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2 ADMISSIBILITY AND COMMON BELIEF

1. Introduction

Two different, but related, ideas have re-occurred in deductive game-
theoretic analysis:

1. A player should prefer one strategy to another if the former weakly
dominates the latter. Such admissibility of a player’s preferences —
which can be referred to as ‘caution’ since it means that all opponent
strategies are taken into account — has been defended by e.g. Luce &
Raiffa ([32], Ch. 13) and is implicit in any procedure that starts out
by eliminating all weakly dominated strategies.

2. A player should deem any opponent strategy that is a rational choice
infinitely more likely (in the sense of Blume, Brandenburger & Dekel
[15], Def. 5.1) than any opponent strategy not having this property.
This is equivalent to saying that a player should prefer one strategy to
another if the former weakly dominates the latter on the set of rational
choices for the opponent. Such admissibility of a player’s preferences
— which will here be referred to as ‘full belief of opponent rationality’
— is a key ingredient in the analyses of weak dominance by Samuelson
[37] and Börgers & Samuelson [19], and is essentially satisfied by pro-
cedures, like ‘extensive form rationalizabiliy’ (EFR, cf. Pearce [35] and
Battigalli [9, 10]) and ‘iterated elimination of (all) weakly dominated
strategies’ (IEWDS), that promote forward induction.

The present paper presents an analysis that combines these ideas in the
following manner. A player’s preferences over his own strategies, which
depend both on his payoff function and on his beliefs about the strategy
choice of his opponent, leads to a choice set (i.e. a set of maximal strategies).
A player’s preferences will be said to be fully admissibly consistent with the
preferences of his opponent if one strategy is preferred to another if and only
if the former weakly dominates the latter

• on the set of all opponent strategies (i.e. ‘caution’), or
• on the union of the choice sets that are deemed possible for the oppo-
nent (i.e. ‘full belief of opponent rationality’).

A subset of strategies is a fully permissible set if and only if it can be a
choice set when there is common certain belief of full admissible consistency,
where an event is ‘certainly believed’ if the complement is Savage-null (cf.
subsect. 3.3). Hence, the analysis yields a solution concept that determines
a collection of strategy subsets – a family of choice sets – for each player.

1.1. An Illustration. We will use G1 of Fig. 1 to illustrate the conse-
quences of imposing ‘caution’ and ‘full belief of opponent rationality’. The
reader may want to study the example and decide what is a “reasonable”
outcome before reading on. Since ‘caution’ means that each player takes
all opponent strategies into account, it follows that player 1’s preferences
over his strategies will be U ∼ M � D (where ∼ and � denote indifference
and preference, respectively). Player 1 must prefer each of the strategies U
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L R

U

M

D

1, 1 1, 1
1, 1 1, 0
1, 0 0, 1

Figure 1. An illustration (G1).

and M to the strategy D, because the former strategies weakly dominate
D. Hence, U and M are maximal, implying that 1’s choice set is {U,M}.

The requirement of ‘full belief in opponent rationality’ comes into effect
when considering the preferences of player 2. Suppose that 2 is certain that
1 is cautious. What will 2’s preferences over her strategies be? Since 2 (as
indicated above) should figure out that {U,M} is 1’s choice set, 2 should
deem each element of {U,M} infinitely more likely than D. This is captured
by our assumption that 2 has full belief of 1’s rationality. It amounts to
the requirement that 2’s preferences should respect weak dominance on 1’s
choice set {U,M}, regardless of what happens if 1 chooses D. Hence, 2’s
preferences over her strategies will be L � R.

Summing up, common certain belief of full admissible consistency leads
to the following solution for G1:

1’s preferences: U ∼ M � D

2’s preferences: L � R

This means that {U,M} is the unique fully permissible set for player 1 and
{L} is the unique fully permissible set for player 2.

1.2. Related Concepts. Several solution concepts with natural epistemic
foundations fail to match this prediction. In the case of rationalizability
(Bernheim [14], Pearce [35]) — which in 2-player games corresponds to iter-
ated elimination of strongly dominated strategies — this is perhaps not so
surprising. Rationalizability can be understood as a consequence of ‘common
belief of rational choice’ without imposing caution (see e.g. Tan & Werlang
[39]), so there is no guarantee that a player always prefers one strategy to
another if the former weakly dominates the latter. As an illustration, the
strategy D in G1 can be rationalized by 1 believing that 2 chooses L (which
in turn can be rationalized by 2 believing that 1 chooses U or M , etc.). This
contradicts that 1 is cautious and chooses a strategy in his choice set.

It is perhaps more surprising that the concept of ‘permissibility’ does not
match our solution of G1. Permissibility can be given rigorous epistemic
foundations in models where the players are cautious (cf. Börgers [18], and
especially Brandenburger [20] who coined the term ‘permissible’; see also
Ben-Porath [12] and Gul [30]). In these models players take into account all
opponent strategies, while assigning more weight to a subset of those oppo-
nent strategies they deem to be rational choices for the opponent. Permis-
sibility implies that only strategies that survive the so-called DF procedure
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(after Dekel & Fudenberg [24]) — one round of elimination of (all) weakly
dominated strategies followed by iterated elimination of strongly dominated
strategies — can be chosen. In G1, this means that 1 cannot choose his
weakly dominated strategy D. However, in contrast to our solution where
2 prefers L to R, permissibility allows that 2 chooses R. To exemplify us-
ing Brandenburger’s [20] approach, this will be the case if 2 deems U to be
infinitely more likely than D which in turn is deemed infinitely more likely
than M . The problem is that our requirement of ‘full belief of opponent ra-
tionality’ is not satisfied: Player 2 deems D more likely than M even though
M is in 1’s choice set, while D is not. In Sect. 2 we establish as a general
result (Prop. 2) that the concept of fully permissible sets refines the DF
procedure.

The procedure of IEWDS yields the same conclusion in G1 as do the
concept of fully permissible sets. However, the concept of fully permissible
sets neither refines nor is refined by the procedure of IEWDS (see G3 in
Sect. 2 for a proof by example).

We shall use two games — ‘Battle-of-the-sexes-with-an-outside-option’
(G2) and ‘Burning money’ (G4) — to illustrate how the concept of fully
permissible sets captures a notion of forward induction, although by an
argument that differs from the one that usually applies. The usual forward
induction argument is illustrated in these games by the procedure of IEWDS
and the concept of EFR. The latter concept has recently been given an
epistemic foundation by Battigalli & Siniscalchi [11]. In Sect. 6 we will
explain how our epistemic analysis differs from theirs and compare our work
to other related literature.

1.3. Organization of the Paper. Section 2 formally defines the concept of
fully permissible sets through an algorithm that eliminates strategy sets that
cannot be choice sets under full admissible consistency. General existence as
well as other properties are shown. Section 3 introduces epistemic operators,
which are used in Sect. 4 to establish an epistemic foundation for the concept
of fully permissible sets through the requirement of common certain belief of
full admissible consistency. Section 5 contains further examples, while Sect.
6 concludes. Some technical material (including the proofs) are contained
in two appendices. For ease of presentation, the analysis will be limited to
2-player games. This is mostly a matter of convenience as everything can
be generalized to n-player games (with n > 2).

2. An Algorithm

We present in this section an algorithm — ‘iterated elimination of choice
sets under full admissible consistency’ (IECFA) — leading to the concept of
‘fully permissible sets’. This concept will in turn be given an epistemic char-
acterization in Sect. 4 by imposing common certain belief of full admissible
consistency. We present the algorithm before the epistemic characterization
for different reasons:
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• IECFA is fairly accessible. By defining it early, we can apply it early,
and so offer early indications of the nature of the solution concept that
we wish to promote.

• To define IECFA is to point to a parallel between our approach and the
concepts of rationalizable strategies and permissible strategies. Even
though they are motivated by epistemic assumptions, both concepts
turn out to be identical in 2-player games to the set of strategies sur-
viving simple algorithms: respectively, iterated elimination of strongly
dominated strategies (IESDS) and the DF procedure.

• Just like IESDS and the DF procedure, IECFA is much easier to use
than the corresponding epistemic characterizations. The algorithm
should be a handy tool for applied economists who may wish to see it
presented early and then spend less time on the details of Sect. 4.

IESDS and the DF procedure iteratively eliminate dominated strategies.
In the corresponding epistemic models, these strategies in turn cannot be
rational choices, cannot be rational choices given that other players do not
use strategies that cannot be rational choices, etc. IECFA is also an elim-
ination procedure. However, the interpretation of the basic item thrown
out is not that of a strategy that cannot be a rational choice, but rather
that of a set of strategies that cannot be the set of maximal strategies (i.e.,
a choice set; cf. subsects. 2.2 and 3.5) for any preferences that are in a
given sense consistent with the preferences of the opponent. The specific
kind of consistency involved in IECFA — which will be defined in Sect. 4.2
and referred to as ‘full admissible consistency’ — requires that a player’s
preferences are characterized by the properties of ‘caution’ and ‘full belief of
opponent rationality’. Thus, IECFA does not start with each player’s strat-
egy set and then iteratively eliminates strategies. Rather, IECFA starts with
each player’s collection of non-empty subsets of his strategy set and then
iteratively eliminates subsets that cannot be choice sets when the players’
preferences satisfy the requirement of ‘full admissible consistency’.

2.1. A Strategic Game. With N = {1, 2} as the set of players, let, for
each i, Si denote player i’s finite set of pure strategies and ui : S → R be
a vNM utility function that assigns payoff to any strategy vector, where
S = S1 × S2 is the set of strategy vectors. Then G = (Si, ui)i∈N is a finite
strategic two-player game. Write pi, ri, and si (∈ Si) for pure strategies and
xi and yi (∈ ∆(Si)) for mixed strategies. Since ui is a vNM utility function,
we may extend ui to mixed strategies: ui(xi, sj) =

∑
si∈Si

xi(si)ui(si, sj).

2.2. Definition. Say that xi weakly dominates yi on Qj (⊆ Sj) if, ∀sj ∈ Qj ,
ui(xi, sj) ≥ ui(yi, sj), with strict inequality for some sj ∈ Qj . Say that
player i’s preferences over his own strategies are admissible on Qj (�= ∅) if xi

is preferred to yi whenever xi weakly dominates yi on Qj . Player i’s choice
set is the set of pure strategies that are maximal w.r.t. i’s preferences over
his own strategies: si (∈ Si) is in i’s choice set if and only if there is no xi



6 ADMISSIBILITY AND COMMON BELIEF

(∈ ∆(Si)) such that xi is preferred to si. As indicated in subsect. 3.5, i’s
choice set is non-empty and supports any maximal mixed strategy.

In order to describe IECFA and thus define the concept of ‘fully permis-
sible sets’, let the set Qj be interpreted as the set of strategies that player i
deems to be the set of rational choices for his opponent. Assume that player
i’s preferences over his own strategies are characterized by the property of
being admissible on both Qj and Sj : xi is preferred to yi if and only if
xi weakly dominates yi on Qj or Sj . Player i’s choice set is then equal to
Si\Di(Qj), where, for any (∅ �=) Qj ⊆ Sj ,

Di(Qj) := {si ∈ Si|∃xi ∈ ∆(Si) s.t. xi weakly dom. si on Qj or Sj} .

Let Σ = Σ1 × Σ2, where Σi := 2Si\{∅} denotes the collection of non-empty
subsets of Si. Write πi, ρi, and σi (∈ Σi) for subsets of pure strategies. For
any (∅ �=) Ξ = Ξ1 × Ξ2 ⊆ Σ, write α(Ξ) := α1(Ξ2)× α2(Ξ1), where

αi(Ξj) := {πi ∈ Σi|∃(∅ �=)Ψj ⊆ Ξj s.t. πi = Si\Di(∪σj∈Ψjσj)} .

Hence, αi(Ξj) is the collection of strategy subsets that can be choice sets for
player i if i’s preferences are characterized by the property of being admis-
sible both on the union of the strategy subsets in a non-empty subcollection
of Ξj and on the union of all opponent strategies.

We can now define the main concept of this paper.

Definition 1. Consider the sequence defined by Ξ(0) = Σ and, ∀g ≥ 1,
Ξ(g) = α(Ξ(g − 1)). A non-empty strategy set πi is said to be a fully
permissible set for i if πi ∈

⋂∞
g=0 Ξi(g).

Let Π = Π1 × Π2 denote the collection of vectors of fully permissible sets.
Since ∅ �= αi(Ξ′

j) ⊆ αi(Ξ′′
j ) ⊆ αi(Σj) whenever ∅ �= Ξ′

j ⊆ Ξ′′
j ⊆ Σj and

since the game is finite, Ξ(g) is a monotone sequence that converges to Π
in a finite number of iterations. IECFA is the procedure that in round g
eliminates sets in Ξ(g − 1)\Ξ(g) as possible choice sets. As defined in Def.
1 IECFA eliminates maximally in each round in the sense that, ∀g ≥ 1,
Ξ(g) = α(Ξ(g − 1)). However, it follows from the monotonicity of αi that
any non-maximal procedure, where ∃g ≥ 1 such that Ξ(g − 1) ⊃ Ξ(g) ⊃
α(Ξ(g − 1)), will also converge to Π.

A choice set of player i survives elimination round g if it is a choice set
w.r.t. preferences that are characterized by the property of being admissible
both on the union of some (or all) of opponent choice sets that have survived
the procedure up till round g − 1 and on the set of all opponent strategies.
A fully permissible set is a choice set which will survive in this way for any
g. It will follow from the analysis of Sect. 4 that strategy subsets that
this algorithm has not eliminated by round g can be interpreted as choice
sets that are compatible with g − 1 order of mutual certain belief of full
admissible consistency.
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L R
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M

D

2, 2 2, 2
3, 1 0, 0
0, 0 1, 3

Figure 2. Battle-of-the-sexes-with-an-outside-option (G2).

2.3. Applications. The best way to illustrate the functioning of IECFA is
to apply it. Consider first G1 of the introduction. We get:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{U,M}} × Σ2

Π = Ξ(2) = {{U,M}} × {{L}} .
Independently of Q2, S1\D1(Q2) = {U,M}, so for 1 only {U,M} can survive
the first elimination round. On the other hand, S2\D2({U,M}) = {L},
S2\D2({D}) = {R}, and S2\D2({U}) = {L,R}, so that no elimination is
possible for player 2. However, in the second elimination round only {L}
survives since S2\D2({U,M}) = {L}. The interpretation is that (in round
2) it is impossible for R to appear in a choice set for 2. This is because (in
round 1) only {U,M} is possible as a choice set for 1, and then {L} must
be 2’s choice set since only L is a maximal element w.r.t. preferences are
admissible on {U,M} and {U,M,D}.

We now consider a different example, the ‘Battle-of-the-sexes-with-an-
outside-option’ game, which pure strategy reduced strategic form is given
by G2 of Fig. 2. The example shows that our solution concept captures
a notion of forward induction. We will return to this example on several
occasions throughout the paper. Applying IECFA we get:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{U}, {M}, {U,M}} × Σ2

Ξ(2) = {{U}, {M}, {U,M}} × {{L}, {L,R}}
Ξ(3) = {{M}, {U,M}} × {{L}, {L,R}}
Ξ(4) = {{M}, {U,M}} × {{L}}

Π = Ξ(5) = {{M}} × {{L}}
We move directly to the interpretation in terms of surviving choice sets:
(Round 1) D cannot be in a choice set for 1 since this strategy is strictly
dominated. (Round 2) This implies that {R} is excluded as a choice set
for 2, since only {U}, {M}, and {U,M} are candidates for 1’s choice set
and S2\D2(Q1) �= {R} if Q1 is the union of some (or all) of the sets {U},
{M}, and {U,M}. (Round 3) Similarly, {U} is excluded as a choice set for
1, since only {L} and {L,R} are candidates for 2’s choice set. (Round 4)
Given this {L,R} cannot be 2’s choice set. (Round 5) Since {M} is the
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e f g

a

b
c

d

1, 1 1, 1 0, 0
1, 1 0, 1 1, 0
0, 1 0, 0 2, 0
0, 0 0, 1 0, 2

Figure 3. The relation between IECFA and IEWDS (G3)

set of 1’s strategies that are maximal w.r.t. preferences that are admissible
on {L}, only {M} survives as a choice set for player 1. Now the algorithm
comes to a stop: S2\D2({M}) = {L} and S1\D1({L}) = {M}, and hence
{M} and {L} are the fully permissible sets.

2.4. Results. The following proposition characterizes the strategy subsets
that survive IECFA and thus are fully permissible.

Proposition 1. (i) ∀i ∈ N , Πi �= ∅. (ii) Π = α(Π). (iii) ∀i ∈ N , πi ∈ Πi

if and only if there exists Ξ = Ξ1 × Ξ2 with πi ∈ Ξi such that Ξ ⊆ α(Ξ).

Prop. 1(i) establishes existence, but not uniqueness, of each player’s fully
permissible set(s). Games with multiple strict Nash equilibria illustrate the
possibility of such multiplicity; by Prop. 1(iii), any strict Nash equilibrium
corresponds to a vector of fully permissible sets. Another (quite different)
example of a game with multiple fully permissible sets is provided by G5 of
Sect. 5. Prop. 1(ii) means that Π is a fixed point in terms of a collection of
vectors of strategy sets. By Prop. 1(iii) it is the largest such fixed point.

We close this section by recording some connections between IECFA on
the one hand, and IESDS, the DF-procedure and IEWDS on the other.
First, we note through the following Prop. 2 that IECFA has more bite
than the DF procedure. G1 of the introduction as well as G2 of the present
section illustrate that this refinement may be strict.

Proposition 2. A pure strategy pi is permissible (i.e., survives the DF pro-
cedure) if there exists a fully permissible set πi such that pi ∈ πi.

It follows as a corollary that IECFA has more cutting power also than IESDS,
since a strategy is rationalizable (i.e. survives the IESDS) whenever it is
permissible (i.e. survives the DF procedure).

We finally compare IECFA to IEWDS. In both games discussed so far
IECFA generates the same outcome as does IEWDS. However, the proce-
dures of IECFA and IEWDS are different. This is even indicated in G2, since
— although IECFA and IEWDS have the same cutting power — the two
algorithms work quite differently. In general, neither of IECFA and IEWDS
has more bite than the other, as demonstrated by the game G3 of Fig. 3.
It is straightforward to verify that a and b for player 1, and e for player 2
survive IEWDS, while {a} for 1 and {e, f} for 2 survive IECFA and are thus
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the fully permissible sets, as shown below:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{a}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
× {{e}, {g}, {e, f}, {e, g}, {f, g}, {e, f, g}}

Ξ(2) = {{a}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} × {{e}, {e, f}}
Ξ(3) = {{a}, {a, b}} × {{e}, {e, f}}
Ξ(4) = {{a}, {a, b}} × {{e, f}}

Π = Ξ(5) = {{a}} × {{e, f}}
Strategy b survives IEWDS but does not appear in any fully permissible set.
Strategy f appears in an fully permissible set but does not survive IEWDS.
We refer to Sect. 5 for further comparison between IECFA and IEWDS.

3. States, Types, Preferences, and Belief

In the following two sections we provide an epistemic characterization of
the concept of fully permissible sets. The first of these sections

• presents a framework for strategic games where each player is modeled
as a decision maker under uncertainty, and

• introduces the epistemic operators that will be employed in this char-
acterization.

The decision-theoretic analysis builds on Blume, Brandenburger & Dekel
[15]. We relax continuity of preferences to allow the imposition of ‘cau-
tion’, as discussed in the introduction. Moreover, we also relax complete-
ness of preferences to accommodate preferences that can be expressed solely
in terms of admissibility on nested sets, and thus cannot be represented by
means of subjective probabilities. The framework is summarized by the con-
cept of a belief system (cf. Def. 2). Appendix A contains a presentation of
the decision-theoretic terminology, notation and results that will be utilized.

3.1. A Strategic Game Form. Let z : S → Z map strategy vectors into
outcomes, where Z is the set of outcomes. Then ((Si)i∈N , z) is a finite
strategic two-player game form.

3.2. States and Types. When a strategic game form is turned into a
decision problem for each player (see Tan & Werlang [39]), the uncertainty
faced by a player concerns the strategy choice of his opponent, the belief of
his opponent about his own strategy choice, and so on. A type of a player
corresponds to a vNM utility function and a belief about the strategy choice
of his opponent, a belief about the belief of his opponent about his own
strategy choice, and so on.

Given an assumption of coherency, models of such infinite hierarchies
of beliefs (Armbruster & Böge [2], Böge & Eisele [17], Mertens & Zamir
[33], Brandenburger & Dekel [22], Epstein & Wang [28]) yield S × T as the
complete state space, where S is the underlying space of uncertainty and
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where T = T1 × T2 is the set of all feasible type vectors. Furthermore, for
each i, there is a homeomorphism between Ti and the set of beliefs on S×Tj ,
where j denotes i’s opponent. Combined with a vNM utility function, the
set of beliefs on S × Tj corresponds to the set of “regular” binary relations
on the set of acts on S × Tj , where an act on S × Tj is a function that to
any element of S × Tj assigns an objective randomization on Z.

For each type of any player i, the type’s decision problem is to choose one
of i’s strategies. For the modeling of this problem, the type’s belief about his
own decision is not relevant and can be ignored. Hence, models of infinite
hierarchies of beliefs — in the setting of a strategic game form — imply that
each type of any player i corresponds to a “regular” binary relation on the
set of acts on Sj × Tj .

In conformity with the literature on infinite hierarchies of beliefs, let

• the set of states of the world (or simply states) be Ω := S × T ,
• each type ti of any player i correspond to a binary relation �ti on the
set of acts on Sj × Tj .

However, we do not construct a complete state space by explicitly modeling
infinite hierarchies of beliefs. For tractability we instead directly consider
an implicit model — with a finite type set Ti for each player i — from
which infinite hierarchies of beliefs can be constructed.1 Moreover, since
completeness and continuity of preferences are not imposed, the “regularity”
conditions on �ti consist of reflexivity, transitivity, objective independence,
nontriviality, conditional completeness, conditional continuity and non-null
state independence, meaning that �ti is conditionally represented by a vNM
utility function υti

i : Z → R that assigns a payoff to any outcome (cf. Prop.
A1 of Appendix A).2 Being a vNM utility function, υti

i can be extended to
objective randomizations on Z. Since �ti is conditionally represented, it
follows that strong and weak dominance are well-defined. The construction
is summarized by the following definition.

Definition 2. A belief system for a game form ((Si)i∈N , z) consists of
• for each player i, a finite set of types Ti,

1This is not purely a matter of convenience as Brandenburger [21] and Brandenburger
& Keisler [23] have shown that a complete state space may not exist if beliefs are not
based on subjective probabilities. In contrast to Battigalli & Siniscalchi’s [11] epistemic
foundation for EFR, a complete state space is not needed for the present analysis.

2If conditional completeness is strengthened to completeness, then it follows from
Blume, Brandenburger & Dekel [15] that �ti is represented by υti

i and a lexicographic
probability system (LPS) λti = (µti

1 , . . . , µti
L ) ∈ L∆(Sj × Tj) (cf. Prop. A2 of Appendix

A). If, in addition, conditional continuity is strengthened to continuity, then �ti is rep-
resented by υti

i and a subjective probability distribution µti ∈ ∆(Sj × Tj). Continuity
is inconsistent with the present analysis due to the requirement of ‘caution’. Complete-
ness, implying a subjective probability representation through an LPS, is consistent with
– though not implied by – the concept of ‘admissible consistency’, but inconsistent with
the concept of ‘full admissible consistency’ (cf. Sect. 4).
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• for each type ti of any player i, a binary relation �ti (ti’s preferences)
on the set of acts on Sj × Tj , where �ti is conditionally represented
by a vNM utility function υti

i .

3.3. Belief and Certain Belief. When preferences are not continuous,
one can differentiate between belief and certain belief in a manner that will
be explained below. Both ‘belief’ and ‘certain belief’ are subjective, as they
are derived from preferences (following the approach of Morris [34]); hence,
neither operator satisfies the truth axiom. To state these operators, let, for
each player i and each state ω ∈ Ω, ti(ω) denote the projection of ω on Ti,
and let, for any event E ⊆ Ω, Eti

j := {(sj , tj) ∈ Sj × Tj |∃(s′1, s′2, t′1, t′2) ∈ E
s.t. (s′j , t

′
j) = (sj , tj) and t′i = ti} denote the set of opponent strategy-type

pairs that are consistent with ω ∈ E and ti(ω) = ti.
It is perhaps easier to introduce these concepts in the case when pref-

erences are complete and, thus, representable in terms of an LPS λti =
(µti

1 , . . . , µ
ti
L) ∈ L∆(Sj × Tj) (cf. footnote 2). Then an event is ‘certainly

believed’ if no element of the complement is assigned positive probability by
some probability distribution in λti :

KiE := {ω ∈ Ω|κti(ω)
j ⊆ E

ti(ω)
j },

where κti
j := suppλti (⊆ Sj × Tj). On the other hand, an event is ‘believed’

if no element of the complement is assigned positive probability by µti
1 :

3

BiE := {ω ∈ Ω|βti(ω)
j ⊆ E

ti(ω)
j },

where βti
j := suppµti

1 (⊆ Sj × Tj). It follows that KiE ⊆ BiE (i.e. ‘certain
belief’ implies ‘belief’) since βti

j = suppµti
1 ⊆ κti

j = suppλti := ∪L
�=1suppµ

ti
� .

To generalize κti
j (and thus KiE) to incomplete preferences, let

κti
j := {(sj , tj) ∈ Sj × Tj |(sj , tj) is not Savage-null acc. to �ti}

denote the set of opponent strategy-type pairs that ti deems possible.4 This
generalizes the case of complete preferences, since in that case suppλti is the
set of opponent strategy-type pairs that ti does not deem Savage-null.

To generalize βti
j (and thus BiE) to incomplete preferences, say that �ti

is admissible on βj , where ∅ �= βj ⊆ Sj ×Tj , if x �ti y whenever xβj weakly
dominates yβj . If �ti is admissible on βj , then any (s′j , t

′
j) ∈ βj is deemed

infinitely more likely than any (s′′j , t
′′
j ) ∈ Sj × Tj\βj . Since (s′j , t

′
j) being

infinitely more likely than (s′′j , t
′′
j ) implies that (s′′j , t

′′
j ) is not infinitely more

than (s′j , t
′
j), it follows that β′

j ⊆ β′′
j or β′

j ⊇ β′′
j whenever �ti is admissible

on both β′
j and β′′

j . Since, in addition, �ti is admissible on κti
j , it follows

that there exists a unique smallest (w.r.t. set inclusion) non-empty set on

3This notion of ‘belief’ in the case of complete preferences corresponds to Branden-
burger’s [20] ‘first-order knowledge’.

4The term ‘certain belief’ for this notion is also used by Morris [34].
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which �ti is admissible; let this set be denoted βti
j :

5

�ti is admissible on βti
j and βj ⊇ βti

j whenever �ti is admissible on βj .

This generalizes the case of complete preferences, since in that case suppµti
1

is the unique smallest set of opponent strategy-type pairs on which �ti

is admissible. Also with incomplete preferences it follows that KiE ⊆ BiE
since �ti is admissible on κti

j ; i.e. β
ti
j ⊆ κti

j . If β
ti
j �= κti

j , then ti’s preferences
are not continuous.

In addition to KiE ⊆ BiE, it follows that the operators Bi and Ki satisfy

BiE ∩BiF = Bi(E ∩ F ) KiE ∩KiF = Ki(E ∩ F )

Bi∅ = ∅ KiΩ = Ω
BiE ⊆ KiBiE KiE ⊆ KiKiE

¬BiE ⊆ Ki(¬BiE) ¬KiE ⊆ Ki(¬KiE).

Since KiE ⊆ BiE implies that Ki∅ = ∅, BiΩ = Ω, BiE ⊆ BiBiE and
¬BiE ⊆ Bi(¬BiE), both operators Bi and Ki correspond to KD45 systems.
Since an event can be certainly believed even though the true state is an
element of the complement of the event, it follows that neither operator
satisfies the truth axiom (i.e. KiE ⊆ E and BiE ⊆ E need not hold).

Say that i believes the event E ⊆ Ω given ω if ω ∈ BiE (or equivalently,
β

ti(ω)
j ⊆ E

ti(ω)
j ). Say that i certainly believes the event E ⊆ Ω given ω if

ω ∈ KiE (or equivalently, κti(ω)
j ⊆ E

ti(ω)
j ). Write KE := K1E ∩K2E. Say

that there is mutual certain belief of E ⊆ Ω given ω if ω ∈ KE. Write
CKE := KE ∩ KKE ∩ KKKE ∩ . . . . Say that there is common certain
belief of E ⊆ Ω given ω if ω ∈ CKE.

3.4. Full Belief. In Sect. 4 the concept of fully permissible sets will be
characterized by imposing common certain belief of the event of ‘full admis-
sible consistency’. The definition of ‘full admissible consistency’ is based on
an epistemic operator that we will refer to as ‘full belief’. This subsection
introduces and characterizes this operator.

An event is ‘fully believed’ if any element of the event that is not Savage-
null is deemed infinitely more likely than any element of the complement:

B0
i E := {ω ∈ Ω|�ti(ω) is admissible on E

ti(ω)
j ∩ κ

ti(ω)
j }.

It follows that B0
i E ⊆ BiE since �ti(ω) being admissible on E

ti(ω)
j ∩ κ

ti(ω)
j

implies that βti(ω)
j ⊆ E

ti(ω)
j . It follows that KiE ⊆ B0

i E since κ
ti(ω)
j ⊆ E

ti(ω)
j

implies that �ti(ω) is admissible on κ
ti(ω)
j = E

ti(ω)
j ∩ κ

ti(ω)
j .

In addition toKiE ⊆ B0
i E ⊆ BiE, it follows that the operator B0

i satisfies

B0
i E ∩B0

i F ⊆ B0
i (E ∩ F )

B0
i E ⊆ KiB

0
i E

¬B0
i E ⊆ Ki(¬B0

i E).

5This notion of ‘belief’ is related to, but differs from, Morris’ [34] ‘strong belief’.
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Note that KiE ⊆ B0
i E ⊆ BiE implies that B0

i ∅ = ∅, B0
i Ω = Ω, B0

i E ⊆
B0

i B
0
i E and ¬B0

i E ⊆ B0
i (¬B0

i E). However, even though the operator B0
i

satisfies B0
i E ⊆ ¬B0

i ¬E as well as positive and negative introspection, it
does not satisfy monotonicity since E ⊆ F does not imply B0

i E ⊆ B0
i F . To

see that the operator B0
i does not satisfy monotonicity, consider G1 of the

introduction: If 2 prefers any strategy that (weakly) dominates another on
{U}, regardless of what happen outside {U}, then it does not follow that
2 prefer any strategy that weakly dominates another on {U,M}, regardless
of what happens outside {U,M}, since weak dominance on {U,M} does
not imply (weak) dominance on {U}. This is illustrated by L and R: ω ∈
B0

2({(s1, s2, t1, t2)|s1 = U}) does not imply that t2(ω) prefers L to R, while
ω ∈ B0

2({(s1, s2, t1, t2)|s1 ∈ {U,M}}) does imply that t2(ω) prefers L to R.
Such non-monotonic operators arise also in other contributions that pro-

vide epistemic conditions for forward induction. In particular, Battigalli &
Siniscalchi [11] use a non-monotonic operator which they call ‘strong belief’.
However, in contrast to Battigalli & Siniscalchi’s [11] use of the operator
‘strong belief’, our non-monotonic operator B0

i is used only for defining the
event of ‘full admissible consistency’, while the monotonic operator Ki is
used for the interactive epistemology.

Say that i fully believes the event E ⊆ Ω given ω if ω ∈ B0
i E (or equiva-

lently, �ti(ω) is admissible on E
ti(ω)
j ∩ κ

ti(ω)
j ).

3.5. Preferences over Strategies. Let �ti
Sj

denote the marginal of �ti

on Sj . A pure strategy si ∈ Si can be viewed as an act xSj on Sj that
assigns z(si, sj) to any sj ∈ Sj . A mixed strategy xi ∈ ∆(Si) corresponds
to an act xSj on Sj that assigns z(xi, sj) to any sj ∈ Sj . Hence, �ti

Sj
is a

binary relation also on the subset of acts on Sj that correspond to i’s mixed
strategies. Thus, �ti

Sj
can be referred to as ti’s preferences over i’s mixed

strategies. The set of mixed strategies ∆(Si) is the set of acts that are at
ti’s actual disposal.

Since �ti is reflexive and transitive and satisfies objective independence,
�ti

Sj
shares these properties, and ti’s choice set,

Cti
i := {si ∈ Si|si is maximal w.r.t. �ti

Sj
in ∆(Si)},

is non-empty and supports any maximal mixed strategy.

3.6. Playing the Game. The event that i plays the game G = (Si, ui)i∈N

is given by

[ui] := {ω ∈ Ω|υti(ω)
i ◦ z is a positive affine transformation of ui} ,

while [u1] ∩ [u2] is the event that both players play G.

4. Consistency of Preferences

Usually requirements in deductive game theory are imposed on choice.
E.g. rationality is a requirement on a pair (si, ti), where si is said to be a
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‘rational choice’ by ti if si ∈ Cti
i , and where the event that i is rational is

defined as6

[rati] := {(s1, s2, t1, t2) ∈ Ω|si ∈ Cti
i } .

The present paper imposes requirements on ti only. Since ti corresponds
to the preferences �ti , such requirements will be imposed on �ti . In sup-
port of this alternative approach — which will be referred to by the term
‘consistent preferences’ — one can note the following: The approach allows

• ... requirements to be imposed on types rather than strategy-type
pairs.

• ... conventional concepts like rationalizable and permissible strategies
to be characterized under weak and natural conditions (see e.g. Prop.
3 and Remark 1 below).

• ... requirements like ‘caution’ and ‘full belief of opponent rationality’
to be imposed in a straightforward manner. Under the usual approach,
the notion of ‘certain belief’ must be weakened to accommodate cau-
tion (cf. Börgers ([18], pp. 266–267) and Epstein ([27], p. 3)), and
a non-monotonic epistemic operator must be used for the interactive
epistemology to accommodate full belief of opponent rationality.

Here we will focus on showing how ‘consistent preferences’ as an approach
to deductive game-theoretic analysis can be used to provide an epistemic
characterization for the algorithm presented in Sect. 2 and, thus, to provide
epistemic conditions for aspects of forward induction. In particular, we will

1. ... characterize the concept of permissible strategies through imposing
common certain belief of ‘admissible consistency’. This exercise has
separate interest since it differs from the results of Börgers [18] and
Brandenburger [20] by providing an epistemic foundation for the DF
procedure by means of an operator (certain belief) that need not be
weakened to allow the complement of a believed event to be taken into
account.

2. ... argue for the alternative and stronger requirement of ‘full admissible
consistency’, and characterize the main concept of this paper – fully
permissible sets – by imposing common certain belief of ‘full admissible
consistency’.

4.1. Admissible Consistency. Below we characterize the concept of per-
missible strategies in a finite strategic game G = (Si, ui)i∈N by imposing
three requirements: The first of these ensures that each player plays the
game G, the second requirement ensures that each player takes all opponent
strategies into account (‘caution’), while the third requirement ensures that
each player believes that the opponent chooses rationally (‘belief of oppo-
nent rationality’). The first requirement is stated in subsect. 3.6. To impose

6See e.g. Epstein ([27], Sect. 6) for a presentation of this approach in a general context.
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the other two, consider the following events

[caui] := {ω ∈ Ω|κti(ω)
j = Sj × T

ti(ω)
j }

Bi[ratj ] = {ω ∈ Ω|βti(ω)
j ⊆ [ratj ]j} ,

where T ti
j := projTj

κti
j denotes the set of opponent types that ti deems pos-

sible, and where [ratj ]j := projSj×Tj
[ratj ] = {(sj , tj)|sj ∈ C

tj
j }.7

• If ω ∈ [caui], then (sj , tj) is deemed possible according to �ti(ω) when-
ever tj is deemed possible. This means that, ∀(sj , tj) ∈ Sj × T

ti(ω)
j ,

ω /∈ Ki{(s′1, s′2, t′1, t′2) ∈ Ω|(s′j , t′j) �= (sj , tj)} (cf. Dekel & Gul’s [25]
definition of caution). It implies that the marginal of �ti(ω) on Sj (i.e.,
ti(ω)’s preferences over Si, �ti(ω)

Sj
) is admissible on Sj .

• If ω ∈ Bi[ratj ], then i believes given ω that j is rational.
Say that i is admissibly consistent (with the game G and the preferences of
his opponent) given ω if ω ∈ Ai, where

Ai := [ui] ∩ [caui] ∩Bi[ratj ].

Refer to A := A1 ∩ A2 as the event of admissible consistency. We can now
characterize the concept of permissible strategies as maximal strategies in
states where there is common certain belief of admissible consistency.

Proposition 3. A pure strategy pi for i is permissible in a finite strategic
game G if and only if there exists a belief system with pi ∈ C

ti(ω)
i for some

ω ∈ CKA.

Remark 1. The concept of rationalizable strategies in 2-player games can be
characterized by removing the requirement of ‘caution’: A pure strategy ri

for i is rationalizable in a finite strategic game G if and only if there exists
a belief system with ri ∈ C

ti(ω)
i for some ω ∈ CK([u1] ∩ B1[rat2] ∩ [u2] ∩

B2[rat1]).

Remark 2. It turns out that Prop. 3 holds even if the additional requirement
of minimal completeness is imposed. In fact, the proof in Appendix B applies
for the following result: A pure strategy pi for i is permissible in a finite
strategic game G if and only if there exists a belief system with pi ∈ C

ti(ω)
i

for some ω ∈ CKĀ, where Ā := Ā1 ∩ Ā2, and where, for each i,

Āi := [ui] ∩ {ω ∈ Ω|x �ti(ω) y if and only if xβj weakly dom. yβj

for βj = β
ti(ω)
j ⊆ [ratj ]j or βj = κ

ti(ω)
j = Sj × T

ti(ω)
j }.

Hence, imposing minimal completeness does not alone yield a refinement.

7If ω ∈ [caui]∩Bi[ratj ] and �ti(ω) is complete, then �ti(ω) can be represented by υ
ti(ω)
i

and an LPS λti(ω) = (µ
ti(ω)
1 , . . . , µ

ti(ω)
L ) ∈ L∆(Sj ×Tj) satisfying suppλti(ω) = Sj ×T

ti(ω)
j

and µ
ti(ω)
1 (rj , tj) > 0 only if rj ∈ C

tj

j . Note that ω ∈ [caui] ∩ Bi[ratj ] does not imply —
but is consistent with — �ti(ω) being complete, while ω ∈ [caui]∩Bi[ratj ] is not consistent
with �ti(ω) being continuous.
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4.2. Full Admissible Consistency. We propose that it is natural to sub-
stitute the requirement ‘full belief of opponent rationality’ for ‘belief of op-
ponent rationality’. Therefore, consider the following events.

[caui] := {ω ∈ Ω|κti(ω)
j = Sj × T

ti(ω)
j }

B0
i [ratj ] = {ω ∈ Ω|�ti(ω) is admissible on [ratj ]j ∩ κ

ti(ω)
j } .

If ω ∈ B0
i [ratj ], then i fully believes given ω that j is rational. This means

that any (s′j , t
′
j) which is deemed possible and where s′j is a rational choice

by t′j is considered infinitely more likely than any (s′′j , t
′′
j ) where s′′j is not a

rational choice by t′′j . Write A0 := A0
1 ∩A0

2, where for each i,

A0
i := [ui] ∩ [caui] ∩B0

i [ratj ] .

Note that A0 ⊆ A since, for each i, B0
i [ratj ] ⊆ Bi[ratj ].

To motivate the strengthening of ‘belief of opponent rationality’ to ‘full
belief of opponent rationality’ (and, thus, of A to A0), return to G1 of the
introduction. In this game, {U,M} is the choice set of any type of player
1 (provided that ω ∈ [u1] ∩ [cau1]). While ‘belief of opponent rationality’
is consistent with (some type of) player 2 not deeming M more likely than
the remaining non-maximal strategy D and, thus, not preferring L to R,
‘full belief of opponent rationality’ ensures that M is deemed infinitely more
likely than D. Hence, if ω ∈ CKA0, only L is a maximal strategy for t2(ω).

However, common certain belief of the event A0 is not sufficient to pro-
mote the forward induction outcome in G2 of Sect. 2. To see this, consider
a belief system with only one type of each player; i.e., T1 ×T2 = {t1}×{t2}.
Let, for each i, �ti

i satisfy that υti
i ◦z = ui. Let t1 deem (R, t2) infinitely more

likely than (L, t2), with (L, t2) not being Savage-null. Then Ct1
1 = {U}. Let

t2 deem (U, t1) infinitely more likely than (D, t1) and (D, t1) infinitely more
likely than (M, t1), with (M, t1) not being Savage-null. Then Ct2

2 = {R}.
Inspection will verify that CKA0 = A0 = Ω = S×T1×T2. Hence, strength-
ening A to A0 is not sufficient to promote the forward induction outcome
(M,L) in this game. In fact, we have the following general result.

Proposition 4. If (x1, x2) ∈ ∆(S1) × ∆(S2) is a proper equilibrium in a
finite strategic game G, then, for each i and any si ∈ suppxi, there exists a
belief system with si ∈ C

ti(ω)
i for some ω ∈ CKA0.

Note that (U,R) is a proper equilibrium inG2. However, the preferences of t2
in the belief system for G2 above are not minimally complete in the sense of
being characterized by ‘caution’ and ‘full belief of opponent rationality’. In
particular, t2 deems one of t1’s non-maximal strategies, D, infinitely more
likely than the another non-maximal strategy, M . It turns out that the
additional imposition of minimal completeness leads to a characterization
of the concept of fully permissible sets, and, hence, to the promotion of the
forward induction outcome in G2 (cf. the analysis of G2 in Sects. 2 and 5).
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To impose minimal completeness, consider for each i,

Ā0
i := [ui] ∩ {ω ∈ Ω|x �ti(ω) y if and only if xβj weakly dom. yβj

for βj = β
ti(ω)
j = [ratj ]j ∩ κ

ti(ω)
j or βj = κ

ti(ω)
j = Sj × T

ti(ω)
j },

where it follows that Ā0
i ⊆ [ui] ∩ [caui] ∩ B0

i [ratj ] = A0
i . Say that i is fully

admissibly consistent (with the game G and the preferences of his opponent)
given ω if ω ∈ Ā0

i , and refer to Ā0 := Ā0
1 ∩ Ā0

2 as the event of full admissible
consistency. We can now characterize the main concept of the present paper
– fully permissible sets – as choice sets in states where there is common
certain belief of full admissible consistency.

Proposition 5. A non-empty strategy set πi for i is fully permissible in
a finite strategic game G if and only if there exists a belief system with
πi = C

ti(ω)
i for some ω ∈ CKĀ0.

Remark 3. Since Prop. 3 holds even if the additional requirement of mini-
mal completeness is imposed (cf. Remark 2), it follows from Prop. 5 that the
refinement relative to permissible strategies – offered by the concept of fully
permissible sets – is effectively due to the strengthening of the requirement
of βti(ω)

j ⊆ [ratj ]j ∩ κ
ti(ω)
j to the requirement of βti(ω)

j = [ratj ]j ∩ κ
ti(ω)
j .

5. Further examples

The present section illustrates the concept of fully permissible sets by
returning to the previously discussed game G2 as well as by considering two
new examples. Of the three examples, the two first will be used to show how
our concept captures aspects of forward induction, while the last example
will illustrate the possibility of multiple fully permissible sets.

All three examples will be used to shed light on the differences between
the approach suggested here and IEWDS (where at each round all weakly
dominated strategies are eliminated). This comparative discussion will be
facilitated if we can refer to a characterization of IEWDS established by
Stahl [38]: Assume that each player, for each round g, deems any opponent
strategy not yet eliminated by round g infinitely more likely that any elim-
inated strategy. Hence, the player’s belief will have a hierarchical structure
if opponent strategies are eliminated through several rounds. Then a strat-
egy survives IEWDS if and only if it is maximal w.r.t. preferences that are
compatible with these hierarchical beliefs.8

5.1. Forward Induction. Reconsider G2 of Sect. 2, and apply our al-
gorithm IECFA to this ‘Battle-of-the-sexes-with-an-outside-option’ game.
Since D is a strongly dominated strategy, D cannot be an element of 1’s
choice set. This does not imply, as in the procedure of IEWDS (given Stahl’s

8Battigalli [9] establishes a related result. See also Rajan [36]. Brandenburger’s [20]
analysis implies that the DF procedure can be characterized by assuming that each player,
for each round g, deems some opponent strategy not yet eliminated by round g infinitely
more likely that any eliminated strategy.
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LL LR RL RR
NU
ND
BU
BD

3, 1 3, 1 0, 0 0, 0
0, 0 0, 0 1, 3 1, 3
2, 1 -1, 0 2, 1 -1, 0
-1, 0 0, 3 -1, 0 0, 3

Figure 4. Burning money (G4)

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{NU}, {ND}, {BU}, {NU, ND}, {ND, BU}, {NU, BU}, {NU, ND, BU}} × Σ2

Ξ(2) = {{NU}, {ND}, {BU}, {NU, ND}, {ND, BU}, {NU, BU}, {NU, ND, BU}}
× {{LL}, {RL}, {LL, LR}, {RL, RR}, {LL, RL}, {LL, LR, RL, RR}}

Ξ(3) = {{NU}, {BU}, {ND, BU}, {NU, BU}, {NU, ND, BU}}
× {{LL}, {RL}, {LL, LR}, {RL, RR}, {LL, RL}, {LL, LR, RL, RR}}

Ξ(4) = {{NU}, {BU}, {ND, BU}, {NU, BU}, {NU, ND, BU}}
× {{LL}, {RL}, {LL, LR}, {LL, RL}}

Ξ(5) = {{NU}, {BU}, {NU, BU}} × {{LL}, {RL}, {LL, RL}, {LL, RL}}
Ξ(6) = {{NU}, {BU}, {NU, BU}} × {{LL}, {LL, LR}, {LL, RL}}
Ξ(7) = {{NU}, {NU, BU}} × {{LL}, {LL, LR}, {LL, RL}}
Ξ(8) = {{NU}, {NU, BU}} × {{LL}, {LL, LR}}
Ξ(9) = {{NU}} × {{LL}, {LL, LR}}

Π = Ξ(10) = {{NU}} × {{LL, LR}}

Table 1. Applying IECFA to ‘Burning money’.

[38] characterization), that 2 deems M infinitely more likely than D. How-
ever, 2 certainly believes that only {U}, {M} and {U,M} are candidates for
1’s choice set. This excludes {R} as 2’s choice set, since {R} is 2’s choice set
only if 2 deems {D} or {U,D} possible. This in turn means that 1 certainly
believes that only {L} and {L,R} are candidates for 2’s choice set, imply-
ing that {U} cannot be 1’s choice set. Certainly believing that only {M}
and {U,M} are candidates for 1’s choice set does imply that 2 deems M
infinitely more likely than D. Hence, 2’s choice set is {L} and, therefore, 1’s
choice set {M}. Thus, the forward induction outcome (M,L) is promoted.

Turn now to the ‘Burning money’ game due to van Damme ([40], Fig. 5)
and Ben-Porath & Dekel ([13], Fig. 1.2). G4 of Fig. 4 is the pure strategy
reduced strategic form of a ‘Battle-of-the-sexes’ (B-o-s) game with the ad-
ditional feature that 1 can publicly destroy 1 unit of payoff before the B-o-s
game starts. BU (NU) is the strategy where 1 burns (does not burn), and
then plays U , etc., while LR is the strategy where 2 responds with L condi-
tional on 1 not burning and R conditional on 1 burning, etc. The forward
induction outcome (supported e.g. by IEWDS) involves implementation of
1’s preferred B-o-s outcome, with no payoff being burnt.
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L R

U

M

D

1, 1 1, 1
0, 1 2, 0
1, 0 0, 1

Figure 5. Game with multiple fully permissible sets (G5).

One might be skeptical to the use of IEWDS in the ‘Burning money’
game, because it effectively requires 2 to infer that BU is infinitely more
likely than BD based on the sole premise that BD is eliminated before BU ,
even though all strategies involving burning (i.e. both BU and BD) are
eventually eliminated by the procedure. On the basis of this premise such
an inference seems at best to be questionable. As shown in Table 1, the
application of our algorithm IECFA yields an iteration where at no stage
need 2 deem BU infinitely more likely than BD since {NU} is always in-
cluded as a candidate for 1’s choice set. The procedure uniquely determines
{NU} as 1’s fully permissible set and {LL,LR} as 2’s fully permissible set.9

Even though the forward induction outcome is obtained, 2 does not have any
assessment concerning the relative likelihood of opponent strategies condi-
tional on burning; hence, she need not interpret burning as a signal that 1
will play according with his preferred B-o-s outcome.

We can conclude that the concept of fully permissible sets yields the for-
ward induction outcome in G2 and G4. Furthermore, the concept promotes
forward induction for different reasons than does the procedure of IEWDS
(and the concept of EFR, which works like IEWDS in these games).

5.2. Multiple Fully Permissible Sets. In G5 of Fig. 5, IEWDS elimi-
nates D in the first round, R in the second round, and M in the third round,
so that U and L survive. Stahl’s [38] characterization of IEWDS entails that
2 deems each of U and M infinitely more likely than D. Hence, the proce-
dure forces 2 to deem M infinitely more likely than D for the sole reason
that D is eliminated before M , even though both M and D are eventually
eliminated by the procedure.

Turn now to IECFA, which yields:

Ξ(0) = Σ1 × Σ2

Ξ(1) = {{U}, {M}, {U,M}} × Σ2

Ξ(2) = {{U}, {M}, {U,M}} × {{L}, {L,R}}
Π = Ξ(3) = {{U}, {U,M}} × {{L}, {L,R}}

Since D is a weakly dominated strategy, D cannot be an element of 1’s
choice set. Hence, 2 certainly believes that only {U}, {M} and {U,M}

9Also Battigalli [8], Asheim [3], and Dufwenberg [26] (as well as Hurkens [31] in a
slightly different context) argue that (NU, LR) in addition to (NU, LL) is a viable strategy
vector in ‘Burning money’.
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are candidates for 1’s choice set. This excludes {R} as 2’s choice set, since
{R} is 2’s choice set only if 2 deems {D} or {U,D} possible. This in turn
means that 1 certainly believes that only {L} and {L,R} are candidates
for 2’s choice set, implying that {M} cannot be 1’s choice set. There is no
further elimination. This means that 1’s collection of fully permissible sets is
{{U}, {U,M}} and 2’s collection of fully permissible sets is {{L}, {L,R}}.
Thus, common certain belief of full admissible consistency implies that 2
deems U infinitely more likely than D since U (respectively, D) is an element
of any (respectively, no) fully permissible set for 1. However, whether 2
deems M infinitely more likely than D depends on the type of player 2.

Note that inG5 there cannot be mutual certain belief of the players’ choice
sets. E.g. if 1’s choice set is {U}, it is because 1 certainly believes that 2’s
choice set is {L}. However, {L} is 2’s choice set only if 2 does not certainly
believe that 1’s choice set is {U}. Likewise, if 1’s choice set is {U,M}.

Multiplicity of fully permissible sets arises also in the strategic form of
some well-known extensive games in which the application of backward in-
duction has been subject to debate, e.g. the ‘Centipede’ game. See Asheim
& Dufwenberg [6] for more on this.

6. Concluding remarks

We end by discussing related literature as well as commenting on the
scope of the general approach chosen in the present paper.

6.1. Related Literature. It is instructive to explain how our analysis dif-
fers from the epistemic foundation of EFR provided by Battigalli & Sinis-
calchi [11]. An analogous comparison can be made to contributions that
provide epistemic conditions for IEWDS, see e.g. Rajan [36] and Stahl [38].
It turns out to be of minor importance for the comparison to EFR that EFR
makes use of the extensive form, while the present analysis is performed in
the strategic form. The reason is that, by ‘caution’, a rational choice in the
whole game implies a rational choice in all subgames that are not precluded
from being reached by the player’s own strategy.

To capture forward induction players must essentially deem any opponent
strategy that is a rational choice infinitely more likely than any opponent
strategy not having this property. An analysis incorporating this feature
must involve a non-monotonic epistemic operator, which is called ‘full belief’
in the present analysis (cf. subsect. 3.4) and ‘strong belief’ by Battigalli
& Siniscalchi ([11], Sect. 4). Here, ‘full belief’ is used only to define the
event that the preferences of each player is ‘fully admissibly consistent’ with
the preferences of his opponent. A standard monotonic epistemic operator
(‘certain belief’) is, however, used for the interactive epistemology:

• each player certainly believes that the preferences of his opponent are
fully admissibly consistent,

• each player certainly believes that his opponent certainly believes that
he himself has preferences that are fully admissibly consistent, etc. ...
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In contrast, Battigalli & Siniscalchi [11] use the non-monotonic operator
‘strong belief’ for the interactive epistemology, implying that an auxiliary op-
erator (called ‘correct strong belief’) must be introduced for defining higher-
order beliefs.

The fact that a non-monotonic epistemic operator is involved when cap-
turing forward induction also means that the analysis must ensure that all
rational choices for the opponent are included in the epistemic model. Batti-
galli & Siniscalchi [11] ensure this by employing a complete epistemic model,
where all possible epistemic types for each player are represented. Instead,
the present analysis achieves this by imposing that the preferences of the
players are characterized by ‘caution’ and ‘full belief of opponent rational-
ity’, meaning that the preferences are minimally complete (cf. subsect. 4.2).
Since an ordinary monotonic operator is used for the interactive epistemol-
ogy, there is no more need for a complete epistemic model here, than in
usual epistemic analyses of rationalizability and permissibility.

Battigalli [9] has shown how EFR corresponds to the ‘best rationalization
principle’. This implies that some opponent strategies are neither completely
rational nor completely irrational, but are considered to be at immediate de-
grees of rationality. Likewise, Stahl [38] provides an interpretation of IEWDS
where strategies eliminated in the first round are completely irrational, while
strategies eliminated in later rounds are at immediate degrees of rational-
ity. The present analysis, in contrast, differentiates only between whether a
strategy is maximal (i.e. a rational choice) or not. In particular, although a
strategy that is weakly dominated on the set of all opponent strategies is a
“stupid” choice, it need not be more “stupid” than any remaining admissible
strategy, as this depends on the interactive analysis of the game. This point
has been illustrated by the examples of Sect. 5.

Our paper has a predecessor in Samuelson [37], who also presents an
epistemic analysis of admissibility that leads to a collection of sets for each
player, called a ‘generalized consistent pair’. Samuelson [37] requires that
a player’s choice set equals the set of strategies that are not weakly dom-
inated on the union of choice sets that are deemed possible for the oppo-
nent; this corresponds to our requirement ‘full belief of opponent rational-
ity’. However, since ‘caution’ is not imposed, his analysis does not yield
{{U,M}} × {{L}} in our illustrative example (G1). Furthermore, he im-
poses additional requirements (cf. his conditions (44) and (45)) that are
incompatible with general existence. If each player is certain about the
choice set of the opponent, one obtains a ‘consistent pair’ (cf. Börgers &
Samuelson [19]), a concept that need not exist even when a generalized con-
sistent pair exists. Ewerhart [29] modifies the concept of a consistent pair
by adding ‘caution’. However, since he removes minimal completeness to
ensure general existence, his concept of a ‘modified consistent pair’ does not
promote forward induction in G2.

Note that ‘caution’ and ‘full belief of opponent rationality’ are require-
ments on the preferences (or beliefs) of players. Since minimal completeness
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is imposed by having preferences be characterized by ‘caution’ and ‘full be-
lief of opponent rationality’, preferences need not be complete and cannot
be represented by means of subjective probabilities (except through treat-
ing incomplete preferences as a set of complete preferences; cf. Aumann
[7]). By not employing subjective probabilities, the analysis is related to
the filter model of belief presented by Brandenburger [21]. By imposing re-
quirements on the preferences of players rather than their choice, our paper
follows a tradition in equilibrium analysis where concepts are characterized
as equilibria in conjectures (cf. Blume, Brandenburger & Dekel [16]).10

6.2. General Approach. Through an approach where requirements are
imposed on the consistency of each player’s preferences with the preferences
of his opponent – the ‘consistent preferences’ approach – we have character-
ized a fully permissible set as a choice set under common certain belief of
full admissible consistency. We have thus provided an epistemic foundation
for aspects of forward induction. The concept of full admissible consistency
entails that types ‘fully believe’ that opponents choose rationally. The sepa-
ration of ‘full belief’ of the rationality of opponent choice from ‘certain belief’
of the full admissible consistency of opponent types, which the ‘consistent
preferences’ approach allows, means that the non-monotonic operator ‘full
belief’ need not be used for the interactive epistemology.

The ‘consistent preferences’ approach has wider application; e.g., it can
characterize rationalizability and permissibility as noted by Prop. 3 and
Remark 1 of the present paper. Moreover, it is shown elsewhere how this
approach may enhance our understanding of the epistemic conditions un-
derlying backward induction by separating requirements on the assessment
of opponent choice from ‘certain belief’ of the consistency of opponent types
(cf. Asheim [4, 5]). Hence, the ‘consistent preferences’ approach is not an
idiosyncratic approach exclusively designed for the characterization of the
concept of fully permissible sets. Rather, it is an approach that follows natu-
rally from the modeling of players as decision makers under uncertainty and
which appears to have general interest for deductive game-theoretic analysis.

10In deductive game-theoretic analysis this — together with the requirement that pref-
erences are minimally complete — is related to a property called ‘coherence’ by Gul [30].
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Appendix A. The Decision-Theoretic Framework

The purpose of this appendix is to present the decision-theoretic terminology,
notation and results utilized and referred to in the main text.

Consider a decision maker under uncertainty. Let F be a finite set of states,
where the decision maker is uncertain about what state in F will be realized. Let Z
be a finite set of outcomes. In the tradition of Anscombe & Aumann [1], the decision
maker is endowed with a binary relation over all functions that to each element of
F assigns an objective randomization on Z. Any such function xF : F → ∆(Z) is
called an act on F . Write xF and yF for acts on F . A reflexive and transitive binary
relation on the set of acts on F is denoted by �F , where xF �F yF means that xF

is preferred or indifferent to yF . As usual, let �F (preferred to) and ∼F (indifferent
to) denote the asymmetric and symmetric parts of �F . A binary relation �F on
the set of acts on F is said to satisfy

• objective independence if x′
F �F (respectively ∼F ) x′′

F iff γx′
F +(1−γ)yF �F

(respectively ∼F ) γx′′
F + (1− γ)yF , whenever 0 < γ < 1 and yF is arbitrary.

• nontriviality if there exist xF and yF such that xF �F yF .
• continuity if there exist 0 < γ < δ < 1 such that δx′

F + (1− δ)x′′
F �F yF �F

γx′
F + (1− γ)x′′

F whenever x′
F �F yF �F x′′

F .
If E ⊆ F , let xE denote the restriction of xF to E. Define the conditional binary

relation �E by x′
F �E x′′

F if, for arbitrary yF , (x′
E ,y−E) �F (x′′

E ,y−E), where −E
denotes F\E. Say that the state f ∈ F is Savage-null if xF ∼{f} yF for all acts
xF and yF on F . A binary relation �F is said to satisfy

• conditional completeness if, ∀f ∈ F , �{f} is complete.
• conditional continuity if, ∀f ∈ F , there exist 0 < γ < δ < 1 such that

δx′
F+(1−δ)x′′

F �{f} yF �{f} γx′
F+(1−γ)x′′

F whenever x′
F �{f} yF �{f} x′′

F .
• non-null state independence if xF �{e} yF iff xF �{f} yF whenever e and f
are not Savage-null and xF and yF satisfy xF (e) = xF (f) and yF (e) = yF (f).

If e, f ∈ F and �F is conditionally complete, then e is deemed infinitely more likely
than f (e � f) if e is not Savage-null and xF �{e} yF implies (x−{f},x′

{f}) �{e,f}
(y−{f},y′

{f}) for all x′
F , y′

F . According to this definition, f may, but need not, be
Savage-null if e � f . Say that yF is maximal w.r.t. �E if there is no xF such that
xF �E yF .

If υ : Z → R is a vNM utility function, abuse notation slightly by writing
υ(x) =

∑
z∈Z x(z)υ(z) whenever x ∈ ∆(Z) is an objective randomization. Say that

xE strongly dominates yE w.r.t. υ if, ∀f ∈ E, υ(xE(f)) > υ(yE(f)). Say that
xE weakly dominates yE w.r.t. υ if, ∀f ∈ E, υ(xE(f)) ≥ υ(yE(f)), with strict
inequality for some e ∈ E. Say that �F is admissible on E (�= ∅) if xF �F yF

whenever xE weakly dominates yE .
The following two representation results can now be stated. The first one —

which follows directly from the von Neumann-Morgenstern theorem on expected
utility representation — requires the notion of conditional representation: Say that
�F is conditionally represented by υ if (a) �F is nontrivial and (b) xF �{f} yF iff
υ(xF (f)) ≥ υ(yF (f)) whenever f is not Savage-null.

Proposition A1. If �F is reflexive and transitive, and satisfies objective indepen-
dence, nontriviality, conditional completeness, conditional continuity, and non-null
state independence, then there exists a vNM utility function υ : Z → R such that
�F is conditionally represented by υ.
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The second result, due to Blume, Brandenburger & Dekel ([15], Theorem 3.1),
requires the notion of a lexicographic probability system (LPS) which consists of
L levels of subjective probability distributions: If L ≥ 1 and, ∀5 ∈ {1, . . . , L},
µ� ∈ ∆(F ), then λ = (µ1, ..., µL) is an LPS on F . Let L∆(F ) denote the set of
LPSs on F , and let, for two utility vectors v and w, v ≥L w denote that, whenever
w� > v�, there exists 5′ < 5 such that v�′ > w�′ .

Proposition A2. If �F is complete and transitive, and satisfies objective indepen-
dence, nontriviality, conditional continuity, and non-null state independence, then
there exists a vNM utility function υ : Z → R and an LPS λ = (µ1, ..., µL) ∈ L∆(F )
such that xF �F yF iff

(∑
f∈F

µ�(f)υ(xF (f))
)L

�=1
≥L

(∑
f∈F

µ�(f)υ(yF (f))
)L

�=1
.

If F = F1 × F2 and �F is a binary relation on the set of acts on F , then say
that �F1 is the marginal of �F on F1 if, xF1 �F1 yF1 iff xF �F yF whenever
xF1(f1) = xF (f1, f2) and yF1(f1) = yF (f1, f2) for all (f1, f2).

Appendix B. Proofs

Proof of Proposition 1. Note that if ∅ �= Ξ′
j ⊆ Ξ′′

j ⊆ Σj , then ∅ �= αi(Ξ′
j) ⊆

αi(Ξ′′
j ) ⊆ αi(Σj). Repetitive use of this result implies that, ∀g ≥ 1, (∅ �=) Ξ(g) ⊆

Ξ(g − 1) (⊆ Σ). From this monotonicity and the finiteness of Σ, it follows that
Ξ(g) converges in a finite number of iterations to Π with (∅ �=) Π = α(Π) (⊆ Σ).
This establishes parts (i) and (ii). Let Π̃ denote the smallest rectangular collec-
tion that includes all Ξ satisfying Ξ ⊆ α(Ξ). There exists a collection Ξ satisfying
Ξ ⊆ α(Ξ) since Π ⊆ α(Π); hence, Π ⊆ Π̃. If Ξ ⊆ α(Ξ), then Ξ ⊆ α(Ξ) ⊆ α(Π̃)
since, ∀i ∈ N , αi is monotone. Hence, Π̃ ⊆ α(Π̃) since α(Π̃) is rectangular. As
(∅ �=) Π ⊆ Π̃ ⊆ α(Π̃) ⊆ α(Ξ(0)) = Ξ(1) (⊆ Σ), repetitive use of the monotonicity
result implies that, ∀g ≥ 1, (∅ �=) Π ⊆ Π̃ ⊆ α(Π̃) ⊆ α(Ξ(g−1)) = Ξ(g) (⊆ Σ). Since
Ξ(g) converges to Π, it follows that (∅ �=) Π = Π̃ = α(Π̃) (⊆ Σ). This establishes
part (iii).

To prove Prop. 2, we first need to define the concept of permissible strategies.
For any (∅ �=) X = X1 ×X2 ⊆ S, write ã(X) := ã1(X2)× ã2(X1), where

ãi(Xj) := Si \ {si ∈ Si|∃xi ∈ ∆(Si) s.t. xi strongly dom. si on Xj

or xi weakly dom. si on Sj} .
Definition B1. Consider the sequence defined by X(0) = S and, ∀g ≥ 1, X(g) =
ã(X(g − 1)). A pure strategy pi is said to be permissible if pi ∈

⋂∞
g=0 Xi(g).

Let P = P1 ×P2 denote the set of permissible strategy vectors. To characterize P ,
write for any (∅ �=) X = X1 ×X2 ⊆ S, a(X) := a1(X2)× a2(X1), where

ai(Xj) := {pi ∈ Si|∃(∅ �=)Qj ⊆ Xj s.t. pi ∈ Si\Di(Qj)} .
Lemma B1. For any (∅ �=) Xj ⊆ Sj, ai(Xj) = ãi(Xj).

Proof. Part 1: ai(Xj) ⊆ ãi(Xj). If si /∈ ãi(Xj), then ∃xi ∈ ∆(Si) s.t. xi strongly
dominates si on Xj or xi weakly dominates si on Sj . From this it follows that
∀ (∅ �=) Qj ⊆ Xj , ∃xi ∈ ∆(Si) s.t. xi weakly dominates si on Qj or Sj , implying
that ∀ (∅ �=) Qj ⊆ Xj , si ∈ Di(Qj). This means that si /∈ ai(Xj).
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Part 2: ai(Xj) ⊇ ãi(Xj). If si ∈ ãi(Xj), then there does not exist xi ∈ ∆(Si)
s.t. xi strongly dominates si on Xj or xi weakly dominates si on Sj . Hence,
by Pearce ([35], Lemmas 2 and 4), there exists an LPS λ = (µ1, µ2) ∈ L∆(Sj)
with suppµ1 ⊆ Xj and suppµ2 = Sj such that si is maximal in ∆(Si) w.r.t. the
preferences represented by the vNM utility function ui and the LPS λ (cf. Prop.
A2). However, then there does not exist xi ∈ ∆(Si) s.t. xi weakly dominates si on
suppµ1 (⊆ Xj) or suppµ2 (= Sj), implying that si /∈ Di(Qj) for Qj = suppµ1 ⊆
Xj . This means that si ∈ ai(Xj).

The following proposition is a straightforward implication of Lemma B1.

Proposition B1. (i) The sequence defined by X(0) = S and, ∀g ≥ 1, X(g) =
a(X(g − 1)) converges to P in a finite number of iterations. (ii) ∀i ∈ N , Pi �= ∅.
(iii) P = a(P ). (iv) ∀i ∈ N , pi ∈ Pi if and only if there exists X = X1 ×X2 with
pi ∈ Xi such that X ⊆ a(X).

Proof of Proposition 2. Using Prop. 1(ii), the definitions of α(·) and a(·) imply
that, ∀i ∈ N , P 0

i := ∪σi∈Πi
σi = ∪σi∈αi(Πi)σi ⊆ ai(P 0

i ). Since P 0 ⊆ a(P 0) implies
P 0 ⊆ P (by Prop. B1(iv)), it follows that, ∀i ∈ N , ∪σi∈Πi

σi ⊆ Pi.

For the proofs of Propositions 3 and 5, we first need to establish some properties
of the operator ‘certain belief’ (cf. subsect. 3.3). Write K0E := E and, for each
g ≥ 1, KgE := KKg−1E. Since Ki(E ∩ F ) = KiE ∩ KiF , and since Ki∅ = ∅,
conjunction, and positive and negative introspection imply that KiKiE = KiE, it
follows ∀g ≥ 2, KgE = K1K

g−1E ∩K2K
g−1E ⊆ K1K1K

g−2E ∩K2K2K
g−2E =

K1K
g−2E ∩K2K

g−2E = Kg−1E. Even though the truth axiom (KiE ⊆ E) is not
satisfied, the present paper considers certain belief only of events (like E := E1∩E2

where, for each i, Ei = {ω ∈ Ω|ti(ω) ∈ T ′
i}) that concerns the type vector. Mutual

certain belief of any such event E implies that E is true: KE = K1E ∩ K2E ⊆
K1E1 ∩ K2E2 = E1 ∩ E2 = E since, for each i, KiEi = Ei. Hence, (i) ∀g ≥ 1,
KgE ⊆ Kg−1E, and (ii) ∃g′ ≥ 0 such that KgE = CKE for g ≥ g′ since Ω is
finite, implying that CKE = KCKE.

Proof of Proposition 3. Part 1: If pi is permissible, then there exists a belief system
with pi ∈ C

ti(ω)
i for some ω ∈ CKA. It is sufficient to show that one can construct

a belief system with A = Ω = S × T1 × T2 such that, ∀i ∈ N , ∀pi ∈ Pi, there
exists ti ∈ Ti with pi ∈ Cti

i . Construct a belief system with, ∀i ∈ N , a one-
to-one mapping si : Ti → Pi from the set of types to the the set of permissible
strategies. From Prop. B1(iii) it follows that, ∀i ∈ N , ∀ti ∈ Ti, ∃Qti

j ⊆ Pi

such that si(ti) ∈ Si\Di(Qti
j ). Determine the set of opponent types that ti does

not deem Savage-null as follows: T ti
j = {tj ∈ Tj |sj(tj) ∈ Qti

j }. Let �ti satisfy
that υti

i ◦ z = ui and that x�ti y iff xβj
weakly dominates yβj

for βj = βti
j =

{(sj , tj)|sj = sj(tj) and tj ∈ T ti
j } or βj = κti

j = Sj ×T ti
j . This means that, ∀i ∈ N ,

∀ti ∈ Ti, Cti
i = Si\Di(Qti

j ) � si(ti) since xSj
�ti

Sj
ySj

iff xQj
weakly dominates yQj

for Qj = Qti
j or Qj = Sj , implying that, ∀i ∈ N , ∀ti ∈ Ti, βti

j ⊆ [ratj ]j . Hence,
S × T1 × T2 = [u1] ∩ [cau1] ∩B1[rat2] ∩ [u2] ∩ [cau2] ∩B2[rat1] = A.

Part 2: If there exists a belief system with pi ∈ C
ti(ω)
i for some ω ∈ CKA, then

pi is permissible. In view of Def. B1 and the properties preceding the proof, it is
sufficient to show, ∀g ≥ 0 and ∀i ∈ N , that pi ∈ Xi(g + 1) if there exists a belief
system with pi ∈ C

t(ω)
i for some ω ∈ KgA. This is established by induction.



26 ADMISSIBILITY AND COMMON BELIEF

(g = 0) Suppose pi ∈ Si\Xi(1) = Si\ãi(Sj). Then there exists xi ∈ ∆(Si) s.t. xi

weakly dominates si on Sj . Write xSj
for the act on Sj that xi can be viewed as,

and write ySj
for the act on Sj that si can be viewed as. Let ti = ti(ω) for some

ω ∈ K0A = A. Since ω ∈ A ⊆ [ui]∩ [caui], it follows that xSj
�ti

Sj
ySj

. Hence, there
does not exist a belief system with pi ∈ C

ti(ω)
i for some ω ∈ K0A if pi ∈ Si\Xi(1).

This means that pi ∈ Xi(1) if there exists a belief system with pi ∈ C
ti(ω)
i for some

ω ∈ K0A.
(g > 0) Assume that it has been established, ∀g′ = 0, . . . , g−1 and ∀i ∈ N , that

pi ∈ Xi(g′ + 1) if there exists a belief system with pi ∈ C
t(ω)
i for some ω ∈ Kg′

A.
Suppose pi ∈ Xi(g)\Xi(g + 1) = Xi(g)\ãi(Xj(g)). Then there exists xi ∈ ∆(Si)
s.t. xi strongly dominates si on Xj(g), which implies that, ∀ (∅ �=) Qj ⊆ Xj(g), xi

strongly dominates si on Qj . Write xSj
for the act on Sj that xi can be viewed as,

and write ySj
for the act on Sj that si can be viewed as. Let x and y be acts on

Sj ×Tj that satisfy x(sj , tj) = xSj
(sj) and y(sj , tj) = ySj

(sj) for all (sj , tj). Then,
∀ (∅ �=) Qj ⊆ Xj(g), xQj×Tj

weakly dominates yQj×Tj
. Let ti = ti(ω) for some

ω ∈ KgA. Since KgA ⊆ KiK
g−1A and C

tj(ω
′)

j ⊆ Xj(g) whenever ω′ ∈ Kg−1A,
it follows that, ∀tj ∈ T ti

j , C
tj

j ⊆ Xj(g). Hence, ∀ (∅ �=) βj ⊆ [ratj ]j ∩ κti
j , xβj

weakly dominates yβj
, and, since ω ∈ [ui] ∩ Bi[ratj ], x�ti y and xSj

�ti

Sj
ySj

.
Hence, there does not exist a belief system with pi ∈ C

ti(ω)
i for some ω ∈ KgA if

pi ∈ Xi(g)\Xi(g+1). This means that pi ∈ Xi(g+1) if there exists a belief system
with pi ∈ C

ti(ω)
i for some ω ∈ KgA.

Proof of Proposition 4. It is sufficient to show that one can construct a belief system
with A0 = Ω = S × {t1} × {t2} such that, ∀i ∈ N , suppxi ⊆ Cti

i , whenever
(x1, x2) is a proper equilibrium. Let (x1, x2) be a proper equilibrium. By Blume,
Brandenburger & Dekel’s [16] Prop. 5, there exists a pair of preferences, �t1 and
�t2 , that are represented by υt1

1 and λt1 = (µt1
1 , . . . ) ∈ L∆(S2 × {t2}), and υt2

2

and λt2 = (µt2
1 , . . . ) ∈ L∆(S1 × {t1}), respectively — with υt1

1 ◦ z = u1 and,
∀s2 ∈ S2, µt1

1 (s2, t2) = x2(s2), and υt2
2 ◦ z = u2 and, ∀s1 ∈ S1, µt2

1 (s1, t1) = x1(s1)
— satisfying, ∀i ∈ N , (i) suppxi ⊆ Cti

i , (ii) κti
j = Sj × {tj}, and (iii) (rj , tj) �

(sj , tj) whenever rj �tj sj . Properties (ii) and (iii) imply that �ti is admissible
on C

tj

j × {tj} = [ratj ]j ∩ κti
j . By letting Ω = S × {t1} × {t2}, it follows that

Ω = [u1]∩ [cau1]∩B0
1 [rat2]∩ [u2]∩ [cau2]∩B0

2 [rat1] = A0. Hence, by property (i),
A0 = Ω = S × {t1} × {t2} and, ∀i ∈ N , suppxi ⊆ Cti

i .

Proof of Proposition 5. Part 1: If πi is fully permissible, then there exists a belief
system with πi = C

ti(ω)
i for some ω ∈ CKĀ0. It is sufficient to show that one can

construct a belief system with Ā0 = Ω = S × T1 × T2 such that, ∀i ∈ N , ∀πi ∈ Πi,
there exists ti ∈ Ti with πi = Cti

i . Construct a belief system with, ∀i ∈ N , a
one-to-one mapping σi : Ti → Πi from the set of types to the the set of fully
permissible sets. From Prop. 1(ii) it follows that, ∀i ∈ N , ∀ti ∈ Ti, ∃Ψti

j ⊆ Πi

such that σi(ti) = Si\Di(Qti
j ), where Qti

j := {sj ∈ Sj |∃σj ∈ Ψti
j s.t. sj ∈ σj}.

Determine the set of opponent types that ti does not deem Savage-null as follows:
T ti

j = {tj ∈ Tj |σj(tj) ∈ Ψti
j }. Let �ti satisfy that υti

i ◦ z = ui and that x�ti y
iff xβj

weakly dominates yβj
for βj = βti

j = {(sj , tj)|sj ∈ σj(tj) and tj ∈ T ti
j } or

βj = κti
j = Sj × T ti

j . This means that, ∀i ∈ N , ∀ti ∈ Ti, Cti
i = Si\Di(Qti

j ) = σi(ti)
since xSj

�ti

Sj
ySj

iff xQj
weakly dominates yQj

for Qj = Qti
j or Qj = Sj , implying

that, ∀i ∈ N , ∀ti ∈ Ti, βti
j = [ratj ]j ∩ κti

j . Hence, S × T1 × T2 = Ā0
1 × Ā0

2 = Ā0.
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Part 2: If there exists a belief system with πi = C
ti(ω)
i for some ω ∈ CKĀ0,

then πi is fully permissible. Consider any belief system for which CKĀ0 �= ∅. Let,
∀i ∈ N , T ′

i := {ti(ω)|ω ∈ CKĀ0} and Ξi := {Cti
i |ti ∈ T ′

i}. Note that, ∀i ∈ N and
∀ti ∈ T ′

i , (sj , tj) is Savage-null acc. �ti if tj ∈ Tj\T ′
j since CKĀ0 = KCKĀ0 ⊆

KiCKĀ0, implying that T ti
j ⊆ T ′

j . Since, ∀i ∈ N and ti ∈ T ′
i , x �ti y iff xβj

weakly dominates xβj
for βj = βti

j = [ratj ]j ∩ κti
j or βj = κti

j = Sj × T ti
j , it

follows that xSj
�ti

Sj
ySj

iff xQj
weakly dominates yQj

for Qj = Qti
j or Qj = Sj ,

where Qti
j := {sj ∈ Sj |∃σj ∈ Ψti

j s.t. sj ∈ σj} and Ψti
j := {Ctj

j |tj ∈ T ti
j } ⊆ Ξj .

This implies that, ∀i ∈ N and ti ∈ T ′
i , Si\Di(Qti

j ) = Cti
i , and Ξ ⊆ α(Ξ). Hence,

by Prop. 1(iii), πi ∈ Πi if there exists a belief system with πi = C
t(ω)
i for some

ω ∈ CKĀ0.
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