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Abstract 

We present new Monte Carlo evidence regarding the feasibility of separating causal-

ity from selection within non-experimental interval-censored duration data, by means 

of the nonparametric maximum likelihood estimator (NPMLE). Key findings are: i) 

the NPMLE is extremely reliable, and it accurately separates the causal effects of 

treatment and duration dependence from sorting effects, almost regardless of the true 

unobserved heterogeneity distribution; ii) the NPMLE is normally distributed, and 

standard errors can be computed directly from the optimally selected model;  and iii) 

unjustified restrictions on the heterogeneity distribution, e.g., in terms of a pre-

specified number of support points, may cause substantial bias. 
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1 Introduction 

The unit of analysis in this paper is a subject entering into some state (the origin 

state), and its subsequent stochastic transition to another state (the destination state). 

We are interested in how non-random events during the occupation of the origin state 

affect the probability of making a transition to the destination state. The paper focuses 

on two types of causal effects: The effect of a treatment, and the effect of spell dura-

tion. Identification problems arise when relevant subject heterogeneity is not fully 

controlled for, either because it is unobserved or because it fails to obey parametric 

restrictions imposed by the researcher. The distribution of uncontrolled heterogeneity 

obviously changes with the time spent in the origin state, and to the extent that treat-

ment assignment is not fully randomised, it also varies between the treatment and the 

non-treatment observations. These problems are well known and described in the lit-

erature (see, e.g., Heckman et al., 1999), and they will not be further elaborated here.  

The purpose of the present paper is to evaluate identification and estimation 

strategies for realistically designed non-experimental data that embody unobserved 

sorting processes, and also incorporate the ubiquitous problem of interval censoring. 

In particular, we provide an extensive Monte Carlo assessment of the nonparametric 

maximum likelihood estimator (NPMLE). The key idea behind this estimator is to 

approximate the unknown distribution of unobserved heterogeneity by means of a 

discrete distribution, with the number of support points selected such that the appro-

priate likelihood function is maximised  (Lindsay, 1983; Heckman and Singer, 1984). 

Although the discrete mixture approach has become quite popular in econometric ap-

plications, the method is rarely employed in its truly nonparametric fashion. The stan-

dard practice is to pre-specify a (relatively low) number of support points, or to add 

points until computational problems inhibit further improvement in the likelihood. 



 3

Even to the extent that a fully nonparametric approach is pursued, the validity of the 

resultant parameters has been questioned on the ground that little is known about their 

sampling distribution. Scientific progress at this point has been held back by computa-

tional limitations. Due to the non-concavity of the likelihood function, localisation of 

the NPMLE is often a demanding task, even for small samples and parsimonious 

models. Existing Monte Carlo based evidence regarding the performance of NPMLE 

is therefore typically extracted from small samples and restrictive models (Heckman 

and Singer, 1984; Huh and Sickles, 1994; Baker and Melino, 2000).  

The present paper takes advantage of the parallelisation capabilities of high 

performance computers, as well as some innovations regarding the computational 

treatment of large sets of dummy variables, that together facilitate Monte Carlo 

evaluations of quite a different scale and scope than those already reported in the lit-

erature. We find that NPMLE is extremely reliable, almost regardless of the true un-

observed heterogeneity distribution, provided that the sample is large and that there is 

some exogenous variation in the hazard rates. Interval censoring does not cause in-

surmountable problems for the recovery of structural parameters (although assump-

tions regarding hazard behaviour within the censored intervals are required in the 

competing risks case). A particularly useful source of identification, that has received 

only modest attention in the literature, is the existence of a common calendar time 

factor in this exogenous variation. We also provide encouraging results regarding the 

sampling distribution of NPMLE, indicating that estimates of structural parameters 

are normally distributed, and that the standard errors conditional on the number of 

support points, also correctly represent the statistical uncertainty of NPMLE.  How-

ever, we also present some results that may be source for concern: First, we find that 

the common practice of pre-specifying a low number of support points in the hetero-
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geneity distribution (or the usage of restrictive information criteria) may produce un-

reliable results. Second, the NPMLE is not robust towards deviations from the basic 

modelling assumptions; e.g., if a mixed proportional hazard (MPH) assumption is im-

posed on a dataset for which it does not hold, serious bias problems may arise. 

The present paper is related to a previous Monte Carlo study by Baker and 

Melino (2000), who investigated the behaviour of NPMLE for a discrete single risk 

duration model. They found that NPMLE is likely to fail for small samples when du-

ration dependence is unrestricted, but that the usage of an information criterion with a 

penalty attached to the number of support points in the heterogeneity distribution may 

solve the problem. Our results confirm these findings, but they also establish that the 

problems of estimating both duration dependence and unobserved heterogeneity non-

parametrically are indeed confined to small samples. With larger samples, penalties 

for parameter abundance typically do more harm than good. The present paper ex-

tends the results provided by Baker and Melino in several directions. First, although 

we maintain the assumption that the researcher only observes the outcomes of the sta-

tistical processes at discrete points in time, we assume that the data are generated by 

continuous time hazard rate models. Second, we extend the single risk model to a 

competing risks framework, with a particular emphasis on treatment effects. Third, 

while we focus on results obtained for the Mixed Proportional Hazard (MPH) rate 

family, we also investigate consequences of deviations from the MPH assumption. In 

particular, we look at the issue of heterogeneous duration dependence and treatment 

effects. Finally, we assess the sample selection problem that is inherent in most inter-

val censored data, since subjects may enter and leave the origin state between two ob-

servation points.  
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Data-structures similar to the DGP’s evaluated in this paper arise in many ap-

plications. The most obvious situation to think of is perhaps that of an individual en-

tering into an origin state of, e.g., unemployment, welfare participation, or sickness 

absence. In these cases, the destination state is typically that of ordinary employment, 

while the treatment may be a benefit sanction or a training program. Another example 

is an individual entering into the origin state of a job, and thereafter consider whether 

to quit this job for another, or to pull out of the labour force (retire). In this case, the 

treatment could be a promotion, a pay rise, or an early retirement scheme. In our ex-

periments, we focus on situations in which large numbers of observations are avail-

able, to facilitate estimation techniques that are as ‘nonparametric’ as possible. With 

respect to the examples referred to above, that kind of data are now, in many coun-

tries, accessible from administrative registers, and such registers are likely to play an 

important role in future micro-econometric research; see, e.g., Røed and Raaum 

(2003b).  

In addition to providing new insights to the scope for nonparametric identifi-

cation and estimation of duration models, our paper serves as a Monte Carlo evalua-

tion of what has become known as the timing of events approach; see Abbring and 

Van den Berg (2003a). This approach has rapidly gained popularity among micro 

econometricians, particularly within the field of labour market econometrics. Influen-

tial contributions include Card and Sullivan (1988), Gritz (1993), Lillard (1993), 

Bonnal et al. (1997), and Van den Berg et al. (2004). Our paper also provides some 

insights to the usage of NPMLE in general. Finite mixtures are used extensively to 
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account for subject heterogeneity in models of dynamic discrete choice; see, e.g., 

Keane and Wolpin (1997), Mroz (1999) and Eckstein and Wolpin (1999).1 

The remainder of the paper is structured as follows: The next Section de-

scribes the data generating process (DGP) that we refer to as our baseline model. Sec-

tion 3 discusses identification issues, and Section 4 introduces the statistical model 

and optimisation algorithm used to recover the parameters of the DGP. Section 5 then 

examines the model’s performance, in terms of recovering the true baseline parame-

ters. Section 6 discusses the impact of sample size. Section 7 examines the conse-

quences of modifying the distributions of unobserved heterogeneity, whereas Section 

8 looks at the consequences of changing the causal parameters in the DGP in ways 

that potentially can affect the scope for identification. Section 9 discusses more fun-

damental deviations in the DGP from the basic assumptions underlying the estimated 

model, such as the proportional hazards assumption. Section 10 explores the conse-

quences of, and suggests a remedy for, sample-selection due to the left-truncation 

typically encountered in interval censored data. Finally, Section 11 concludes. 

2 The Data Generating Processes 

The setting of our analysis is the following: There is an observation window of Q cal-

endar time periods for which the researcher has access to records of entries into an 

origin state and subsequent transitions into a treatment state p and/or a final destina-

tion state e. The treatment may (or may not) have a causal effect on the hazard rate 

into the final destination state, both during (on-treatment effect) and after (post-

treatment effect) the treatment. The length of the treatment (if no exit occurs to the 

                                                 

1 Finite mixtures have also been used extensively within other scientific disciplines, such as bio-
metrics and psychometrics; see Skrondal and Rabe-Hesketh (2004) for an overview. 
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final destination state) is assumed predetermined and observed. The first cohort of 

entrants is monitored up to Q periods, the second Q-1 periods and so on, until the last 

cohort, which is monitored only 1 period. Still active spells are censored at the end of 

the observation window. The transition rate probabilities for each subject are gov-

erned by underlying continuous time hazard rates, which again are determined by five 

factors: calendar time (t), spell duration (d), an observed time-invariant covariate (x), 

treatment status (z), and a two-dimensional vector of time-invariant unobserved co-

variates (v). It is the two unobserved variables that embody the selection problem. 

They are drawn from a joint probability distribution.  

An important aspect of real data is that they rarely conform to the idea of con-

tinuous time measurement. Real data records are typically updated at particular points 

in time, such as by the end of each day, week, or month. We take this point-in-time 

sampling into account by generating data that do not record exact transition times, but 

rather the time interval in which each transition has taken place. In most of our trials, 

this interval-censoring problem is substantial, and the period-specific transition prob-

abilities typically lie between 5 and 25 per cent.  We assume, however, that the under-

lying continuous time hazard rates are constant within each of these time intervals. 

We also assume that treatment and final exit cannot occur in the same time interval. 

 We generate a number of different datasets characterised by different types of 

(and degrees of) calendar time effects, different degrees of duration dependence, dif-

ferent treatment effects and different distributions of unobserved heterogeneity. Al-

though we stress the generality of the statistical approach, we have designed the artifi-

cial data such that they resemble genuine administrative register data that we are fa-

miliar with, in which the origin state is open unemployment, the treatment state is a 

training programme, and the destination state is regular employment. The size of the 
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observation window, the level of the period-specific transition rates, and the magni-

tudes of the various causal effects, are chosen roughly to match that kind of data. 

Since the processes under study are assumed to be observed only at a finite 

number of discrete points in time, we set up the DGP in terms of grouped hazard 

rates. Let ( , , , , )k t kt d x z vϕ denote the period-specific integrated hazard rate, integrated 

over the time interval (t-1,t] governing the transition to state k=e,p, given that the 

spell duration by the end of this interval is d periods and given the observed explana-

tory variable x  and the unobserved scalar vk, and given the treatment status tz . The 

treatment status has two dimensions, as captured by the indicator variables 

1 2( , )t t tz z z= . The variable 1tz is equal to 1 during treatment (and 0 otherwise), while 

2tz  is equal to 1 after a treatment is completed (and 0 otherwise).2   

In most of the datasets that we generate, the underlying hazard rates are pro-

portional in the effects of calendar time, spell duration, observed heterogeneity, unob-

served heterogeneity and treatment. The integrated period-specific hazard rates kϕ  

can then be written as 

( )
( )

( , , , , ) exp ,  

( , , , , ) exp
e i it ei e i et ed it ei

p i it pi p i pt pd pi

t d x z v x z v

t d x z v x v

ϕ β σ λ α

ϕ β σ λ

= + + + +

= + + +
,  (1)  

where ktσ  and kdλ are the period-specific calendar time and duration dependence pa-

rameters, respectively, and α  is the vector of treatment effects. Note that there are 

two dimensions of time in this model, process time (d) and calendar time (t). Calendar 

time should not be thought of a causal factor itself, but rather as a proxy for all exter-

nal influences that jointly affect the hazard rates of the population at risk, such as 

                                                 

2 Note that previous treatment is assumed to be irrelevant when a subject is enrolled again, (i.e., 
(1,1)tz ≠ ). 
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business cycles, seasonal effects, or changes in treatment capacity. The period-

specific transition probabilities are equal to 

 ( , , , , )( , , , , ) 1 exp ( , , , , )
( , , , , )

it

it

k i it ki
k i it ki k i it ki

k K k i it ki
k K

t d x z vp t d x z v t d x z v
t d x z v

ϕϕ
ϕ∈

∈

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
,(2) 

where { },itK p e= for (0,0)itz =  (no treatment so far) or (0,1)itz =  (completed treat-

ment) and { }itK e= for (1,0)itz =  (ongoing treatment).  

 We start out by setting up a baseline model, which is described in Table 1. 

There is neither duration dependence nor treatment effects in the baseline model (i.e., 

constant hazard rates and irrelevant treatment), but there is negative selection into 

treatment on the observed covariate and positive selection on the unobserved covari-

ates. The positively correlated unobservables will – if unaccounted for - produce a 

spurious pattern of negative duration dependence and favourable treatment effects.  

Table 1 around here 

3 Identification 

Provided that observed durations are accurately recorded, the mixed proportional haz-

ards (MPH) structure of the baseline DGP ensures nonparametric identification of 

both treatment effects (Abbring and Van den Berg, 2003a) and duration dependence 

(Elbers and Ridder, 1982; Heckman and Honoré, 1989; Abbring and Van den Berg, 

2003b). In our case, observed durations are interval censored. Identification then 

clearly hinges on the assumption that the time trajectories of time-varying explanatory 

covariates are constant within each of the censored time intervals, such that the hazard 

rates are piecewise constant (An, 2004). In practice, the scope for actually recovering 

the true parameters from observed data depends on the size of the interval-censoring 

problem as well as on the degree of exogenous variation in the hazard rates stemming 
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from observed covariates. In our model, there are two observed sources of exogenous 

variation in hazard rates, the time invariant (and subject-specific) covariate x and the 

calendar time period t.  

Even though the identification results referred to above are all derived from 

the requirement of time-invariant covariates only, an important aim of the present pa-

per is to explore the potential for nonparametric identification embedded in calendar 

time variation in hazard rates as well. Intuitively, time-varying covariates can recover 

the influences of unobserved heterogeneity because, for a population of subjects with 

common spell duration above zero, it will be the case that the present distribution of 

unobserved heterogeneity depends on hazard rates experienced earlier in the spells, 

while individual transition rates do not (Van den Berg and Van Ours, 1994; 1996). 

Hence, as pointed out in a similar context by Eberwein et al. (1997, p. 663), time-

varying variables naturally provide an exclusion restriction in the sense that past val-

ues of these variables affect the current transition probabilities only through the selec-

tion process. As a result, mixed hazard rate models may be nonparametrically identi-

fied even in the absence of the proportionality assumption (McCall, 1994; Brinch, 

2000). Time-varying covariates may therefore provide a more robust source of identi-

fication than time-invariant covariates.  

4 Data Likelihood Optimisation and Model Evaluation Criteria 

The parameters are recovered by means of a nonparametric maximum likelihood 

(NPML) technique. Each subject contributes to the analysis with a number of obser-

vations equal to the number of periods at risk of making a transition of some sort. 

Each observation is described in terms of calendar time, spell duration, the value of 

explanatory variables and an outcome (generated by the drawings described in the 
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previous section). Let kity be an outcome indicator variable which is equal to 1 if the 

corresponding observation period ended in a transition to state k, and zero otherwise, 

and let iN be the set of potential transition periods observed for subject i. The contri-

bution to the likelihood function formed by a particular subject, conditional on the 

vector of unobserved variables ( , )i ei piv v v=  can then be formulated as 

1

( , , , , )1 exp ( , , , , )
( , , , , )

( )

exp ( , , , , )

itit

it

kit
k Kit

it

k i it ki
k i it ki

k Kk K k i it ki
k K

i i

y

k i it ki
k K

kity

t d x z vt d x z v
t d x z v

L v

t d x z v

ϕϕ
ϕ

ϕ
∈

∈∈
∈

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∈

⎡ ⎤⎡ ⎤⎡ ⎤⎢ ⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥− −⎢ ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦⎢ ⎢ ⎥⎣ ⎦=
⎢
⎢ ∑⎡ ⎤⎛ ⎞⎢× −⎢ ⎥⎜ ⎟⎢
⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∑∏ ∑

∑

it N∈

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∏ ,(3) 

where (.), , ,k k e pϕ =  is defined in (1). Since the distribution of unobserved heteroge-

neity is assumed unknown to the researcher, we approximate the heterogeneity distri-

bution in a nonparametric fashion with the aid of a discrete distribution (Lindsay, 

1983; Heckman and Singer, 1984). Let W be the (a priori unknown) number of sup-

port points in this distribution and let { }, ,  1, 2,... ,l lv p l W=  be the associated location 

vectors and probabilities. In terms of observed variables (data), the likelihood func-

tion is then given as  

( ) ( )
1 11 1

[ ] ,    1
i

N N W W

i i l i l lv l li i

L E L v p L v p
= == =

= = =∑ ∑∏ ∏ .   (4) 

Our estimation procedure is to maximise this function with respect to all the 

model and heterogeneity parameters repeatedly for alternative values of W. We start 

out with W=1, and then expand the model with new support points until the model is 

‘saturated’, in the sense that we are not able to increase the likelihood any further. We 

have examined alternative methods for verifying that this condition is satisfied. Most 

of the results presented in this paper are based on the following procedure: At each 
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stage of the estimation (i.e., after having estimated the model for a given number of 

support points), the appropriateness of an additional point of support is explored by a 

random search for likelihood improvement obtained by manipulating the location of 

an extra mass-point with the assigned probability of 0.0001. To start the search, we 

just copy one of the previously estimated location vectors (selected randomly). We 

then investigate how the likelihood function changes as we modify one element at a 

time. For the first element, we pick 50 random numbers in the interval ( 3, 2)−  and 

compute the resulting likelihood functions. If one of the random numbers yields an 

improvement of the likelihood, we use it (if more than one yields an improvement, we 

use the best); otherwise, we keep the old one. We then do the same thing for the next 

element in the location vector. If we have improved the likelihood through this exer-

cise, we use the newly found heterogeneity distribution, together with the previously 

estimated parameters, as an initial vector, and start the full maximization (of all the 

parameters in the model). If we have not been able to improve the likelihood through 

direct search, we replace all location vectors and probabilities with random numbers 

and start the full maximization anyway. We continue adding mass-points in this fash-

ion until there is no improvement in the likelihood. For practical and computational 

reasons, we consider this to be the case when the log-likelihood increases by less than 

0.05.   

As an alternative to our direct search for potential improvements in the likeli-

hood function, we have also tried to maximise the Gateaux (directional) derivative, in 

line with the procedure recommended by Baker and Melino (2000, p. 361), and also 

used by Heckman and Singer (1984). In our experiments, this procedure frequently 

produces a new support-point at the boundary of our search area, even though the fi-

nal likelihood-maximising new point usually is in the interior of the search area. This 
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problem is closely related to interval and right censoring. To illustrate, consider the 

case where we have established the existence of w-1 support points. The Gateaux de-

rivative of the log-likelihood function associated with an additional point w is then 

equal to: 

 
1

1

( ) 1 ,    0
( )

N
i w

w ww
i l i ll

L vG p
p L v=

=

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

∑
∑

. (5) 

Now, assume that there are some right-censored spells in the data for which the previ-

ous w-1 support points were poorly chosen, i.e. 
1

( ) 0w
l i ll

p L v
=

≈∑ . Since there are no 

transitions to the final destination state in right-censored spells, a highly negative 

number is obviously a very good choice for the corresponding new location point for 

these spells, yielding ( ) 1i wL v ≈ . And since approximately one divided by approxi-

mately zero can be a very large number, these spells may easily dominate all other 

spells in the computation of the Gateaux derivative, even when there are relatively 

few of them. Due to the interval censored data, there will also be some spells that are 

terminated in the very first observed time interval. In these cases, a very large positive 

mass-point location yields likelihood functions approximately equal to unity. For this 

reason, it works better, with our data, to search for new points by maximising the like-

lihood with the new probability pw set to a small positive number ρ. Technically, the 

increase in the log-likelihood approximates the integral of the Gateaux-derivative 

from pw=0 to pw=ρ.3 

Irrespective of the usage of the likelihood function or the Gateaux derivative 

as the target function, it is possible that the way we reduce a two-dimensional search 

                                                 

3 This can be seen from the lim definition of the Gateaux derivative given by Heckman and 
Singer (1984, p. 304, prior to Theorem 3.5). 
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problem to two one-dimensional searches (by checking for improvements associated 

with partial changes in ve or vp separately), leads us to miss potential improvement 

points associated with joint variations. We have therefore also attempted to perform a 

two-dimensional search by means of simulated annealing (see, e.g., Goffe et al., 

1994). This method clearly improved our ability to identify additional support points 

in the heterogeneity distribution through direct search, but at a relatively high cost in 

terms of increased computation time.  Since our optimisation algorithm in any case 

embodies the extra step of a full maximisation (based on random starting values for 

all heterogeneity parameters), even when the direct search procedure fails to identify 

increase points, it did not change the final results to any noticeable extent. The main 

virtue of simulated annealing in this context seems to be that it reduces the need for 

the ‘fallback’ procedure of full maximisation. However, it does not eliminate it. This 

extra step appears to be important regardless of the search algorithm, not only because 

the search algorithm fails to identify existing increase points, but also because, during 

most of the estimation process, it is conditioned on wrong parameter values attached 

to observed explanatory variables (since the correct values have not yet been found). 

The full maximisation procedure that we use is a very robust combination of Fisher 

scoring (i.e., Newton-Raphson with the Hessian replaced by the Fisher information 

matrix) and BFGS.4 

                                                 

4 For the Fisher scoring we have modified Xie and Schlick's TNPACK (from 
http://www.netlib.org), and for BFGS we have used Zhu, Byrd, Lu and Nocedal's LBFGS-B. Both of 
these methods have their strengths and weaknesses.  Fisher scoring usually converges fast, and the 
Fisher matrix is easy to compute since we anyway do analytic gradients.  BFGS converges slower, but 
is much more robust.  Typically we start out with 100 iterations of BFGS; then we switch to Fisher 
scoring.  Normally, a maximum is found with 3-10 iterations of Fisher. However, some models are 
harder, in particular when the number of mass-points increases.  If we haven't converged after 50 
Fisher iterations, we switch back to BFGS, this time with more iterations. We switch back and forth a 
couple of more times, and this is usually sufficient for convergence. Experience has shown that both 
BFGS and Fisher may at times get stuck, apparently due to an ill-conditioned Hessian in certain re-
gions, or because the Fisher matrix is too different from the Hessian. By switching between them we 
often manage to move out of the problematic region. Sometimes, a heterogeneity parameter is esti-
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According to the maximum likelihood (ML) criterion the model is saturated 

when the likelihood cannot be made any larger by adding additional support points to 

the heterogeneity distribution. However there is some discussion in the literature 

about the need for information criteria that ‘punish’ parameter abundance (Leroux, 

1992; Baker and Melino, 2000). Let ˆWµ be the vector of parameter estimates derived 

from a model with W support points in the heterogeneity distribution and let ˆ( )Wl µ  be 

the corresponding log-likelihood function. A general form of a maximum penalised 

likelihood criterion is ˆ( ) (# )W Ml a parametersµ − , where Ma is a penalty function de-

rived from the total number of observations M.5 Baker and Melino (2000) propose to 

use either the Bayesian information criterion (BIC) or the Hannan-Quinn information 

criterion (HQIC) in order to avoid ‘over-parameterisation’ of the heterogeneity distri-

bution. The BIC uses the penalty function 0.5lnMa M= , while the HQIC uses 

ln(ln )Ma M= . Zhang (2003) found, however, that the much ‘milder’ penalty pro-

vided by the Akaike information criterion (AIC), with 1Ma = perform better than BIC 

and HQIC in a setting similar to the one used here.  

Given the absence of parametric restrictions on the period-specific spell dura-

tion and calendar time effects in our model, there is a relatively large number of pa-

rameters to estimate for each W, and almost all of them are attached to mutually ex-

clusive dummy variables. In order to speed up the computations, we have developed 

                                                                                                                                            

mated as a large negative number (< -20). This is numerically problematic. When we encounter this, 
we mark the offending parameter as 'negative infinity' and keep it out of further estimation. The 'nega-
tive infinity' mark is kept when we add new mass-points. This also implies that we allow defective 
risks to be present in the data. 

 
5 Note that we use the total number of period-observations (M) in this formula, and not the num-

ber of subjects (N). This is perhaps not an obvious choice, see Skrondal and Rabe-Hesketh (2004, p. 
265) for a discussion, but stands out as the natural thing to do in our context, given the unique informa-
tion content embedded in each observation. 
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an optimisation routine that is tailored to nonparametric models, i.e., models in which 

all (or most) of the explanatory variables are dummy coded. This program builds on 

the concept of ‘implicit dummy variables’, which in essence reduces any number of 

mutually exclusive indicator variables to a single variable. The idea is that we take 

directly into account that most of the dummy variables are equal to zero most of the 

time. For example, if, say, S calendar-time dummy variables were to be treated like 

ordinary dummy variables, we would calculate the sum of these variables multiplied 

by their associated parameters every time the likelihood is computed. Each time, this 

would amount to S multiplications and S-1 additions, together with 2·S memory look-

ups. But since all but one of the dummies are zero, there is only a single non-zero 

element in the sum. In contrast to human arithmetic, a computer uses equally long 

time to multiply and add zeros as it uses to multiply and add anything else. It is there-

fore more efficient to ‘tell’ the computer that most terms are zero and let it pick the 

right parameter directly. This is essentially what an ‘implicit dummy’ does, i.e., it re-

places 2·S-1 arithmetic operations and 2·S memory lookups with 2 memory lookups. 

We also utilize the implicit dummy variables when we compute the gradient. The 

speedup for the gradient computation is comparable to the speedup for the likelihood 

calculation, since we avoid computing and storing a lot of derivatives in the gradient. 

The mathematical result is of course exactly the same as if we had used ordinary 

dummy variables, but the computational cost is, in our case, dramatically reduced. 

5 Recovering the Baseline Model from Observed Data 

The aim of this section is to assess the statistical model’s ability to uncover the true 

causal parameters in repeated trials of data generation and estimation. For this pur-

pose, we generate 100 distinct datasets from the assumptions of the baseline model, 

each with 50,000 subjects. Some key characteristics of these datasets are described in 
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Table 2. The average size is 492,000 observations, implying that the average duration 

of origin state spells is 9.8 periods (including right-censored spells, which made up 

28.9 per cent of all spells). Despite their common structural DGP, the random draw-

ings of unobserved heterogeneity and calendar time effects ensure that the data sets 

differ a lot. While the smallest dataset has an average spell duration of only 3.2 peri-

ods, and, hence, contains as little as 160,000 observations, the largest has an average 

spell duration of 17.3 periods and contains 864,000 observations. There is also a sub-

stantial variation between the datasets in the fraction subject to treatment (from 4 to 

87 per cent) and in the degree of censoring (from 4 to 72 per cent).  

Table 2 around here 

We let each of the 100 datasets be subject to the estimation procedure de-

scribed in section 3. For each trial, around 165-200 parameters are estimated, depend-

ing on the number of support points in the mixing distribution (2x40=80 duration pa-

rameters, 2x40=80 calendar time parameters, 2 parameters reflecting the effect of the 

exogenous covariate x, 2 treatment effects, plus the parameters of the mixing distribu-

tion).6 Table 3 reports the number of mass-points that were required to satisfy the four 

alternative model selection criteria, BIC, HQIC, AIC and ML, in the 100 trials. While 

the most restrictive information criterion, BIC, typically requires 4-7 support points, 

the least restrictive criterion, ML, typically requires 10-14. 

Table 3 around here 

 Table 4 shows the main results regarding the four structural parameters of in-

terest, and some summary statistics regarding the two duration baselines, while Figure 

1 presents a more detailed picture of the nonparametrically estimated effects of spell 

                                                 

6 In some of the datasets, there are also some coefficients, particularly attached to some of the last 
calendar time and spell duration parameters, that cannot be estimated due to lack of variation in out-
comes (or ‘empty cells’). 
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duration. The results are presented in the form of mean point estimates, mean esti-

mated standard error, and the fraction of trials that led to rejection of the various true 

parameter values at a five per cent nominal significance level.7 A first point to note is 

that the biases induced by failing to control for unobserved heterogeneity are large, 

not only in the estimated effects of treatment and spell duration, but also in the esti-

mated effects of the exogenous covariate x. The latter reflects that as the spells pro-

ceed, x becomes correlated with unobserved heterogeneity, even though they are or-

thogonal to start with (see Cameron and Heckman, 1998, for a discussion of this phe-

nomenon). It is sometimes claimed that the resulting bias is likely to be small insofar 

as the duration baseline is sufficiently flexible (see, e.g., Narendranathan and Stewart, 

1993; Arulampalam and Stewart, 1995); but the results above, which are based on a 

completely flexible duration baseline, show that this should not be taken for granted. 

Treatment effects are of course also biased by the selection resulting from the de-

pendence between the unobserved employment and treatment propensities. Without 

controls for unobserved heterogeneity, we would typically draw the false conclusions 

that treatment increases the hazard rate to the final destination state by 

100(exp(0.443) 1) 55.7%− =  during the treatment, and by 

100(exp(0.324) 1) 39.0%− =  afterwards. We would also draw the false conclusion 

that there is strong negative duration dependence in both hazard rates, particularly in 

the final destination hazard, which declines with as much as 

100(exp( 1.53) 1) 78.3%− − = −  during the first 36 time periods. The estimated treat-

ment baseline declines less, reflecting that subjects transiting to the treatment state 

return to the risk set when the treatment is completed. This also explains the peculiar 

                                                 

7 Approximate standard errors for the mean estimates can be obtained by dividing the mean stan-
dard errors by 10, i.e., the square root of the number of trials. 
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step-wise rises in the estimated treatment hazard that occur as treatment participants 

(who, on average, are positively selected with respect to the unobserved treatment 

propensity) return to the origin state (after five periods of participation), and are again 

exposed to the risk of treatment. 

Figure 1 around here 

A second point to note is that the biases are eliminated by means of nonpara-

metric control for unobserved heterogeneity, but that only the models with little or no 

penalty for parameter abundance (AIC and ML) eliminate the biases completely. Both 

the AIC and the ML criteria perform remarkable well, in the sense that they reliably 

return unbiased estimates close to the true parameter values.8 A third point to note is 

that for the AIC and ML criteria, ordinary t-tests tend to reject the true parameters al-

most in accordance with the nominal significance levels. The standard errors used to 

perform this exercise (reported in Table 4) are calculated as the square roots of the 

diagonal elements of the inverted Fisher matrix. These standard errors are conditional 

on the number of support points in the mixture distribution, and it is far from obvious 

that they also represent the true uncertainty of the NPMLE. In order to take a closer 

look at the sampling distribution of NPMLE, we also made 100 data-replications 

based on exactly the same population and economic environment (i.e. we drew the 

heterogeneity terms and calendar time effects only once, implying that only the transi-

tion ‘lottery’ was replicated), and repeated the estimation exercise described above.  It 

turned out that i) the estimated parameters were approximately normally distributed, 

and ii) the estimated standard errors in each trial were virtually identical to the em-

pirical standard deviation of point estimates across the 100 trials. Hence, it appears to 

                                                 

8 Although not shown here, it may be noted that the model also recovered the true calendar time 
parameters with great precision. These parameters may in some cases have an interesting interpretation, 
e.g. in the form of business and/or seasonal cycles; see Gaure and Røed (2003). 
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be the case that standard inference procedures can be applied as if the optimally se-

lected mixture model was known a priori. For the four key structural parameters (the 

effects of the exogenous covariate and of treatment), these points are illustrated in 

Figure 2 and Table 5, respectively. The normality test (Hendry and Doornik, 1996, pp 

209-210) was applied on the 100 replications of all the estimated parameters attached 

to observed covariates. At the 5 per cent level, 10 of these 160 tests (6.25 per cent) 

rejected normality.9 

Figure 2 around here 

Table 5 around here 

A fourth point to note is that there does not seem to be a great risk of ‘over-

correcting’ for unobserved heterogeneity, in the sense that, e.g., the negative duration 

bias imposed by neglected heterogeneity is replaced by a positive bias. On the con-

trary, there is a substantial risk of ‘under-correcting’ for unobserved heterogeneity 

when information criteria with large penalties for additional parameters are used. In 

particular, Table 4 shows that models selected on the basis of HQIC or BIC tend to 

reject the true parameters much more often than indicated by nominal significance 

levels. For example, at the five per cent nominal level, HQIC rejects the true value of 

eβ  in 30 per cent of our replications, while BIC rejects the true value in as much as 75 

per cent of the cases. 

Given that the search for the optimal number of support points requires sub-

stantial computational resources – and hence that the number of support points in ac-

tual applications is often specified a priori as at most two or three - it may be of inter-

                                                 

9 We did not attempt to test directly for multivariate normality, but it is known that all univariate 
marginal distributions of a multivariate normal distribution are themselves univariate normal (Johnson 
and Wichern, 1992). 
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est to investigate how models with just a few (predetermined) number of support 

points perform. For the four key parameters, this is illustrated in Figure 3. It turns out 

that two support points is clearly insufficient to identify any of the parameters, while 

three points seem to do a good job in revealing the two treatment effects. However, a 

low number of support points seems inadequate in order to identify the true spell du-

ration effects. This is illustrated in Figure 4, where we have plotted the average esti-

mated duration parameters associated with the final destination hazard for models in-

corporating from 1 to 10 support points in the heterogeneity distribution. It is clear 

that the negative duration bias diminishes as more support points are included, but 

only the most flexible models (with up to 10 points) are able to remove it completely. 

Hence, in order to correctly disentangle duration dependence and selection, it seems 

to be essential that the heterogeneity distribution is indeed saturated in terms of a 

maximum likelihood or a penalized maximum likelihood criterion, in line with the 

results provided by Lindsay (1983) and Heckman and Singer (1984).  

Figure 3 around here 

Figure 4 around here 

Although the main purpose of applied research typically is to recover struc-

tural parameters of the type discussed above, it is sometimes of interest to recover 

properties of the heterogeneity distribution itself. It is, of course, not meaningful to 

interpret the mass-point distribution literally in terms of representing a corresponding 

number of distinct subject types, since the underlying true heterogeneity distribution 

may be continuous (as is the case in our baseline model). There may, however, be 

other properties of the estimated heterogeneity distribution that have a more substan-

tive interpretation. An important point to note regarding the model’s ability to identify 

the distribution of unobserved heterogeneity is that although our 100 trials of data 
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generation and estimation returned the same (correct) structural parameters, they re-

turned different heterogeneity parameters in terms of location vectors and probabili-

ties, even in the experiments where all the 100 datasets were based on exactly the 

same drawing of unobserved heterogeneity. This implies that the discrete mixture dis-

tribution is not unique. Yet, this finding is not in conflict with the well-known theo-

retical result that proves uniqueness (Lindsay, 1983), since there are important fea-

tures of our experiments, i.e., interval censored data, competing risks, and non-

bounded mass-point locations, that do not conform to the assumptions underlying this 

proof. Figure 5 illustrates how the estimated discrete distribution mimics the true con-

tinuous distribution of unobserved heterogeneity. The two upper panels plot the mar-

ginal cumulative distribution functions (CDF’s) of ( )1 exp( exp( )ev− − and 

( )1 exp( exp( )pv− −  for the true (bivariate normal) DGP and for (a randomly selected) 

estimated discrete heterogeneity distribution from one of the 100 trials.10 The other 99 

trials produced similar, but far from identical estimated discrete distributions. How-

ever, as illustrated in the two lower panels of Figure 5, when we merge the 100 esti-

mated discrete distributions into a single one, it replicates the true CDF quite well. 

Figure 5 around here 

Even though the distribution function clearly cannot be perfectly replicated in 

a single trial, other distribution parameters, such as the first and second order mo-

ments, may be more robust. In a treatment evaluation setting, it is often desirable to 

characterise the selection process into treatment in terms of, say, a correlation coeffi-

                                                 

10 Note that 1 exp( exp( )) exp( )k kv v− − ≈ for small exp( )kv . The reason why we have focused on 
these functions, rather than the hazard proportionality terms ( exp( )kv ) themselves is explained below. 
Note also that 1 exp( exp( ))kv− − is the period-probability of making a transition to state k for a refer-
ence individual (with x=0, d=1, and t=reference) given that no competing destination exists, as a func-
tion of the unobserved covariate. 
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cient. Hence, it is clearly of interest to examine the extent to which such parameters 

can be recovered from observed data. Table 6 reports the first and second order mo-

ments of ( )1 exp( exp( )),1 exp( exp( ))e pv v− − − −  for the true and the estimated hetero-

geneity distributions. The moments of the estimated heterogeneity distribution are, on 

average, very close to the moments of the true heterogeneity distribution. And the cor-

relation coefficient calculated on the basis of the estimated heterogeneity distribution 

seems to be a consistent estimator for the true correlation coefficient. But, while the 

first order moments appear to be consistently estimated regardless of the information 

criterion, consistent estimates of the second order moments depend on the least re-

strictive criterions (AIC or ML) being chosen. 

Table 6 around here 

The reason why we have not reported distribution measures, such as first and 

second order moments, for the heterogeneous proportionality terms themselves, i.e., 

( )exp( ),exp( )e pv v , is that they typically turn out to be irrecoverable from interval-

censored data. The explanation for this is that it is empirically impossible to differen-

tiate between distinct large values of heterogeneity locations ( ),e pv v , since they yield 

indistinguishable transition probabilities in any discrete time interval. The problem is 

illustrated in Figure 6, where we have plotted the functional relationship between pe-

riod-specific transition probabilities and the log integrated hazard rate (disregarding 

the issue of competing risks). It is clear that any integrated hazard rate exceeding the 

number of two implies virtually the same transition probability of unity; hence the 

particular numbers that enter the estimated unobserved heterogeneity vectors at high 

levels are selected with extreme statistical uncertainty. Nevertheless, the exact loca-

tions of such values have of course enormous impact on the calculation of the mo-
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ments of the ( )exp( ),exp( )e pv v  distribution. In fact, since we have not restricted 

( ),e pv v to be finite, the moments of the ( )exp( ),exp( )e pv v distribution, as well as the 

moments of the ( ),e pv v distribution may not even exist. 

Figure 6 around here 

6 The Role of Sample Size 

So far, the analysis has been based on datasets comprising 50,000 subjects. In this 

section, we consider the impact of sample size, by comparing results based on five 

alternative sample sizes, containing from 5,000 to 5,000,000 subjects. The main re-

sults are summarised in Table 7, where we present the average number of support 

points in the estimated heterogeneity distribution for each model, as well as mean er-

rors for some key parameters. The estimated number of support points seems to in-

crease monotonously with sample size for all information criteria, but at a low and 

declining rate (the elasticity of the number of support points with respect to the num-

ber of subjects is on average around 0.1). The rate of increase is also lower the more 

restrictive is the information criterion. 

Table 7 around here 

The mean errors that are presented in Table 7 are all based on the same total 

number of subjects, irrespective of sample size used in each trial, namely 5,000,000. 

When we look at sample sizes of only 5,000 subjects, we thus generate and estimate 

the model 1,000 times, and the reported mean errors are averages taken over all these 

trials. At the other extreme, when we look at sample sizes of 5,000,000, we only make 

a single trial. This means that if the parameter estimates are unbiased irrespective of 

sample size, the mean errors should be the same, and close to zero, for all sample 

sizes.  However, Table 7 reveals that the mean errors do depend on sample size. The 
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larger is the sample, the smaller are the mean errors, irrespective of the model selec-

tion criterion. Moreover, the larger is the sample, the less important is the selection of 

information criterion (for sufficiently large samples, all information criteria perform 

remarkably well). For small samples (5,000 or 10,000 subjects), there is a substantial 

risk of obtaining biased results, and the selection of information criterion seems to be 

of paramount importance. Like Baker and Melino (2000), we find that the ML crite-

rion tends to ‘over-correct’ for unobserved heterogeneity in small-sample situations, 

and that a substantial improvement can be achieved by relying on an information cri-

terion that penalises the number of parameters in the heterogeneity distribution. This 

is most clearly seen by looking at the mean errors associated with the final destination 

spell duration baseline ( )edλ . For example, for sample sizes of 10,000, we see that the 

ML criterion produces a positive bias in the spell duration parameters (on average 

equal to 0.173, which approximately corresponds to a 17 per cent over-evaluation of 

hazard rates at durations ≥ 2, relative to the first period), while the AIC criterion de-

livers correct results. However, more restrictive information criteria (BIC and HQIC) 

tend to ‘under-correct’ for unobserved heterogeneity, and, hence, fail to remove the 

negative duration bias. This is more clearly illustrated in Figure 7, where we have 

plotted the mean duration parameter estimates from the 500 trials with sample sizes of 

10,000 subjects. The pattern is the same for sample sizes of 5,000; i.e., BIC and HQIC 

‘under-corrects’, ML over-corrects, and AIC (almost) hits the target.  

Figure 7 around here 

 Our results suggest that AIC is the safest information criterion to rely on, par-

ticularly when samples are small. However, it is difficult to assess the generality of 

this result. The ‘optimal’ information criterion may be DGP-specific. 
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7 The Role of the Heterogeneity Distribution 

In this section, we present some estimation results obtained from models with unob-

served heterogeneity distributions that deviate from the baseline case. For each model, 

we repeat data generation and estimation 10 times only, in order to limit our usage of 

computational resources. We have drawn unobserved heterogeneity and calendar time 

effects only once for each model type, so that the DGP used to generate spells is the 

same across the 10 trials. The main purpose of this section is to assess the extent to 

which the relatively optimistic identification results from the previous section holds 

for more challenging classes of heterogeneity distributions. In the presentation of our 

results, we restrict attention to parameter estimates based on AIC and ML (it is still 

the case that these criteria perform best). We first complicate the heterogeneity prob-

lem without changing the DGP, by assuming that the researcher does not observe the 

exogenous explanatory variable x; hence x is transformed into an unobserved (di-

chotomous) covariate, which, together with the bivariate normal covariate, now con-

stitutes the unobserved heterogeneity distribution. Note that the researcher in this case 

is assumed not to have access to any subject-specific exogenous covariates at all; 

hence it is only the calendar time dummy variables that ensure nonparametric identifi-

cation of treatment effects and duration dependence. Even though the unobserved het-

erogeneity distribution is more complicated in this case, it is not unambiguously the 

case that the number of support points required to satisfy the two model selection cri-

teria increases. The maximum likelihood criterion ended up requiring from 10 to 14 

points, while the AIC required from 7 to 11 points, very much in line with the re-

quirements when x was observed. The results regarding the treatment effects are pre-

sented in Table 8. These effects are still robustly identified, although standard errors 

are larger than what was the case when x was observed. The same conclusion applies 
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to the spell duration baselines (not shown). Hence, with some exogenous variation in 

hazard rates over calendar time, no subject-specific covariates are required in order to 

identify treatment and spell duration effects. 

Table 8 around here 

Before we modify the DGP in order to include more complicated heterogene-

ity distributions, we take a look at the case in which the DGP does not contain any 

unobserved heterogeneity at all. When this is the case, a model without heterogeneity 

is obviously appropriate, but it could nevertheless be the case that we erroneously 

found some unobserved heterogeneity to be present. Indeed, when we used the maxi-

mum likelihood criterion for model selection, only one out of 10 trials ended up re-

jecting the presence of unobserved heterogeneity completely. In six of the trials, three 

support points were identified. However, the identified support points were either lo-

cated closely together (almost indistinguishable), or the attached probability to the 

‘deviating’ mass-points was close to zero; hence the structural parameters of interest 

were not biased at all. When we used the penalized likelihood criterion (AIC) to select 

model, all 10 trials ended up correctly rejecting the presence of unobserved heteroge-

neity. 

We now briefly assess the consequences of complicating the unobserved het-

erogeneity distribution. We do this by presenting five illustrative example distribu-

tions. The first four examples are based on various combinations of continuous (Nor-

mal or Gamma) and discrete heterogeneity distributions. The last example is a pure 

discrete simultaneous distribution, in which some of the support points involve defec-

tive risks. A more detailed description of the various models and the main results are 

provided in Table 9. The bottom line is that NPMLE robustly recovers the true struc-

tural parameters, including treatment effects, irrespective of the way unobserved het-
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erogeneity is distributed in the data. As illustrated in Figure 8, this also applies to the 

duration dependence parameters. These results also hold for a number of other het-

erogeneity distributions that we have tried; hence we conclude that the precise nature 

of the heterogeneity distribution is unimportant with respect to identification of our 

baseline model.  

Table 9 around here 

Figure 8 around here 

It may be of interest to take a closer look at the results from model v) (see the 

bottom part of Table 9), since this is the only model in which the DGP is actually 

based on a discrete heterogeneity distribution of the type used in the estimation pro-

cedure. Hence, this model could potentially be fully recovered from the data, in the 

sense that the correct mass-point locations and probabilities were identified. A par-

ticularly interesting issue is the model’s ability to recover the true fraction of defec-

tive risks, since this fraction sometimes may be of substantive importance. As it 

turned out, the presence of defective risks in the final destination hazard (5 per cent in 

the DGP) was identified in all the 10 trials, while the presence of defective risks in the 

treatment hazard (1 per cent in the DGP) was identified in 9 out of the 10 trials. In 

most cases, the corresponding estimated probability was also close to the true fraction 

of defective risks, particularly in the hazard with the largest defective risks fraction. 

However, it is not generally the case that the true mass-point locations are recovered. 

And none of the model selection criteria were particularly good at identifying the true 

number of support points (both criteria found the correct number of points in 2 out of 

the 10 trials only); the maximum likelihood criterion tended to return too many points, 

while AIC tended to return too few points. This clearly reflects the non-uniqueness 
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property discussed in Section 5; i.e., different combinations of mass-point locations 

and probabilities are equally consistent with data.  

8 The Role of the True Causal Effects 

In this section, we show that the consistence of NPMLE does not hinge on the specific 

selection of true effects embedded in the baseline model. But first, we examine the 

importance of true variation in the sources of model identification, i.e., in observed 

exogenous variables. We have already established that we do not need to observe the 

subject-specific exogenous covariate x. We now proceed by also reducing the degree 

of variation in the calendar time component (while keeping the degree of variation in 

unobserved heterogeneity, which now also incorporates the variable x, constant) and 

by looking at possible consequences of calendar time effects being auto-correlated. 

Given the number of estimated models, we do not present complete graphical results 

for the spell duration parameters, but focus instead on the Weighted Mean Absolute 

Error (WMAE) of these parameters, using the inverse of the estimated standard errors 

as weights. Let ˆ ˆ( , )kdr kdrλ ψ be the estimated spell duration parameter and standard er-

ror corresponding to transition k and spell duration d in trial r. For R trials, WMAEk is 

defined as follows: 
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Some illustrative results are provided in Table 10. As expected, the manipulation of 

the sources of identification primarily affects the estimates of the spell duration base-

line parameters for the final destination state. The smaller is the variance of the calen-

dar time parameters, the less precise are the estimates, and the larger is the expected 

mean absolute error in the estimated duration effects. This reflects that a reduction in 
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the impact of calendar time variation reduces the data-based foundation for nonpara-

metric identification of spell duration effects. Auto-correlated calendar time effects do 

not reduce the scope for identification. 

Table 10 around here 

The results presented so far are based on models in which treatment and dura-

tion effects are all equal to zero in the data generating process. But the conclusions do 

not depend on this assumption. We have also estimated models on DGP’s containing 

positive and negative duration dependence and positive and negative treatment ef-

fects. Some illustrative results are provided in Table 11 and Figure 9. 

Table 11 around here 

Figure 9 around here 

9 Non-Proportional Models and Parameter Heterogeneity  

In this section, we look at the consequences of introducing into the DGP deviations 

from two of the basic assumptions underlying our statistical model, namely the as-

sumptions of proportional hazards and of homogeneous causal parameters. These two 

assumptions are of course closely related, since heterogeneity in causal effects, e.g., 

such that the effect of spell duration varies according to the value of the exogenous 

covariate x, represents a violation of the proportionality assumption. But, as long as 

parameter heterogeneity (and non-proportionality) is related to observed explanatory 

variables only, no new fundamental difficulties arise. Provided that the model is cor-

rectly specified – including the appropriate interaction terms – the true parameters are 

recovered. We illustrate this point by modifying the DGP, such that subjects with low 

final exit propensity (x=1) are attributed positive duration dependence in the final des-

tination hazard (Weibull baseline with shape parameter equal to 1.1), while subjects 

with high exit propensity (x=0) are attributed negative duration dependence (Weibull 
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baseline with shape parameter equal to 0.9). As illustrated in Figure 10, when separate 

baselines are estimated for the two groups, we are still able to recover the true pa-

rameters (although the degree of statistical uncertainty obviously increases). This re-

sult holds true for other types of non-proportionalities as well. 

Figure 10 around here 

 More serious problems arise if we take into account that the statistical model 

we use may represent a simplification of the true DGP, in the sense that there exist 

sources of non-proportionality that are not modelled. To illustrate, let us return to the 

issue of heterogeneity in duration dependence effects (according to the value of x), but 

this time assume that the researcher erroneously restricts the model to be fully propor-

tional. Figure 11 illustrates the rather dismaying results obtained in this case. The up-

per panel presents the estimated common duration parameters for the case discussed 

above, i.e., with positive duration dependence attributed to subjects with low unob-

served exit propensity and negative duration dependence attributed to subjects with 

high unobserved exit propensity. The estimates are far off any conceivable ‘compro-

mise’ between the two true baselines. The lower panel presents the estimation results 

for the case in which negative duration dependence is attributed to subjects with high 

exit propensity (and vice versa). The results are more promising in this case. But un-

fortunately, the general conclusion that we draw from this and other similar exercises, 

is that parameter heterogeneity in the DGP that is unaccounted for in the estimated 

model (either because it is unobserved or because the appropriate interaction term is 

not included in the model), can produce results that have no convenient interpretation. 

In particular, the NPMLE of an assumed homogeneous parameter that is really het-

erogeneous in the DGP, does not necessarily represent an average of the underlying 

true parameters. The reason for this is, of course, that the parameter heterogeneity in-
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duces a source of unobserved heterogeneity that is not controlled for; and this hetero-

geneity entails a sorting effect of exactly the same kind as the sorting effect following 

from disregarding unobserved heterogeneity in the first place. Subjects with high pa-

rameter values leave the risk set first, leaving behind subjects with lower parameter 

values.  

Figure 11 around here 

 A particularly interesting case to look at is that with heterogeneous treatment 

effects; see, e.g., Heckman et al. (1999) for a survey. Assume, for example, that the 

true treatment effects 1 2( , )α α , rather than being the same for all subjects, are subject 

to some kind of probability distribution. It follows directly from the sorting argument 

referred to above that our estimators 1 2ˆ ˆ( , )α α cannot be expected to represent average 

treatment effects in this case. Once subjects have entered into the treatment state, 

those with the highest effects exit first, and a negatively selected group – in terms of 

treatment effects – is left behind. Hence, if the treatment effects are distributed inde-

pendently of other variables in the model (including the two unobserved scalar vari-

ables ve and vp), the estimated effect will typically be negatively biased (compared to 

the true mean). We illustrate this point by modifying the DGP, such that treatment 

effects are, indeed, heterogeneous. To be specific, we assume that on-treatment and 

post-treatment effects are equal, i.e., 1 2α α α= = , and that α  is independently nor-

mally distributed across subjects with mean 0.2 and variance 0.2. This implies that 

roughly two thirds of the subjects have positive treatment effects. The average treat-

ment effect (ATE), as measured by the proportionality factor in the final destination 

hazard rate is [exp( )] exp(0.2 0.1) 1.35iATE E α= = + = , i.e., a 35 per cent increase in 

the hazard rate. To avoid inessential complications, we simplify the DGP in this case, 
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by assuming that the unobserved intercepts ( , )e pv v  are uncorrelated. Based on these 

assumptions, we generate 100 new artificial datasets (containing 50,000 subjects 

each), and then estimate the parameters of the model, as before. The results are dis-

played in Table 12. They reveal that our estimates of treatment effects are negatively 

biased compared to the true ATE, although the deviation is not particularly large in 

this case. As expected, the bias is larger for post-treatment effects than for on-

treatment effects, since subjects entering into post-treatment are negatively selected 

from the start (given the perfect correlation between on-treatment and post-treatment 

effects in this example). 

Table 12 around here 

A corollary of the sorting-argument is that, if the researcher allows the treat-

ment effect to depend on time since entry or completion (which is in fact common 

practice in the treatment evaluation literature, see, e.g., Van Ours, 2001; Richardson 

and Van den Berg, 2001; Lalive et al., 2002), the existence of effect heterogeneity 

will induce a negative duration bias in the estimated treatment effect. This reflects that 

it is difficult to distinguish empirically between heterogeneous (but constant) and ho-

mogeneous (but declining) treatment effects. Further complications arise if the distri-

bution of treatment effects is not independently distributed from other sources of un-

observed heterogeneity in the model.  

 A natural solution to the problem of heterogeneous treatment effects is to 

model this heterogeneity explicitly; i.e., interpret treatment effects as state-specific 

contributions to the distribution of unobserved heterogeneity (random coefficients). 

This approach raises, however, some new identification and estimation problems, par-

ticularly regarding the presence of defective transition probabilities. It is beyond to 
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scope of this paper to evaluate a random coefficient approach to estimation of average 

treatment effects, but we consider this to be a fruitful avenue for future research.  

10 Interval Censoring and Left-Truncation 

So far, we have assumed that all spells belonging to the DGP under consideration are 

observed by the researcher, and that their starting times can be accurately measured. 

In practice, interval censoring usually means that some very short spells - those start-

ing and ending between two observation-points – are never recorded. This is some-

times referred to as left-truncation, and it implies that the sample available to the re-

searcher is selected. In particular, unobserved heterogeneity can no longer be assumed 

independent of either observed covariates or calendar time, since the impact of unob-

served heterogeneity during the censored period – in terms of actual transitions - de-

pends on the values of all other explanatory variables.  

 The problem can be assessed within the framework of our Monte Carlo ex-

periments by assuming that all first-period records are unobserved. Hence, subjects 

are observed conditional on the spell lasting more than one period. We illustrate the 

consequences of such a sampling scheme by estimating a version of the baseline 

model (with 100,000 subjects to start with), under two alternative assumptions about 

the size of the sample selection problem. In the first example, the final destination 

hazard rates are scaled such that approximately 10 per cent of the subjects are lost due 

to exits in the first (unobserved) period of their spell. In the second example, as much 

as 25 per cent of the subjects are lost. Figure 12 presents the results from 10 trials 

based on each of these models. The two upper panels illustrate what happens with the 

estimated duration parameters (in the final destination hazard) when the sample selec-

tion problem is disregarded, in the sense that the selected samples are treated as if 

they were un-selected. The NPML estimators then fail to remove the spurious nega-
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tive duration dependence. Other parameters are also substantially biased. For exam-

ple, when 10 per cent of the spells are unobserved, the effect of the exogenous covari-

ate x on the final destination hazard is estimated (according to the ML criterion) to –

0.878  (with a mean standard error of 0.012). When 25 per cent of the spells are unob-

served, the estimate is –0.794  (with a mean standard error of 0.016) (recall that the 

true value is –1).  

Figure 12 around here 

The solution to this sample selection problem is to set up the likelihood func-

tion directly in terms of the true conditional probabilities. Let ( | 1)i iL v d > be the like-

lihood contribution formed by subject i, conditional on survival during the first (cen-

sored) period and conditional on the vector of unobservables. In order to integrate out 

unobserved heterogeneity in this case, we need to take into account that it can no 

longer be assumed independent of other variables in the model (due to the sorting 

process that has already occurred). The conditional distribution of unobserved hetero-

geneity can be derived from Bayes’ theorem. Let f(vi) be the joint density of vi to start 

with (i.e., for the entire uncensored population). We can then write the conditional 

density as (we assume, for simplicity, that subjects exiting to the treatment state be-

tween two observation points are also lost)  
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and the likelihood function takes the form 
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where ( )| 1i iL v d >  can be obtained from Equation (3). Hence, the solution to the left-

truncation problem is to multiply the conditional likelihood contribution for each sub-

ject with the probability of being observed (conditional on v), and divide by the ex-

pected probability of being observed (with v integrated out). It is clear, however, that 

an additional assumption regarding the spell duration baseline is called for, since there 

is no foundation in the data for inferences about the first-period exit rate. A natural 

assumption to make (in the absence of a parametrically specified baseline) is that the 

spell duration effect for the first period is equal to that of the second period (a similar 

assumption is required regarding the calendar time effects associated with the very 

first calendar period in the dataset). The two lower panels in Figure 12 illustrate what 

happens with the estimated duration dependence parameters when we maximise the 

likelihood function in (8). The negative bias is now almost removed, even in the 

model with as much as 25 per cent censoring. And the effects of other parameters are 

again also correctly recovered (not shown). For example, when 10 per cent of the 

spells are unobserved, the effect of x on the final destination hazard is now estimated 

to –0.982  (with mean standard error 0.010). When 25 per cent of the spells are unob-

served, the estimate is –0.986  (with mean standard error 0.020). 

  In practice, the researcher may not have exact information about the duration 

a sampled subject has been at risk at the time of sampling, since it may have entered 

into the origin state at any time between the two observation points. In this case, addi-

tional assumptions are required regarding the distribution of the flow into and out of 

the origin state during the censored time interval. In the absence of additional knowl-
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edge, the most natural assumption to make is that entrances to the origin state are uni-

formly distributed over the censored interval, and that the hazard rates are constant 

within the same interval. We can then write the probability of survival to the first ob-

servation point after entry as  
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11 Conclusion 

Based on comprehensive Monte Carlo experiments, we conclude that, for a correctly 

specified model, the nonparametric maximum likelihood estimator (NPMLE) robustly 

recovers the true treatment effects from non-experimental interval-censored event his-

tory data, even when there are large unobserved sorting problems involved. We also 

find that the degree of duration dependence can be recovered, without parametric re-

strictions on either duration dependence or unobserved heterogeneity. Our results are 

encouraging compared to previous studies, and suggest that event history analysis 

may represent a powerful tool for solving the difficult problem of disentangling cau-

sality from sorting, based on non-experimental data. 

We have also demonstrated that NPMLE is fragile towards unjustified restric-

tions, and, in particular, that non-modelled sources of unobserved heterogeneity, e.g., 

in the form of random slope parameters, may produce substantial bias in causal pa-

rameters. We emphasise in particular, the following: 
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1. It is essential that the number of support points in the unobserved heterogene-

ity distribution is selected according to an appropriate information criterion. A 

pre-specified (low) number of support points may result in substantial bias, 

particularly with respect to the estimated duration dependence parameters. 

2. The most reliable information criterion is the likelihood itself, or the likeli-

hood supplemented by a weak penalty for parameter abundance (such as the 

Akaike information criterion). With small samples, a stronger penalty may be 

required (e.g., the Hannan-Quinn information criterion). 

3. It is not the case that a flexible (nonparametric) baseline hazard is sufficient 

for ensuring that uncontrolled heterogeneity does not bias parameter estimates 

attached to exogenous covariates. The typical situation is that an error in the 

estimation of one parameter (or one set of parameters) contaminates other pa-

rameters as well. 

4. The individual parameters of the estimated discrete mixture distribution are 

not unique. They are estimated with large statistical uncertainty and have no 

convenient interpretation. But the first and second order moments of the tran-

sition probability distribution (conditioned on observed covariates) appear to 

be both unique and recoverable. 

5. For parameters reflecting the influence of observed covariates, it is the case 

that the standard errors calculated conditional on the given number of (opti-

mally chosen) support points in the heterogeneity distribution, also reflect the 

unconditional statistical uncertainty. 

6. Sample selection caused by left-truncation (the failure to sample spells that 

start and stop between two observation points) may cause substantial bias in 

all parameter estimates. This problem can be solved by specifying the likeli-
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hood function in terms of the appropriate conditional distribution of unob-

served heterogeneity. 

7. Deviations from the proportional hazards assumption are not problematic, as 

long as these deviations are accounted for in the formulation of the model. 

8. Deviations from the proportionality assumption that are unaccounted for in the 

model may cause bias in all parameter estimates. 

 

The latter of these points constitutes a rather serious challenge for event his-

tory analysis in social (non-experimental) sciences, and suggests, unfortunately, that 

results gathered by means of this statistical technique can rarely be considered defini-

tive. In practice, it is typically impossible for the researcher to take all potential inter-

action effects and all potential sources of parameter heterogeneity into account. Most 

statistical models represent simplifications of the true DGP rather than an exact repre-

sentation. Hence, the risk of estimating a wrongly specified model is acute. This also 

implies that robustness should always be considered a key concern in the assessment 

of results based on NPMLE.  
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Table 1 
Properties of the baseline DGP 

Sample size 
 

50,000 subjects 

Data window size (number of 
periods observed) 
 

40 periods 

Entrance into origin state Randomly distributed over the 40 periods (with probability 1/40 for 
each period) 
 

Observed covariate Subjects are randomly attributed x=1 with a probability of 0.5, oth-
erwise x=0. The covariate has a negative effect on the final destina-
tion hazard, and a positive effect on the treatment hazard, such that 

1, 1e pβ β= − =  
 

Calendar time effects For each of the 40 periods, the parameters and et ptσ σ are independ-
ently distributed drawings from the standard normal distribution.  
 

Spell duration effects There are no spell duration effects, i.e., 0ed pd dλ λ= = ∀  
 

Duration of treatment The treatment lasts for five periods (unless a transition to the final 
destination occurs). Thereafter, the subjects return to the origin 
state. 
 

Treatment effects There are no treatment effects, i.e., (0, 0)α = . 
 

Unobserved heterogeneity The vector of unobserved covariates ( , )e pv v is distributed accord-
ing to a bivariate normal distribution with means ( , )e pc c , variances 
(1,1) and correlation coefficient 0.5. The means ( , )e pc c are normal-
ised such that, when x is zero and the calendar time effect is zero, 
the transition probabilities are equal to 0.1 (to final destination) and 
0.05 (to treatment). 
 

Transitions Transition probabilities are calculated from Equation (2). Actual 
transitions are generated by comparing the transition probabilities 
with random drawings from a uniform distribution on [0,1]. 
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Table 2 
Descriptive Summary Statistics for the 100 Data Sets Generated by the Baseline DGP 

 Mean Minimum Maximum 
Average spell duration 9.84 3.20 17.28 
Fraction subject to treatment 0.47 0.04 0.87 
Average duration until treatment (conditional on treatment) 9.49 3.71 15.13 
Fraction censored 0.29 0.04 0.72 
 

Table 3 
The distribution of the required number of support points according to Maximised Penalised Likeli-

hood and Maximum likelihood model selection criteria (100 trials) 
Required # support points BIC HQIC AIC ML 

3 2 0 0 0 
4 16 3 1 0 
5 36 16 0 0 
6 32 16 10 0 
7 14 25 15 1 
8 0 31 27 6 
9 0 9 23 5 

10 0 0 13 17 
11 0 0 7 17 
12 0 0 2 21 
13 0 0 1 13 
14 0 0 1 11 
15 0 0 0 6 
16 0 0 0 1 
17 0 0 0 0 
18 0 0 0 1 
19 0 0 0 1 

  
Average # support points 5.4 6.9 8.5 11.7

 



Table 4 
Estimated Effects of Exogenous Covariate and Endogenous Treatment  

Results from 100 trials based on the baseline DGP 
  Without control for  

unobserved heterogeneity 
BIC HQIC AIC ML 

 True 
value 

Mean Est. Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

eβ  -1 -0.788 0.012 100 -0.932 0.020 75 -0.972 0.023 30 -0.992 0.025 13 -1.007 0.027 8 

pβ  1 0.907 0.012 100 0.987 0.020 16 0.993 0.020 9 0.996 0.020 6 0.999 0.021 5 

1α  0 0.443 0.017 100 -0.009 0.032 18 -0.006 0.034 8 -0.006 0.035 8 -0.003 0.037 4 

2α  0 0.329 0.025 100 -0.014 0.037 19 -0.010 0.039 15 -0.008 0.041 6 -0.004 0.042 6 

,ed dλ ∀     100   45   20   11   8 

,pd dλ ∀     100   5   5   5   5 

Note: The ‘Reject at 5% column contains the per cent of the replications that led to models for which the null hypothesis corresponding to the true parameter value was re-
jected at the five per cent nominal significance level. 
 
 



 
Table 5 

Estimated and observed statistical uncertainty 
Results from 100 trials based on a unique drawing of unobserved heterogeneity and calendar time ef-

fects from the baseline DGP 
 AIC ML 
 Mean esti-

mated S.E 
for point 
estimate 

Observed 
stand. dev. 
for point 
estimate 

Observed 
stand. dev. 

in estimated 
S.E. 

Mean esti-
mated S.E 
for point 
estimate 

Observed 
stand. dev. 
for point 
estimate 

Observed 
stand. dev. 

in estimated 
S.E. 

eβ  0.023 0.024 0.0009 0.024 0.024 0.0008 

pβ  0.021 0.019 0.0002 0.021 0.019 0.0002 

1α  0.032 0.033 0.0008 0.032 0.032 0.0007 

2α  0.036 0.038 0.0009 0.037 0.036 0.0008 

 
 
 
 
 

Table 6 
The lower order moments of the estimated heterogeneity distribution with respect to the first-period 

normalised transition probabilities 1 exp( exp( ))ki kiq v= − −  
Results from 100 trials based on the baseline DGP 

 DGP BIC HQIC AIC ML 
  Mean 

Est. 
St. 

Dev. 
Mean 
Est. 

St. 
Dev. 

Mean 
Est. 

St. 
Dev. 

Mean 
Est. 

St. 
Dev. 

Mean eiq  0.139 0.137 0.005 0.138 0.005 0.139 0.005 0.138 0.005 
Mean piq  0.071 0.071 0.003 0.071 0.003 0.072 0.003 0.072 0.003 

Var eiq  0.016 0.010 0.004 0.013 0.003 0.015 0.003 0.017 0.003 
Var piq  0.005 0.004 0.001 0.005 0.001 0.005 0.001 0.005 0.001 

Corr ( , )ei piq q  0.252 0.481 0.216 0.336 0.136 0.278 0.114 0.237 0.079 

Note: The constant terms ce and cp are included in the heterogeneity distributions. 



 
Table 7 

Mean errors (estimated minus true) of estimated parameters under alternative sample sizes 
# sub-
jects  

5,000 10,000 50,000 500,000 5,000,000 

# sam-
ples 

1,000 500 100 10 1 

 BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML 
                     
Mean W 3.1 4.3 6.0 10.1 3.6 5.0 6.7 10.7 5.4 6.9 8.5 11.7 8.4 9.6 11.3 13.4 12 12 14 16 
                     

eβ  0.167 0.090 0.002 -0.099 0.151 0.075 0.013 -0.040 0.068 0.029 0.008 -0.006 0.006 0.000 -0.002 -0.003 0.003 0.003 0.002 0.002 

pβ  -0.046 -0.029 -0.015 0.001 -0.029 -0.016 -0.006 0.004 0.013 0.007 -0.004 -0.001 0.000 0.002 0.003 0.003 0.000 0.000 0.000 0.000 

1α  -0.036 -0.044 -0.044 -0.032 -0.020 -0.025 -0.023 -0.016 -0.009 -0.007 -0.006 -0.003 0.004 0.004 0.006 0.006 -0.002 -0.002 -0.002 -0.001 

2α  -0.045 -0.050 -0.047 -0.030 -0.031 -0.036 -0.029 -0.019 -0.014 -0.010 -0.008 -0.004 0.003 0.004 0.006 0.006 -0.002 -0.002 -0.002 -0.002 

,
ed

dλ ∀  -0.467 -0.207 0.070 0.383 -0.452 -0.188 0.001 0.173 -0.206 -0.086 -0.017 0.029 -0.049 -0.031 -0.024 -0.019 -0.007 -0.007 -0.003 -0.003 

,
pd

dλ ∀  0.087 0.088 0.085 0.080 0.052 0.046 0.042 0.039 0.009 0.010 0.010 0.008 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 

                     
E[expve] -0.024 -0.009 0.014 0.041 -0.019 -0.005 0.012 0.027 -0.010 -0.003 0.004 0.011 -0.002 0.000 0.004 0.006 0.000 0.000 0.000 0.000 

E[expvp] -0.003 0.004 0.013 0.021 -0.002 0.004 0.010 0.014 -0.001 0.001 0.004 0.007 -0.001 -0.001 0.001 0.001 -0.001 -0.001 0.000 0.000 

V[expve] 0.000 0.057 0.161 0.305 -0.016 0.029 0.100 0.174 -0.024 -0.006 0.036 0.073 -0.048 -0.042 0.025 0.035 -0.010 -0.010 -0.007 -0.007 

V[expvp] 0.018 0.061 0.120 0.165 0.012 0.048 0.082 0.106 0.007 0.014 0.032 0.047 -0.005 0.000 0.011 0.009 -0.002 -0.002 -0.002 -0.002 

Corr. 0.475 0.285 0.109 -0.025 0.412 0.218 0.102 -0.017 0.196 0.083 0.077 0.024 0.055 0.041 0.063 -0.037 -0.028 -0.028 -0.021 -0.033 

 



Table 8 
Estimated Effects of Endogenous Treatment  

Results from 10 trials based on the baseline DGP, with all subject specific exogenous characteristics 
unobserved 

  Without control for unob-
served heterogeneity 

AIC ML 

 True 
value 

Mean Est.  Mean 
S.E. 

Mean Est.  Mean 
S.E. 

Mean Est.  Mean 
S.E. 

1α  0 0.193  0.014 -0.000  0.041 0.001  0.042 

2α  0 0.123  0.021 -0.012  0.047 -0.009  0.048 
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Table 9 

Estimated Effects of Exogenous Covariate and Endogenous Treatment  
Results from 10 trials based on the baseline model with different modified heterogeneity distributions 

 Without control for unob-
served heterogeneity 

AIC ML 

 

True 
value 

Mean Est. Mean S.E. Mean Est. Mean S.E. Mean Est. Mean S.E. 
Model i) Perfectly correlated discrete with five equally likely support points at 1 1

2 2
( 1, , 0, ,1)− − plus 

bivariate normal drawing (as in baseline model) 
Average number of support points 8.6 14 

eβ  -1 -0.737 0.010 -0.980 0.024 -0.993 0.025 

pβ  1 0.968 0.018 1.007 0.024 1.010 0.023 

1α  0 0.660 0.015 0.031 0.034 0.032 0.035 

2α  0 0.509 0.023 0.023 0.039 0.028 0.041 

Model ii) Independent discrete with five equally likely support points (as in model i), but with inde-
pendent drawings for the two unobservables) and bivariate normal 

Average number of support points 10.3 14.0 

eβ  -1 -0.672 0.011 -0.989 0.025 -0.999 0.026 

pβ  1 0.860 0.011 1.018 0.022 1.019 0.022 

1α  0 0.353 0.014 0.015 0.034 0.014 0.035 

2α  0 0.261 0.022 0.008 0.041 0.008 0.040 

Model  iii) Independent Gamma and perfectly negatively correlated discrete 
Average number of support points 9.7 12.2 

eβ  -1 -0.588 0.011 -0.999 0.026 -1.008 0.027 

pβ  1 0.748 0.010 1.008 0.020 1.008 0.020 

1α  0 -0.182 0.016 -0.009 0.038 -0.014 0.038 

2α  0 -0.120 0.022 0.002 0.042 -0.002 0.043 

Model iv) Truncated bivariate normal. Based on the baseline model, but the five upper percentiles in 
the ve-distribution are deleted from the dataset. 

Average number of support points 7.9 11.2 

eβ  -1 -0.794 0.011 -1.021 0.022 -1.031 0.023 

pβ  1 0.941 0.013 0.990 0.020 0.991 0.021 

1α  0 0.374 0.014 -0.014 0.031 -0.013 0.032 

2α  0 0.312 0.020 -0.015 0.035 -0.014 0.037 

Model v) Discrete with 7 ( , )e pv v support points at (-100, 0.5), (-1, 0.5), (-0.5, 1), (0, 0), (0.5, -1), 
(1, -0.5), and (0.5, -100); the first point with a probability of 0.05, the last point with 0.01 and the oth-

ers with a probability of 0.188. 
Average number of support points 5.6 7.9 

eβ  -1 -0.618 0.011 -1.003 0.021 -1.013 0.022 

pβ  1 0.817 0.012 1.003 0.015 1.002 0.015 

1α  0 -0.404 0.015 -0.000 0.027 -0.011 0.029 

2α  0 -0.368 0.021 0.003 0.032 -0.008 0.033 
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Table 10 
The Role of Exogenous Calendar Time Variation 

Estimates based ML criterion 
  1

 1
et

pt

Var
Var

σ
σ

=
=   0.25

 0.25
et

pt

Var
Var

σ
σ

=
=  0.01

0.01
et

pt

Var
Var

σ
σ

=
=  0

0
et

pt

Var
Var

σ
σ

=
=  

Random walk* 

 Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

1α =0 0.001 0.042 0.024 0.037 0.037 0.051 0.024 0.051 -0.024 0.037 

2α =0 -0.009 0.048 0.009 0.035 0.035 0.053 0.009 0.053 -0.036 0.044 

 WMAE WMAE WMAE WMAE WMAE 
Dur. eff. 
fin.  dest. 

0.104 0.190 0.555 0.603 0.155 

Dur. eff. 
treatment 

0.046 0.040 0.041 0.035 0.048 

*In the random walk model, calendar time effects are generated as 1kt kt ktσ σ ε−= + , where ktε is stan-
dard normal with variance 0.25 

 
Table 11 

Estimated Effects of Treatment  
Results from 10 trials with baseline model modified to contain positive or negative treatment effects 

 Without control for unob-
served heterogeneity 

AIC ML 

 

True 
value 

Mean Est. Mean S.E. Mean Est. Mean S.E. Mean Est. Mean S.E. 
Positive effects 

Average number of support points 9.0 12.9 

1α  0.2 0.559 0.014 0.200 0.031 0.199 0.032 

2α  0.2 0.473 0.021 0.212 0.037 0.213 0.038 

Negative effects 
Average number of support points 8.8 12.0 

1α  -0.2 0.247 0.015 -0.204 0.032 -0.204 0.033 

2α  -0.2 0.179 0.021 -0.199 0.037 -0.200 0.038 

Negative on-treatment effects, positive post-treatment effects 
Average number of support points 8.5 11.3 

1α  -0.2 0.235 0.015 -0.210 0.032 -0.210 0.032 

2α  0.2 0.519 0.020 0.169 0.035 0.170 0.036 

 

Table 12 
Estimated Effects of Treatment. 

Results from 100 trials based on a modified baseline model with heterogeneous treatment effects 
 DGP AIC ML 
Mean # of support points  6.8 9.7 
 log(ATE) Mean Est. Mean S.E. Mean Est. Mean S.E. 

1α  0.3 0.276 0.032 0.273 0.032 

2α  0.3 0.248 0.046 0.245 0.047 
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Figure 1. Average estimated effects of spell duration (point estimates with 95% confi-
dence intervals, based on observed standard deviation from the 100 trials). The true 
effects are equal to zero for all durations. 

-1.075 -1.05 -1.025 -1 -.975 -.95

5

10

15

20

25 x on final exit Chi^2(2)=2.041 [0.360]   

.925 .95 .975 1 1.025

10

20

x on treatment Chi^2(2)=2.144[0.342]   

-.1 -.05 0 .05 .1

5

10

15
alpha1

ongoing treatment
on final exit Chi^2(2)=3.584[0.167]   

-.1 -.05 0 .05 .1

5

10

15
completed treatment
on final exit Chi^2(2)=3.446 [0.179]   

 
Figure 2. Distribution of the estimates of the four structural parameters, based on the 
ML criterion, and normal densities (with Chi^2(2) normality tests) 
Note: The graphs are based on results from 100 trials, based on a unique drawing of unobserved het-
erogeneity and calendar time effects from the baseline DGP. Each histogram contains 25 bars.  The 
normality tests are described in Hendry and Doornik (1996, pp 209-210). 
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Figure 3. Mean estimates (over 100 trials) of the four structural parameters as func-
tions of the number of support points in the unobserved heterogeneity distribution (1 
support points corresponds to a model without unobserved heterogeneity). 
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Figure 4. Average estimated duration parameters in the final destination hazard, with 
from 1 to 10 support points in the unobserved heterogeneity distribution. The true pa-
rameters are all equal to zero. 
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Figure 5. Marginal cumulative distribution functions for unobserved heterogeneity (1-
exp(-exp(vk)) in true DGP and in estimated models (based on the Maximum Likeli-
hood criterion). 
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Figure 6. Single risk transition probability during a discrete time interval, as a func-
tion of the log integrated hazard rate s. 
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Figure 7. Average estimated duration parameters in the final destination hazard, based 
on 500 samples with 10,000 subjects in each sample. 
Note: We only report estimates associated with the first 35 periods, since the number of observations of 
durations above 35 periods in each sample is too small to obtain sensible estimates. 
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Figure 8. Average estimated effects of spell duration (with 95 per cent confidence in-
tervals), according to the Maximum Likelihood criterion (based on average point es-
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timates and standard errors over 10 trials for each model). The true effects are equal to 
zero for all durations 
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Figure 9. Estimated duration dependence parameters according to the Maximum Like-
lihood criterion (with 95 per cent confidence intervals) in final destination hazard 
when the true baseline exhibits positive or negative duration dependence (average 
based on 10 trials) 
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Figure 10. Estimated group-specific duration dependence parameters according to the 
Maximum Likelihood criterion (with 95 per cent confidence intervals) in final desti-
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nation hazard when the baseline exhibits positive duration dependence for x=1 and 
negative duration dependence when x=0 (average based on 10 trials) 
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Figure 11. Estimated common duration dependence parameters according to the 
Maximum Likelihood criterion (with 95 per cent confidence intervals) in final desti-
nation hazard when the true baseline exhibits positive duration dependence for x=1 
and negative duration dependence when x=0 (upper panel) and when the true baseline 
exhibits positive duration dependence for x=0 and negative duration dependence 
when x=1 (lower panel) (average based on 10 trials). 
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Figure 12. Mean of estimated final destination duration dependence parameters with 
(lower panels) and without (upper panels) correction for sample selectivity due to in-
terval censoring  (Maximum Likelihood criterion, with 95 per cent confidence inter-
vals).  
Note: The results are based on 10 trials. The DGP is a baseline model with 100,000 subjects to start 
with. The presented parameters are selected on the basis of the ML criterion. 


