey rule holds if η satisfies

α

ηx(t)
=

s− σ

x(t)
,

which implies (48). Since the path satisfies the Hotelling rule, resource exhaustion,

and the capital transversality condition, Lemma 3 implies that it is optimal under

a classical utilitarian objective with constant elasticity of marginal utility given by

(48).

The paths that Pezzey (2004) considers satisfy the sufficient conditions of Theo-

rem 5; this follows from straightforward but tedious calculations on the basis of his

equations (3)–(6) as well as the output expression on p. 476. Hence, it follows from

Theorem 5 that Pezzey’s paths are classical utilitarian in the case with increasing

consumption, an observation not made by Pezzey (2004).5 Also Hoel (1977) com-

bines a constant savings rate with technological progress. But since he considers

exponential technological progress, he obtains paths with different properties.

It follows from equations (50)–(55) that the path {q(t), c(t), k(t), r(t)}∞t=0 is as

given by (18)–(21) and (28)–(29), except for the change in the definition of σ (com-

pare (49) with (12)).

By (49), σ is increasing in s, with σ = (1 − β)/(1 − β + θ) if s = β. Hence, it

follows from the proof of Theorem 5 that non-decreasing consumption is feasible even

if less than all resource rents are reinvested (i.e., s < β), provided that there is quasi-

arithmetic technological progress, since with θ > 0 we may have that β > s ≥ σ. The

conditions s ≥ σ and (47) determine combinations of a constant savings rate and

quasi-arithmetic technological progress that ensure non-decreasing consumption.

5Instead, Pezzey (2004) shows optimality under discounted utilitarianism with a less concave

utility function and a positive and decreasing discount rate. Since the discount rate is a hyperbolic

function of absolute time, such a social objective is time-consistent, but not time-invariant.
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If θ = 0, then the conditions α > s and s ≥ σ reduce to the well-known condition

shown by Solow (1974) and Stiglitz (1974) for the Cobb-Douglas DHSS model in

the case with no population growth and no technological progress, namely α > β.

However, if θ > 0, then α > s and s ≥ σ are compatible with α < β since we may

have that β > s ≥ σ. Hence, non-decreasing consumption may be feasible even if

α < β.

The observations of the two previous paragraphs hold also in the case with a

stationary technology and quasi-arithmetic population decline: (1) Non-decreasing

per capita consumption may be feasible even if the gross of population growth savings

rate a is smaller than β. (2) Non-decreasing per capita consumption may be feasible

even if α < β. However, by comparing the analyses of Sections 3 and 5 (in particular,

observe that expressions (10)–(12) are different from expression (47)), it follows

that the situation with a constant population and quasi-arithmetic technological

progress is not a special case of the situation with a stationary technology and quasi-

arithmetic population decline, or vice versa. Even though in the former situation

production can be expressed as a function of capital and resource input in efficiency

units—corresponding in the latter situation to per capita production being a function

of per capita capita and per capita resource input—these two formulations do not

lead to an identical expression for capital accumulation.

6 Concluding remarks

To highlight the findings of the present paper we will contrast it with the results

obtained by Mitra (1983). He considers the same model, in discrete time, with a

nonrenewable natural resource and a Cobb-Douglas technology. However, he does

not a priori specify any specific functional form for the population growth. He

derives necessary and sufficient conditions for the existence of maximin and classical

utilitarian optima. To illustrate, Mitra (1983) employs quasi-arithmetic population

growth and derives restrictions on the corresponding parameters satisfying these

necessary and sufficient conditions. With this functional form for the population

growth, his conditions coincide with those derived here: in the case of maximin, he

states the conditions α > β (cf. condition (3.5a)) and ϕ < (α/β) − 1 (stated in

his Example 3.1); in the case of classical utilitarianism (with a constant elasticity

of marginal utility), he states the conditions α > β (cf. condition (4.1a)), η >
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(1− β)/(α− β) (cf. condition (4.1b)), and

ϕ <
α− β − 1−β

η

β + 1−α−β
η

(stated in his Example 4.1). These conditions can be seen to be reformulations of

our inequalities (30) and (31) in the case where population growth is constrained to

be non-negative (ϕ ≥ 0).

Our contribution goes beyond that of Mitra (1983): in a setting which includes

not only population growth, but also population decline, we have

• presented a complete characterization of paths with constant (gross and net

of population growth) savings rates under population growth;

• shown the equivalence between efficiency and constant savings rates, on the

one hand, and quasi-arithmetic population growth and the social objectives of

maximin and classical utilitarianism, on the other hand;

• generalized the literature on the Hartwick rule and its converse, by consider-

ing also the case where population growth is non-zero and by including also

classical utilitarianism as an objective.
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