

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Asheim, Geir B.; Buchholz, Wolfgang; Hartwick, John M.; Mitra, Tapan; Withagen, Cees

Working Paper Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

Memorandum, No. 2005,23

Provided in Cooperation with: Department of Economics, University of Oslo

Suggested Citation: Asheim, Geir B.; Buchholz, Wolfgang; Hartwick, John M.; Mitra, Tapan; Withagen, Cees (2005) : Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints, Memorandum, No. 2005,23, University of Oslo, Department of Economics, Oslo

This Version is available at: https://hdl.handle.net/10419/63135

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

MEMORANDUM

No 23/2005

This series i University Departmen	s published by the of Oslo t of Economics	In co-operation The Frisch Co Research	n with e ntre for Economic
P. O.Box 1095 Blindern		Gaustadalleén 21	
N-0317 OSLO Norway		N-0371 OSLO Norway	
Telephone:	+ 47 22855127	Telephone:	+47 22 95 88 20
Fax:	+ 47 22855035	Fax:	+47 22 95 88 25
Internet:	http://www.oekonomi.uio.no/	Internet:	http://www.frisch.uio.no/
e-mail:	econdep@econ.uio.no	e-mail:	frisch@frisch.uio.no

No	22	Ragnar Nymoen
		Evaluating a Central Bank's Recent Forecast Failure. 24 pp.
No	21	Tyra Ekhaugen
		Extracting the causal component from the intergenerational correlation in
		unemployment. 22 pp.
No	20	Knut Røed and Elisabeth Fevang
		Organisational Change, Absenteeism and Welfare Dependency. 41 pp.
No	19	Simen Gaure, Knut Røed and Tao Zhang
		Time and Causality: A Monte Carlo Assessment of the Timing-of-Events
		Approach. 58 pp.
No	18	Tyra Ekhaugen
		Immigrants on Welfare: Assimilation and Benefit Substitution. 35 pp
No	17	Oddbjørn Raaum, Jon Rogstad, Knut Røed and Lars Westlie
		Young and Out: An Application of a Prospects-Based Concept of Social
		Exclusion. 49 pp.
No	16	Michael Hoel
		Prioritizing public health expenditures when there is a private alternative.
		20 pp.
No	15	Hans Jarle Kind, Tore Nilssen and Lars Sørgard
		Advertising on TV: Under- or Overprovision?. 20 pp.
No	14	Olav Bjerkholt
		Markets, models and planning: the Norwegian experience. 34 pp.
No	13	Diderik Lund
		An analytical model of required returns to equity under taxation with
		imperfect loss offset.

List of the last 10 Memoranda:

A complete list of this memo-series is available in a PDF® format at: <u>http://www.oekonomi.uio.no/memo/</u>

Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints^{*}

Geir B. Asheim[†] Wolfgang Buchholz[‡] John M. Hartwick[§] Tapan Mitra[¶] Cees Withagen[∥]

September 10, 2005

Abstract

In the Dasgupta-Heal-Solow-Stiglitz model of capital accumulation and resource depletion we show the following equivalence: If an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a classical utilitarian optimum. Conversely, if a path is optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasiarithmetic population growth, then the (gross and net of population growth) savings rates converge asymptotically to constants.

Keywords and Phrases: Constant savings rate, quasi-arithmetic population growth

JEL Classification Numbers: O10, Q32

*We thank Lucas Bretschger, Michael Hoel and Jack Pezzey for helpful comments. Asheim and Buchholz gratefully acknowledge financial support from the Research Council of Norway (Ruhrgas grant).

[†]Department of Economics, University of Oslo, P.O. Box 1095 Blindern, 0317 Oslo, Norway (Email: g.b.asheim@econ.uio.no) Corresponding author

[‡]Department of Economics, University of Regensburg, 93040 Regensburg, Germany. (Email: wolfgang.buchholz@wiwi.uni-regensburg.de)

[§]Department of Economics, Queen's University, Kingston, Ontario, K7L 3N6, Canada (Email: hartwick@qed.econ.queensu.ca)

[¶]Department of Economics, 448 Uris Hall, Cornell University, Ithaca, New York 14853, USA (Email: tm19@cornell.edu)

^{||}Department of Economics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands, and Department of Economics, Free University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands (Email: cwithagen@feweb.vu.nl)

1 Introduction

In this paper we revisit a question posed by Mitra (1983): What patterns of population growth are consistent with the attainment of some well-known social objectives (i.e., maximin and classical utilitarianism) in the presence of exhaustible resource constraints? Prior to Mitra's (1983) investigation it was known—as shown by Solow (1974) and Stiglitz (1974)—that non-decreasing per capita consumption is infeasible under *exponential* population growth when exhaustible resources are essential inputs in production and there is no technological progress. Mitra (1983), however, established that non-decreasing per capita consumption is feasible under *quasi-arithmetic* population growth¹ in a discrete time version of the Cobb-Douglas Dasgupta-Heal-Solow-Stiglitz (DHSS) model of capital accumulation and resource depletion (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974).

Mitra (1983) analyzed this question without imposing a specific parametric structure on population growth, while considering quasi-arithmetic growth in examples. Since in this paper we aim for explicit closed form solutions, we concentrate on the case of quasi-arithmetic population growth. To further facilitate such tractability, we consider the original *continuous time* version of the Cobb-Douglas DHSS model. It is well-known that the Cobb-Douglas production function is of particular interest in the context of the DHSS model since—in the case with no population growth and no technological progress—it is the only CES specification that allows for non-decreasing per capita consumption without making the resource inessential.

We illustrate in this paper the feasibility of paths with non-decreasing per capita consumption in spite of population growth by presenting closed-form solutions. In contrast to Mitra (1983), we also include the case of population decline. This paper substantially extends Mitra's (1983) analysis by showing the equivalence between efficiency and constant (gross and net of population growth) savings rates, on the one hand, and quasi-arithmetic population growth and the social objectives of maximin and classical (undiscounted) utilitarianism, on the other hand.

In a neglected paper, Hoel (1977) provides—what appears to be—the first analysis of constant savings rates in the Cobb-Douglas DHSS model.² He characterizes paths arising from constant savings rates (also in the case with exponential technological progress), but does not discuss the optimality of such paths and does not

¹See Definition 3 of Section 2.2 for the definition of quasi-arthmetic population growth.

²This may motivate the term "the Hoel rule" for such savings behavior.

consider population growth. Conversely, Solow (1974) and Stiglitz (1974) (in the case of maximin) and Dasgupta and Heal (1979, pp. 303–308) (in the case of classical utilitarianism) show that optimal growth paths may exhibit constant savings rates in the Cobb-Douglas DHSS model, although they do not emphasize this property. Recently, paths with constant savings rates in this particular model have attracted some attention (Asheim and Buchholz, 2004; Hamilton and Withagen, 2004; Pezzey, 2004). This paper presents a complete characterization of constant savings rate paths in a setting with population growth—but without technological progress—and emphasizes their relationship to the social objectives of maximin and classical utilitarianism.

In the Cobb-Douglas DHSS model, the Hartwick rule—prescribing that resource rents be reinvested in reproducible capital—entails a constant savings rate equaling the constant relative functional share of resource input. An efficient path that develops according to the Hartwick rule in a setting where there is no population growth and no technological progress attains constant consumption and is a maximin optimum. Moreover, since Hartwick's (1977) original contribution, there has been much interest in the converse result: whether a maximin objective leads to paths following the Hartwick rule, and thus having a constant savings rate in this particular model (Dixit, Hammond and Hoel, 1980; Withagen and Asheim, 1998; Mitra, 2002; Withagen, Asheim and Buchholz, 2003; Buchholz, Dasgupta and Mitra, 2004). This paper generalizes the literature on the Hartwick rule and its converse, by considering also the case where population growth is non-zero and by including also classical utilitarianism as an objective.³

Due to the Cobb-Douglas production function, the relative functional share of capital is constant. It turns out to be a necessary condition for the existence of paths with constant savings rates that the gross of population growth savings rate is smaller than the relative functional share of capital. This means that the functional share of capital must not only cover the accumulation of per capita capital, but also the "drag" on per capita capital accumulation caused by population growth. This paper thereby generalizes a well-known condition for the feasibility of positive

³Even though a path developing according to the Hartwick rule in the Cobb-Douglas DHSS model has a constant savings rate, we refrain from referring to other constant savings rate paths as paths following a "generalized" Hartwick's rule. The reason is that the term 'generalized Hartwick rule' has already been given a different meaning by Dixit, Hammond and Hoel (1980), namely that the present value of net investments is constant (see also Hamilton, 1995; Asheim, Buchholz and Withagen, 2003; Hamilton and Hartwick, 2005).

constant consumption, shown by Solow (1974) and Stiglitz (1974) in the case with no population growth and no technological progress.⁴

The paper is organized as follows. In Section 2 we introduce the model and present preliminary results. In Section 3 we show that if an efficient path has constant (gross and net of population growth) savings rates, then population growth is quasi-arithmetic and the path is a maximin or classical utilitarian optimum. In Section 4 we then establish a converse result: If a feasible path is optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasi-arithmetic population growth, then the (gross and net of population growth) savings rates converge to constants asymptotically. In Section 5 we consider quasi-arithmetic technological progress and show that the implications of this are similar but not identical to quasi-arithmetic population decline. In Section 6 we end by offering concluding remarks.

2 The setting

2.1 The model

Consider the Cobb-Douglas version of the DHSS model:

$$Q = AK^{\alpha}R^{\beta}N^{1-\alpha-\beta} = C + I$$

where we denote by Q non-negative production, by A positive state of technology, by K non-negative capital, by R non-negative resource input, by N positive population, and by C non-negative consumption, and where $I := \dot{K}$ and

$$\alpha > 0 \,, \ \beta > 0 \,, \ \alpha + \beta < 1 \,.$$

The assumption that $\alpha + \beta < 1$ means that labor inputs are productive. Most results hold also if $\alpha + \beta = 1$. Let the lower-case variables, q, c, k, r, i, refer to per capita values so that

$$q = Ak^{\alpha}r^{\beta} = c + i = c + \frac{\dot{N}}{N}k + \dot{k}.$$
(1)

For exogenously given absolutely continuous paths of the state of technology and population, $\{A(t)\}_{t=0}^{\infty}$ and $\{N(t)\}_{t=0}^{\infty}$, and positive initial stocks of capital and

⁴Stiglitz (1974) obtains the same result also for "steady state paths" in the case of exponential population growth and exponential technological progress.

resource, $(K_0, S_0) \gg 0$, the path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is feasible if

$$N(0)k(0) = K_0 (2)$$

$$\int_0^\infty N(t)r(t)dt \le S_0 \tag{3}$$

are satisfied, and (1) holds for a.e. t > 0. We assume that $\{k(t)\}_{t=0}^{\infty}$ is absolutely continuous and that $\{q(t)\}_{t=0}^{\infty}$, $\{c(t)\}_{t=0}^{\infty}$, and $\{r(t)\}_{t=0}^{\infty}$ are piecewise continuous (cf. Seierstad and Sydsæter, 1987, pp. 72–73). Henceforth, a 'path' will always refer to a feasible path. A path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is interior if $(q(t), c(t), k(t), r(t)) \gg 0$ for a.e. t > 0.

Denote by $\nu(t) := \dot{N}(t)/N(t)$ the rate of population growth. For an interior path, denote by x(t) := k(t)/q(t) the capital-output ratio, and by $z(t) := \nu(t)x(t)$ the "drag" on capital accumulation caused by population growth. Then

$$a(t) := \frac{i(t)}{q(t)}$$

$$b(t) := \frac{\dot{k}(t)}{q(t)} = a(t) - z(t)$$
(4)

are the gross of population growth and net of population growth savings rates, respectively (where the last equality in (4) follows from (1)).

2.2 Definitions

In Section 3 and 4 we show the equivalence between efficiency and constant (gross and net of population growth) savings rates, on the one hand, and quasi-arithmetic population growth and the social objectives of maximin and classical utilitarianism, on the other hand. In this subsection we formally define these concepts.

Definition 1 The economy has constant gross of population growth savings rate if $a(t) = a^*$, a constant, for all t > 0.

Definition 2 The economy has constant net of population growth savings rate if $b(t) = b^*$, a constant, for all t > 0.

Definition 3 Population growth is *quasi-arithmetic* if $N(t) = N(0)(1 + \mu t)^{\varphi}$ for all $t \ge 0$, where $\mu > 0$ and φ are constants.

Definition 4 A path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is optimal under a maximin objective if $\inf_{t\geq 0} c(t) > 0$ and

$$\inf_{t \ge 0} c(t) \ge \inf_{t \ge 0} \bar{c}(t)$$

for any path $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$.

Definition 5 A path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is optimal under a *classical utilitarian* objective with utility function u if

$$\operatorname{limsup}_{T \to \infty} \left(\int_0^T N(t) u(\bar{c}(t)) dt - \int_0^T N(t) u(c(t)) dt \right) \le 0$$

for any path $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$.

Definition 3 includes the cases where population grows ($\varphi > 0$), is constant ($\varphi = 0$), and declines ($\varphi < 0$). With a constant population, the gross and and net of population growth savings rates coincide. In this case, the assumption of a constant savings rate has a long tradition in growth-theoretic literature. Note in particular that, without population growth and with a constant savings rate, the model described above coincides with a simple Solow-Swan model (Solow, 1956; Swan, 1956) if $\beta = 0$. In the Cobb-Douglas version of the DHSS model, the assumption of a constant savings rate (which does not necessarily equal β) was introduced and analyzed by Hoel (1977).

With a growing population, it follows from Definition 3 that population is a convex (concave) function of time if $\varphi > 1$ ($0 < \varphi < 1$). In either case, population increases beyond all bounds, while the rate of population growth is a hyperbolic function of time, approaching zero as time goes to infinity.

Definition 4 entails that a maximin optimum is non-trivial in the sense of maintaining a positive per capita consumption level. When applying the classical utilitarian objective, we will assume constant elasticity of marginal utility:

$$u(c) = c^{1-\eta}/(1-\eta),$$

where $\eta > 0$, with $\eta = 1$ corresponding to the case where $u(c) = \ln c$.

2.3 Sufficient and necessary conditions for efficiency

A path is *efficient* if there is no path with at least as much consumption everywhere and larger consumption on a subset of the time interval with positive measure. An interior path satisfies the *Hotelling rule* if the inverse of the marginal productivity of resource input

$$p(t) := \frac{1}{\beta \frac{q(t)}{r(t)}} \tag{5}$$

is absolutely continuous and, for a.e. t > 0,

$$\alpha \frac{q(t)}{k(t)} = -\frac{\dot{p}(t)}{p(t)}.$$
(6)

The Hotelling rule ensures no profitable arbitrage of resource input, and implies that $\{q(t)\}_{t=0}^{\infty}$ and $\{r(t)\}_{t=0}^{\infty}$ are absolutely continuous. A path satisfies resource exhaustion if (3) is binding. A path satisfies the capital value transversality condition if

$$\lim_{t \to \infty} p(t)N(t)k(t) = 0.$$
(7)

The following results provide sufficient and necessary conditions for the efficiency of interior paths. The sufficiency result builds on Malinvaud (1953).

Lemma 1 Let $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ be an interior path. The path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is efficient if it satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition.

Proof. By (5) and the fact that the path satisfies the Hotelling rule, it follows that $-\dot{p}/p = \alpha q/k = \alpha Q/K$ (i.e., the marginal product of capital) and $1/p = \beta q/r = \beta Q/R$ (i.e., the marginal product of resource input). Hence, if $\bar{Q} = A\bar{K}^{\alpha}\bar{R}^{\beta}N^{1-\alpha-\beta}$, the concavity of the production function implies that

$$Q + \frac{\dot{p}}{p}K - \frac{1}{p}R \ge \bar{Q} + \frac{\dot{p}}{p}\bar{K} - \frac{1}{p}\bar{R},$$

which can be rewritten (using $Q = C + \dot{K}$ and $\bar{Q} = \bar{C} + \dot{\bar{K}}$) as

$$p(\bar{C}-C) \leq -\frac{d}{dt}(p(\bar{K}-K)) + \bar{R} - R$$

Let $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$ be any path. Then, for all T > 0, (by integrating and using $K(0) = \bar{K}(0) = K_0$, C = Nc, $\bar{C} = N\bar{c}$, K = Nk, $\bar{K} = N\bar{k}$, R = Nr, and $\bar{R} = N\bar{r}$)

$$\int_{0}^{T} p(t)N(t) (\bar{c}(t) - c(t)) dt$$

$$\leq p(T)N(T) (k(T) - \bar{k}(T)) + \int_{0}^{T} N(t) (\bar{r}(t) - r(t)) dt.$$
(8)

It follows that $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is efficient since it satisfies resource exhaustion and (7), while $\{\bar{r}(t)\}_{t=0}^{\infty}$ satisfies (3) and $pN\bar{k}$ is non-negative.

Lemma 2 Let $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ be an interior path. If the path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is efficient, then it satisfies the Hotelling rule and resource exhaustion.

Proof. Suppose $\int_0^\infty N(t)r(t)dt < S_0$. This obviously contradicts the efficiency of $\{q(t), c(t), k(t), r(t)\}_{t=0}^\infty$. Hence, the path satisfies resource exhaustion, and it also solves the so-called *minimum resource use problem*, i.e., for any path $\{\bar{q}(t), c(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^\infty$ we have $\int_0^\infty N(t)\bar{r}(t)dt \ge \int_0^\infty N(t)r(t)dt$. The Hamiltonian of the minimum resource use problem reads

$$H(c,k,r,t,\lambda) = -Nr + \lambda \left(Ak^{\alpha}r^{\beta} - c - \nu(t)k\right) \,.$$

The problem has an interior solution $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ with $\{k(t)\}_{t=0}^{\infty}$ being absolutely continuous and $\{r(t)\}_{t=0}^{\infty}$ and $\{c(t)\}_{t=0}^{\infty}$ being piecewise continuous. Hence, among the necessary conditions we have that $\{\lambda(t)\}_{t=0}^{\infty}$ is absolutely continuous and

$$\frac{\partial H}{\partial r} = 0$$
 and $\frac{\partial H}{\partial k} = -\dot{\lambda}$,

from which the Hotelling rule follows by setting $\lambda(t) = p(t)N(t)$.

2.4 Sufficient conditions for optimality

An interior path satisfies the Ramsey rule if $\{c(t)\}_{t=0}^{\infty}$ is absolutely continuous and, for a.e. t > 0,

$$\eta \frac{\dot{c}(t)}{c(t)} = \alpha \frac{q(t)}{k(t)}, \qquad (9)$$

recalling our assumption that the elasticity of marginal utility is constant. The Ramsey rule ensures no welfare enhancing arbitrage of consumption under classical utilitarianism.

The following result provides sufficient conditions for the optimality of interior paths.

Lemma 3 Let $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ be an interior path that satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition. If $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ has constant per capita consumption, then it is the unique maximin optimum. If $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ satisfies the Ramsey rule, then it is the unique classical utilitarian optimum. **Proof.** Maximin optimum. Let $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ be an interior path satisfying the Hotelling rule, resource exhaustion, and the capital transversality condition. By Lemma 1, $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is efficient. If the path has constant consumption, then $\inf_{t\geq 0} c(t) > 0$ since the path is interior, and $\inf_{t\geq 0} c(t) \geq \inf_{t\geq 0} \bar{c}(t)$ for any path $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$ since the path is efficient.

Classical utilitarian optimum. Let $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ be an interior path satisfying the Hotelling rule, resource exhaustion, the capital transversality condition, and the Ramsey rule. Then

$$\eta \frac{\dot{c}(t)}{c(t)} = -\frac{\dot{p}(t)}{p(t)}$$

for a.e. t > 0, and we obtain

$$c(t)^{-\eta} = \lambda_0 p(t)$$

for all $t \ge 0$ by setting $\lambda_0 = c(0)^{-\eta}/p(0)$. Hence, with $u(c) = c^{1-\eta}/(1-\eta)$ and $\eta > 0$ $(\eta = 1 \text{ corresponding to } u(c) = \ln c), \ u(\bar{c}(t)) - u(c(t)) \le \lambda_0 p(t)(\bar{c}(t) - c(t))$ for all $t \ge 0$, and any $\{\bar{c}(t)\}_{t=0}^{\infty}$. It now follows from the proof of Lemma 1 that

$$\begin{split} \limsup_{T \to \infty} \left(\int_0^T N(t) \big(u(\bar{c}(t)) - u(c(t)) \big) dt \right) \\ &\leq \lambda_0 \operatorname{limsup}_{T \to \infty} \left(\int_0^T p(t) N(t) \big(\bar{c}(t) - c(t) \big) dt \right) \leq 0 \end{split}$$

for any path $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$.

Uniqueness follows from the strict concavity of the production function. I.e., the inequality in (8) is strict if $\{\bar{q}(t), \bar{c}(t), \bar{k}(t), \bar{r}(t)\}_{t=0}^{\infty}$ differs from $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ on a subset of [0, T] with positive measure.

3 Sufficiency of constant savings rates

In this section we explore the properties of efficient paths with constant savings rates in the case with a stationary technology (setting A(t) = 1 for all t > 0). We establish the following two theorems.

Theorem 1 There exists an interior and efficient path with constant gross of population savings rate, a, and a constant net of population savings rate, b, if and only if $\alpha > a$ and population growth is quasi-arithmetic with

$$\mu = \sigma \left[(\alpha - a)^{\beta} K_0^{\alpha - 1} S_0^{\beta} N(0)^{1 - \alpha - \beta} \right]^{\frac{1}{1 - \beta}}$$
(10)

$$\varphi = \frac{a-b}{\sigma} \tag{11}$$

where

$$\sigma = \frac{(1 - \alpha - \beta)b + \alpha\beta}{1 - \beta}.$$
 (12)

Theorem 2 If an interior and efficient path has constant gross of population savings rate, a, and a constant net of population savings rate, b, then the path is optimal under a maximin objective if $b = \beta$ and optimal under a classical utilitarian objective with constant elasticity of marginal utility given by

$$\eta = \frac{1-\beta}{b-\beta} \tag{13}$$

if $b > \beta$.

It will turn out to be useful to rearrange (12) as follows:

$$(1-\beta)(b-\sigma) = \alpha(b-\beta).$$
(14)

To prove Theorems 1 and 2, we first report a proposition.

Proposition 1 For an interior path satisfying the Hotelling rule, the following holds:

(a) The time derivative of the capital-output ratio, x, exists a.e. and is given by

$$\dot{x}(t) = \frac{(1 - \alpha - \beta)b(t) + \alpha\beta}{1 - \beta}.$$
(15)

(b) If the path has a constant net of population growth savings rate, b, then the capital-output ratio is an affine function of time:

$$x(t) = x(0) + \sigma t = x(0)(1 + \mu t), \qquad (16)$$

where σ is given by (12) and

$$\mu = \frac{\sigma}{x(0)} = \sigma \frac{q(0)}{k(0)} = \sigma k(0)^{\alpha - 1} r(0)^{\beta}.$$
 (17)

- (c) If the path has constant gross of population growth savings rate, a, and constant net of population growth savings rate, b, then
 - (i) the path has quasi-arithmetic population growth with φ given by (11),

(ii) per capita output, consumption, capital stock and resource input are given by

$$q(t) = q(0)(1+\mu t)^{\frac{b}{\sigma}-1},$$
(18)

$$c(t) = (1-a)q(0)(1+\mu t)^{\frac{b}{\sigma}-1},$$
(19)

$$k(t) = \frac{K_0}{N(0)} (1 + \mu t)^{\frac{b}{\sigma}} , \qquad (20)$$

$$r(t) = r(0)(1+\mu t)^{-\frac{\alpha-b}{\sigma}-1},$$
(21)

Proof. Part (a). Since the path satisfies the Hotelling rule, $\{q(t)\}_{t=0}^{\infty}$ and $\{r(t)\}_{t=0}^{\infty}$ are absolutely continuous. Feasibility (equation (1)) implies

$$\frac{\dot{q}}{q} = \alpha \frac{\dot{k}}{k} + \beta \frac{\dot{r}}{r} \,. \tag{22}$$

The Hotelling rule (equation (6)) implies

$$\alpha \frac{q}{k} = \frac{\dot{q}}{q} - \frac{\dot{r}}{r} \,. \tag{23}$$

۰.

By eliminating \dot{r}/r from (22) and (23) and rearranging, we obtain

$$\frac{k}{q}\left(\frac{\dot{k}}{k} - \frac{\dot{q}}{q}\right) = \frac{(1 - \alpha - \beta)\frac{\dot{k}}{q} + \alpha\beta}{1 - \beta}$$

Since, by the definition of x,

$$\dot{x} = \frac{d}{dt}\left(\frac{k}{q}\right) = \frac{k}{q}\left(\frac{\dot{k}}{k} - \frac{\dot{q}}{q}\right),$$

the result follows by applying (4).

Part (b). This follows from Part (a) through integration.

Part (c). Since $z(t) = \nu(t)x(t)$, it follows from (4) that

$$\frac{\dot{N}(t)}{N(t)} = \nu(t) = \frac{z(t)}{x(t)} = \frac{a-b}{x(t)}.$$
(24)

Hence,

$$N(t) = N(0)(1+\mu t)^{\frac{a-b}{\sigma}}$$
(25)

is obtained by solving (24) and applying (16), thus establishing (i).

Combining q(t) = k(t)/x(t), $\dot{k}(t) = bq(t)$, (15), and (12) yields

$$\frac{\dot{q}(t)}{q(t)} = \frac{b - \sigma}{x(t)} \,. \tag{26}$$

By solving (26) and applying (16), we obtain (18). Furthermore, (19) follows from (18) and c(t) = q(t) - i(t) = (1 - a)q(t), while (20) follows from (2), (16), (18), and k(t) = x(t)q(t). Note that it follows from (12) that q(t) and c(t) are increasing and k(t) is a convex function of time if and only if $b > \beta$. Finally, since $q(t) = k(t)^{\alpha}r(t)^{\beta}$ and (by applying (14)) $(b/\sigma - 1 - \alpha b/\sigma)/\beta = -(\alpha - b)/\sigma - 1$, we obtain (21).

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. (Necessity.) Assume the existence of a path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ that is interior and efficient with a constant gross of population savings rate, a, and a constant net of population savings rate, b. Then, by Lemma 2, the path satisfies the Hotelling rule (so, by Proposition 1, the path is partially characterized by equations (25), (18)–(21)) and resource exhaustion.

Resource exhaustion combined with (25) and (21) yield

$$N(0)r(0)\int_0^\infty (1+\mu t)^{-\frac{\alpha-a}{\sigma}-1}dt = S_0.$$
 (27)

This entails $\alpha > a$ and implies

$$r(0) = \frac{\mu(\alpha - a)S_0}{\sigma N(0)},$$
(28)

while it follows from (2) and (17) that

$$q(0) = \frac{\mu K_0}{\sigma N(0)} \,. \tag{29}$$

With $\alpha > a$, the parameter μ as given by (10) is determined by eliminating r(0) from (17) and (28). In turn, this value of μ inserted in (29) determines q(0), and inserted in (28) it determines r(0), giving closed form solutions for (18)–(21).

(Sufficiency.) Assume that $\alpha > a$, and let population growth be quasi-arithmetic with μ and φ given by (10)–(12). It has already been demonstrated that, with $\alpha > a$ and such quasi-arithmetic population growth, there exists an interior path characterized by equations (25), (18)–(21), and (28)–(29). This path satisfies resource exhaustion and has a constant gross of population savings rate, a, and a constant net of population savings rate, b. It remains to show that the path is efficient. Since

$$p(t) = \frac{1}{\beta \frac{q(t)}{r(t)}} = \frac{r(0)}{\beta q(0)} (1 + \mu t)^{-\frac{\alpha}{\sigma}},$$

it follows from (18) and (20) that the Hotelling rule is satisfied and from (25) and (20) that the capital value transversality condition is satisfied. Hence, by Lemma 1 the constructed path is efficient. \blacksquare

Proof of Theorem 2. By Theorem 1, the premise is not vacuous and any path satisfying the premise is characterized by $\alpha > a$, (10)–(12), (25), (18)–(21), and (28)–(29), and satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition. We have two cases to consider.

Case 1: $b = \beta$. Since $b = \sigma = \beta$, it follows from (19) that per capita consumption is constant. Since the path satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 3 implies that it is optimal under a maximin objective.

Case 2: $b > \beta$. Since $b > \sigma$, it follows from (19) that per capita consumption increases:

$$\frac{\dot{c}(t)}{c(t)} = \frac{b-\sigma}{x(t)} \,.$$

By (9) the Ramsey rule holds if η satisfies

$$\frac{\alpha}{\eta x(t)} = \frac{b - \sigma}{x(t)}$$

By eliminating σ by means of (14), we obtain that η is given by (13). Since the path satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 3 implies that it is optimal under a classical utilitarian objective with constant elasticity of marginal utility given by (13).

In the special case of a constant population ($\varphi = 0$), the results of Theorems 1 and 2 have been reported elsewhere. Hoel (1977) shows the result of Theorem 1 when $\varphi = 0$, or equivalently, a = b. Solow (1974, Sections 9–10) and Stiglitz (1974, Propositions 5a and 5b) show that $a = b = \beta$ corresponds to a maximin optimum, thereby establishing maximin part of Theorem 2 when $\varphi = 0$. The utilitarian part of Theorem 2 with zero population growth is implied by the analysis of Dasgupta and Heal (1979, pp. 303–308).

The analysis of this section (see (18) and (20)) implies that per capita output is an increasing function of time and per capita capital is a convex function of time if $b > \beta$, corresponding to classical utilitarianism, while per capita output is constant and per capita capital is a linear function if $b = \beta$, corresponding to maximin. In either case, the capital-output ratio is a linear function of time (cf. (16)), and the growth rates of per capita output and capital approach zero as time goes to infinity.

The path described in Proposition 1(c) can be used to illuminate the meaning of the concept of a "genuine savings indicator" (cf. Hamilton, 1994) in the presence of population growth. "Genuine savings" must be zero along the constant per capita consumption path that is optimal under maximin. However, the value of changes in per capita stocks, d(K/N)/dt + (1/p)d(S/N)/dt, equals

$$\dot{k}(t) - \frac{1}{p(t)}r(t) - \frac{\nu(t)}{p(t)} \int_t^\infty r(\tau)d\tau = \left(1 - 1 - \frac{\nu(t)\sigma}{\mu(\alpha - a)}\right)\beta q(t) = -\frac{\nu(t)\sigma}{\mu(\alpha - a)}\beta q(t)$$

and is negative along the maximin path with positive quasi-arithmetic population growth, as there is no compensation for the spread of the remaining resource stock on more people. This illustrates the qualitative result obtained in Proposition 6 of Asheim (2004), with the following intuitive interpretation: When the rate of population growth is decreasing, it is not necessary for the current generation to compensate fully for current population growth in order to ensure sustainable development.

Theorem 1 shows that the existence of an interior and efficient path with constant savings rates does not only imply that population growth is quasi-arithmetic, but also that the parameters of the exogenous population path satisfy (10)-(12). What happens if population growth is quasi-arithmetic, but without satisfying the strong parameter restrictions that (10)-(12) entail? This motivates the analysis of the next section, where we consider optimal paths that has quasi-arithmetic population growth satisfying a weak parameter restriction.

4 Necessity of constant savings rates

In this section we turn to a converse result that takes as its premise that paths have quasi-arithmetic population growth and are optimal under a maximin or classical utilitarian objective. We establish the following two theorems in the case with a stationary technology (setting A(t) = 1 for all t > 0). Theorem 3 presents conditions under which there exist paths having quasi-arithmetic population growth and being optimal under a maximin or classical utilitarian objective, thereby establishing that the premise is not vacuous. Theorem 4 shows that any such path has gross and net of population growth savings rates that converge asymptotically to constants.

Theorem 3 Let population growth be quasi-arithmetic with

$$-1 \le \varphi < \frac{\alpha}{\beta} - 1. \tag{30}$$

There exists a unique path that is optimal under a maximin objective. There exists a unique path that is optimal under a classical utilitarian objective if the constant elasticity of marginal utility satisfies

$$\eta > \frac{(1-\beta)+(1-\alpha-\beta)\varphi}{\alpha-\beta(1+\varphi)} \,. \tag{31}$$

Theorem 4 If a path has quasi-arithmetic population growth satisfying (30) and is optimal under a maximin objective or under a classical utilitarian objective with constant elasticity of marginal utility satisfying (31), then the path is interior and efficient, and the gross of population growth and net of population growth savings rates converge asymptotically to the constants

$$a^* = \beta(1+\varphi) + \frac{(1-\beta)+(1-\alpha-\beta)\varphi}{\eta}$$
(32)

$$b^* = \beta + \frac{1-\beta}{n} \,. \tag{33}$$

where $\eta = \infty$ corresponds to the maximin objective, and $\eta < \infty$ is the constant elasticity of marginal utility under the classical utilitarian objective.

In the case with rapid population decline (i.e., $\varphi < -1$), the resource is not essential: the initial stock of capital can give rise to positive and non-decreasing consumption without resource inputs. Hence, since our purpose is to study savings behavior under exhaustible resource constraints, we choose to exclude this case.

To prove Theorems 3 and 4, we first report two propositions, in which we consider interior paths where the rate of per capita consumption growth is given by

$$\frac{\dot{c}(t)}{c(t)} = \frac{\alpha}{\eta x(t)} \,. \tag{34}$$

Equation (34) includes the case of constant consumption by setting $\eta = \infty$.

Proposition 2 Consider an interior path that satisfies the Hotelling rule and has quasi-arithmetic population growth with $\varphi \neq 0$. If the rate of per capita consumption growth given by (34), then the gross of population growth savings rate, a(t), and the "drag" on capital accumulation caused by population growth, z(t), are governed by

$$\dot{a}(t) = \frac{\alpha(1-a(t))\nu(t)}{(1-\beta)z(t)} \left(a(t) - z(t) - \left(\beta + \frac{1-\beta}{\eta}\right) \right)$$
(35)

$$\dot{z}(t) = \frac{(1-\alpha-\beta)\nu(t)}{(1-\beta)} \left(a(t) - \left(1 + \frac{1-\beta}{(1-\alpha-\beta)\varphi}\right) z(t) + \frac{\alpha\beta}{1-\alpha-\beta} \right) \,. \tag{36}$$

Proof. First, note that it follows from $\dot{k}(t) = b(t)q(t) = b(t)k(t)/x(t)$ that

$$\frac{\dot{k}(t)}{k(t)} = \frac{b(t)}{x(t)}.$$
(37)

Since 1 - a(t) = c(t)/q(t) = c(t)x(t)/k(t), it follows that

$$\frac{\dot{a}(t)}{1-a(t)} = -\frac{\dot{c}(t)}{c(t)} - \frac{\dot{x}(t)}{x(t)} + \frac{k(t)}{k(t)}$$
$$= \frac{\alpha}{(1-\beta)x(t)} \left(b(t) - \left(\beta + \frac{1-\beta}{\eta}\right) \right) \,,$$

where the last equation follows from (34), (15), and (37). Since b(t) = a(t) - z(t)and $z(t) = \nu(t)x(t)$, we obtain (35) if $\varphi \neq 0$.

With quasi-arithmetic population growth, we have that $\nu(t) = \varphi \mu / (1 + \mu t)$ and

$$\frac{\dot{\nu}(t)}{\nu(t)} = -\frac{\nu(t)}{\varphi} \tag{38}$$

if $\varphi \neq 0$. Since $z(t) = \nu(t)x(t)$ it follows from (15) and (38) that

$$\dot{z}(t) = \nu(t) \left(\dot{x}(t) + \frac{\dot{\nu}(t)}{\nu(t)} x(t) \right) = \nu(t) \left(\frac{(1 - \alpha - \beta)b(t) + \alpha\beta}{1 - \beta} - \frac{\nu(t)x(t)}{\varphi} \right)$$

if $\varphi \neq 0$. Since b(t) = a(t) - z(t) and $z(t) = \nu(t)x(t)$, we obtain (36).

Proposition 3 Let population growth be quasi-arithmetic with $\varphi \neq 0$ satisfying (30) and assume that $\eta = \infty$ or η satisfies (31). There exists a path satisfying resource exhaustion and equations (34), (35) and (36), and having the property that the gross of population growth and net of population growth savings rates converge asymptotically to the constants given by (32) and (33). This path is interior and satisfies the Hotelling rule and the capital value transversality condition.

Proof. Let $z^* = a^* - b^* = \beta \varphi + (1 - \alpha - \beta) \varphi / \eta$, where a^* and b^* are given by (32) and (33). Rewrite equations (35) and (36) as follows:

$$\begin{split} \dot{a}(t) &= \nu(t) f(a(t), z(t)) \\ \dot{z}(t) &= \nu(t) g(a(t), z(t)) \,. \end{split}$$

Then (a^*, z^*) is the (unique) solution to f(a, z) = g(a, z) = 0. For (a, z) such that $g(a, z) \neq 0$, define

$$h(a,z) = \frac{f(a,z)}{g(a,z)}.$$

By L'Hôpital's rule, $\lim_{a\to a^*} h(a, z^*)$ exists. Consider the differential equation

$$\frac{da}{dz} = h(a, z)$$

Fix $(a_0, z_0) = (a^*, z^*)$. Solve the differential equation to find a function $\hat{a}(z)$ passing through (a^*, z^*) . The function \hat{a} is uniquely determined, and it defines the stable manifold in (a, z) space for a < 1 and z > 0 if $\varphi > 0$, and a < 1 and z < 0 if $\varphi < 0$. This stable manifold is invariant with respect to time. A phase diagram analysis is therefore warranted. If the pair (a(0), z(0)) of initial values is chosen on the

Figure 1: Phase diagrams for $\varphi < 0$ and $\varphi > 0$.

manifold, convergence to (a^*, z^*) occurs. On the other hand, if the pair (a(0), z(0)) is chosen above or below the manifold, then (a(t), z(t)) diverges. See Figure 1.

Since the converging path is interior and satisfies the Hotelling rule and the capital transversality condition, it remains to be shown that the pair of initial values can be chosen on the stable manifold such that exact resource exhaustion takes place. For given K_0 and N(0), there exists S_0^* such that (10)–(12) are satisfied when $a(t) = a^*$ and $b(t) = b^*$ for all t. If $S_0 = S_0^*$, then the path stays at (a^*, z^*) and satisfies resource exhaustion by choosing $a(0) = a^*$ and $z(0) = z^*$. Refer to this solution as the steady state path, and denote it by $\{q^*(t), c^*(t), k^*(t), r^*(t)\}_{t=0}^{\infty}$.

If $S_0 \neq S_0^*$, then a converging path satisfies resource exhaustion only if the pair (a(0), z(0)) of initial values does not equal (a^*, z^*) . In terms of the original variables of the model we can write

$$\begin{aligned} a(0) &= 1 - \frac{c(0)}{q(0)} = 1 - \frac{c(0)}{k(0)^{\alpha} r(0)^{\beta}} \,, \\ z(0) &= \nu(0) x(0) = \nu(0) \frac{k(0)}{q(0)} = \nu(0) \frac{k(0)^{1-\alpha}}{r(0)^{\beta}} \,, \end{aligned}$$

implying that

$$c(0) = \nu(0)k(0)\frac{1-a(0)}{z(0)},$$
(39)

$$r(0) = \left(\nu(0)k(0)^{1-\alpha} \frac{1}{z(0)}\right)^{1/\beta}.$$
(40)

Furthermore, (34) implies that

$$\frac{\dot{c}(t)}{c(t)} = \frac{\alpha\nu(t)}{\eta} \left(\frac{1}{z(t)}\right),\tag{41}$$

while it follows from (22), (15), and (37) that

$$\frac{\dot{r}(t)}{r(t)} = -\frac{\alpha\nu(t)}{1-\beta} \left(\frac{1-a(t)}{z(t)} + 1\right) \,. \tag{42}$$

Finally, (35), (36), (40), and (42) imply that total resource extraction is a continuous function of z(0).

Consider first the cases where $\varphi > 0$ and $S_0 \neq S_0^*$.

Let $S_0 > S_0^*$. Choose $a(0) < a^*$ and $z(0) < z^*$ on the stable manifold leading to (a^*, z^*) (i.e., $a(0) = \hat{a}(z(0))$). By (39), initial consumption can be made arbitrarily large by choosing z(0) sufficiently small. Since, by (41), consumption grows at least as fast as in the steady state, total resource extraction can be made arbitrarily large by choosing z(0) sufficiently small. Because total resource extraction is a continuous function of z(0), it follows that there exists a pair (a(0), z(0)) on the stable manifold, with $a(0) < a^*$ and $z(0) < z^*$, such that exact exhaustion of S_0 takes place.

The case where $\varphi > 0$ and $S_0 < S_0^*$ is analogous, since, by (39), c(0) can be made arbitrarily small by choosing z(0) sufficiently large.

Consider next the cases where $\varphi < 0$ and $S_0 \neq S_0^*$. In these cases, z < 0.

Let $S_0 > S_0^*$. Since $\eta = \infty$ or, by (30) and (31), $\eta > 1$, it follows that $\beta + (1 - \beta)/\eta < 1$. Hence, the stable manifold has the property that

$$\lim_{|z|\to 0} \hat{a}(z) \le \beta + \frac{1-\beta}{\eta} < 1;$$
(43)

see the left panel of Figure 1. Choose $a(0) < a^*$ and $|z(0)| < |z^*|$ on the stable manifold leading to (a^*, z^*) (i.e., $a(0) = \hat{a}(z(0))$). By (39) and (43), initial consumption can be made arbitrarily large by choosing |z(0)| sufficiently small. Hence, the argument above when $\varphi > 0$ goes through.

The case where $\varphi < 0$ and $S_0 < S_0^*$ is analogous, provided that we can show that

$$\lim_{|z| \to \infty} \frac{1 - \hat{a}(z)}{|z|} = 0,$$
(44)

since then, by (39), c(0) can be made arbitrarily small by choosing |z(0)| sufficiently large. This can be shown under $-1 \leq \varphi < 0$ (implying by (30) and (31) that $\eta > 1$) by transforming (35) and (36) to

$$\frac{d}{dt} \left(\ln \frac{1-a(t)}{z(t)} \right) = -\frac{\dot{a}(t)}{1-a(t)} - \frac{\dot{z}(t)}{z(t)} = \nu(t) \left(\frac{1-a(t)}{z(t)} - \left(1 - \frac{\alpha}{\eta} \right) \frac{1}{z(t)} + \left(1 + \frac{1}{\varphi} \right) \right)$$
(45)

$$\frac{d}{dt}\left(\ln\frac{1}{z(t)}\right) = -\frac{\dot{z}(t)}{z(t)} = \nu(t)\left(\frac{1-\alpha-\beta}{1-\beta}\frac{1-a(t)}{z(t)} - (1-\alpha)\frac{1}{z(t)} + \left(\frac{1-\alpha-\beta}{1-\beta} + \frac{1}{\varphi}\right)\right).$$
 (46)

For suppose that (44) does not hold, i.e., $\limsup_{|z|\to\infty} (1-\hat{a}(z))/|z| \ge \epsilon > 0$. Then, using (45) and (46), it can be shown that there exists a sufficiently large |z(0)| such that the path with $(\hat{a}(z(0), z(0)))$ as initial values satisfies

$$\frac{1-a(t)}{|z(t)|} > \frac{1-a^*}{|z^*|} \quad \text{and} \quad \frac{d}{dt} \left(\frac{1-a(t)}{|z(t)|} \right) > 0$$

for all t beyond some $T \ge 0$. This contradicts that, by definition of the function \hat{a} , any path with $(\hat{a}(z(0), z(0)))$ as initial values converges to (a^*, z^*) .

We are now in a position to prove Theorems 3 and 4.

Proof of Theorem 3. Maximin. Case 1: $\varphi = 0$. Consider the path characterized by (10)–(12), (25), (18)–(21), (28)–(29), and $a = b = \beta$. Since $0 = \varphi < \alpha/\beta - 1$ and $a = \beta$, so that $\alpha > a$, it follows from Theorem 1 that this zero population growth path exists. Furthermore, it is an interior path that satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, and has constant per capita consumption. By Lemma 3, it is the unique maximin optimum.

Case 2: $\varphi \neq 0$. The path established in Proposition 3 with $\eta = \infty$ is an interior path that satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, and has constant per capita consumption. By Lemma 3, it is the unique maximin optimum.

Classical utilitarianism. Case 1: $\varphi = 0$. Consider the path characterized by (10)–(12), (25), (18)–(21), (28)–(29), and $a = b = \beta + (1 - \beta)/\eta$. Since $0 = \varphi < \alpha/\beta - 1$, $a = \beta + (1 - \beta)/\eta$ and $\eta > (1 - \beta)/(\alpha - \beta)$, so that $\alpha > a$, it follows from Theorem 1 that this zero population growth path exists. Furthermore, it is an interior path that satisfies the Hotelling rule, resource exhaustion, the capital transversality condition, and the Ramsey rule. By Lemma 3, it is the unique classical utilitarian optimum.

Case 2: $\varphi \neq 0$. The path established in Proposition 3 with η satisfying (31) is an interior path that satisfies the Hotelling rule, resource exhaustion, the capital

transversality condition, and the Ramsey rule. By Lemma 3, it is the unique classical utilitarian optimum. ■

Proof of Theorem 4. By Theorem 3, there exists a unique optimal path, which is interior and (since it satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition) efficient. By Proposition 3 and the proof of Theorem 3, the gross of population growth and net of population growth savings rates along this path converge asymptotically to the constants given by (32) and (33).

5 Quasi-arithmetic technological progress

As shown by Pezzey (2004), there exist constant savings rate paths also in the case where technological progress is quasi-arithmetic, while population is constant, provided that the quasi-arithmetic technological progress satisfies parameter restrictions. We include this case to

- provide a link between this paper's main results and Pezzey's (2004) analysis,
- demonstrate that such paths are maximin or classical utilitarian, and
- point out that quasi-arithmetic technological progress does not correspond to quasi-arithmetic population decline.

Definition 6 Technological progress is *quasi-arithmetic* if $A(t) = A(0)(1 + \mu t)^{\theta}$ for all $t \ge 0$, where $\mu > 0$ and θ are constants.

We establish the following result in the case with a constant population (setting N(t) = 1 for all t > 0). In this case, the gross and net of population growth savings rates coincide; therefore we denote by s the constant savings rate (where s = a = b). Also, since total and per capita values coincide, it follows that lower case variables also correspond to total production, total consumption, total capital, and total resource input.

Theorem 5 There exists an interior and efficient path with a constant savings rate, s, if $\alpha > s$ and technological progress is quasi-arithmetic with μ and θ satisfying

$$(1-\beta+\theta)\mu = \left((1-\alpha-\beta)s+\alpha\beta\right)\left[(\alpha-s)^{\beta}A(0)K_{0}^{\alpha-1}S_{0}^{\beta}\right]^{\frac{1}{1-\beta}}.$$
 (47)

The path is optimal under a maximin objective if $s = \sigma$ and optimal under a classical utilitarian objective with constant elasticity of marginal utility given by

$$\eta = \frac{\alpha}{s - \sigma} \tag{48}$$

if $s > \sigma$, where

$$\sigma = \frac{(1 - \alpha - \beta)s + \alpha\beta}{1 - \beta + \theta}.$$
(49)

Proof. For the first part of the theorem, assume that $\alpha > s$, and let population growth be quasi-arithmetic with μ and θ satisfying (47). With $\alpha > s$ and such quasi-arithmetic technological progress, there exists a path characterized by

$$q(t) = q(0)(1+\mu t)^{\frac{s}{\sigma}-1},$$
(50)

$$c(t) = (1-s)q(0)(1+\mu t)^{\frac{s}{\sigma}-1},$$
(51)

$$k(t) = K_0 (1 + \mu t)^{\frac{s}{\sigma}}, \qquad (52)$$

$$r(t) = r(0)(1+\mu t)^{-\frac{\alpha-s}{\sigma}-1},$$
(53)

$$q(0) = \frac{\mu K_0}{\sigma}, \qquad (54)$$

$$r(0) = \frac{\mu(\alpha - s)S_0}{\sigma}, \qquad (55)$$

where σ is given by (49). To show this, take (50) as given. Then, (50) and $c(t) = q(t) - \dot{k}(t) = (1 - s)q(t)$ imply (51). By letting the capital-output ratio x(t) = k(t)/q(t) be given by

$$x(t) = x(0) + \sigma t = x(0)(1 + \mu t),$$

so that

$$\mu = \frac{\sigma}{x(0)} = \sigma \frac{q(0)}{K_0} = \sigma A(0) K_0^{\alpha - 1} r(0)^{\beta}, \qquad (56)$$

we obtain (52) and (54). Finally, (53) follows from $q(t) = A(t)k(t)^{\alpha}r(t)^{\beta}$ by applying (49), while (55) follows by, in addition, imposing resource exhaustion. By eliminating r(0) from (55) and (56), it follows that the path exists if $\alpha > s$ and the parameters μ and θ satisfy (47).

The path is clearly interior. It remains to show that the path is efficient. Since

$$p(t) = \frac{1}{\beta \frac{q(t)}{r(t)}} = \frac{r(0)}{\beta q(0)} (1 + \mu t)^{-\frac{\alpha}{\sigma}},$$

it follows from (50) and (52) that the Hotelling rule is satisfied and from (52) that the capital value transversality condition is satisfied. Since, by construction, the path satisfies resource exhaustion, Lemma 1 implies that it is efficient. For the second part of the theorem, we have two cases to consider.

Case 1: $s = \sigma$. It follows from (51) that per capita consumption is constant. Since the path satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 3 implies that it is optimal under a maximin objective.

Case 2: $s > \sigma$. It follows from (51) that per capita consumption increases:

$$\frac{\dot{c}(t)}{c(t)} = \frac{s-\sigma}{x(t)} \,.$$

By (9) the Ramsey rule holds if η satisfies

$$\frac{\alpha}{\eta x(t)} = \frac{s - \sigma}{x(t)} \,,$$

which implies (48). Since the path satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 3 implies that it is optimal under a classical utilitarian objective with constant elasticity of marginal utility given by (48). ■

The paths that Pezzey (2004) considers satisfy the sufficient conditions of Theorem 5; this follows from straightforward but tedious calculations on the basis of his equations (3)–(6) as well as the output expression on p. 476. Hence, it follows from Theorem 5 that Pezzey's paths are classical utilitarian in the case with increasing consumption, an observation not made by Pezzey (2004).⁵ Also Hoel (1977) combines a constant savings rate with technological progress. But since he considers exponential technological progress, he obtains paths with different properties.

It follows from equations (50)–(55) that the path $\{q(t), c(t), k(t), r(t)\}_{t=0}^{\infty}$ is as given by (18)–(21) and (28)–(29), except for the change in the definition of σ (compare (49) with (12)).

By (49), σ is increasing in s, with $\sigma = (1 - \beta)/(1 - \beta + \theta)$ if $s = \beta$. Hence, it follows from the proof of Theorem 5 that non-decreasing consumption is feasible even if less than all resource rents are reinvested (i.e., $s < \beta$), provided that there is quasiarithmetic technological progress, since with $\theta > 0$ we may have that $\beta > s \ge \sigma$. The conditions $s \ge \sigma$ and (47) determine combinations of a constant savings rate and quasi-arithmetic technological progress that ensure non-decreasing consumption.

⁵Instead, Pezzey (2004) shows optimality under discounted utilitarianism with a less concave utility function and a positive and decreasing discount rate. Since the discount rate is a hyperbolic function of *absolute* time, such a social objective is time-consistent, but not time-invariant.

If $\theta = 0$, then the conditions $\alpha > s$ and $s \ge \sigma$ reduce to the well-known condition shown by Solow (1974) and Stiglitz (1974) for the Cobb-Douglas DHSS model in the case with no population growth and no technological progress, namely $\alpha > \beta$. However, if $\theta > 0$, then $\alpha > s$ and $s \ge \sigma$ are compatible with $\alpha < \beta$ since we may have that $\beta > s \ge \sigma$. Hence, non-decreasing consumption may be feasible even if $\alpha < \beta$.

The observations of the two previous paragraphs hold also in the case with a stationary technology and quasi-arithmetic population *decline*: (1) Non-decreasing per capita consumption may be feasible even if the gross of population growth savings rate *a* is smaller than β . (2) Non-decreasing per capita consumption may be feasible even if $\alpha < \beta$. However, by comparing the analyses of Sections 3 and 5 (in particular, observe that expressions (10)–(12) are different from expression (47)), it follows that the situation with a constant population and quasi-arithmetic technological progress is not a special case of the situation with a stationary technology and quasi-arithmetic population decline, or vice versa. Even though in the former situation production can be expressed as a function of capital and resource input in efficiency units—corresponding in the latter situation to per capita production being a function of per capita capita and per capita resource input—these two formulations do not lead to an identical expression for capital accumulation.

6 Concluding remarks

To highlight the findings of the present paper we will contrast it with the results obtained by Mitra (1983). He considers the same model, in discrete time, with a nonrenewable natural resource and a Cobb-Douglas technology. However, he does not a priori specify any specific functional form for the population growth. He derives necessary and sufficient conditions for the existence of maximin and classical utilitarian optima. To illustrate, Mitra (1983) employs quasi-arithmetic population growth and derives restrictions on the corresponding parameters satisfying these necessary and sufficient conditions. With this functional form for the population growth, his conditions coincide with those derived here: in the case of maximin, he states the conditions $\alpha > \beta$ (cf. condition (3.5a)) and $\varphi < (\alpha/\beta) - 1$ (stated in his Example 3.1); in the case of classical utilitarianism (with a constant elasticity of marginal utility), he states the conditions $\alpha > \beta$ (cf. condition (4.1a)), $\eta >$ $(1-\beta)/(\alpha-\beta)$ (cf. condition (4.1b)), and

$$\varphi < \frac{\alpha - \beta - \frac{1 - \beta}{\eta}}{\beta + \frac{1 - \alpha - \beta}{\eta}}$$

(stated in his Example 4.1). These conditions can be seen to be reformulations of our inequalities (30) and (31) in the case where population growth is constrained to be non-negative ($\varphi \ge 0$).

Our contribution goes beyond that of Mitra (1983): in a setting which includes not only population growth, but also population decline, we have

- presented a complete characterization of paths with *constant* (gross and net of population growth) *savings rates* under population growth;
- shown the equivalence between efficiency and constant savings rates, on the one hand, and quasi-arithmetic population growth and the social objectives of maximin and classical utilitarianism, on the other hand;
- generalized the literature on the Hartwick rule and its converse, by considering also the case where population growth is non-zero and by including also classical utilitarianism as an objective.

References

- Asheim, G.B. (2004), Green national accounting with a changing population. *Economic Theory* 23, 601–619.
- Asheim, G.B. and Buchholz, W. (2004), A general approach to welfare measurement through national income accounting. *Scandinavian Journal of Economics* 106, 361–384.
- Asheim, G.B., Buchholz, W. and Withagen, C. (2003), Hartwick's rule: Myths and facts. Environmental and Resource Economics 25, 129–150.
- Buchholz, W, Dasgupta, S and Mitra, T. (2004), Intertemporal equity and Hartwicks rule in an exhaustible resource model. Forthcoming in *Scandinavian Journal of Economics*.
- Dasgupta, P.S. and Heal, G.M. (1974), The optimal depletion of exhaustible resources. *Review of Economic Studies* (Symposium), 3–28.
- Dasgupta, P.S. and Heal, G.M. (1974), Economic Theory and Exhaustible resources. Nesbit, Welwyn, and Cambridge University Press
- Dixit, A., Hammond, P. and Hoel, M. (1980), On Hartwick's rule for regular maximin paths of capital accumulation and resource depletion. *Review of Economic Studies* 47, 551–556.
- Hamilton, K. (1994), Green adjustments to GDP. Resources Policy 20, 155-68.
- Hamilton, K. (1995), Sustainable Development, the Hartwick Rule and Optimal Growth. Environmental and Resource Economics 5, 393–411.
- Hamilton, K. and Hartwick, J.M. (2005), Investing exhaustible resource rents and the path of consumption. *Canadian Journal of Economics* 38, 615–621.
- Hamilton, K. and Withagen, C. (2004), Savings, welfare, and rules for sustainability. Mimeo.
- Hartwick, J.M. (1977), Intergenerational equity and investing rents from exhaustible resources. American Economic Review 66, 972–974.
- Hoel, M. (1977), Naturressurser og økonomisk vekst. Memorandum, Department of Economics, University of Oslo.
- Malinvaud, E. (1953), Capital accumulation and efficient allocation of resources. *Econometrica*, 21, 233–268.
- Mitra, T. (1983), Limits on population growth under exhaustible resource constraints. International Economic Review 24, 155–168.
- Mitra, T. (2002), Intertemporal equity and efficient allocation of resources. Journal of Economic Theory 107, 356–376.

- Pezzey, J.C.V. (2004), Exact measures of income in a hyperbolic economy. *Environment and Development Economics* 9, 473-484.
- Solow, R.M. (1956), A contribution to the theory of economic growth. Quarterly Journal of Economics 70, 65–94.
- Solow, R.M. (1974), Intergenerational equity and exhaustible resources. *Review of Economic Studies* (Symposium), 29–45.
- Stiglitz, J. (1974), Growth with exhaustible natural resources: Efficient and optimal growth paths. *Review of Economic Studies* (Symposium), 123–137.
- Swan, J.W. (1956), Economic growth and capital accumulation. *Economic Record* 32, 334– 361.
- Seierstad, A. and Sydsæter, K. (1987), Optimal Control Theory with Economic Applications. North-Holland, Amsterdam.
- Withagen, C. and Asheim, G.B. (1998), Characterizing sustainability: The converse of Hartwick's rule. Journal of Economic Dynamics and Control 23, 159–165.
- Withagen, C., Asheim, G.B. and Buchholz, W. (2003), On the sustainable program in Solow's model. *Natural Resource Modeling* 16, 219–231.