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Abstract: Ground-level ozone concentrations have adverse effects e.g. on human

health and crops. Ozone is not emitted, but atmospheric reactions involving

nitrogen oxides (NOx) and volatile organic compounds (VOCs) cause its formation.

However, functions that relate precursor emissions to ozone concentrations are

typically neither convex nor monotonic. Others have shown that corner solutions,

where only one emission type is abated, can be cost-effective since the ozone-

formation is non-convex. This paper shows that the non-monotonicity implies an

even more radical abatement strategy in some cases: the optimal amount of NOx

emitted can be larger than the amount emitted in no-control.
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1. Introduction

Stratospheric ozone protects the earth against dangerous ultraviolet radiation

from the sun. Ground-level ozone, however, is the main component in smog, and it

has adverse effects on human health, animals, crops, trees and building materials

(Harrison, 1996; Heyes and Schüpp, 1995). Ozone is not emitted, but atmospheric

reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs)

cause its formation. However, for a given amount of VOCs, increased NOx

concentrations have a declining marginal effect on ozone concentrations. This

implies that functions that relate the amounts of precursor emissions, of NOx and

VOCs, to ozone concentrations are non-convex.1

The practical relevance of different types of non-convexities are discussed

in Burrows (1986), while the implications of non-convexities on cost-effective

abatement policies are discussed in Repetto (1987). Repetto points out that ozone

formation is non-convex in New York, and that contour curves for ozone are

convex and almost parallel to the isocosts in the optimal solution. Consequently,

many emission vectors are almost optimal and “corner solutions”, where only one

emission type is abated, are potentially cost-effective.

This paper shows that the cost-effective abatement strategy can be even

more radical in some cases. The reason is that the ozone-function not only is non-

convex, it is also non-monotonic since increased NOx emissions give reduced

ozone concentrations in some cases.2 If the optimal solution also have this local

property, then the optimal amount of NOx emitted is larger than amount emitted

in no-control, implying negative abatement. The purpose of this paper is to

                                                          
1 Basically, a function f(x) is convex if, for any two points ,x x′ ′′  in the domain, the condition

( ) ( ) ( ) ( )( )' 1 1f x f x f x xθ θ θ θ′′ ′ ′′+ − ≥ + −  is satisfied for all 0 1θ< < . See for instance Sydsaeter and

Hammond (1995) for an exact definition.
2 If the value for the function f(x) always is increased when the value of x is increased, then f(x) is a
monotonic (or monotonically increasing) function. See for instance Chiang (1984).
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illustrate these implications of non-monotonicity formally rather than to formulate

actual regulatory strategies.

In USA there has been severe problems with smog in Metropolitan areas,

for instance in Los Angeles and New York. Originally ozone was thought of as a

local pollutant, and controls focused on reducing hydrocarbon emissions (Farrel et

al., 1999), which is a type of VOC. However, ozone is the substance for which

national ambient air quality standards (NAAQS), established in title I of the 1990

Clean Air Act Amendments (CAAA), is most widely violated (Repetto, 1987), and

the NAAQS for ozone were violated within 27 states in 2001 (EPA, 2001). In such

states, certain emission reducing technologies for stationary sources of NOx and

VOCs are required by title I. In addition, VOC emissions must be reduced by 15%,

compared to 1990 levels, within six years (Heninger and Shah, 1998). Some of the

regulations within title I also address the long-range transport of ozone and

precursors. Krolewski and Mingst (2000) provides an overview of NOx regulations

in USA, while Henderson (1995) investigates the effects of the non-attainment

status on air quality.

In addition to the technological controls on NOx in USA, emissions have

been traded under the NOx budget (title I) among 12 states during the summer

season for the last two years, while the Acid Rain Program under title IV in CAAA

allows emission averaging. Emission averaging means that NOx emissions per unit

electricity produced at a plant can be larger than required by the standard, as long

as the average emission-factor over all plants owned by the company doesn’t

violate the standard.

The classic Los Angeles type of urban smog is not experienced in Europe

(Harrison, 1996). Still, for 1990 emissions, the WHO health guideline criteria for

ozone exposure will typically be exceeded some days over the year in many

European Countries (Amann et al., 1998b). The European policy towards ground-
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level ozone has followed a dual track of (a) national emission ceilings for NOx and

VOCs, without any trade between or within3 countries, and (b) legislation on

technological standards. The obligations are signed upon in protocols within the

UN/ECE Convention on Long-Range Transboundary Air Pollution (LRTAP), see

UN/ECE (1996, 1999a). The parties within LRTAP are well aware of the long-range

transport of ozone and precursors, and the RAINS model is used to calculate cost-

effective abatement policies for all Europe. See Alcamo and Hordijk (1990) for a

documentation of the RAINS model (without ozone module), and Amann et al.

(1999) for recent scenarios prepared for the convention. However, RAINS cost

curves are mainly based on technological abatement strategies, and only for

positive abatement. The type of effects considered in this paper is therefore ruled

out in RAINS simulations. See Cofala and Syri (1998) for a documentation of NOx

abatement cost curves used in the RAINS model, and Klimont et al. (2000) for a

documentation of VOC cost curves.

The rest of this paper is organised as follows. Section 2 gives a brief

overview of ground-level ozone formation, while a city model for cost-effective

abatement policies, consistent with the early approach towards ground-level

ozone in USA, is developed in section 3. A regional model that accounts for long-

range transport of ozone and precursors is developed in section 4. Different types

of cost-effective solutions are identified for both models, and implications of non-

monotonicity are illustrated. Section 5 concludes the analysis.

                                                          
3 Klaassen and Nentjes (1997) did not find any evidence for trades where permissions to emit were
transferred from one party to another in exchange for money within European countries. However,
many European countries have used market instruments to reduce emissions (UN/ECE, 1999b).
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2. Ground-level Ozone Formation

Ozone is not emitted, but atmospheric reactions involving NOx and VOCs cause its

formation. The following illustration of ozone formation is based on Cleveland and

Graedel (1979) and Heyes and Schöpp (1995).

Sunlight (v) split nitrogen dioxides (NO2) into nitrogen monoxides (NO) and

a single oxygen atom (O)

2NO hv NO O+ → + ,                          (1.1)

where h is Planck’s constant. The single oxygen atom (O) reacts with a oxygen

molecule (O2) and produces ozone (O3)

2 3O O O+ → .                          (1.2)

However, ozone reacts with nitrogen monoxides so that ozone is removed again

3 2 2O NO O NO+ → + ,            (1.3)

and a steady-state ozone concentration in a relatively unpolluted environment is

given by the ratio

2
3

NO
O k

NO
= ,             (1.4)

where k is a constant. However, volatile organic compounds in effect competes

with ozone in (1.3), so that nitrogen monoxides are transformed into nitrogen

dioxides without the consumption ozone, and this leads to increased net ozone

production. The ozone formation is therefore effective if there are stable

concentrations of both NOx and VOCs, in addition to sunlight. On the other hand,

if the concentration of NOx is large, the ozone-generating effect of VOCs is

reduced. Increased NOx emissions can therefore give reduced ozone formation in

cases where the initial concentration of NOx is large, see figure 1.

(Figure 1 about here).
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Figure 1 is taken from Amann et al. (1998a). It shows typical contour curves

(isopleths) for mean ozone concentrations in Europe. “Factor” 1 gives 1990

emissions for all European countries, and it is assumed that all countries reduce

their emissions by 40% at factor 0.6, etc. The non-monotonic effect of NOx

emissions on ground-level ozone is illustrated by the upward-sloping parts of

contour-curves in the figure at the right.

Similar effects of increased NOx emissions are also reported elsewhere, for

instance in Cleveland and Graedel (1979), Glasson (1981) and in van Ierland and

Schmieman (1999). According to Glasson (1981) there are also considerable

evidence to suggest that part of the ozone-reduction experienced in Los Angeles is

caused by increased NOx emissions. For VOCs, increased emissions give increased

ozone values in figure 1. However, others have found a slight non-monotonicity

also for hydrocarbons (a type of VOC), see Repetto (1987). The spatial aspect is also

important for ground-level ozone. For instance, increased NO emissions give

reduced ozone concentrations close to the emitting source, see (1.3). However,

since this produces NO2, ozone concentrations will typically increase at locations

further away from the emitting source, see (1.1) and (1.2). See Cleveland and

Graedel (1979) for a discussion of this subject.

3. The City Model

A model for reduced ground-level ozone concentrations in a city is developed in

this section. Different types of cost-effective solutions, which minimise total

abatement costs for NOx and VOCs, subject to a constraint on ground-level ozone,

will be identified. At first it is assumed that emissions are constrained by their no-

control amounts, but this assumption will be relaxed. Since a city has a limited

extension and since we only consider abatement possibilities for sources within
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the city, the long-range atmospheric transport of ozone and precursors between

different regions are not modelled explicitly.4 Others, for instance Repetto (1987)

and Kim et al. (1998), have used similar approaches. They study ozone reductions

in the New York Metropolitan region and in California’s San Joaquin Valley

respectively. The concentration of ground-level ozone in the city is given by

( )3 ,nox vocO f e e=   (2)

where enox and evoc are emitted amounts of NOx and VOCs in the city, while O3 is

the concentration of ground-level ozone.5 The slopes of contour curves, which are

combinations of NOx and VOC emissions such that ozone concentrations are

constant, are given by

3 0

voc
n

nox
vdO

de f

de f=

= − ,  (3)

where fn and fv are finite partial derivatives of the f-function with respect on enox

and evoc respectively. Based on figure 1, it is assumed that increased VOC emissions

always give increased ozone concentrations. However, for a given amount of VOCs,

increased NOx emissions are assumed to give increased ozone concentrations only

if the emitted amount of NOx is smaller than a certain value, ( )voceβ , which

corresponds to a point where a contour curve is horizontal in figure 1. If the

emitted amount of NOx is larger than ( )voceβ , it is assumed that additional NOx

emissions give reduced ozone concentrations, so that

( )
( )
( )

0 |

0,  0 |

0 |

nox voc

nox voc
v n

nox voc

e e

f f e e

e e

β

β

β

�> <
��> = =�
�

< >��

  .                            (4)

                                                          
4 The specification in (2), which gives the ozone concentration, allows exogenous long-range
transport. Such exogenous terms are, however, suppressed by the notation.
5 Ozone concentrations can be measured in different units. See for instance Amann et al. (1998b)
and Kim et al. (1998). These differences are, however, not important for the present paper.    
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The abatement of NOx and VOC emissions are defined by

,

nox nox nox
nc

voc voc voc
nc

r e e

r e e

≡ −

≡ −
                      (5)

where ,  nox voc
nc nce e >0 are emitted amounts of NOx and VOCs in no-control, defined by

the amounts that would be emitted in a market economy in the absence of

governmental controls on NOx and VOC emissions. Minimal abatement cost, over

all emitting sources in the city, is given by

( ), ;    0,  0 ,nox voc nox nox voc voc
nc ncC g r r e r e r= ≥ ≥ ≥ ≥                (6)

while marginal abatement costs for NOx (gn) and VOCs (gv), which are the partial

derivatives of (6) with respect on rnox and rvoc respectively, are given by

0 | 0  

0, | 0   0  

|  0

nox nox nox
nc

nox nox nox nox
n nc nc

nox nox nox
nc

r e e

g e r e e

r e e

= = ⇔ =�
�∈ ∞ > > ⇔ < <�
� = ∞ = ⇔ =�

,                           (7.1)

0 | 0  

0, | 0   0

|  0

voc voc voc
nc

voc voc voc voc
v nc nc

voc voc voc
nc

r e e

g e r e e

r e e

= = ⇔ =�
�∈ ∞ > > ⇔ < <�
� = ∞ = ⇔ =�

.                           (7.2)

It is also assumed that nng  and vvg  are strictly positive. This implies that marginal

abatement costs for NOx are increased if the abated amount of NOx increases

partially, while marginal costs for VOCs are increased if VOC abatement increases.

In addition, marginal abatement costs are zero for zero abatement, positive for

positive abatement and infinite if the emitted amount is zero. Isocosts are

combinations of NOx and VOC emissions such that abatement costs are constant,

and the slope of an isocosts is given by

0

0
voc

n
nox

vdC

de g

de g=

= − ≤ .   (8)

 The cost-effective solution for reduced ground-level ozone concentrations is

defined by the feasible emission vector (enox, evoc) that gives least costs among
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those feasible emission vectors that doesn’t violate the target for ground-level

ozone concentrations. The optimisation problem is therefore given by

( )
( )  . .    

  . .   0 ,  0 ,

nox voc

nox nox voc voc
nc nce ,e

nox voc

nox nox voc voc
nc nc

min g e - e ,e - e

s t  f e ,e

s t   e e e e

α≤

≤ ≤ ≤ ≤

  (9)

where the definitions of abatement are substituted into (a) the arguments of the

cost function and (b) the constraints on abatement, and α  is the target for

ground-level ozone. The Lagrangian function is given by

( ) ( )( )
( )
( )

               

               ,

nox nox voc voc nox voc
nc nc

nox nox nox nox nox
upper nc lower

voc voc voc voc voc
upper nc lower

L g e - e ,e - e f e ,e

e e e

e e e

λ α

µ µ

µ µ

= − + −

+ − +

+ − +

              (10)

 where λ  is the shadow price on the ozone-restriction, while

, , ,nox nox voc voc
upper lower upper lowerµ µ µ µ  are shadow prices for upper and lower restrictions on NOx

and VOC emissions respectively. The first-order (Kuhn-Tucker) conditions for an

optimal solution are given by6

0nox nox
n n upper lowerg fλ µ µ− − + = ,                               (11.1)

                                         0voc voc
v v upper lowerg fλ µ µ− − + = ,                                                (11.2)

( )( ) 0nox vocf e ,eλ α − = ,                                                    (11.3)

( )
( )

0, 0,

0, 0,

nox nox nox nox nox
upper nc lower

voc voc voc voc voc
upper nc lower

e e e

e e e

µ µ

µ µ

− = =

− = =
         (11.4)

( ) , 0, 0nox voc nox nox voc voc
nc ncf e ,e e e e eα ≥ ≥ ≥ ≥ ≥ ,          (11.5)

, , , , 0nox nox voc voc
upper lower upper lowerλ µ µ µ µ ≥ .            (11.6)

First we consider the case where the constraint on ozone is non-binding, defined

by ( )nox vocf e ,eα > . Then, by (11.3), 0λ = . Suppose gn>0 in this case. Then, by

                                                          
6See for instance Sydsaeter and Hammond (1995).
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(11.1) and (11.6), 0nox
upperµ > , and then nox nox

nce e=  by (11.4). But this is a contradiction

since (7.1) implies nox nox
nce e<  when gn>0. Consequently, 0λ =  implies gn=0 and

nox nox
nce e=  from (7.1). By symmetry, VOC emissions are also equal to no-control

values if 0λ = . Obviously, resources are not spent on reducing emissions if the

emitted amounts in no-control gives ozone-concentrations that doesn’t exceed

the targeted amount.

In the following it is assumed that no-control emissions violates the

restriction on ozone concentration. Consequently, 0λ >  and, by (11.3),

( )nox vocf e ,eα = . It is also assumed that some amounts of both NOx and VOCs can

be emitted without violation of the restriction.7 The optimal solution is also

characterised by strictly positive emitted amounts since marginal abatement costs

for a substance is infinite if the emitted amount is zero8, and by (11.4) this implies

0nox voc
lower lowerµ µ= = . Also, since fv>0, it follows from (11.2) and (11.6) that 0vg > ,

implying voc voc
nce e<  from (7.2), which in turn imply 0voc

upperµ =  from (11.4). In total,

the first order conditions can be simplified to

0nox
n n upperg fλ µ− − = ,          (12.1)

0v vg fλ− = ,                                      (12.2)

( )nox vocf e ,eα = , 0,λ >          (12.3)

( ) 0nox nox nox
upper nce eµ − = ,                               (12.4)

0nox
upperµ ≥ , 0nox nox

nce e− ≥ .                  (12.5)

                                                          
7 In the 1980s, several states in the Northeastern USA recognised that it was impossible for them to
attain the ozone standard with in-state controls alone (Farrell et al., 1999).
8Suppose that zero NOx is emitted in the optimal solution. Then gn is infinite by (7.1) and 0nox

upperµ =

by (11.4). Then, by (11.1), nfλ = ∞ . Since fn by assumption only takes finite numbers, � must be

infinite. Then, by (11.2), gv must be infinite also (the lower constraint can also be positive, but then
the emitted amount is zero and gv is infinite), implying zero VOC emissions from (7.2). But in this
case both NOx and VOC emissions are zero in the optimal solution, and this contradicts the
assumption that some amounts of NOx and VOCs can be emitted without violation of the
restriction.
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First we consider the case where 0nox
upperµ = . By (12.1) and (12.2) the optimal

solution satisfies

n n

v v

g f

g f
− = − ,               (13)

in this case, and, by (3) and (8), this implies that an isocost and a contour curve for

ozone are tangents to each other. This is a standard finding in economics: relative

costs are balanced against relative benefits in the optimal solution. Also, by (12.3),

the value of the contour curve for ozone that goes through the optimal point is the

targeted amount of ozone. Figure 2 illustrates the optimal solution. Isocosts take

increasing values from no-control towards the origin, while contour curves take

increasing values upwards. The vector ( )* *
,nox voce e  gives the cost-effective

solution.

(Figure 2 about here).

In figure 2, both NOx and VOCs are abated in the optimal solution. It has been

shown that VOC abatement always is strictly positive. However, the abated

amount of NOx in the optimal solution can be equal to zero even if 0nox
upperµ = . In

that case, nox nox
nce e=  such that gn=0 by (7.1). But then, by (12.1), fn must be zero too.

This is a special case where the slope of the contour curve for ozone for the value

α  by coincidence is equal to zero exactly at nox
nce , see figure 3.

(Figure 3 about here).
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Now we consider the case where 0nox
upperµ > . By (12.4) this implies nox nox

nce e= , and

gn=0 by (7.1). In this case, the abated amount of VOCs in the optimal solution is

given implicit by ( ),nox voc
ncf e eα = . In addition, by (12.1), fn<0 since gn=0 and

, 0nox
upperλ µ > . Therefore, from (3), the optimal solution is located on the upward-

sloping part of the contour curve for ozone. This case is illustrated in figure 4.

(Figure 4 about here).

The intuition for this result is that costs are increased if we slide down the contour

curve for ozone from the optimal point in figure 4, while positions to the right for

the optimal point are out of the domain for the cost function. The corner solutions

for abatement, illustrated in figures 3 and 4, are possible only because the ozone

function is non-convex.9 Consequently, this analysis supports the informal

argument in Repetto (1987): corner-solutions can be optimal as a consequence of

the non-convex ozone-function.

However, in Wolfgang (1999) it is shown that it is incorrect to restrict

emissions by their no-control values. Firstly, it is obviously technological feasible

for a firm to emit more than the amounts that are optimal in the absence of

                                                          
9 See footnote 1 for the definition of a convex function. Let x’ and x’’ be two points on the contour

curve for ozone for the value of the constraint. Then ( ) ( ) ( ) ( ) ( )' ' 1f x f x f x f xα θ θ′′ ′′= = = + − . A

straight line between two points on the contour curve, for instance in figure 4, gives larger values
for ozone since contour curves are convex and increasing upwards. This implies that

( ) ( ) ( ) ( )( )' 1 ' 1f x f x f x xθ θ θ θ′′ ′′+ − < + − , so that the ozone-function is non-convex in this domain.

However, consider a hypothetical case where the ozone-function is strictly convex in the whole
domain. In this case contour curves must be concave. We also assume that increased NOx emissions
gives a partial increase in ozone for low NOx concentrations. The contour curves are therefore
falling in their whole domain in this hypothetical case. Suppose now that the optimal amount of
NOx emissions is equal to the no-control value in this hypothetical case. Then, since the contour
curves for ozone are falling and isocosts are horizontal at no-control emissions for NOx, the contour
curve for the value of the constraint crosses an isocost from above in the optimal solution.
Consequently, there exist points in-between the isocost and the contour curve that gives fewer
costs and less ozone concentrations than the optimal solution, and this is a contradiction. This
implies that, given the assumptions about the cost function and the partial effect of increased NOx
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governmental controls. Secondly, it can be optimal for a profit maximising firm to

emit an amount larger than no-control if emissions taxes are negative. From a

social point of view negative abatement and emission subsidies are contra-

intuitive for most cases. However, in the case of non-monotonic pollution

functions, the emitted amounts in the optimal solution can be larger than no-

control. It is easy to see this if we prolong the isocost in figure 4 by imagination

such that it crosses the contour curve for ozone. Clearly, locations in-between the

imaginary line-segment and the contour curve gives less abatement costs and

smaller ozone concentrations, compared to the point where the curves cross each

other. The optimal amount of NOx emitted is therefore larger than the no-control

value in that case.

The restrictions on maximum emissions are dropped in the following. Also,

since the global minimum for abatement costs by construction must be located at

the no-control emission vector, marginal abatement costs are assumed to be

negative for negative abatement. See Wolfgang (1999) for a discussion. In total,

marginal abatement costs are assumed to take the same sign as the abated

amount so that10

( ) ( )
( ) ( ).

nox nox
n nc

voc voc
v nc

sign g sign e e

sign g sign e e

= −

= −
               (14)

The new first order condition for NOx is given by

0n ng fλ− = ,              (15)

and all optimal solutions satisfies (13) and (12.3). Suppose that the optimal solution

is located on the upward-sloping part of the contour curve for ozone, implying

                                                                                                                                                                     
emissions at low NOx concentrations, corner solutions for abatement are possible only if the ozone-
function is non-convex.
10 An alternative formulation is

0 , 0 , 0 ,nox nox nox nox nox nox
n nc n nc n ncg e e g e e g e e> ⇔ < = ⇔ = < ⇔ >

0 , 0 , 0 .voc voc voc voc voc voc
v nc v nc v ncg e e g e e g e e> ⇔ < = ⇔ = < ⇔ >
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fn<0 from (3). Then, by (15), gn<0, and from (14) it follows that nox nox
nce e> .

Consequently, if the optimal solution is located on the upward-sloping part of the

contour curve, the amount of NOx emitted in the optimal solution is larger than

the no-control value. This case is illustrated in figure 5.

(Figure 5 about here).

In the optimal solution, the isocost and the contour curve for ozone are tangents

to each other, and the amount of ozone is exactly the targeted amount. These

necessary conditions for optimality are, however, not sufficient for optimality. But

if, in addition, the Lagrangian function is concave over the whole domain, then a

stationary point for the Lagrangian function is an optimal solution, see Sydsaeter

and Hammond (1995). The condition for local maximum is less strict: if the boarded

Hessian matrix is positive at the stationary point under consideration, then this is a

local maximum. Figure 6 illustrates cases where the necessary conditions for cost

minimisation are satisfied even though the stationary points fail to be optimal

solutions.

(Figure 6 about here.)

The diamond on the right-hand side in figure 6 is a local cost-minimum. However,

the circle at the left gives fewer costs and smaller ozone concentrations. The

diamond on the bottom of the contour curve for ozone shows a local cost-

maximum since locations in-between the isocost and the contour curve for ozone,

in the close neighbourhood of that point, gives fewer costs and smaller ozone

concentrations.
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4. The Regional Model

In this section, a model for reduced ground-level ozone concentrations at several

locations within a large region is developed. A cost-effective solution minimises

total abatement costs in the region, subject to the constraints on ground-level

ozone at all locations under consideration. Obviously, the atmospheric transport of

substances must be accounted for in this model. Models for cost-effective

abatement policies that account for ozone formation and atmospheric transport of

precursors have also been used by others, see for instance Amann et al. (1998a)

and van Ierland and Schmieman (1999).

Suppose there are n emitters in total (the units can for instance be states in

USA and countries in Europe), while there are restrictions on ozone concentrations

at m locations. Let the index and set of emitters be i and I respectively, such that

{ }1,...,i I n∈ = , and let the index and set of locations be j and J respectively, such

that { }1,...,j J m∈ = . The cost-effective solution for this problem minimise the sum

of abatement costs, subject to the constraints on ground-level ozone

concentrations,

( )
( ) { }

,

1 1

,

. .      , , ..., , ,        1, ..., ,

nox voc
i i

nox nox voc voc
i nc  i nc  ii ie e

i I

nox voc nox voc
j n n j

min g e - e e - e

s t f e e e e j mα
∈

≤ =

�
                    (16)

where gi is the cost function for emitter i, nox
nc ie  and voc

nc ie  are strictly positive no-

control emissions of NOx and VOCs respectively for emitter i, nox
i  e  and voc

i  e  are

actual emissions, fj is the ozone function for location j, and 0jα >  is the restriction

on the ozone concentration at location j. First order conditions for NOx and VOCs

for an emitter are given by

i i

j
n j n

j J

g fλ
∈

=� ,           (17.1)
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,
i i

j
v j v

j J

g fλ
∈

=�          (17.2)

where 
ing , 

ivg  are marginal abatement costs for NOx and VOCs for emitter i, and

i

j
nf , 

i

j
vf   are partial derivatives of the ozone function for location j with respect on

emitter i’s NOx and VOC emissions respectively,11 and the shadow prices on ozone

restrictions at various locations are given by 0jλ ≥ . It is assumed that the partial

derivatives of the cost functions satisfies

( ) ( )
( ) ( )

i

i

nox nox
n nc ii

voc voc
v nc ii

sign g sign e e

sign g sign e e

= −

= −
,                (18)

cf. equation (14).

For locations sufficiently remote from the emitter under consideration, it is

assumed that the partial derivatives of the corresponding ozone-functions, with

respect on NOx and VOC emissions from this particular emitter, is zero. However,

for the remaining locations it is assumed that 0
i

j
vf >  while 

i

j
nf  can take both signs. If

all binding constraints on ozone concentrations are sufficiently remote from the

emitter under consideration, then, by (17.1), (17.2) and (18), emitted amounts in

the optimal solution are given by no-control values for that emitter. In the

following it is assumed that all emitters are sufficiently close to influence the

concentration of NOx, VOCs and ozone in at least one location j where 0jλ > .

Then, by (17.2), 0
ivg > , and by (18), voc voc

i nc ie e< . This means that the emitted

amount of VOCs in the optimal solution is less than the no-control value for every

emitter.

                                                          
11 The intended interpretation of the units in I in this paper is European countries or states in USA.
The analysis could, however, easily be generalised to account for the specific location for every
emitting source. Little is gained by this in the present paper, and that generalisation would also
require an investigation of special cases where single sources emit either NOx or VOCs or both in
no-control, and the analysis would be somewhat unfocused. The emitting units are countries in the
RAINS model too.
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The sign of the right-hand side in (17.1) is ambiguous since 
i

j
nf  can take

both signs. If increased NOx emissions from a particular emitter give increased

ozone concentrations at some locations, and the shadow prices for ozone are large

enough for these locations, then the right-hand side in (17.1) is strictly positive,

implying 0
ing >  and nox nox

i nc ie e<  by (18). However, if increased NOx emissions for

the emitter under consideration give reduced ozone concentrations at locations

where the shadow prices for ozone are large, so that the right-hand side in (17.1) is

negative, then 0
ing <  and nox nox

i nc ie e>  by (18). Consequently, the amount of NOx

emitted is larger than the no-control value if the sum of the λ -weighted marginal

effects of increased NOx emissions on ozone concentrations is negative, and vice

versa. Since the right-hand sides in (17.1) and (17.2) are emitter-specific, the

optimal solution can be characterised by reduced NOx emissions (compared to no-

control) for some emitters while emissions are increased for other emitters. Also,

negative abatement for NOx is most likely to occur for emitters that are close to

high-NOx areas where increased NOx concentrations gives reduced ozone

concentrations. The reason is that an emitter has relatively larger influence on NOx

concentrations at locations close to the emitter compared to locations far away.

Figures 2, 3 and 5 illustrate optimal solutions also for the regional model if

the label “ 3O α= ” is replaced by the function

( )* * * **
1 1, , ..., , , ..., ,nox voc nox voc nox voc

i j j i i n n
j J

W f e e e e e eλ
∈

=� ,             (19)

where each variable in the vector ( )* ** , ,nox voc
j J k I k Ie eλ ∈ ∈ ∈  is the optimal solution for the

variables in the corresponding vector ( ), ,nox voc
j J k I k Ie eλ ∈ ∈ ∈ . Equation (19) can, somewhat

inaccurately, be interpreted as the value of ground-level ozone concentrations in

the optimal solution, as a function of the emitted amounts for emitter i.  The right-
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hand side in (17.1) divided by the right-hand side in (17.2), multiplied by –1, gives

the slope of a contour curve for the Wi-function. Consequently, in an optimal

solution, the isocost curve for an emitter i has the same slope as a contour curve

for the Wi-function.

5. Conclusions

Others have studied implications of non-convexities in ozone formation, and it is

indicated that corner solutions for abatement are potentially cost-effective. The

purpose of this paper has been to illustrate implications of non-monotonicity in

ozone formation, rather than to formulate actual regulatory strategies. Two models

for cost-effective reductions of ground-level ozone have been developed in this

paper: a city model and a regional model. However, both models gave the same

kinds of cost-effective solutions.

The main findings in this paper are as follows. The optimal amount of VOC

emitted is less than the no-control value in the city model. For NOx, however, the

emitted amount in the optimal solution is less than the no-control value only if the

optimal solution is located on the downward-sloping part of the contour curve for

ozone. If, on the other hand, the optimal solution is located on the upward-sloping

part of the contour curve, the optimal amount of NOx emitted is larger than the

no-control value. In the regional model, VOC abatement is strictly positive for every

emitter, while NOx abatement is strictly positive for a particular emitter if the

contour curve for the “ozone-value function” is downward-sloping for this emitter

in the optimal solution. If, on the other hand, the contour curve for the “ozone-

value function” is upward-sloping for a particular emitter, then the emitted

amount of NOx is larger than the no-control value for this emitter.

It would be trivial to extend the model in this paper and show that the

optimal emission vector in principle can be implemented by appropriate emission
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taxes under standard assumptions. If the optimal amount of NOx emitted is larger

than no-control for a unit (country or state), then the optimal emission tax for NOx

is negative for this unit. For the regional model, such emission taxes must be

emitter-specific, for instance country- or state-specific, while only one NOx tax rate

and one VOC tax rate is required for the city model. If the deposition pattern differs

substantially for sources within a country, then the optimal tax structure must of

course account for these differences too.

The assumption that marginal abatement costs are zero if the abated

amount of the substance under consideration is zero, is important for the

outcomes of the analysis. If something else is assumed, then negative abatement

does not necessarily imply an optimal solution on the upward-sloping part of the

contour curve for ozone, and vice versa. However, unless negative abatement is

ruled by an inaccurate assumption, the optimal solution for NOx emissions can in

general be larger than the emitted amount in no-control.

Both NOx and VOC emissions have other adverse effects than the formation

of ground-level ozone. For instance, NOx emissions have influence on acidification,

eutrophication and on the densities of fine particles (Lükewille et al., 2001). In

principle, a cost-effective policy must account for all environmental effects and

constraints. Positive NOx abatement can therefore be optimal when all

environmental constraints are accounted for, even if negative NOx abatement is

optimal in a particular optimisation that only accounts for the constraints on

ground-level ozone. Still, the targets for ground-level ozone may dominate the

optimal abatement strategies, at least for some emitters.

Suppose, however, that the optimal amount of NOx emitted is larger than

the no-control value for the short-run target, but less than no-control value for the

long-run target. Suppose also that there are additional cost elements for changed
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emissions due to frictions in the economy. In this case, the optimal dynamic

control of NOx emissions may imply positive NOx abatement even in the short-run.
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Figure 1:Typical patterns of ozone behaviour in Europe.

            (a) Low initial NOx concentrations           (b) High initial NOx concentrations

Source: Amann et al. (1998a).

The explaining text after (a) and (b) is added.
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