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LEXICOGRAPHIC PROBABILITIES
AND RATIONALIZABILITY IN EXTENSIVE GAMES

GEIR B. ASHEIM AND ANDRÉS PEREA

Abstract. The concepts of sequential and quasi-perfect rationalizability are
defined in an epistemic model by means of lexicographic probabilities. These
are non-equilibrium analogs to sequential and quasi-perfect equilibrium, for
which epistemic characterizations are provided. The defined rationalizability
concepts are shown to imply backward induction in generic perfect information
games, but they do not yield forward induction. The relationship between
various concepts are shown and illustrated. JEL Classification Number: C72.

1. Introduction

The aim of this paper is to define rationalizability concepts for extensive games
that can be viewed as non-equilibrium analogs of ‘sequential’ and ‘quasi-perfect’
equilibrium. These concepts will be referred to as sequential and quasi-perfect ra-
tionalizability. By the phrase “non-equilibrium analog of sequential equilibrium”
we mean that the sequential rationalizability concept, defined through an epistemic
model, should characterize sequential equilibrium when adding the requirement that
each player is certain of the beliefs that the opponent has about the player’s own
strategy choice. Likewise for quasi-perfect equilibrium. As a consequence, we pro-
vide epistemic characterizations of the concepts of ‘sequential’ and ‘quasi-perfect’
equilibrium. We show by means of examples that established rationalizability con-
cepts for extensive games are not such analogs.
To avoid the issue of whether (and if so, how) each player’s belief about the

strategy choices of other players are stochastically independent, all discussion and
analysis will be limited to two-player games.
To motivate our definitions and results, it is instructive to look at the relation-

ship between equilibrium concepts illustrated in Table 1. Here, ‘weak sequential’
equilibrium refers to the equilibrium concept that results when each player only
optimizes at information sets that the player’s own strategy does not preclude
from being reached, while ‘quasi-perfect’ equilibrium is the concept defined by van
Damme [41] and which differs from Selten’s [39] extensive form perfect equilibrium
by having each player ignore the possibility of his own future mistakes. The arrows
indicate that any proper equilibrium corresponds to a quasi-perfect equilibrium and
so forth.
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2 GEIR B. ASHEIM AND ANDRÉS PEREA

Table 1. Relationship between different equilibrium concepts.

Proper
equilibrium

[32]
↓

Strategic form Quasi-perfect
perfect equil. ← equilibrium

[39] [41]
↓ ↓

Nash Weak Sequential
equi- ← sequential ← equilibrium

librium equilibrium [26]

There exist non-equilibrium analogs to some of these equilibrium concepts. Of
course, the notion of ‘rationalizability’ due to Bernheim [12] and Pearce [34] is a
non-equilibrium analog to Nash-equilibrium.1 It is epistemically characterized by
there being common belief of each player choosing rationally. Likewise, the notion of
‘permissibility’ due to Börgers [16] and Brandenburger [17] corresponds to Selten’s
[39] strategic form perfect equilibrium.2 It is epistemically characterized by there
being common belief of each player being cautious (in the sense of taking into
account all opponent strategies) and choosing rationally. Finally, Ben-Porath [11]
gives an epistemic characterization of a non-equilibrium analog to weak sequential
equilibrium by there being common belief of each player choosing rationally at
all information sets that the player’s own strategy does not preclude from being
reached. The resulting concept is coined ‘weak extensive form rationalizablity’ by
Battigalli & Bonanno [9].
In the concepts of sequential and quasi-perfect equilibrium it is assumed that a

player chooses rationally at every information set, also at information sets that the
player’s own strategy precludes from being reached. Within an epistemic model
such an assumption is problematic because there can be information sets that are
not reachable if the player chooses rationally. In fact, this has caused considerable
problems when it comes to giving an epistemic characterization of backward induc-
tion. One solution that is suggested in Asheim [2] is instead to assume that each
player believes that the opponent chooses rationally at every information set. Upon
reaching a surprising information set, the player may then update his beliefs about
the opponent’s beliefs about the player’s own strategy choice, or – if that cannot
serve as an explanation – that the opponent has not chosen rationally at earlier
information sets. Still, the player upholds the belief that the opponent will choose
rationally at future information sets. This is the assumption that is used in the
present paper to define sequential and quasi-perfect rationalizability.
Note that the perspective of viewing a behavioral strategy of an opponent as

an expression of the beliefs of a player (instead of as the choice of an opponent)
is consistent with the interpretation provided by Rubinstein [37] of strategies that

1A strategy is rationalizable (in two-player games, which is the class we consider here) if and
only if it survives iterated elimination of strongly dominated strategies.

2A strategy is permissible if and only if it survives one round of weak elimination followed by
iterated strong elimination. This is the so-called Dekel-Fudenberg [19] procedure.
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Table 2. Relationship between different rationalizability concepts.

Common ... believes the ... believes the ... believes the
cert. belief oppon. chooses oppon. chooses oppon. chooses
that each rationally only rationally at rationally at
player ... in the whole all reachable all info. sets

game info. sets
... is cautious Proper
and respects [n.a.] [n.a.] rationalizability
preferences [38, 3]

↓
Permissibility Quasi-perfect

... is cautious [n.a.] (the D-F proc.) ← rationalizability
[16, 17, 19] (defined here)

↓ ↓
... is not Rationaliz- Weak ext. form Sequential

necessarily ability ← rationalizability ← rationalizability
cautious [12, 34] [11] (here; [20, 24])

Does not imply Does not imply Implies
backward ind. backward ind. backward ind.

specify actions also at information sets that the strategy precludes from being
reached. In addition, it solves a troubling feature raised by Rubinstein—can the
opponent choose the beliefs of the player?—since the opponent strategy is here
derived from the beliefs of the player subject to the constraint that the strategy
specifies rational choice for the opponent at all of her information sets.

Sequential rationalizability is defined by there being common certain belief of the
event that each player believes that the opponent chooses rationally at all informa-
tion sets.3 Quasi-perfect rationalizability is defined by there being common certain
belief of the event that each player is cautious and believes that the opponent chooses
rationally at all information sets. Since these are non-equilibrium concepts, it is
not assumed that each player is certain of the beliefs that the opponent has about
the player’s own strategy choice. Hence, a player may in general update his belief
about the opponent’s beliefs about the player’s own strategy choice upon reaching
a surprising information set. However, if we assume that each player is certain
of the beliefs that the opponent has about the player’s own strategy choice, then
we obtain epistemic characterizations of the corresponding equilibrium concepts:
sequential and quasi-perfect equilibrium. To the best of our knowledge, there have
not been such characterizations available.4 Also, the rationalizability concepts are
different from those which are established in the literature for extensive games.
Our definitions and characterizations make use of the representation of a lexico-

graphic probability system (LPS) due to Blume, Brandenburger & Dekel [13]. An
LPS is a hierarchy of subjective probability distributions, which allows one oppo-
nent strategy to be deemed infinitely more likely than another, while still taking

3‘Certain belief’ of an event means that the complement of the event is deemed ‘impossible’
(or formally, Savage-null).

4See, however, McLennan [27] who characterizes sequential equilibrium by means of consistent
conditional probability systems. In contrast to our analysis he does so within the agent strategic
form and does not employ an epistemic model.
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into account the latter. Blume et al. [14] use LPSs to characterize strategic form
perfect equilibrium and proper equilibrium. Strategic form perfect equilibrium is
characterized by each player (1) being certain of the beliefs of the opponent and
(2) being cautious and believing that the opponent chooses rationally, while proper
equilibrium is characterized by each player (1) being certain of the beliefs of the
opponent and (2) being cautious and respecting opponent preferences (in the sense
that if the opponent prefers one strategy to another, then then the former is deemed
infinitely more likely than the latter). Asheim [3] has used the latter characteri-
zation to formulate an alternative and equivalent definition of Schuhmacher’s [38]
concept of proper rationalizability, by assuming that there is common certain belief
of caution and respect of opponent preferences. Here we instead assume that there
is common certain belief of the event that each player believes that the opponent
chooses rationally at all information sets, an event that can in a straightforward
manner be formulated by means of LPSs. This by itself gives sequential rationaliz-
ability, while the addition of caution gives quasi-perfect rationalizability.5

When a player believes that the opponent chooses rationally in the whole game
and is certain that she is cautious, then he believes that the opponent chooses
rationally at all information sets that her own strategy does not preclude from
being reached. This means that the cell in Table 2 to the left of ‘permissibility’ is
not applicable. Moreover, when a player respects the preferences of the opponent
and is certain that she is cautious, then he believes that the opponent chooses
rationally at all information sets. Hence, the two cells in Table 2 to the left of
‘proper rationalizability’ are not applicable. The latter observation also means
that ‘proper rationalizability’ implies ‘quasi-perfect rationalizability’, which clearly
(since it satisfies an additional requirement) implies ‘sequential rationalizability’.
Already in the original contributions on non-equilibrium concepts by Bernheim

[12] and Pearce [34] there are suggestions on how to define rationalizability concepts
for extensive games. Bernheim [12] defines the concept of subgame rationalizabil-
ity by requiring rationalizability in every subgame. This concept coincides with
sequential rationalizability for multi-stage games (games with almost perfect in-
formation), but no epistemic characterization is offered. Bernheim ([12], p. 1022)
claims that it is possible to define a concept of sequential rationalizability, but does
not indicate how this can be done. Dekel, Fudenberg & Levine [20] and Greenberg
[24] intend to define a concept of sequential rationalizability that coincide with the
present one in two-player games; Dekel et al. also use the term ‘sequential ratio-
nalizability’, while Greenberg calls his concept ‘null mutually acceptable course of
action’. However, their definitions rely on the notion of a ‘mixture’ or a ‘convex
hull of a set’ of behavioral strategies. This is left ambiguous by Greenberg, while
Dekel et al. formalize this notion (in their Def. 2.2 and footnote 11) by – in effect
– not putting restrictions on behavior at non-reachable information sets, meaning
that their concept of sequential rationalizability as defined does not imply backward
induction in e.g. Γ2 of the present Sect. 5.6

5For defining sequential rationalizability we could instead have used conditional probability
systems (cf. e.g. [9, 10]). However, LPSs are more suited for imposing caution and respect of
opponent preferences.

6Drew Fudenberg has informed us that he and his co-authors in [20] intended to define a con-
cept of sequential rationalizability that implies backward induction in generic perfect information
games. In a corrigendum [21] they formalize a ‘mixture’ of behavioral strategies by an approach
that is equivalent to Approach 1 of Sect. 6, so that their definition of sequential rationalizability
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Pearce [34] defines the concept of extensive form rationalizability (EFR), which
has during the last few years been subject to a fair amount of attention (cf. Batti-
galli [8] and Battigalli & Siniscalchi [10]). To understand this concept in the context
of Table 2, one should stay in the middle column as EFR only requires players to
choose rationally at reachable information sets. Moreover, since caution is not im-
posed, the appropriate row is the lower one. However, EFR is very different from
‘weak extensive form rationalizability’. It corresponds to an iterative procedure
where, at any information set, any deleted strategy is deemed infinitely less likely
than some remaining strategy (provided that there exists at least some remaining
strategy under which the information set is reachable). This leads to a rationality
ordering for each player (cf. Battigalli [7]). In the epistemic characterization by
Battigalli & Siniscalchi [10], they invoke a non-monotonic epistemic operator and
must employ a belief-complete epistemic model. Neither of these features play any
role in the present analysis.7

EFR yields forward induction in common examples like the ‘Battle-of-the-Sexes-
with-Outside-Option’ and ‘Burning Money’ games. In contrast, it follows that none
of the concepts in Table 2 implies forward induction since not even the concept of
proper equilibrium promotes forward induction in these games. EFR also leads
to the backward induction outcome. As indicated in Table 2, the three concepts
in the right column imply backward induction. However, they yield not only the
backward induction outcome; the concepts of proper, quasi-perfect and sequential
rationalibility even support the backward induction procedure.
Our paper is organized as follows. In Sect. 2 we present the epistemic model that

will be used throughout the paper. In Sect. 3 we present our epistemic characteri-
zation of quasi-perfect equilibrium and define the concept of quasi-perfect rational-
izability. The relationship to proper rationalizability is also investigated. In Sect. 4
we then do the corresponding analysis for sequential equilibrium/rationalizability,
and show that sequential (and thus quasi-perfect and proper) rationalizability im-
plies backward induction. In Sect. 5 we show by means of examples that the
inclusions indicated by the arrows in Table 2 are strict. We also show that there
is in general no inclusion between sequential and quasi-perfect rationalizability on
the one hand and EFR on the other (at least in strategy space). Finally, in Sect.
6 we discuss whether there are algorithms for these rationalizability concepts. We
also briefly relate our analysis to some relevant literature.

2. States, Types, Preferences, and Belief

The purpose of this section is to present a framework for extensive games where
each player is modeled as a decision-maker under uncertainty. The decision-theoretic
analysis builds on Blume, Brandenburger & Dekel [13]. The framework is summa-
rized by the concept of a belief system (cf. Def. 1). Appendix A contains a
presentation of the decision-theoretic terminology, notation and results that will be
utilized.

works as intended. Their corrigendum was written independently of the material on ‘mixtures’ in
Sect. 6.

7The difference between ‘weak extensive form rationalizability’ and EFR can be seen to be
analogous to the difference between ‘permissibility’ and the procedure of iterated (maximal) elim-
ination of weakly dominated strategies.
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2.1. An Extensive Game Form. A finite extensive game form (without chance
moves) includes a set of players I = {1, 2} and a set of terminal nodes Z. For
each player i, there is a finite collection of information sets Hi, with a finite set
of actions A(h) being associated with each h ∈ Hi. A pure strategy for player
i is a function that to any h ∈ Hi assigns an action in A(h). Let Si denote
player i’s finite set of pure strategies, and let S = S1 × S2. Let z : S → Z map
strategy vectors into terminal nodes (or outcomes), and refer to ((Si)i∈I , z) as the
associated strategic game form. For any h ∈ H1 ∪ H2 and any node x ∈ h, let
S(x) = S1(x)×S2(x) denote the set of pure strategy vectors for which x is reached,
and write S(h) :=

⋃
x∈h S(x). Since perfect recall is assumed, S(h) = S1(h)×S2(h).

For any h, h′ ∈ Hi, h (weakly) precedes h′ if and only if S(h) ⊇ S(h′). For any
h ∈ Hi and a ∈ A(h), write Si(h, a) := {si ∈ Si(h)|si(h) = a}.
A behavioral strategy for player i, σi = (σi(h))h∈Hi , is a function that to any

h ∈ Hi assigns a probability distribution in ∆(A(h)). If h ∈ Hi, let σi|h denote the
behavioral strategy with the following properties: (1) at player i information sets
preceding h, σi|h determines with probability one the unique action leading to h,
and (2) at all other player i information sets, σi|h coincides with σi. Say that σi is
outcome-equivalent to a mixed strategy pi (∈ ∆(Si)) if, for any sj ∈ Sj , σi and pi

induce the same probability distribution over terminal nodes. For any h ∈ Hi, σi|h
is outcome-equivalent to some pi ∈ ∆(Si(h)).

2.2. States and Types. When a strategic game form is turned into a decision
problem for each player (see Tan & Werlang [40]), the uncertainty faced by a player
concerns the strategy choice of his opponent, the belief of his opponent about the
player’s own strategy choice, and so on. A type of a player corresponds to a vNM
utility function and a belief about the strategy choice of his opponent, a belief
about the belief of his opponent about his own strategy choice, and so on. Models
of such infinite hierarchies of beliefs (Böge & Eisele [15], Mertens & Zamir [30],
Brandenburger & Dekel [18], Epstein & Wang [23]) yield S × T as the complete
state space, where T = T1 × T2 is the set of all feasible type vectors. Furthermore,
for each i, there is a homeomorphism between Ti and the set of beliefs on S × Tj,
where j denotes i’s opponent.
For each type of any player i, the type’s decision problem is to choose one of

i’s strategies. For the modeling of this problem, the type’s belief about his own
strategy choice is not relevant and can be ignored. Hence, in the setting of a
strategic game form the beliefs can be restricted to the set of opponent strategy-
type pairs, Sj × Tj. Combined with a vNM utility function, the set of beliefs on
Sj × Tj corresponds to a set of “regular” binary relations on the set of acts on
Sj ×Tj, where an act on Sj ×Tj is a function that to any element of Sj ×Tj assigns
an objective randomization on Z.
In conformity with the literature on infinite hierarchies of beliefs, let
• the set of states of the world (or simply states) be Ω := S × T ,
• each type ti of any player i correspond to a binary relation �ti on the set of
acts on Sj × Tj .

However, as the above results on infinite hierarchies of beliefs are not applicable in
the present setting, we instead consider an implicit model – with a finite type set
Ti for each player i – from which infinite hierarchies of beliefs can be constructed.
Moreover, since continuity is not imposed, the “regularity” conditions on �ti con-
sist of completeness, transitivity, objective independence, nontriviality, conditional
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continuity and non-null state independence, meaning that �ti is represented by
a vNM utility function υti

i : Z → R that assigns a payoff to any outcome and
a lexicographic probability system (LPS) λti = (µti

1 , . . . , µti

Lti
) ∈ ∆(Sj × Tj) (cf.

Blume et al. [13] and Appendix A). Being a vNM utility function, υti

i can be ex-
tended to objective randomizations on Z. If Ej ⊆ Sj × Tj and �ti

Ej
is nontrivial,

let �ti(Ej) := min{�|µti


 (Ej) > 0}.
The construction is summarized by the following definition.

Definition 1. A belief system for a game form ((Si)i∈I , z) consists of
•
• for each player i, a finite set of types Ti,
• for each type ti of any player i, a binary relation �ti (ti’s preferences) on the
set of acts on Sj × Tj , where �ti is represented by a vNM utility function
υti

i on the set of objective randomizations on Z and an LPS λti on Sj × Tj .

2.3. Certain Belief. For each player i, i’s certain belief can be derived from the
belief system. To state this epistemic operator, let, for each player i and each
state ω ∈ Ω, ti(ω) denote the projection of ω on Ti, and let, for any E ⊆ Ω,
Eti

j := {(sj , tj) ∈ Sj × Tj |∃si s.t. (si, sj , ti, tj) ∈ E} denote the set of opponent
strategy-type pairs that are consistent with ω ∈ E and ti(ω) = ti. Associate ‘certain
belief’ of an event with the property that no element of the complement of the event
is assigned positive probability by some probability distribution in λti :

KiE := {ω ∈ Ω|κti(ω)
j ⊆ E

ti(ω)
j } ,

where κti

j := suppλti (⊆ Sj × Tj) denotes the set of opponent strategy-type pairs
that ti does not deem Savage-null.8 Say that at ω, i certainly believes the event
E ⊆ Ω if ω ∈ KiE (or equivalently, κti(ω)

j ⊆ E
ti(ω)
j ). Write KE := K1E ∩ K2E.

Say that there is mutual certain belief of E ⊆ Ω at ω if ω ∈ KE. Write CKE :=
KE ∩KKE ∩KKKE ∩ . . . . Say that there is common certain belief of E ⊆ Ω at
ω if ω ∈ CKE.

2.4. Preferences Over Strategies. Let �ti

Sj
denote the marginal of �ti on Sj .

A pure strategy si ∈ Si can be viewed as an act xSj on Sj that assigns z(si, sj) to
any sj ∈ Sj. Hence, �ti

Sj
is a binary relation also on the subset of acts on Sj that

correspond to i’s pure strategies. Thus, �ti

Sj
can be referred to as ti’s preferences

over i’s pure strategies. Since �ti is represented by a vNM utility function and an
LPS, �ti

Sj
shares these properties. Let

Cti

i := {si ∈ Si| si �ti

Sj
s′i for all s

′
i ∈ Si}

denote ti’s set of most preferred strategies (i.e. ti’s choice set).

2.5. Quasi-Perfect Best Response. For each h ∈ Hi, let �ti

Sj(h)
denote ti’s

preferences over i’s pure strategies conditional on Sj(h). Let

Cti

i (h) := {si ∈ Si(h)| si�ti

Sj(h)
s′i for all s

′
i ∈ Si(h)}

denote ti’s set of most preferred strategies conditional on h ∈ Hi. By the following
lemma, if si is a most preferred strategy conditional on h ∈ Hi, then si is most
preferred conditional on any h′ ∈ Hi that appears (weakly) after h and is reachable
when i plays si.

8The notion ‘certain belief’ corresponds to what Morris [31] calls ‘Savage-belief’.
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Lemma 1. If si ∈ Cti

i (h), then si ∈ Cti

i (h
′) for any h′ ∈ Hi with si ∈ Si(h′) ⊆

Si(h).

Proof. Suppose that si ∈ Si(h′)\Cti

i (h
′). Then there exists s′i ∈ Si(h′) such that

s′i �ti

Sj(h′) si. It follows from Mailath, Samuelson & Swinkels ([28], Defs. 2 and 3
and the ‘if’ part of Theorem 1) that S(h′) is a strategic independence for i. Hence,
s′i can be chosen such that z(s′i, sj) = z(si, sj) for all sj ∈ Sj\Sj(h′). This implies
that s′i �ti

Sj(h)
si, which means that si ∈ Si(h)\Cti

i (h).

If follows from Lemma 1 that

Cti

i (h) =
{
si ∈ Si(h)

∣∣∣ si�ti

Sj(h′)s
′
i for all s

′
i ∈ Si(h′) whenever

h′ ∈ Hi satisfies si ∈ Si(h′) ⊆ Si(h)

}
.

Note that Cti

i (h) is well-defined even if �ti

Sj(h′) is not nontrivial for some h
′ satisfying

si ∈ Si(h′) ⊆ Si(h). Say that the behavioral strategy σi is a quasi-perfect best
response to �ti if, for each h ∈ Hi, σi|h is outcome-equivalent to some mixed
strategy in ∆(Cti

i (h)).

2.6. Induced Behavioral Strategy. If h ∈ Hj satisfies that �ti

Sj(h)×{tj} — the
conditional of �ti on Sj(h)× {tj} — is nontrivial, write for any sj ∈ Sj(h),

µ
(ti|tj)

Sj(h)
(sj) :=

µti


 (sj , tj)
µti


 (Sj(h)× {tj})
,

with � = �ti(Sj(h)×{tj}), where µ(ti|tj)

Sj(h)
is ti’s (first-order) belief over tj ’s strategies

conditional on h ∈ Hj being reached. Write for any a ∈ A(h),

σ
(ti|tj)
j (h)(a) := µ

(ti|tj)

Sj(h)
(Sj(h, a)) ,

implying that σ
(ti|tj)
j (h) ∈ ∆(A(h)). Say that the behavioral strategy σ

(ti|tj)
j =

(σ(ti|tj)
j (h))h∈Hj is induced for tj by λti if �ti

Sj(h)×{tj} is nontrivial for all h ∈ Hj .

2.7. An Extensive Game. Consider an extensive game form (cf. Sect. 2.1), and
let, for each i, υi : Z → R be a vNM utility function that assigns a payoff to any
outcome. Then the pair of the extensive game form and the vNM utility functions
(υi)i∈I is a finite extensive game, Γ. Let G = (Si, ui)i∈I be the corresponding finite
strategic game, where for each i, the vNM utility function ui : S → R is defined by
ui = υi ◦ z (i.e., ui(s) = υi(z(s)) for any s = (s1, s2) ∈ S). Assume that, for each i,
there exist s, s′ ∈ S such that ui(s) > ui(s′).
The event that i plays the game G is given by

[ui] := {ω ∈ Ω|υti(ω)
i ◦ z is a positive affine transformation of ui} ,

while [u1] ∩ [u2] is the event that both players play G.

3. Consistency of Preferences

Usually requirements in deductive game theory are imposed on choice. E.g.
rationality is a requirement on a pair (si, ti), where si is said to be a ‘rational
choice’ by ti if si ∈ Cti

i . See e.g. Epstein ([22], Sect. 6) for a presentation of this
approach in a general context.
The present paper follows Asheim & Dufwenberg [4] by imposing requirements

on ti only. Since ti corresponds to the preferences �ti , such requirements will be
imposed on �ti . Here we will focus on showing how this ‘consistent preferences’
approach to deductive game theory can be used to
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• characterize sequential (Kreps &Wilson’s [26]) and quasi-perfect (van Damme
[41]) equilibrium, and

• define sequential and quasi-perfect rationalizability as non-equilibrium ana-
logues to the concepts of Kreps & Wilson and van Damme in two-player
extensive games9

through the notions of sequential and quasi-perfect consistency. Moreover, the
relationship to the concept of proper rationalizability will be investigated (cf. Schu-
macher [38] and Asheim [3]).

3.1. Quasi-Perfect Consistency. Quasi-perfect consistency will be based on three
requirements: The first of these ensures that each player i plays the game G, the
second requirement ensures that each player i is cautious, implying that i is of a
type ti that satisfies, for any h ∈ H1 ∪H2, that �ti

Sj(h)×{tj} is non-trivial whenever
the opponent type tj is taken into account, while the third requirement entails that
the preferences of each player i induces a behavioral strategy that is a quasi-perfect
best response for any opponent type tj that is taken into account.
To impose these requirements, consider the following events

[caui] := {ω ∈ Ω|κti(ω)
j = Sj × T

ti(ω)
j }

[ipbri] := {ω ∈ Ω| if h ∈ Hj , tj ∈ T
ti(ω)
j and s′j ∈ Sj(h)\Ctj

j (h), then

∃sj ∈ Sj(h) s.t. (sj , tj)� (s′j , tj) acc. to �ti(ω)} ,

where T ti

j := projTj
κti

j denotes the set of opponent types that ti takes into account
(i.e. does not deem Savage-null), and where � means ‘infinitely more likely’ (cf.
Appendix A). The interpretation of [ipbri] as inducement of a quasi-perfect best
response for any opponent type that is taken into account follows from the following
lemma.

Lemma 2. If ω ∈ [caui], then ω ∈ [ipbri] is equivalent to σ
(ti(ω)|tj)
j being a quasi-

perfect best response to �tj whenever tj ∈ T
ti(ω)
j .

Proof. If ω ∈ [caui], then, ∀tj ∈ T
ti(ω)
j , µ

(ti(ω)|tj)

Sj(h)
is well-defined. Furthermore,

given ω ∈ [caui], ω ∈ [ipbri] is equivalent to ∀tj ∈ T
ti(ω)
j , ∀h ∈ Hj ,

suppµ(ti(ω)|tj)

Sj(h)
⊆ C

tj

j (h),

which in turn is equivalent to ∀tj ∈ T
ti(ω)
j , ∀h ∈ Hj ,

σ
(ti(ω)|tj)
j |h is outcome-equivalent to some pi ∈ ∆(Ctj

j (h)) .

This means that ∀tj ∈ T
ti(ω)
j , σ(ti(ω)|tj)

j — the behavioral strategy induced for tj
by λti(ω) — is a quasi-perfect best response to �tj .

Say that at ω, i is quasi-perfectly consistent (with the gameG and the preferences
of his opponent) if ω ∈ Aq-p

i , where

Aq-p
i := [ui] ∩ [caui] ∩ [ipbri].

Refer to Aq-p := Aq-p
1 ∩Aq-p

2 as the event of quasi-perfect consistency.

9As mentioned in the introduction, an extension to games with more than two players raises

the issue of independence, which will not be addressed here. As has also been mentioned there, the
concept of a quasi-perfect equilibrium differs from Selten’s [39] extensive form perfect equilibrium
by the property that, at each information set, the player taking an action ignores the possibility
of his own future mistakes.
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We can now characterize the concept of a quasi-perfect equilibrium as vectors
of induced behavioral strategies in states where there is quasi-perfect consistency
and mutual certain belief of the type vector.10

Proposition 1. Consider a finite extensive two-player game Γ. A vector of be-
havioral strategies σ = (σ1, σ2) is a quasi-perfect equilibrium if and only if there
exists a belief system and ω ∈ Aq-p such that (1) there is mutual certain belief of
(t1(ω), t2(ω)) at ω, and (2) for each i ∈ I, σi is induced for ti(ω) by λtj(ω).

Proof. See Appendix B.

We can next define the concept of quasi-perfectly rationalizable behavioral strate-
gies as quasi-perfect best responses in states where there is common certain belief
of quasi-perfect consistency.

Definition 2. A behavioral strategy σi for i is quasi-perfectly rationalizable in a
finite extensive two-player game Γ if there exists a belief system with σi being a
quasi-perfect best response to �ti(ω) for some ω ∈ CKAq-p .

It turns out that a behavioral strategy is quasi-perfectly rationalizable if it is
part of a quasi-perfect equilibrium.

Proposition 2. If the vector of behavioral strategies σ = (σ1, σ2) is a quasi-perfect
equilibrium in a finite extensive two-player game Γ, then, for each i, σi is quasi-
perfect rationalizable.

Proof. This is a straightforward consequence of Prop. 1 and Lemma 2.

Since a quasi-perfect equilibrium always exists, we obtain the following corollary.

Corollary 1. In any finite extensive two-player game Γ, there exists a belief system
with CKAq-p �= ∅, implying that there exists, for each i, a nonempty set of quasi-
perfectly rationalizable strategies.

In the next subsections we follow Asheim [3] by introducing the concepts of
proper consistency and proper rationalizable strategies and show that proper con-
sistency implies quasi-perfect consistency.

3.2. Proper Consistency. Proper consistency is obtained from quasi-perfect con-
sistency by additionally imposing that each player deems one opponent strategy to
be infinitely more likely than another if the opponent prefers the one to the other
(respects preferences). Hence, consider

[respi] := {ω ∈ Ω| if tj ∈ T
ti(ω)
j and sj �tj

Si
s′j , then

(sj , tj)� (s′j , tj) acc. to �ti(ω)} .

Say that at ω, i is properly consistent (with the game G and the preferences of his
opponent) if ω ∈ Apr

i , where

Apr
i := [ui] ∩ [caui] ∩ [respi].

Refer to Apr := Apr
1 ∩Apr

2 as the event of proper consistency.
The following result follows from Blume, Brandenburger and Dekel’s ([14], Prop.

5) characterization of Myerson’s [32] proper equilibrium in two-player games.

10The definition of a quasi-perfect equilibrium is given in Appendix B. There is mutual certain
belief of the type vector (t1(ω), t2(ω)) given ω if and only if, for each i, T

ti(ω)
j = {tj(ω)}.
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Proposition 3. Consider a finite strategic two-player game G. A vector of mixed
strategies p = (p1, p2) ∈ ∆(S1)×∆(S2) is a proper equilibrium if and only if there
exists a belief system and ω ∈ Apr such that (1) there is mutual certain belief
of (t1(ω), t2(ω)) at ω, and (2) for each i ∈ I, and for any si ∈ Si, pi(si) =
µ

tj(ω)
1 (si, ti(ω)).

Proof. Cf. the proof of Prop. 1 in Asheim [3].

Furthermore, as proposed in Asheim [3] the concept of properly rationalizable
strategies can be defined as most preferred strategies in states where there is com-
mon certain belief of proper consistency.11

Definition 3. A pure strategy si for i is properly rationalizable in a finite strategic
two-player game G if there exists a belief system with si ∈ C

ti(ω)
i for some ω ∈

CKApr.

Any strategy used with positive probability in a proper equilibrium is properly
rationalizable.

Proposition 4. If p = (p1, p2) ∈ ∆(S1) × ∆(S2) is a proper equilibrium in a
finite strategic two-player game G, then, for each i, any si ∈ supppi is properly
rationalizable.

Proof. Cf. the proof of Prop. 2 in Asheim [3].

Since a proper equilibrium always exists, we obtain the following corollary.

Corollary 2. In any finite strategic two-player game G, there exists a belief system
with CKApr �= ∅, implying that there exists, for each i, a nonempty set of properly
rationalizable strategies.

3.3. The Relation Between Quasi-Perfect and Proper Consistency. As
was established by van Damme [41], any proper equilibrium in the strategic form
corresponds to a quasi-perfect equilibrium in the extensive form. Using Blume et
al.’s [14] characterization of proper equilibrium, this is accomplished by inducing a
vector of behavioral strategies, cf. subsect. 2.6 above. In this sense, the concept of
proper equilibrium is stronger than the concept of quasi-perfect equilibrium.
It is desirable to show that the corresponding relationships hold between the

concepts of proper rationalizability and quasi-perfect rationalizability. This will be
established below by showing, for any belief system and for each player i, that i
respecting opponent preferences implies that the preferences of player i induces a
behavioral strategy that is a quasi-perfect best response for any opponent type that
is taken into account. This, by Props. 1 and 3, shows the relationship between the
equilibrium concepts and, by Defs. 2 and 3, shows the relationship between the
rationalizability concepts.

Proposition 5. For any belief system and for each player i, [respi] ⊆ [ipbri].

To prove Prop. 5 we need the following lemma.

Lemma 3. For any h ∈ Hj, if s′j ∈ Sj(h)\Ctj

j (h), then ∃sj s.t. sj �tj

Si
s′j.

11It is shown in Asheim ([3], Prop. 3) that this definition of proper rationalizability corresponds
to the one originally proposed by Schuhmacher [38].
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Proof. Suppose that s′j ∈ Sj(h)\Ctj

j (h). Then there exists sj ∈ Sj(h) such that
sj �tj

Si(h)
s′j . Since S(h) is a strategic independence for j (cf. proof of Lemma 1),

it follows that sj can be chosen such that z(sj, si) = z(s′j , si) for all si ∈ Si\Si(h).
This implies that sj�tj

Si
s′j.

Proof of Prop. 5. Consider any belief system with ω ∈ [respi]. Assume that h ∈
Hj , s′j ∈ Sj(h)\Ctj

j (h), and tj ∈ T
ti(ω)
j . By Lemma 3, ∃sj ∈ Sj(h) s.t. sj�tj

Si
s′j .

Since ω ∈ [respi] and tj ∈ T
ti(ω)
j , it follows that ∃sj ∈ Sj(h) s.t. (sj , tj)� (s′j , tj)

acc. to �ti(ω). This shows that ω ∈ [ipbri] whenever ω ∈ [respi].

Following the proof of Prop. 1 in Mailath, Samuelson & Swinkels [29] one can
show that quasi-perfect rationalizability in every extensive form corresponding to
a given strategic game coincides with proper rationalizability in that game.

Remark 1. Substitute the event
Bi[ratj ] := {ω ∈ Ω| if tj ∈ T

ti(ω)
j and s′j ∈ Sj\Ctj

j , then

∃sj ∈ Sj s.t. (sj , tj)� (s′j , tj) acc. to �ti(ω)} .

for [ipbri]. Write Ai := [ui] ∩ [caui] ∩Bi[ratj ] and A := A1∩A2. Then a permissible
strategy si can be characterized by the property that there exists a belief system
with si ∈ C

ti(ω)
i for some ω ∈ CKA (cf. [4], Prop. 5.1). Since [ipbri] ⊆ Bi[ratj ],

it follows from Def. 2 that quasi-perfect rationalizability refines permissibility as
indicated in Table 2.

4. Sequentiality and Backward Induction

Given that we consider a set-up where there is mutual or certain belief of the
event that players are cautious, it seems natural to consider players with preferences
that induces a quasi-perfect best response for any opponent type that is taken into
account. Informally, this entails that any player believes not only that the opponent
chooses rationally at any information set, but also that she is cautious.
As we show below, we can still characterize sequential equilibrium and define

sequential rationalizability within our framework by having players believe that
their opponent considers only the induced first-order probability distribution at
any information set. We thereby model players with preferences that induces a
sequential best response for any opponent type, and where the choice of a sequential
best response entails rational choice at any information set, but does not imply
cautious behavior. This captures – as indicated in Table 2 – players that are not
necessarily cautious, but who believe that the opponent chooses rationally at all
information sets. The assumption of caution (implying that the marginal of a type’s
LPS on the opponent’s strategy set has full support) is kept, but only as a technical
requirement that enables the opponent’s behavioral strategy and the player’s own
beliefs to be induced.
To present this analysis, we must first define the notion of a sequential best

response, and then introduce the concept of sequential consistency as a weaker
alternative to quasi-perfect consistency.

4.1. Consistent Assessment. The beliefs of player i, βi = (βi(h))h∈Hi , is a func-
tion that to any h ∈ Hi assigns a probability distribution over the nodes in h. An as-
sessment (σ, β) = ((σ1, σ2), (β1, β2)) is consistent if there is a sequence (σn, βn)n∈N
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of assessments converging to (σ, β) such that for every n, σn is completely mixed
and βn is induced by σn using Bayes’ rule.

4.2. Induced Beliefs. If h ∈ Hi satisfies that �ti

Sj(h)
— ti’s preferences over i’s

pure strategies conditional on Sj(h) (cf. subsect. 2.5) — is nontrivial, write for any
sj ∈ Sj(h),

µti

Sj(h)
(sj) :=

µti


 ({sj} × Tj)
µti


 (Sj(h)× Tj)
,

with � = �ti(Sj(h)× Tj), where µti

Sj(h)
is ti’s (first-order) belief over opponent

strategies conditional on h ∈ Hi being reached. Write for any node x ∈ h,

βti

i (h)(x) := µti

Sj(h)
(Sj(x)) ,

where βti

i (h) is ti’s (first-order) belief over nodes in h. Say that the beliefs βti

i =
(βti

i (h))h∈Hi are induced by λti if �ti

Sj(h)
is nontrivial for all h ∈ Hi.

The following result has independent interest and is used below for characterizing
the concept of sequential equilibrium (cf. Prop. 7).12

Proposition 6. Consider a finite extensive two-player game form. An assessment
(σ, β) = ((σ1, σ2), (β1, β2)) is consistent if and only if there exists a belief system
and ω ∈ [cau1] ∩ [cau2] such that (1) there is mutual certain belief of (t1(ω), t2(ω))
at ω, (2) for each i ∈ I, σi is induced for ti(ω) by λtj(ω), and (3) for each i ∈ I, βi

is induced by λti(ω).

Proof. The proof of this proposition is given in Appendix B.

4.3. Sequential Best Response. Given some belief µ ∈ ∆(Sj), write uti

i (si, µ) :=∑
sj∈Sj

µ(sj)υti

i (z(si, sj)) for expected payoff. If h ∈ Hi, let

C̃ti

i (h) =


si ∈ Si(h)

∣∣∣ uti

i (si, µ
ti

Sj(h′)) ≥ uti

i (s
′
i, µ

ti

Sj(h′)) for all s
′
i

∈ Si(h′) whenever h′ ∈ Hi satisfies si ∈
Si(h′) ⊆ Si(h) and �ti

Sj(h′) is nontrivial




denote ti’s set of strategies that maximizes expected payoff conditional on any
reachable information set for i that appears (weakly) after h. Note that C̃ti

i (h) is
well-defined even if �ti

Sj(h′) is not nontrivial for some h′ satisfying si ∈ Si(h′) ⊆
Si(h). Say that the behavioral strategy σi is a sequential best response to �ti if,
for each h ∈ Hi, σi|h is outcome-equivalent to some mixed strategy in ∆(C̃ti

i (h)).

12Several non-epistemic characterizations of consistent assessments have been presented. E.g.
Battigalli [6] explores the relationship between consistency of assessments and strategic indepen-
dence of conditional probability systems. It is shown that an assessment induced by a strategically
independent conditional probability system is always consistent, and that the former is also a nec-
essary condition for consistency if the game is with “observable deviators”. Kolhlberg & Reny [25]
characterize consistent assessments by means of relative probability systems, showing that weak
independence of random variables and coordinate-wise exchangeability of collections of random

vectors plays a key role. In Perea y Monsuwé, Jansen & Peters [35] an algebraic characterization
of consistent assessments is given, in which the event that one action may be infinitely more likely
than another is quantified by an additional parameter assigned to every action in the game. Such
a parametrization thus yields a refinement of conditional and relative probability systems.
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4.4. Sequential Consistency. Sequential consistency weakens quasi-perfect con-
sistency by requiring that the preferences of each player i induces a behavioral
strategy that is only a sequential (not quasi-perfect) best response for any oppo-
nent type tj that is taken into account. Hence, consider

[isbri] := {ω ∈ Ω| if h ∈ Hj , tj ∈ T
ti(ω)
j and s′j ∈ Sj(h)\C̃tj

j (h), then

∃sj ∈ Sj(h) s.t. (sj , tj)� (s′j , tj) acc. to �ti(ω)} ,

The interpretation of [isbri] as inducement of a sequential best response for any
opponent type that is taken into account follows from the following lemma.

Lemma 4. If ω ∈ [caui], then ω ∈ [isbri] is equivalent to σ
(ti(ω)|tj)
j being a sequen-

tial best response to �tj whenever tj ∈ T
ti(ω)
j .

Proof. The proof is analogous to the proof of Lemma 2.

Say that at ω, i is sequentially consistent (with the game G and the preferences
of his opponent) if ω ∈ Aseq

i , where

Aseq
i := [ui] ∩ [caui] ∩ [isbri].

Refer to Aseq := Aseq
1 ∩Aseq

2 as the event of sequential consistency.
We can now characterize the concept of a sequential equilibrium as vectors of

induced behavioral strategies in states where there is sequential consistency and
mutual certain belief of the type vector.13

Proposition 7. Consider a finite extensive two-player game Γ. A vector of behav-
ioral strategies σ = (σ1, σ2) can be extended to a sequential equilibrium if and only
if there exists a belief system and ω ∈ Aseq such that (1) there is mutual certain
belief of (t1(ω), t2(ω)) at ω, and (2) for each i ∈ I, σi is induced for ti(ω) by λtj(ω).

Proof. The proof of this proposition is given in Appendix B.

We can next define the concept of sequentially rationalizable behavioral strate-
gies as sequential best responses in states where there is common certain belief of
sequential consistency.

Definition 4. A behavioral strategy σi for i is sequentially rationalizable in a finite
extensive two-player game Γ if there exists a belief system with σi being a sequential
best response to �ti(ω) for some ω ∈ CKAseq .

It turns out that a behavior strategy is sequentially rationalizable if it is part of
a vector of behavioral strategies that can be extended to a sequential equilibrium.

Proposition 8. If σ = (σ1, σ2) is a vector of behavioral strategies that can be
extended to a sequential equilibrium in a finite extensive two-player game Γ, then,
for each i, σi is sequentially rationalizable.

Proof. This is a straightforward consequence of Prop. 7 and Lemma 4.

Since a sequential equilibrium always exists, we obtain the following corollary.

Corollary 3. In any finite extensive two-player game Γ, there exists a belief sys-
tem with CKAseq �= ∅, implying that there exists, for each i, a nonempty set of
sequentially rationalizable strategies.

13The definition of a sequential equilibrium is given in Appendix B.
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It is straightforward to establish that quasi-perfect consistency is stronger than
sequential consistency.

Proposition 9. For any belief system and for each player i, [ipbri] ⊆ [isbri].

To prove Prop. 9 we need the following lemma.

Lemma 5. For any h ∈ Hj, C
tj

j (h) ⊆ C̃
tj

j (h).

Proof. Let h ∈ Hj . Then, ∀h′ ∈ Hj with sj ∈ Sj(h′) ⊆ Sj(h) and �tj

Sih′) being
nontrivial, ∑

si∈Si

µ
tj

Si(h′)(si)υ
tj

j (z(sj , si)) ≥
∑

si∈Si

µ
tj

Si(h′)(si)υti

j (z(s
′
j , si))

whenever sj�tj

Si(h′)s
′
j . Hence, by Lemma 1, C

tj

j (h) ⊆ C̃
tj

j (h).

Proof of Prop. 9. The result follows from the definitions of [ipbri] and [isbri] since
by Lemma 5, for any h ∈ Hj , Sj(h)\C̃tj

j (h) ⊆ Sj(h)\Ctj

j (h).

Prop. 9 in conjunction with Props. 1 and 7 implies the well-known result that every
quasi-perfect equilibrium is a sequential equilibrium, while Prop. 9 and Lemma 5
in conjunction with Defs. 2 and 4 imply that every quasi-perfectly rationalizable
strategy is a sequentially rationalizable strategy.

4.5. Backward Induction in Generic Perfect Information Games. We end
this section by showing how sequential (and thus, by Props. 5 & 9 and Lemma
5, quasi-perfect and proper) rationalizability implies backward induction in perfect
information games.
A finite extensive game Γ is of perfect information if, at any information set

h ∈ H1 ∪ H2, h = {x}; i.e. h contains only one node. It is generic if, for each i,
υi(z) �= υi(z′) whenever z and z′ are different outcomes. Generic extensive games
of perfect information have a unique subgame-perfect equilibrium. Moreover, in
such games the procedure of backward induction yields in any subgame the unique
subgame-perfect equilibrium outcome.
In a perfect information game, the action a ∈ A(h) taken at the information set

h determines the immediate succeeding information set, which can thus be denoted
(h, a). Furthermore, any information set h ∈ H1 ∪ H2 determines a subgame,
implying that for each i ∈ I, and for any h′, h′′ ∈ H1∪H2 satisfying Si(h′)∩Si(h′′) �=
∅, it holds that Si(h′) ⊆ Si(h′′) or Si(h′) ⊇ Si(h′′). This means that C̃ti

i (h) —
ti’s set of strategies that maximizes expected payoff conditional on any reachable
information set for i that appears (weakly) after h (cf. subsect. 4.2) — can be
defined in an obvious way for all h ∈ H1 ∪H2. If h ∈ Hj , with j �= i, it follows that

C̃ti

i (h) =
⋂

a∈A(h)
C̃ti

i (h, a) and, ∀a ∈ A(h), Si(h) = Si(h, a) .(1)

In the following proposition it is established that, for each subgame h ∈ H1∪H2,
any vector of sequentially rationalizable strategies leads to the backward induction
outcome in the subgame.

Proposition 10. Consider a finite generic two-player extensive game of perfect
information Γ with corresponding strategic game G. If, for some belief system,
ω ∈ CKAseq, then, for each h ∈ H1 ∪ H2, any mixed strategy vector p = (p1, p2)
where pi ∈ ∆(C̃t(ω)

i (h)) for each i ∈ I leads to the backward induction outcome in
the subgame h.
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�

�

1

2
E

a

O

f

0
2

−1
−1

1
1

a f

O
E
0, 2 0, 2
1, 1 -1,-1

Figure 1. Γ1 and its strategic form.

Proof. The proof of this proposition is given in Appendix B.

It is straightforward consequence of Props. 5 & 9 and Lemma 5 that, for each sub-
game h ∈ H1 ∪H2, any vector of quasi-perfect or properly rationalizable strategies
leads to the backward induction outcome in the subgame.

Remark 2. Write C̃ti

i for C̃ti

i (h) if h is the initial node (C̃
ti

i is well-defined also for
game forms without perfect information), and substitute the event

[iwbri] := {ω ∈ Ω| if tj ∈ T
ti(ω)
j and s′j ∈ Sj\C̃tj

j , then

∃sj ∈ Sj s.t. (sj , tj)� (s′j , tj) acc. to �ti(ω)} .

for [isbri]. Write Aw−s
i := [ui] ∩ [caui] ∩ [iwbri] and Aw−s := Aw−s

1 ∩ Aw−s
2 .

Then a weakly extensive form rationalizable strategy si can be characterized by the
property that there exists a belief system with si ∈ C

ti(ω)
i for some ω ∈ CKAw−s .

Since [isbri] ⊆ [iwbri], it follows from Def. 4 that sequential rationalizability refines
weak extensive form rationalizability as indicated in Table 2.

5. Examples

In this section we will offer examples that show that the inclusions in Table 2
are strict. We will also illustrate how sequential and quasi-perfect rationalizability
differ from extensive form rationalizability (EFR) (cf. [34, 8, 10]).
The first example (Γ1) is the well-known entry game where the entrant (player

1) can enter (E) or stay out (O), and the incumbent (player 2) can accommodate
(a) or fight (f). Here rationalizability has no bite what-so-ever, while only E for
1 and a for 2 are rationalizable according to any of the other concepts in Table 2.
This shows that the left arrow at the left of the table indicates a strict inclusion.
To show that the left arrows at the right indicate strict inclusions, consider

Γ2, which was introduced by Reny ([36], Fig. 1), and which has appeared in
many contributions. The sets of permissible strategies equal {DD,DF, FF} for
1 and {d, f} for 2. This can easily be establish by applying the Dekel-Fudenberg
procedure (cf. footnote 2). Since the game is generic, these are also the sets
of weakly extensive form rationalizable strategies. However, only FF and f are
implied by backward induction. Hence by Prop. 10, these are the only strategies
that are quasi-perfectly/sequentially rationalizable.
Since, in simultaneous move games, quasi-perfect rationalizability coincides with

permissibility and sequential rationalizability coincides with (ordinary) rationaliz-
ability, one example is sufficient to establish that the downward-pointing arrows in
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� � �
1 2 1 3
F f F 3

D d D
2 1 0
2 1 0

d f

DD
DF
FD
FF

2, 2 2, 2
2, 2 2, 2
1, 1 0, 0
1, 1 3, 3

Figure 2. Γ2 and its strategic form.
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1, 1 2, 2 2, 2
0, 1 2, 2 3, 3

Figure 3. G3

�
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1

2
D

�

U

r

1
1

1
1

0
0

� r
U
D
1, 1 1, 1
0, 0 1, 1

Figure 4. Γ4 and its strategic form.

Table 2 indicate strict inclusions. The strategic game G3 is due to Blume, Branden-
burger & Dekel ([14], Fig. 1). Since there is no strong dominance, all strategies are
rationalizable for both players, while the Dekel-Fudenberg procedure can be used
to show that {M,D} and {c, r} are the set of permissible strategies. However, only
D and r are properly rationalizable (cf. [3], Sect. 2).
It is instructive, though, to use games with a dynamic structure to illustrate that

the downward-pointing arrows indicate strict inclusion. For the two downward-
pointing arrows on the lower part of Table 2, consider Γ4. Here the sets of weakly
extensive form and sequentially rationalizable strategies are {U,D} for 1 and {r}
for 2. However, if 1 takes into account the possibility that 2 may choose �, then
he strictly prefers U to D, implying that only U is permissible and quasi-perfectly
rationalizable.
To show that the downward-pointing arrow on the upper part of Table 2, consider

Γ5. Here the sets of permissible and quasi-perfectly rationalizable strategies are
{L,M} for 1 and {�, r} for 2. However, since M strongly dominates R, it follows
that 2 prefers � to r if she respects 1’s preferences. Hence, only � is properly
rationalizable for 2, which in turn implies that only M is properly rationalizable
for 1.
A slight variation of Γ5 yields Γ6, which is the ‘Battle-of-the-Sexes-with-Outside-

Option’ game. For this game all rationalizability concepts of Table 2 yield the same
conclusion: {L,M} for 1 and {�, r} for 2 are rationalizable independently of what
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�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

�
�

�

� �

2 1
2

2

L

M R

� �r r

4 1 3 0
1 0 0 3

� r

L

M

R

2, 2 2, 2
4, 1 1, 0
3, 0 0, 3

Figure 5. Γ5 and its strategic form.
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Figure 6. Γ6 (= BoSwOO) and its strategic form.

� � �
1 2 1 0
F f F 0

D d D
3 1 2
3 1 2

d f

DD
DF
FD
FF

3, 3 3, 3
3, 3 3, 3
1, 1 2, 2
1, 1 0, 0

Figure 7. Γ7 and its strategic form.

concept is being applied. The reason is that both (L, r) and (M, �) are proper
equilibria, implying by Prop. 4 that {L,M} for 1 and {�, r} for 2 are properly
rationalizable, while – of course – the strongly dominated strategy R cannot be
rationalizable according to any of the concepts. A forward induction argument
would entail that 2 should deemM more likely than the strongly dominated strategy
R, implying that she prefers � to r. This in turn would imply that M would be the
unique most preferred strategy for 1. EFR rationalizability yields this conclusion.
Hence, Γ6 demonstrates that the concepts defined here – sequential and quasi-
perfect rationalizability – differs from EFR.
In Γ6, any strategy that is rationalizable according to EFR is also sequentially

and quasi-perfectly rationalizable, while the converse does not hold. Consider,
however, Γ7, which shows that the inclusion between the concepts may also go in
the other direction. Since both sequential and quasi-perfect rationalizability imply
the backward induction procedure (cf. Prop. 10), it follows that only DD and f
are sequentially/quasi-perfectly rationalizable. In constrast, the sets of strategies
rationalizable according to EFR are {DD,DF} for 1 and {d, f}. In any case, the
backward induction outcome is implied. It is still of interest to note that there
are examples where any sequentially and quasi-perfectly rationalizable strategy is
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also rationalizable according to EFR, while the converse does not hold. Hence, at
least in strategy space, it is not the case that EFR implies sequential/quasi-perfect
rationalizability. Whether this can be established also in outcome space appears to
be an open question.

6. Discussion

In this section we investigate the possibilities for constructing algorithms that
lead to the set of sequential and quasi-perfect rationalizable behavioral strategies.
We also briefly relate our analysis to some relevant literature.
The concepts of rationalizable and permissible strategies correspond to algo-

rithms that iteratively eliminate strategies. I.e. rationalizability corresponds to
the iterative elimination of strongly dominated strategies, or equivalently, strate-
gies that do not constitute a best response to a mixture with support included in
the set of opponent strategies that have not yet been eliminated. It would seem
natural to conjecture that sequential and quasi-perfect rationalizability can be seen
to correspond to algorithms where behavioral strategies are iteratively eliminated.
However, such procedures are not straightforward as it is not necessarily clear what
is meant by having a ‘mixture’ over behavioral strategies for the opponent.14

There seems to be two ways to define such a ‘mixture’ that will both lead to
sequential and quasi-perfect rationalizability as defined here:

1. Each type of any player is endowed with a sequence of probability distributions
on Sj × Tj , where each distribution has the same support, and such that if
some (sj , tj) pair is in the support of the distributions, so is (s′j , tj) for any
s′j �= sj . In the limit this sequence induces a behavioral strategy for each
opponent type that is in the support of the distributions, and the limit of the
marginals of the distributions on Sj induces the behavioral strategy that is
the ‘mixture’.

2. Each type of any player is endowed with an LPS on Sj × Tj , such that if
some (sj , tj) pair is in the support of the LPS, so is (s′j , tj) for any s′j �= sj .
Such an LPS induces a behavioral strategy for each opponent type that is
in the support of the LPS, and the marginal of this LPS on Sj induces the
behavioral strategy that is the ‘mixture’.

Approach 1 has the advantage of being more “standard” (although perhaps more
cumbersome). Furthermore, it facilitates the analysis of games with more than two
players if one wants to impose that each player’s belief about the strategy choices of
other players are stochastically independent. Partly for this reason, such a “trem-
bles” approach has independently been proposed and adopted by Dekel, Fudenberg
& Levine [21] to correct the problem with their formalization of a ‘mixture’ of be-
havioral strategies in [20] (cf. Sect. 1). Approach 2, which is the approach chosen
here, has the advantage of being simpler to use in a model of interactive epistemol-
ogy as well as facilitating the comparison to proper rationalizability. Furthermore,
it highlights that the behavioral strategy induced for a type of player j by the LPS
of a type of player i, is not a chosen strategy by player j, but describes what i
beliefs about j conditional on j being of this specific type.

14E.g. if a player believes that the opponent uses one of two behavioral strategies and these
are held “to be equally likely”, what does the player believe about the opponent’s behavior at
information sets that can only be reached if none of these strategies are being played?
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Thus, the present analysis suggests an algorithm in terms of preferences that
are presented by LPSs. In the epistemic model, types correspond to such LPSs.
Furthermore, common certain belief of quasi-perfect consistency is the limit when
the order of mutual certain belief of quasi-perfect consistency goes towards infinity.
For a given order of mutual certain belief of quasi-perfect consistency, an LPS for
a player on the set of opponent strategy-type vectors survives if (1) the opponent
types that are taken into account correspond to LPSs that have not yet been elim-
inated at a lower order, and (2) for each such opponent type, the player’s LPS
induces a quasi-perfect best response given that type’s LPS.
However, as the definition of quasi-perfect consistency makes clear (cf. subsect.

3.1), it is only the sets of most preferred strategies at the opponent’s information
sets that matter. Hence, an algorithm can be constructed in terms of functions
from information sets to sets of most preferred strategies. Since the game is finite,
the collection of this kind of functions is also finite, implying that such an algorithm
converges in a finite number of rounds.
Indeed, for all three rationalizability concepts in the right column of Table 2,

it appears that algorithms must work in terms of preferences. These can either
be in terms of the LPSs that represent these preferences, or directly in terms of
the binary relation over the player’s own strategies that these preferences gives rise
to. In any such binary relation for player i, preference corresponds to a subset of
Si × Si, where (si, s

′
i) being an element of this set means that si is preferred to

s′i. Each such subset in turn determines a unique function from information sets
to sets of most preferred strategies. Again, the collection of this kind of subsets is
finite, implying that an algorithm in terms of such sets converges in a finite number
of rounds. It is, however, outside the scope of the present paper to investigate the
properties of the different types of algorithms in more detail.
Here we have investigated polar cases, equilibrium concepts on the one hand,

where it is assumed that each player is certain of the beliefs of his opponents about
the player’s own strategy choice, and rationalizability concepts on the other hand,
for which no such assumption is being made. One can also consider intermediate
concepts where e.g. each player is certain of the beliefs of his opponent about
the player’s own actions along the path that will be followed. Such possibilities,
which have been subject to fruitful investigation by Dekel, Fudenberg & Levine [20]
(cf. their concept of a ‘sequential rationalizable self-confirming equilibrium’) and
Greenberg [24] (cf. his concept of a ‘path mutually acceptable course of action’),
also fall outside the set of issues that are treated in the present paper.

Appendix A. The Decision-Theoretic Framework

The purpose of this appendix is to present the decision-theoretic terminology, notation
and results utilized and referred to in the main text.

Consider a decision-maker under uncertainty. Let F be a finite set of states, where the
decision-maker is uncertain about what state in F will be realized. Let Z be a finite set
of outcomes. In the tradition of Anscombe & Aumann [1], the decision-maker is endowed
with a binary relation over all functions that to each element of F assigns an objective
randomization on Z. Any such function xF : F → ∆(Z) is called an act on F . Write xF

and yF for acts on F . A complete and transitive binary relation on the set of acts on F
is denoted by �F , where xF �F yF means that xF is preferred or indifferent to yF . As
usual, let �F (preferred to) and ∼F (indifferent to) denote the asymmetric and symmetric
parts of �F . A binary relation �F on the set of acts on F is said to satisfy



RATIONALIZABILITY IN EXTENSIVE GAMES 21

• objective independence if x′
F �F (respectively ∼F ) x′′

F iff γx′
F + (1 − γ)yF �F

(respectively ∼F ) γx′′
F + (1 − γ)yF , whenever 0 < γ < 1 and yF is arbitrary.

• nontriviality if there exist xF and yF such that xF �F yF .

If E ⊆ F , let xE denote the restriction of xF to E. Define the conditional binary
relation �E by x′

F �E x′′
F if, for arbitrary yF , (x′

E ,y−E) �F (x′′
E,y−E), where −E

denotes F\E. Say that the state f ∈ F is Savage-null if xF ∼{f} yF for all acts xF and
yF on F . A binary relation �F is said to satisfy

• conditional continuity if, ∀f ∈ F , there exist 0 < γ < δ < 1 such that δx′
F + (1 −

δ)x′′
F �{f} yF �{f} γx

′
F + (1− γ)x′′

F whenever x′
F �{f} yF �{f} x′′

F .
• non-null state independence if xF �{e} yF iff xF �{f} yF whenever e and f are

not Savage-null and xF and yF satisfy xF (e) = xF (f) and yF (e) = yF (f).

If e, f ∈ F , then e is deemed infinitely more likely than f (e 
 f) if e is not Savage-null
and xF �{e} yF implies (x−{f},x

′
{f}) �{e,f} (y−{f},y

′
{f}) for all x′

F , y′
F . According to

this definition, f may, but need not, be Savage-null if e 
 f .
If υ : Z → R is a vNM utility function, abuse notation slightly by writing υ(p) =∑

z∈Z p(z)υ(z) whenever p ∈ ∆(Z) is an objective randomization. Say that xE strongly
dominates yE w.r.t. υ if, ∀f ∈ E, υ(xE(f)) > υ(yE(f)). Say that xE weakly dominates
yE w.r.t. υ if, ∀f ∈ E, υ(xE(f)) ≥ υ(yE(f)), with strict inequality for some e ∈ E. Say
that �F is admissible on E ( �= ∅) if xF �F yF whenever xE weakly dominates yE.

The following representation result due to Blume, Brandenburger & Dekel ([13], The-
orem 3.1) can now be stated. It requires the notion of a lexicographic probability system
(LPS) which consists of L levels of subjective probability distributions: If L ≥ 1 and,
∀� ∈ {1, . . . , L}, µ� ∈ ∆(F ), then λ = (µ1, ..., µL) is an LPS on F . Let ∆(F ) denote the
set of LPSs on F , and let, for two utility vectors v and w, v ≥L w denote that, whenever
w� > v�, there exists �′ < � such that v�′ > w�′ .

Proposition A1. If �F is complete and transitive, and satisfies objective independence,
nontriviality, conditional continuity, and non-null state independence, then there exists a
vNM utility function υ : Z → R and an LPS λ = (µ1, ..., µL) ∈ ∆(F ) such that F �F F iff(∑

f∈F
µ�(f)υ(F (f))

)L

�=1
≥L

(∑
f∈F

µ�(f)υ(F (f))
)L

�=1
.

If F = F1 × F2 and �F is a binary relation on the set of acts on F , then say that �F1

is the marginal of �F on F1 if, xF1 �F1 yF1 iff xF �F yF whenever xF1(f1) = xF (f1, f2)

and yF1(f1) = yF (f1, f2) for all (f1, f2).

Appendix B. Proofs of Propositions 1, 6, 7, and 10

Propositions 1, 6, and 7 are concerned with a state ω where there is mutual certain
belief of the type vector (t1(ω), t2(ω)). This means that for each player i, suppλti(ω) ⊆
Sj × {tj(ω)}, where λti(ω) = (µ

ti(ω)
1 , . . . , µ

ti(ω)

Lti
) ∈ L∆(Sj × Tj) represents �ti(ω). For

the proofs it is convenient to write λi = (µi
1, . . . , µ

i
Li) ∈ L∆(Sj), where Li = Lti and,

∀� ∈ {1, . . . , Li}, µi
�(sj) = µ

ti(ω)
� (sj , tj(ω)) for all sj ∈ Sj . It follows that λi represents

�ti(ω)
Sj

. If S′
j ⊆ Sj and �ti(ω)

S′
j

is nontrivial, let �i(S′
j) := min{� | µi

�(Sj) > 0}. If for all

h ∈ Hj , �ti(ω)

Sj(h)×{tj(ω)} and thus �ti(ω)

Sj(h) are nontrivial, then say that λi induces σj if,
∀h ∈ Hj , ∀a ∈ A(h),

σj(h)(a) =
µi

�(Sj(h, a))

µi
�(Sj(h))

,

where � = �i(Sj(h)). These definitions entail that λi inducing σj is equivalent to σj being
induced for tj(ω) by λti(ω). If for all h ∈ Hi, �ti(ω)

Sj(h) are nontrivial, then say that λi
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induces the beliefs βi if, ∀h ∈ Hi, ∀x ∈ h,

βi(h)(x) =
µi

�(Sj(x))

µi
�(Sj(h))

,

where � = �i(Sj(h)). These definitions entail that λi inducing βi is equivalent to βi being
induced by λti(ω).

Define the concepts of a behavioral representation of a mixed strategy and the mixed
representation of a behavioral strategy in the standard way (cf. e.g. [33], p. 159). If σj

and pj are both completely mixed, and σj is a behavorial representation of pj or pj is the
mixed representation of σj , then, ∀h ∈ Hj , ∀a ∈ A(h),

σj(h)(a) =
pj(Sj(h, a))

pj(Sj(h))
.

If pj is a completely mixed mixed strategy and h ∈ Hi, let pj |h be defined by

pj |h(sj) =

{
pj(sj)

pj(Sj(h))
if sj ∈ Sj(h)

0 otherwise .

If σi is any behavioral strategy for i and σj is a completely mixed behavioral strategy
for j, then abuse notation slightly by writing, for each h ∈ Hi,

ui(σi, σj)|h := ui(pi, pj |h) ,(2)

where pi is outcome-equivalent to σi|h and pj is the mixed representation of σj .

Definition B1. A behavioral strategy profile σ = (σ1, σ2) is quasi-perfect equilibrium if
there is a sequence (σn)n∈N of completely mixed behavioral strategy profiles converging
to σ such that for every n ∈ N, i ∈ I and h ∈ Hi,

ui(σi, σ
n
j )|h = max

σ′
i

ui(σ
′
i, σ

n
j )|h .(3)

If σi and σj are any behavioral strategies for i and j, and βi is the beliefs of i, then
let, for each h ∈ Hi, ui(σi, σj ; βi)|h denote i’s expected payoff conditional on h, given the
belief βi(h) at h, and given that future behavior is determined by σi and σj .

Definition B2. An assessment (σ, β) = ((σ1, σ2), (β1, β2)) is a sequential equilibrium if
it is consistent and it satisfies that for every i ∈ I and h ∈ Hi,

ui(σi, σj ;βi)|h = max
σ′

i

ui(σ
′
i, σj ;βi)|h .

For the proof of Prop. 1 we use two results from Blume, Brandenburger & Dekel ([14];
henceforth referred to as BBD). To state these results, we introduce the following notation.
Let λ = (µ1, ..., µL) be an LPS on a finite set F and let r = (r1, ..., rL−1) ∈ (0, 1)L−1. Then,
r�λ denotes the probability distribution on F given by the nested convex combination

(1− r1)µ1 + r1 [(1 − r2)µ2 + r2 [(1− r3)µ3 + r3 [...] ...]] .

Lemma B1 (Prop. 2 in BBD). Let (pn)n∈N be a sequence of probability distributions on
a finite set F . Then, there exists a subsequence pm of (pn)n∈N, an LPS λ = (µ1, ..., µL)
and a sequence rm of vectors in (0, 1)L−1 converging to zero such that pm = rm�λ for all
m.

The following lemma is a variant of Prop. 1 in BBD.

Lemma B2. Consider a type ti of player i whose preferences over acts on Sj are repre-
sented by υi (recalling from subsect. 2.7 that ui = υi◦z) and λi = (µi

1, . . . , µ
i
Li

) ∈ L∆(Sj).
Then, (a) si�ti

Sj
s′i if and only if for every sequence (rn)n∈N in (0, 1)Li−1 converging to

zero there is a subsequence rm such that∑
sj

(rm�λi)(sj)ui(si, sj) >
∑
sj

(rm�λi)(sj)ui(s
′
i, sj)
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for all m, and (b) the same result would hold if the phrase “for every sequence..” is
replaced by “for some sequence...”.

Proof. (a) Suppose that si�ti
Sj
s′i. Then, there is some k ∈ {1, ..., Li} such that∑

sj

µi
�(sj)ui(si, sj) =

∑
sj

µi
�(sj)ui(s

′
i, sj)(4)

for all � < k and ∑
sj

µi
k(sj)ui(si, sj) >

∑
sj

µi
k(sj)ui(s

′
i, sj).(5)

Let (rn)n∈N be a sequence in (0, 1)Li−1 converging to zero. By (4) and (5),∑
sj

(rn�λi)(sj)ui(si, sj) >
∑
sj

(rn�λi)(sj)ui(s
′
i, sj)

if n is large enough. The other direction follows directly from the proof of Prop. 1 in
BBD. The proof of part (b) follows from the proof of Prop. 1 in BBD.

Proof of Proposition 1. (Only if.) Let (σ1, σ2) be a quasi-perfect equilibrium. By defini-
tion, there is a sequence (σn)n∈N of completely mixed behavioral strategy profiles con-
verging to σ such that for every n ∈ N, i ∈ I and h ∈ Hi,

ui(σi, σ
n
j )|h = max

σ′
i

ui(σ
′
i, σ

n
j )|h .

For every n and j ∈ I, let pn
j be the mixed representation of σn

j . By Lemma B1, the
sequence (pn

j )n∈N of probability distributions on Sj contains a subsequence pm
j such that

we can find an LPS λi = (µi
1, . . . , µ

i
Li) with full support on Sj and a sequence of vectors

rm ∈ (0, 1)Li−1 converging to zero with

pm
j = rm�λi

for all m. W.l.o.g., we assume that pn
j = rn�λi for all n ∈ N.

First, we show that λi induces the behavioral strategy σj . Let σ̃j be the behavioral
strategy induced by λi. By definition, ∀h ∈ Hj , ∀a ∈ A(h),

σ̃j(h)(a) =
µi

�(Sj(h, a))

µi
�(Sj(h))

= lim
n→∞

(rn�λi)(Sj(h, a))

(rn�λi)(Sj(h))

= lim
n→∞

pn
j (Sj(h, a))

pn
j (Sj(h))

= lim
n→∞

σn
j (h)(a) = σj(h)(a) ,

where � = �i(Sj(h)). For the fourth equation we used the fact that pn
j is the mixed

representation of σn
j . Hence, for each i ∈ I , λi induces σj .

Construct a belief system having a state space with a single type vector, Ω = S ×
{t1}× {t2}, and where, for each i ∈ I , �ti is represented by υi and λti = (µti

1 , . . . , µ
ti

Li) ∈
L∆(Sj ×{tj}), recalling from subsect. 2.7 that ui = υi ◦ z, and letting λti be determined
by, for each � ∈ {1, . . . , Li}, µti

� (sj , tj) = µi
�(sj) for all sj ∈ Sj . By construction, Ω =

[u1] ∩ [u2] ∩ [cau1] ∩ [cau2]. Furthermore, for all ω ∈ Ω, there is mutual certain belief of
the type vector (t1, t2) at ω.

By Lemma 2 it remains to be shown that σi is a quasi-perfect best response to �ti

for each i ∈ I . Fix a player i and let h ∈ Hi be given. Let pi (∈ ∆(Si(h))) be outcome-
equivalent to σi|h and let pn

j be the mixed representation of σn
j . Then, since (σ1, σ2) is a

quasi-perfect equilibrium, it follows from (2) that

ui(pi, p
n
j |h) = max

p′
i∈∆(Si(h))

ui(p
′
i, p

n
j |h)
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for all n. Hence, pi(si) > 0 implies that∑
sj∈Sj(h)

pn
j |h(sj)ui(si, sj) = max

s′i∈Si(h)

∑
sj∈Sj(h)

pn
j |h(sj)ui(s

′
i, sj)(6)

for all n. Let λi|h be the conditional LPS on Sj(h) induced by λi. By construction of the
belief system, λi represents �ti

Sj
, and hence, it follows that λi|h represents �ti

Sj(h). Since
pn

j = rn�λi for all n there exist vectors rn|h converging to zero such that pn
j |h = rn|h�λi|h

for all n. Together with equation (6) we obtain that pi(si) > 0 implies∑
sj∈Sj(h)

(rn|h�λi|h)(sj)ui(si, sj) = max
s′i∈Si(h)

∑
sj∈Sj(h)

(rn|h�λi|h)(sj)ui(s
′
i, sj) .(7)

We show that pi(si) > 0 implies si ∈ Cti
i (h). Suppose that si ∈ Si(h)\Cti

i (h). Then,
there is some s′i ∈ Si(h) with s′i�ti

Sj(h)si. From Lemma B2(a) it follows that rn|h has a
subsequence rm|h for which∑

sj

(rm|h�λi|h)(sj)ui(s
′
i, sj) >

∑
sj

(rm|h�λi|h)(sj)ui(si, sj)

for all m, which is a contradiction to (7). Hence, si ∈ Cti
i (h) whenever pi(si) > 0, which

implies that pi ∈ ∆(Cti
i (h)). Hence, σi|h is outcome equivalent to some pi ∈ ∆(Cti

i (h)).
This holds for every h ∈ Hi, and hence, σi|h is a quasi-perfect best response to �ti . This
completes the first part of the proof.

(If) Suppose there exists a belief system and ω ∈ Aq-p such that (1) there is mutual

certain belief of (t1(ω), t2(ω)) at ω, and (2) for each i ∈ I, σi is induced for ti(ω) by λtj(ω).
We show that (σ1, σ2) is a quasi-perfect equilibrium.

For each i, derive λi = (µi
1, . . . , µ

i
Li) ∈ L∆(Sj) from λti(ω) = (µ

ti(ω)
1 , . . . , µ

ti(ω)

Lti
) ∈

L∆(Sj × Tj) by letting Li = Lti and, ∀� ∈ {1, . . . , Li}, µi
�(sj) = µ

ti(ω)
� (sj , tj(ω)) for all

sj ∈ Sj . Since ω ∈ [ui], it follows that �ti(ω)
Sj

is represented by υi (recalling from subsect.
2.7 that ui = υi ◦ z) and λi. Furthermore, λi induces σj . Choose sequences (rn)n∈N in
(0, 1)Li−1 converging to zero and let the sequences (pn

j )n∈N of mixed strategies be given

by pn
j = rn�λi for all n. Since ω ∈ [caui], λ

i has full support and for every n, pn
j is

completely mixed. For every n, let σn
j be a behavioral representation of pn

j . Since λi

induces σj , it follows that (σn
j )n∈N converges to σj ; this is shown explicitly under the ‘if’

part of Prop. 6.
Fix a player i and an information set h ∈ Hi. We must show that

ui(σi, σ
n
j )|h = max

σ′
i

ui(σ
′
i, σ

n
j )|h(8)

for all n, which implies that (σ1, σ2) is a quasi-perfect equilibrium.
Let pi (∈ ∆(Si(h))) be outcome-equivalent to σi|h. It follows from (2) that equation

(8) is equivalent to

ui(pi, p
n
j |h) = max

p′
i∈∆(Si(h))

ui(p
′
i, p

n
j |h)

for all n. Hence, we must show that pi(si) > 0 implies that∑
sj∈Sj(h)

pn
j |h(sj)ui(si, sj) = max

s′i∈Si(h)

∑
sj∈Sj(h)

pn
j |h(sj)ui(s

′
i, sj)(9)

for all n. In fact, it suffices to show this equation for infinitely many n, since in this
case we can choose a subsequence for which the above equation holds, and this would be
sufficient to show that (σ1, σ2) is a quasi-perfect equilibrium.

Since, by assumption, σi is a quasi-perfect best response to �ti(ω), σi|h is outcome
equivalent to some mixed strategy in ∆(C

ti(ω)
i (h)). Hence, pi ∈ ∆(C

ti(ω)
i (h)). Let pi(si) >
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0. By construction, si ∈ C
ti(ω)
i (h). Suppose that si would not satisfy (9) for infinitely

many n. Then, there exists some s′i ∈ Si(h) such that∑
sj∈Sj(h)

pn
j |h(sj)ui(si, sj) <

∑
sj∈Sj(h)

pn
j |h(sj)ui(s

′
i, sj)

for infinitely many n. Assume, w.l.o.g., that it is true for all n. Let λi|h be the conditional
LPS on Sj(h) induced by λi. Since λi represents �ti(ω)

Sj
, it follows that λi|h represents

�ti(ω)

Sj(h)
. Since pn

j = rn�λi for all n there exist vectors rn|h converging to zero such that

pn
j |h = rn|h�λi|h for all n. This implies that∑

sj

(rn|h�λi|h)(sj)ui(si, sj) <
∑
sj

(rn|h�λi|h)(sj)ui(s
′
i, sj)

for all n. By Lemma B2(b), it follows that s′i�ti(ω)
Sj(h)si, which is a contradiction to the

fact that si ∈ C
ti(ω)
i (h). Hence, pi(si) > 0 implies (9) for infinitely many n, and as a

consequence, (σ1, σ2) is a quasi-perfect equilibrium.

Proof of Proposition 6. (Only if.) Let (σ, β) be consistent. Then, by definition, there is
a sequence (σn)n∈N of completely mixed behavioral strategy profiles converging to σ such
that the sequence (βn)n∈N of induced belief systems converges to β. For each i and all n,
let pn

i be the mixed representation of σn
i . By Lemma B1, there exists for each i, an LPS

λi = (µi
1, ..., µ

i
Li) with full support on Sj and a sequence (rn)n∈N in (0, 1)Li−1 converging

to zero such that pn
j = rn�λi for all n.

We first show that λi induces the behavioral strategy σj . Let σ̃j be the behavioral
strategy induced by λi. By definition, ∀h ∈ Hj , ∀a ∈ A(h),

σ̃j(h)(a) =
µi

�(Sj(h, a))

µi
�(Sj(h))

= lim
n→∞

(rn�λi)(Sj(h, a))

(rn�λi)(Sj(h))

= lim
n→∞

pn
j (Sj(h, a))

pn
j (Sj(h))

= lim
n→∞

σn
j (h)(a) = σj(h)(a) ,

where � = �i(Sj(h)). For the fourth equation we used the fact that pn
j is the mixed

representation of σn
j . Hence, for each i ∈ I , λi induces σj .

We then show that λi induces the beliefs βi. Let β̃i be the player i beliefs induced by
λi. By definition, ∀h ∈ Hi, ∀x ∈ h,

β̃i(h)(x) =
µi

�(Sj(x))

µi
�(Sj(h))

= lim
n→∞

rn�λi(Sj(x))

rn�λi(Sj(h))

= lim
n→∞

pn
j (Sj(x))

pn
j (Sj(h))

= lim
n→∞

βn
i (h)(x) = βi(h)(x),

where � = �i(Sj(h)). For the fourth equality we used the facts that pn
j is the mixed

representation of σn
j and βn

i is induced by σn
i . Hence, for each i ∈ I , λi induces βi.

Construct a belief system having a state space with a single type vector, Ω = S×{t1}×
{t2}, and where, for each i ∈ I , �ti is represented by λti = (µti

1 , . . . , µ
ti

Li) ∈ L∆(Sj ×{tj}),
letting λti be determined by, for each � ∈ {1, . . . , Li}, µti

� (sj , tj) = µi
�(sj) for all sj ∈ Sj .

By construction, Ω = [cau1] ∩ [cau2]. Furthermore, for all ω ∈ Ω, there is mutual certain
belief of the type vector (t1, t2) at ω. Hence, the ‘only if’ part of the proof is established
since for each i ∈ I , λi induces σj and βi.

(If) Suppose there exists a belief system and ω ∈ [cau1] ∩ [cau2] such that (1) there is
mutual certain belief of (t1(ω), t2(ω)) at ω, (2) for each i ∈ I, σi is induced for ti(ω) by

λtj(ω), and (3) for each i ∈ I, βi is induced by λti(ω). We show that (σ, β) is a consistent
assessment.

For each i, derive λi = (µi
1, . . . , µ

i
Li) ∈ L∆(Sj) from λti(ω) = (µ

ti(ω)
1 , . . . , µ

ti(ω)

Lti
) ∈

L∆(Sj × Tj) by letting Li = Lti and, ∀� ∈ {1, . . . , Li}, µi
�(sj) = µ

ti(ω)
� (sj , tj(ω)) for all

sj ∈ Sj . It follows that �ti(ω)
Sj

is represented by λi. Furthermore, λi induces σj and βi.
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Choose sequences (rn)n∈N in (0, 1)Li−1 converging to zero and let the sequences (pn
j )n∈N

of mixed strategies be given by pn
j = rn�λi for all n. Since ω ∈ [caui], λ

i has full support
and for every n, pn

j is completely mixed. For every n, let σn
j be a behavioral representation

of pn
j and let βn

i be the player i beliefs induced by σn
j . We show that (σn

j )n∈N converges
to σj and that (βn

i )n∈N converges to βi, which imply consistency of (σ, β).
Since σn

j is a behavioral representation of pn
j , we have, ∀h ∈ Hj , ∀a ∈ A(h),

σn
j (h)(a) =

pn
i (Sj(h, a))

pn
j (Sj(h))

for all n. Hence, since by assumption σj is induced by λi,

lim
n→∞

σn
j (h)(a) = lim

n→∞
pn

j (Sj(h, a))

pn
j (Sj(h))

= lim
n→∞

rn�λi(Sj(h, a))

rn�λi(Sj(h))

=
µi

�(Sj(h, a))

µi
�(Sj(h))

= σj(h)(a),

where � = �i(Sj(h)). Hence, (σn
j )n∈N converges to σj .

Since βn
i is induced by σn

j and σn
j is a behavioral representation of pn

j , we have, ∀h ∈ Hi,
∀x ∈ h,

βn
i (h)(x) =

pn
j (Sj(x))

pn
j (Sj(h))

for all n. Hence, since by assumption βi is induced by λi,

lim
n→∞

βn
i (h)(x) = lim

n→∞
pn

j (Sj(x))

pn
j (Sj(h))

= lim
n→∞

rn�λi(Sj(x))

rn�λi(Sj(h))

=
µi

�(Sj(x))

µi
�(Sj(h))

= βi(h)(x),

where � = �i(Sj(h)). Hence, (βn
i )n∈N converges to βi, which completes the proof of the

proposition.

Proof of Proposition 7. (Only if.) Let (σ, β) be a sequential equilibrium. Since (σ, β) is
consistent, we can follow the ‘only if’ part of the proof of Prop. 6 in constructing for each
i ∈ I , an LPS λi = (µi

1, ..., µ
i
Li) with full support on Sj . This in turn leads to a belief

system having a state space with a single type vector, Ω = S×{t1}×{t2}, and where, for
each i ∈ I , �ti is represented by υi and λti = (µti

1 , . . . , µ
ti

Li) ∈ L∆(Sj×{tj}), recalling from
subsect. 2.7 that ui = υi ◦ z, and letting λti be determined by, for each � ∈ {1, . . . , Li},
µti

� (sj , tj) = µi
�(sj) for all sj ∈ Sj . By construction, Ω = [u1] ∩ [u2] ∩ [cau1] ∩ [cau2].

Furthermore, for all ω ∈ Ω, there is mutual certain belief of the type vector (t1, t2) given
ω, and for each i ∈ I , σi is induced for ti by λtj .

By Lemma 4 it remains to be shown that σi is a sequential best response to �ti for
each i ∈ I . Suppose that σi is not a sequential best response to �ti . Then there is some
information set h ∈ Hi and some mixed strategy pi ∈ ∆(Si(h)) that is outcome-equivalent
to σi|h such that there exist si ∈ Si(h) with pi(si) > 0 and s′i ∈ Si(h) having the property
that

ui(si, µ
i
Sj(h)) < ui(s

′
i, µ

i
Sj(h)) ,

where, given some belief µ ∈ ∆(Sj), ui(si, µ) :=
∑

sj∈Sj
µ(sj)υi(z(si, sj)), and where for

any sj ∈ Sj(h),

µi
Sj(h)(sj) :=

µi
�(sj)

µi
�(Sj(h))
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with � = �i(Sj(h)). Since the beliefs βi and the behavior strategy σj are induced by λi, it
follows that ui(si, µ

i
Sj(h)) = ui(si, σj ; βi)|h and ui(s

′
i, µ

i
Sj(h))|h = ui(s

′
i, σj ; βi)|h and hence

ui(si, σj ; βi)|h < ui(s
′
i, σj ;βi)|h,

which is a contradiction to the fact that (σ, β) is sequentially rational.
(If) Suppose there exists a belief system and ω ∈ Aseq such that (1) there is mutual

certain belief of (t1(ω), t2(ω)) at ω, and (2) for each i ∈ I , σi is induced for ti(ω) by λtj(ω).
For each i, derive λi = (µi

1, . . . , µ
i
Li) ∈ L∆(Sj) from λti(ω) = (µ

ti(ω)
1 , . . . , µ

ti(ω)

Lti
) ∈

L∆(Sj × Tj) by letting Li = Lti and, ∀� ∈ {1, . . . , Li}, µi
�(sj) = µ

ti(ω)
� (sj , tj(ω)) for all

sj ∈ Sj . Since ω ∈ [ui], it follows that �ti(ω)
Sj

is represented by υi (recalling from subsect.
2.7 that ui = υi ◦ z) and λi. Furthermore, λi induces σj and βi. Since ω ∈ [cau1]∩ [cau2]
it follows from the ‘if’ part of Prop. 6 that (σ, β) is consistent.

Fix a player i and an information set h ∈ Hi. We must show that

ui(σi, σj ;βi)|h = max
σ′

i

ui(σ
′
i, σj ;βi)|h ,(10)

which implies that ((σ1, σ2), (β1, β2)) is a sequential equilibrium.
Suppose that ui(σi, σj ;βi)|h < ui(σ

′
i, σj ;βi)|h for some σ′

i. Let pi ∈ ∆(Si(h)) be
outcome-equivalent to σi|h. Then, there is some si ∈ Si(h) with pi(si) > 0 and some
s′i ∈ Si(h) such that

ui(si, σj ;βi)|h < ui(s
′
i, σj ;βi)|h.

Since the beliefs βi and the behavior strategy σj are induced by λi, it follows that
ui(si, σj ;βi)|h = ui(si, µ

i
Sj(h)) and ui(s

′
i, σj ;βi)|h = ui(s

′
i, µ

i
Sj(h))|h (where we use the

notation that has been introduced in the ‘only if’ part of this proof) and hence

ui(si, µ
i
Sj(h)) < ui(s

′
i, µ

i
Sj(h)),

which contradicts the fact that σi is a sequential best response to �ti .

For the proof of Prop. 10 we must derive some properties of the certain belief operator
(cf. subsect. 2.3). It is easy to check that KiΩ = Ω and Ki∅ = ∅, and, for any events E
and F , KiE ∩KiF = Ki(E ∩F ), KiE ⊆ KiKiE, and ¬KiE ⊆ Ki(¬KiE), implying that,
for any event E, KiE = KiKiE. Write K0E := E and, for each g ≥ 1, KgE := KKg−1E.
Since Ki(E∩F ) = KiE∩KiF and KiKiE = KiE, it follows ∀g ≥ 2, KgE = K1K

g−1E∩
K2K

g−1E ⊆ K1K1K
g−2E∩K2K2K

g−2E = K1K
g−2E∩K2K

g−2E = Kg−1E. The truth
axiom (KiE ⊆ E) is not satisfied, since an event can be certainly believed even though the
true state is an element of the complement of the event. However, since Aseq = Aseq

1 ∩Aseq
2

is an event that concerns the type vector, mutual certain belief of Aseq implies that Aseq

is true: KAseq = K1A
seq ∩K2A

seq ⊆ K1A
seq
1 ∩K2A

seq
2 = Aseq

1 ∩Aseq
2 = Aseq since, for each

i, KiA
seq
i = Aseq

i . Hence, it follows that (i) ∀g ≥ 1, KgAseq ⊆ Kg−1Aseq , and (ii) ∃g′ ≥ 0
such that KgAseq = CKAseq for g ≥ g′ since Ω is finite.

For the proof of Prop. 10 we also need to establish more structure for perfect informa-
tion games. Set H−1 = Z (i.e. the set of terminal nodes) and determine, ∀g ≥ 0, Hg as
follows: h ∈ Hg if and only if h satisfies that

g = 1 + max{g′|∃h′ ∈ Hg′
and a ∈ A(h) such that h′ = (h, a)} .

In words, h ∈ Hg if and only if g is the maximal number of decision nodes between h and
a terminal node in the subgame determined by h.

Finally, let SBI (h) = SBI
1 (h)×SBI

2 (h) (⊆ S(h)) denote the set of pure strategy vectors
that is consistent with the backward induction outcome in the subgame h.

Proof of Prop. 10. In view of properties of the certain belief operator (cf. the paragraph
above), it is sufficient to show for any g = 0, . . . ,max{g′|Hg′ �= ∅} that if there exists a
belief system with ω ∈ KgAseq, then C̃

t(ω)
1 (h) × C̃

t(ω)
2 (h) ⊆ SBI(h) for any h ∈ Hg. This

is established by induction.
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(g = 0) Let h ∈ H0 and assume w.l.o.g. that h ∈ Hi. Then trivially C̃
tj

j (h) = Sj(h) =
SBI

j (h). Let ti = ti(ω) for some ω ∈ K0Aseq = Aseq. Then it follows that C̃ti
i (h) = SBI

i (h)
since Γ is generic and ω ∈ Aseq ⊆ [ui] ∩ [caui].

(g = 1, . . . ,max{g′|Hg′ �= ∅}) Suppose that it has been established for g′ = 0, . . . , g−1

that if there exists a belief system with ω ∈ Kg′
Aseq, then C̃t(ω)(h′) ⊆ SBI(h′) for any

h′ ∈ Hg′
. Let h ∈ Hg and assume w.l.o.g. that h ∈ Hi. Let tj = tj(ω) for some

ω ∈ Kg−1Aseq. Then by (1) and the premise it follows that Sj(h) = Sj(h, a) and C̃
tj

j (h) ⊆
C̃

tj

j (h, a) ⊆ SBI
j (h, a) if a ∈ A(h). This implies that C̃

tj

j (h) ⊆ ⋂
a∈A(h) S

BI
j (h, a) ⊆ SBI

j (h).

Hence, any sj ∈ C̃
tj

j (h) is consistent with the backward induction outcome in any subgame
(h, a) immediately succeeding h.

Now, consider i. Let ti = ti(ω) for some ω ∈ KgAseq. The preceding argument implies
that C̃

tj

j (h) ⊆ ⋂
a∈A(h)S

BI
j (h, a) whenever tj ∈ T ti

j since ω ∈ KgAseq ⊆ KiK
g−1Aseq. Let

sBI
i ∈ Si(h) determine play in accordance with backward induction at any h′ appearing

(weakly) after h (i.e. at all h′ satisfying Si(h) ⊇ Si(h
′)), and let s′i ∈ Si(h) be a strategy

that differs from sBI
i by assigning a different action only at h. As any pure strategy in

Si can be viewed as an act on Sj (cf. subsect. 2.4), write xSj for the act on Sj that sBI
i

can be viewed as (i.e. xSj assigns z(sBI
i , sj) to any sj ∈ Sj), and write ySj for the act on

Sj that s′i can be viewed as (i.e. ySj assigns z(s′i, sj) to any sj ∈ Sj). Let x and y be
the acts on Sj × Tj that satisfy x(sj , tj) = xSj (sj) and y(sj , tj) = ySj (sj) for all (sj , tj).
Then,

x∩a∈A(h)SBI
j

(h,a)×Tj
strongly dominates y∩a∈A(h)SBI

j
(h,a)×Tj

by backward induction since Γ is generic and ω ∈ KgAseq ⊆ [ui]. Since C̃
tj

j (h) ⊆⋂
a∈A(h) S

BI
j (h, a) whenever tj ∈ T ti

j , it follows that, ∀tj ∈ T ti
j ,

x
C̃

tj
j (h)×{tj}

strongly dominates y
C̃

tj
j (h)×{tj}

.(11)

Since ω ∈ KgAseq ⊆ [isbri], it follows that there exists sj ∈ C̃
tj

j (h) such that (sj , tj) 

(s′j , tj) according to �ti whenever tj ∈ T ti

j and s′j ∈ Sj(h)\C̃tj

j (h), which by (11) implies

that x �ti
Sj(h)×{tj} y. Since this holds for all tj ∈ T ti

j , it follows that x�ti
Sj(h)×Tj

y and
xSj�ti

Sj(h)ySj .

It has thereby been established that s′i ∈ Si(h)\C̃ti
i (h) if s′i differs from backward induc-

tion only by the action taken at h. However, since si ∈ C̃ti
i (h) implies si ∈ C̃ti

i (h, si(h))
(by definition) and, ∀a ∈ A(h), C̃ti

i (h, a) ⊆ SBI
i (h, a) (by the premise), it follows that any

si ∈ C̃ti
i (h) is consistent with the backward induction outcome in the subgame (h, si(h))

immediately succeeding h. Hence, C̃ti
i (h) ⊆ SBI

i (h).
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