Lund, Diderik; Nilssen, Tore

Working Paper
Cream skimming, dregs skimming, and pooling: On the dynamics of competitive screening

Memorandum, No. 2000,39

Provided in Cooperation with:
Department of Economics, University of Oslo

Suggested Citation: Lund, Diderik; Nilssen, Tore (2000) : Cream skimming, dregs skimming, and pooling: On the dynamics of competitive screening, Memorandum, No. 2000,39, University of Oslo, Department of Economics, Oslo

This Version is available at:
http://hdl.handle.net/10419/63020

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
MEMORANDUM

No 39/2000

Cream Skimming, Dregs Skimming, and Pooling: On the Dynamics of Competitive Screening

By
Diderik Lund and Tore Nilssen
List of the last 10 Memoranda:

<table>
<thead>
<tr>
<th>No</th>
<th>By</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>By Geir B. Asheim and Andrés Perea:</td>
<td>LEXICOGRAPHIC PROBABILITIES AND RATIONALIZABILITY IN EXTENSIVE GAMES. 30 p.</td>
</tr>
<tr>
<td>36</td>
<td>By Olav Bjerkholt</td>
<td>A turning point in the development of Norwegian economics - the establishment of the University Institute of Economics in 1932. 60 p.</td>
</tr>
<tr>
<td>35</td>
<td>By Jon Strand</td>
<td>Tax distortions, household production and black-market work. 33 p.</td>
</tr>
<tr>
<td>34</td>
<td>By Snorre Kverndokk and Knut Einar Rosendahl</td>
<td>CO₂ mitigation costs and ancillary benefits in the Nordic countries, the UK and Ireland: A survey. 53 p.</td>
</tr>
<tr>
<td>33</td>
<td>By Jon Strand</td>
<td>Competitive effort and employment determination with team production. 25 p.</td>
</tr>
<tr>
<td>32</td>
<td>By Øyvind Eitrheim, Eilev S. Jansen and Ragnar Nymoen</td>
<td>Progress from forecast failure - The Norwegian consumption function. 27 p.</td>
</tr>
<tr>
<td>31</td>
<td>By Michael Hoel and Tor Iversen</td>
<td>Genetic testing when there is a mix of public and private health insurance. 27 p.</td>
</tr>
<tr>
<td>30</td>
<td>By Geir Høidal Bjønnes and Dagfinn Rime</td>
<td>Customer Trading and Information in Foreign Exchange Markets. 38 p.</td>
</tr>
<tr>
<td>29</td>
<td>By Geir Høidal Bjønnes and Dagfinn Rime</td>
<td>FX Trading... LIVE! Dealer Behavior and Trading Systems in Foreign Exchange Markets. 36 p.</td>
</tr>
</tbody>
</table>

A complete list of this memo-series is available in a PDF® format at: [http://www.oekonomi.uio.no/memo/]
Cream Skimming, Dregs Skimming, and Pooling: On the Dynamics of Competitive Screening*

Diderik Lund
Department of Economics
University of Oslo
diderik.lund@econ.uio.no

Tore Nilssen†
Department of Economics
University of Oslo
tore.nilssen@econ.uio.no

November 23, 2000

Abstract

We discuss the prevalence of pooling equilibria in a two-period model of an insurance market with asymmetric information. We solve the model numerically. In addition to reporting cases where a pooling equilibrium exists, we pay attention to why, in the case of non-existence of a pooling equilibrium, this is so. In addition to the phenomenon of cream skimming emphasized in earlier literature, we here point to the the importance of the opposite: dregs skimming, whereby high-risk consumers are profitably detracted from the candidate pooling contract.

JEL Nos: D82; G22; L14

*We have received helpful comments from Georges Dionne and able research assistance from Gaute Erichsen. Part of Nilssen’s research was done during a visit at the Haas School of Business at the University of California, Berkeley, and he gratefully acknowledges its hospitality, as well as travel grants from the Research Council of Norway and the U.S.-Norway Fulbright Foundation for Educational Exchange.

†Correspondence: Tore Nilssen, Department of Economics, University of Oslo, P.O.Box 1095 Blindern, N-0317 Oslo, Norway. Fax: +47 22 85 50 35.
1 Introduction

It is by now well recognized that cream skimming is a serious impediment to workable competition. Cream skimming occurs when one or more firms take advantage of other firms’ offers in the market in order to attract the most profitable customers, the “cream”. The threat of cream skimming invariably makes cross-subsidization impossible. In markets with asymmetric information, such as credit and insurance markets, the impossibility of cross-subsidization results in non-existence of any equilibrium in pure strategies (Rothschild and Stiglitz, 1976).

While most models of such markets are static ones, we will in this paper discuss a dynamic model of a market with asymmetric information where insurers are unable to commit to long-term contracts. In particular, we analyze a two-period version of the Rothschild-Stiglitz (1976) model, which was first discussed in Nilssen (2000). Like in the original model, insurers offer state-contingent contracts to consumers who initially have private information on their accident probabilities. Although consumers require insurance in both of two periods, neither insurers nor consumers are able to enter long-term contracts covering both periods. Furthermore, any accident that occurs in the first period are observed only by the consumer having the accident and his insurer. Thus, at the start of the second period, there is asymmetric information among the insurers about consumers’ accident histories.

We are going to show that, in such a two-period setting, cream skimming is much less prevalent than in the single-period one. In contrast to Nilssen (2000), who only verifies that pooling may occur in equilibrium, we discuss here the prevalence of the pooling outcome. In addition, we draw attention to the reasons why, when pooling is not viable in equilibrium, this is so. While the cross-subsidization in a pooling equilibrium may break down because of the profitability of cream skimming, we find that, in many cases in our two-period model, it breaks down because it rather becomes profitable to attract the least profitable customers. As a counterpart to the concept of cream skimming, we dub this phenomenon dregs skimming.

A number of authors, starting with Freixas, et al. (1985), have shown how, in the single-principal, or monopoly, case, the introduction of multiple periods creates a scope for pooling. This happens also in a competitive market, but for different reasons. In particular, it is the weakened profitability of skimming, whether it is the cream or the dregs, that makes pooling a viable proposition. In contrast, skimming is not an issue in the single-principal case.

The dynamics of competitive screening is not a well researched topic. One reason for this may be the complexity of the problem. Below, we resort to numerical analysis in order to solve the model. Although this does not give a complete picture of the model, our view is that it is helpful in indicating the prevalence of pooling on one hand and of profitable cream and dregs skimming on the other. While the literature on the dynamics of competitive screening is thin, our analysis should be compared with that of Parigi (1994), who highlights the reduced profitability of cream skimming following the introduction of
multiple periods in a competitive market with asymmetric information. However, Parigi fails to take into consideration the possibility of profitable dregs skimming, as we do here.

In Section 2, we present the two-period insurance-market model. In Section 3, we discuss the occurrence of a pooling equilibrium and how, in order to be viable, a pooling contract will have to be robust with respect to both cream-skimming and dregs-skimming offers. The analysis is carried out numerically, and our procedure is detailed in Section 4, while the results of our numerical analysis are discussed in Section 5. Section 6 offers a few concluding remarks.

2 A two-period insurance market

Here, we present Nilssen’s (2000) two-period version of the Rothschild-Stiglitz (1976) model of an insurance market with asymmetric information. A continuum of individuals are uniformly distributed on the unit line \([0,1]\). Each individual faces, in each of two periods, two possible states of nature: In the good state 1, no accident occurs and his endowment is \(w^0_1\). In the bad state 2, an accident does occur and his endowment is \(w^0_2\), with \(\infty > w^0_1 > w^0_2 > 0\). All individuals are identical, except for the probability of an accident occurring in a period. The high-risk (\(H\)) type has accident probability \(p^H\), while the low-risk (\(L\)) has probability \(p^L\), with \(0 < p^L < p^H < 1\). The fraction of high-risks in the population is \(\phi^0\), which also is the \textit{ex-ante} probability that an individual is high-risk.

Insurance is provided by the firms in the set \(J := \{1,\ldots,n\}\). Buying insurance from one of these firms means trading the state-contingent endowment \(w^0 = (w^0_1, w^0_2)\) for another endowment \(w = (w_1, w_2) \gg 0\).1 The set of feasible contracts is: \(W := \{(w_1, w_2) : w_1 \geq w_2 > 0\}\). Firms can only offer short-term, or single-period, contracts. No other restrictions on contracts are made. However, each consumer is restricted to buying insurance from only one firm in each period.

Consumers are risk averse. A consumer of type \(\theta \in \{H, L\}\) evaluates a contract \(w \in W\) according to the expected utility

\[
u^\theta (w) := (1 - p^\theta) v(w_1) + p^\theta v(w_2),
\]

where \(v\) is, in general, a strictly increasing, twice continuously differentiable, and strictly concave von Neumann-Morgenstern (vN-M) utility function. When we turn to the numerical analysis, we will restrict ourselves to utility functions that exhibit constant relative risk aversion (CRRA).2 In particular, we will make use of the following class of specific vN-M utility functions \(v\):

\[
v(w) = \begin{cases}
\frac{1}{1-k} w^{1-k}, & \text{if } k \neq 1, \\
\ln w, & \text{if } k = 1,
\end{cases}
\]

1 We use the following notation for vector inequalities: \(s \gg t\) if and only if \(s_i > t_i, \forall i\); \(s \geq t\) if and only if \(s_i \geq t_i\); \(s \leq t\) if and only if \(s_i \leq t_i\).

2 According to Szpiro (1986a, 1986b), a hypothesis of constant relative risk aversion fits well with consumers’ purchases of property/liability insurance in a number of countries.
where $k > 0$ is the measure of (constant) relative risk aversion.

Suppliers, on the other hand, are risk neutral. The expected profit from selling the contract $w \in W$ to an individual who is believed to be high-risk with probability φ is

$$
\pi (w, \varphi) := R(\varphi) - C(w, \varphi),
$$

where

$$
R(\varphi) := [\varphi (1 - p^H) + (1 - \varphi)(1 - p^L)] w_0^1 + [\varphi p^H + (1 - \varphi) p^L] w_0^2
$$

is the expected (gross) revenue from taking over the no-insurance endowment w^0, and

$$
C(w, \varphi) := [\varphi (1 - p^H) + (1 - \varphi)(1 - p^L)] w_1 + [\varphi p^H + (1 - \varphi) p^L] w_2
$$

is the expected cost of providing the endowment w.

Both consumers and firms discount the future with a discount factor $\delta \in (0, 1]$.

The insurance market is open for two periods. The game in this two-period model is as follows:

In **Stage 1**, each firm $j \in J$ offers a menu $M^1_j \subset M \equiv W \times W$ of contracts for the first period, one for each consumer type. If a firm’s stage-1 offer is a pooling contract, then its menu is degenerate, containing two identical contracts. All the menus offered in this stage are immediately observed by all firms and consumers.

In **Stage 2**, each consumer chooses one of the contracts offered in Stage 1. The consumers’ choices are immediately observed by all firms.

In **Stage 3**, each consumer and the consumer’s insurer - but no-one else - observe whether or not an accident occurs for this consumer in the first period; and first-period contracts are fulfilled.

In **Stage 4**, each firm offers a second-period menu $M^2_{jU} \subset M$ to consumers on whom it has no accident information, i.e., consumers who were with another firm in the first period. The offered menus are observed immediately by all firms and consumers.

In **Stage 5**, each firm $j \in J$ offers second-period menus to consumers on whom it does have accident information from the first period, i.e., the firm’s old customers from the first period. It offers the menu $M^2_{jA} \subset M$ to old customers with a first-period accident and the menu $M^2_{jN} \subset M$ to old customers without one. The offered menus are immediately observed by all consumers.

In **Stage 6**, each consumer chooses one of the contracts offered to him in Stages 4 and 5.

In **Stage 7**, accidents are observed and second-period contracts fulfilled.

There are two important features of this set-up that deserve comments. First, we assume that a consumer’s accident record is private information to his present insurer. This creates scope for such accident records to have a value
for insurers, so that they may be willing to compete hard in the first period in order to have sole access to them later on.3

Secondly, firms offer second-period contracts in a sequential manner. A consumer first receives offers from other insurers (in Stage 4) before he receives an offer also from his previous insurer. The simultaneous-move alternative would lead to non-existence of a pure-strategy equilibrium in the second-period game. Among the two available sequential-move structures, we choose the most reasonable, with a consumer’s current insurer being able to respond to the offer being made to this consumer in the general market.

We restrict attention to symmetric equilibria and can therefore save on firm-specific subscripts. A symmetric equilibrium is a vector \((M^1, M^{2U}, M^{2A}, M^{2N}) = ((w^1H, w^1L), (w^UH, w^UL), (w^AH, w^AL), (w^NH, w^NL))\). An equilibrium is separating if the first-period menu is separating, i.e., if \(w^1H \neq w^1L\) and consumers choose among these contracts according to type. An equilibrium is pooling if the first-period menu is pooling, i.e., if \(w^1H = w^1L\).

In analyzing this model, we will concentrate on the question whether a pooling equilibrium exists and, if not, what the reason is.4

3 Pooling, Cream Skimming, and Dregs Skimming

There is a fundamental tension in an insurance market with asymmetric information: High-risk consumers are the ones most eager to buy insurance, and therefore firms, in designing their insurance contracts, must pay attention to these consumers’ incentive-compatibility constraints. At the same time, low-risk consumers are the ones most profitable to the firms and the ones they are fighting over. Thus, fighting for the low-risks while adhering to the incentives of the high-risks describes well the lives of the insurers in such a market.

In the canonical, one-period model of Rothschild and Stiglitz (1976), where consumers do no repeat purchase of insurance, a pooling contract cannot survive in equilibrium. The reason is, essentially, that, when both consumer types buy the same contract, as they do in a pooling equilibrium, then, either the insurers make a positive expected profit, or they will have to cross-subsidize, i.e., balance the expected loss on high-risk consumers with an expected gain on low-risks. Because of the Bertrand-like nature of competition, expected profit is zero, and the pooling contract necessarily features cross-subsidization. However, it is in the interest of any insurer, given that its rivals make cross-subsidizing offers, to counter-act with a cream skimming offer. This is an offer that will attract a consumer away from the firm’s rivals only if he is a low-risk. Thus, the candidate

4 The existence of a pure-strategy separating equilibrium in this model is discussed in Nilssen (2000, Sec. 3).
pooling contract will have only high-risk consumers left and therefore will make an expected loss.

Figure 1 illustrates the viability of a pooling first-period contract in the present two-period version of the Rothschild-Stiglitz model. The Figure depicts the contract space, \(W \), with full-insurance endowments along the 45° line. The two straight lines emanating from the no-insurance point \(w^0 \) depict contracts that are actuarially fair, i.e., zero-profit, when traded with high-risks, respectively low-risks. Let \(w^P \) be the candidate pooling contract, represented by \(\times \) in Figure 1; its precise definition is provided below. This contract yields zero overall profit, i.e., profit over both periods, when sold to a representative set of consumers, but may yield negative first-period profit because capturing customers in period 1 may provide insurers with a positive profit in period 2. Among all contracts with zero overall profit, \(w^P \) is the one most preferred by low-risks.

< FIGURE 1 >

The contract \(w^P \) is vulnerable to \textit{cream skimming} if, in the area \(S^C (w^P) \) vertically hatched in Figure 1, there exist contracts that are profitable when sold to low-risks, the "cream" of the consumer population. A contract in this area, which is defined precisely below, has two properties. On one hand, a low-risk consumer would rather buy it, reveal his type, and get full insurance under full information in the second period, than be pooled together with the high-risks at \(w^P \). I.e., the contract must be above the low-risk utility level \(u^L \) in Figure 1; this utility level is strictly below \(w^P \) because of the low-risks' benefit of full information, compared to continuing asymmetric information, in period 2. On the other hand, a high risk consumer would rather reveal his type at \(w^P \), when the low-risks are skimmed away, than buy this contract in \(S^C (w^P) \) and be considered mistakenly by insurers as a low-risk. I.e., the contract must be below the high-risk utility level \(u^H \); this utility level is also strictly below \(w^P \), because the consumer would gain from being considered low-risk rather than high-risk in period 2. The set \(S^C (w^P) \) of contracts that cream-skim contract \(w^P \) are above \(u^L \) and below \(u^H \) in Figure 1.

In general, the set \(S^C (w) \) of cream skimming contracts is detached from the contract \(w \) that these contracts cream-skim because of consumers' rational expectation about the gain of being considered low-risk rather than (perhaps) high-risk in the future. In a one-period model, such as the original Rothschild-Stiglitz (1976) one, there is no future to consider, and any candidate pooling contract is therefore connected to its corresponding set of contracts cream skimming it. One condition for a pooling contract to be viable in equilibrium is that it yields a non-negative profit. This must imply a cross-subsidization from low-risks to high-risks: Insurers offer the pooling contract only because they earn at least as much on the low-risks buying the contract as they lose on the high-risks buying it. But if the pooling contract is profitable when sold to low-risks, then, in the single-period case, so must also some contracts that cream-skim be profitable when sold to low-risks, since, by the connectedness, there exist contracts arbitrarily close to the pooling contract that cream-skim it. Thus, in the single-period case, a contract cannot be both profitable and cream-skimming.
proof.

While, in the present two-period framework, a pooling contract is not necessarily deemed non-viable because of cream skimming, one need to consider the possibility that also high-risks can be profitably detracted from a candidate pooling contract; it is this phenomenon that we dub dregs skimming. The contract w^p is vulnerable to dregs skimming if, in the area $S^D(w^p)$ horizontally hatched in Figure 1, there exist contracts that are profitable when sold to high-risks, the "dregs" of the consumer population. A contract in this area, which also is defined precisely below, has two properties. On one hand, a high-risk consumer would rather buy it and reveal his type than be pooled together with the low-risks at w^p. I.e., the contract must be above high-risk utility level u_H^D in Figure 1; this utility level is strictly above w^p because of the high-risks' loss from full information, compared to continuing asymmetric information, in period 2. On the other hand, a low-risk consumer would rather reveal his type at w^p, when the high-risks are skimmed away, than buy this contract in $S^D(w^p)$ and be considered mistakenly by insurers as a high-risk. I.e., the contract must be below the low-risk utility level u_L^D; this utility level is also strictly above w^p, because the consumer would gain from being considered low-risk rather than high-risk in period 2. The set $S^D(w^p)$ of contracts that dregs-skim contract w^p are above u_H^D and below u_L^D in Figure 1.

Any of the two sets of cream skimming and dregs skimming contracts contains a profitable contract, making the pooling contract non-viable, if and only if, graphically speaking, it is, in part, to the southwest of the corresponding zero-profit line: the low-risk zero-profit line for the cream skimming set and the high risk one for the dregs skimming set. In Figure 1, we depict a case where a pooling equilibrium exists because neither set contains profitable contracts. In contrast to the single-period case, a pooling equilibrium may exist in the two-period model. In the single-period model, cream skimming bites so efficiently that pooling is never viable in equilibrium. In the two-period case, cream skimming has a much weaker bite, creating a scope for pooling to occur in equilibrium. But it is only when also dregs skimming is ruled out that we can conclude that the pooling equilibrium exists. We want to show below that cases where cream skimming does not bite, but where still pooling is not viable because of the profitability of dregs skimming, are indeed quite prevalent.

Following a separation of consumers by type in period 1, either in a separating equilibrium or after an out-of-equilibrium cream-skimming or dregs-skimming, there will be full information about consumer types in period 2 among all firms. In the case of full information, all consumers are fully insured and firms earn zero profit.6 Define W_F as the set of full-insurance contracts, i.e., $W_F := \{w \in W : w_1 = w_2\}$. The two contracts offered to high-risks and low-risks, respectively, in case of full information, are denoted w^H_{FI} and w^L_{FI} and

5In Nilssen (2000), the terms low-risk cream-skimming and high-risk cream-skimming were used for what we here denote cream skimming and dregs skimming. The change in terminology is made in order to avoid the contradiction in terms that "high-risk cream-skimming" implies.

6See Rothschild and Stiglitz (1976, Sec. 1.5) or Nilssen (2000, Sec. 3).
defined as follows:

\[
R(1) = C(w_{FI}^H, 1) \quad (6a)
\]

\[
R(0) = C(w_{FI}^L, 0) \quad (6b)
\]

\[
w_{FI}^H, w_{FI}^L \in W_F \quad (6c)
\]

Following a pooling contract in period 1, there exists a period-2 equilibrium in which firms, in Stage 4, offer the Rothschild-Stiglitz (R-S) contracts, i.e., the same zero-profit pair of separating, incentive-compatible contracts that constitute the equilibrium contract menu in the single-period model when such an equilibrium exists (in pure strategies) [Nilssen (2000, Prop. 3)]. We denote this pair of contracts \((w_{RS}^H, w_{RS}^L)\). While the high-risk R-S contract coincides with its full-insurance equivalent, i.e., \(w_{RS}^H = w_{FI}^H\), the low-risk R-S contract is defined by:

\[
R(0) = C(w_{RS}^L, 0) \quad (7a)
\]

\[
u^H(w_{RS}^L) = u^H(w_{FI}^H) \quad (7b)
\]

I.e., the low-risk R-S contract is that zero-profit low-risk contract which exactly balances the high-risk consumers’ incentives to buy it instead of the full-insurance contract assigned to them.

Following a first-period pooling contract, firms’ beliefs about consumers at the start of period 2 can be described by the vector \((\varphi^U, \varphi^A, \varphi^N)\), describing their subjective probabilities that a consumer is high-risk: \(\varphi = \varphi^U\) when a firm is uninformed about a consumer’s accident record; \(\varphi = \varphi^A\) when the firm knows the consumer had an accident in period 1; and \(\varphi = \varphi^N\) when the firm knows the consumer did not have an accident. An uninformed firm does not update its prior belief, so \(\varphi^U = \varphi^0\). An informed firm updates its belief according to Bayes’ Rule, taking into account the accident record:

\[
\varphi^A = \frac{\varphi^0 p^H}{\varphi^0 p^H + (1 - \varphi^0) p^L} \quad (8a)
\]

\[
\varphi^N = \frac{\varphi^0 (1 - p^H)}{\varphi^0 (1 - p^H) + (1 - \varphi^0) (1 - p^L)} \quad (8b)
\]

In equilibrium, consumers do not switch to another insurer in the second period. Thus, according to whether they are high-risks or low-risks and whether they have a first-period accident or not, after a first-period pooling contract, consumers will purchase period-2 contracts from the list \((w^{AH}, w^{AL}, w^{NH}, w^{NL})\) of contracts offered by insurers to old customers. These contracts are found by solving a maximization problem similar to the one facing an insurance monopolist [Stiglitz (1977), Kreps (1990, Sec. 18.1)], except that the incumbent insurer’s constraints are not consumers’ option to self-insure but old customers’ option to go to other insurers. For each of the two groups of old customers with a first-period accident \((\alpha = A)\), and those without one \((\alpha = N)\), insurers find
their second-period contract menu as the solution to the maximization problem:

\[
(w^{oH}, w^{oL}) = \arg \max_{(w^H, w^L) \in M} \left[\varphi^o \pi (w^H, 1) + (1 - \varphi^o) \pi (w^L, 0) \right], \quad \alpha \in \{A, N\},
\]

subject to:

\[
\begin{align*}
& w^H \in W_F, \\
& u^H (w^H) = u^H (w^L), \\
& u^L (w^L) = u^L (w^L_{RS}), \\
& u^H (w^H) \geq u^H (w^H_{F1}).
\end{align*}
\]

Here, the first restriction is that high-risks receive full insurance, since low-risk incentive-compatibility is not a binding constraint; the second restriction is the high-risk incentive-compatibility constraint; the third restriction is the participation constraint for the low-risks; and the fourth, which may or may not be binding, is the participation constraint for high-risks.

Since \(\varphi^A > \varphi^N \), an insurer is more interested in cross-subsidization among old customers without a first-period accident than among those with one. Thus, while

\[
u^L (w^{NL}) = u^L (w^{AL}) = u^L (w^L_{RS}),
\]

we have

\[
u^H (w^{NH}) \geq u^H (w^{AH}) \geq u^H (w^H_{F1}),
\]

where the first inequality is strict if the second one is, and where these inequalities are strict for a sufficiently low fraction \(\varphi^0 \) of high-risks in the population [Nilssen (2000, Props. 4 and 5)].

The pooling contract that is going to be the candidate equilibrium contract in a pooling equilibrium is the one that survives in competition with other pooling contracts. This is that pooling contract which maximizes low-risk first-period expected utility subject to a non-negativity constraint on firms’ overall profit when consumers divide themselves evenly among firms so that each firm gets a representative set. Therefore, the candidate equilibrium pooling contract is defined as:

\[
w^P := \arg \max_{w \in W} u^L (w), \quad \text{subject to:}
\]

\[
\begin{align*}
& \pi (w, \varphi^0) + \delta \varphi^0 \left[p^H \pi (w^{AH}, 1) + (1 - p^H) \pi (w^{NH}, 1) \right] + \\
& (1 - \varphi^0) \left[p^L \pi (w^{AL}, 0) + (1 - p^L) \pi (w^{NL}, 0) \right] \geq 0
\end{align*}
\]

Given any contract \(w \), the set of contracts that cream-skim it is defined as:

\[
S^C (w) := \left\{ w' \in W \setminus \{w\} : \begin{array}{l}
 w^H (w') + \delta u^H (w^H_{F1}) \leq u^H (w) + \delta u^H (w^H_{F1}), \\
 u^L (w') + \delta u^L (w^L_{F1}) \geq u^L (w) + \delta u^L (w^L_{RS})
\end{array} \right\}
\]

8
The first condition in this definition is an incentive-compatibility constraint for high-risk consumers: With this condition satisfied, a high-risk consumer would not choose a cream skimming contract in \(S^C(w) \) even if, by so doing, he would mistakenly be considered a low-risk in period 2. The second condition is a participation constraint for low-risk consumers: With this condition satisfied, a low-risk consumer would prefer revealing his type, by choosing a cream-skimming contract in \(S^C(w) \), to staying at the contract \(w \) and be pooled together with the high-risks.

Given any contract \(w \), the set of contracts that dregs-skim it is defined as:

\[
S^D(w) := \left\{ w' \in W \setminus \{w\} : \begin{align*}
 u^L(w') + \delta u^L(w^H_F) &\leq u^L(w) + \delta u^L(w^H_{FI}) , \\
 u^H(w') + \delta u^H(w^H_F) &\geq u^H(w) + \delta \left[p^H u^H(w^{AH}) + (1 - p^H) u^H(w^{NH}) \right].
\end{align*} \right\}
\]

(12)

Corresponding to the previous definition, the first condition here is an incentive-compatibility condition for low-risk consumers: When this condition is satisfied, a low-risk consumer would not choose a dregs-skimming contract in \(S^D(w) \) if, by so doing, he would mistakenly be considered a high-risk in period 2. The second condition is, likewise, a participation constraint for high-risk consumers: When this condition is satisfied, a high-risk consumer would prefer revealing he is high-risk, by choosing a dregs-skimming contract in \(S^D(w) \), to staying at the contract \(w \), even if this means being pooled together with the low-risks. Note how this second condition takes into account the uncertainty regarding which period-2 offer high-risks will obtain from their period-1 insurers: This offer, in contrast to what the low-risks are offered, may vary, in terms of high-risk expected utility, according to whether a consumer has a first-period accident or not.

In determining whether or not cream skimming or dregs skimming is profitable, it suffices to assess the profitability of the most profitable contract in each set. We define:

\[
w^C(w) := \text{arg sup} \pi(w', 0) , \text{ subject to: } w' \in S^C(w),
\]

(13)

as the most profitable cream-skimming contract, when sold to low-risks. This contract is clearly the unique contract for which both the constraints defining \(S^C(w) \) are satisfied, i.e., the contract is characterized by:

\[
\begin{align*}
 u^H(w^C(w)) + \delta u^H(w^H_{F1}) &= u^H(w) + \delta u^H(w^H_F), \text{ and} \\
 u^L(w^C(w)) + \delta u^L(w^H_{F1}) &= u^L(w) + u^L(w^L_{HR}).
\end{align*}
\]

(14a, 14b)

Furthermore, we define:

\[
w^D(w) := \text{arg sup} \pi(w', 1) , \text{ subject to: } w' \in S^D(w),
\]

(15)

as the most profitable dregs-skimming contract when sold to high-risks. The low-risk incentive-compatibility constraint delineating the set of dregs-skimming
contracts poses clearly no restriction on the contracts a dregs-skimming insurer would want to offer. The most profitable dregs-skimming contract \(w^D(w) \) is therefore defined as the full-insurance contract that exactly fulfils the high-risk participation constraint for dregs skimming, i.e., it is given by the following two conditions:

\[
w^D(w) \in W_F, \quad \text{and} \quad u^H(w^D(w)) + \delta u^H(w^H_{FI}) = u^H(w) + \delta \left[p^H u^H(w^{AH}) + (1 - p^H) u^H(w^{NH}) \right]
\]

A pooling equilibrium exists in this model if, for the candidate equilibrium pooling contract \(w^P \), neither cream skimming nor dregs skimming is profitable, i.e., if both \(\pi(w^C(w^P),0) \leq 0 \) and \(\pi(w^D(w^P),1) \leq 0 \). If this equilibrium does not exist, it is either because cream skimming is profitable, \(\pi(w^C(w^P),0) > 0 \), because dregs skimming is profitable, \(\pi(w^D(w^P),1) > 0 \), or both. Thus, we can distinguish between four different cases, which we call cases \(P \), \(C \), \(D \), and \(B \), according to the signs of \(\pi(w^C(w^P),0) \) and \(\pi(w^D(w^P),1) \); see Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>(\pi(w^C(w^P),0) \leq 0)</th>
<th>(\pi(w^D(w^P),1) \leq 0)</th>
<th>(\pi(w^D(w^P),1) > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi(w^C(w^P),0) \leq 0)</td>
<td>(P)</td>
<td>(D)</td>
<td></td>
</tr>
<tr>
<td>(\pi(w^C(w^P),0) > 0)</td>
<td>(C)</td>
<td>(B)</td>
<td></td>
</tr>
</tbody>
</table>

4 Numerical analysis

Under the assumption of constant relative risk aversion, this model has a total of seven parameters, or exogenous variables: \(w_0^H \) - consumers’ endowment without an accident; \(w_0^L \) - consumers’ endowment with an accident; \(\phi^0 \) - the fraction of high-risks in the population; \(p^H \) - the accident probability of a high-risk consumer; \(p^L \) - the accident probability of a low-risk consumer; \(\delta \) - the discount factor; and \(k \) - the measure of consumers’ relative risk aversion. For any allowed combination of these seven variables, we are able to determine whether an equilibrium exists, and if so, the type of equilibrium. In particular, we determine the relevant one of the four cases in Table 1. The calculations are done in the following sequence:

1. The pair \((w^H_{FI}, w^L_{FI}) \) of contracts offered under full information is found directly from (6) above.
2. We calculate the pair \((w^H_{RS}, w^L_{RS}) \) of contracts offered when there is a separating equilibrium in the single-period case, and also by uninformed insurers in period 2 in the present two-period model, in case a pooling contract is offered in period 1. We have \(w^H_{RS} = w^H_{FI} \), while \(w^L_{RS} \) is found by solving (7) numerically.
3. We calculate the pairs \((w^{AH}, w^{AL}) \) and \((w^{NH}, w^{NL}) \) of contracts offered by informed insurers in period 2 to old customers with and without a first-period accident, respectively, in case a pooling contract is offered in period 1, defined in (9) above. To do this, we first need to distinguish between the three cases defined in Proposition 4 in Nilssen (2000). For a given vector of exogenous variables, the informed firm offers either the RS menu for any accident history, or the RS menu to those with accidents and a CS (cross-subsidizing) menu to the others, or a CS menu to both types. The distinguishing inequalities in that Proposition are calculated and the relevant case is determined. If this is the second or the third case, the CS menu is calculated by numerically solving a system of three equations for each of the menu’s two elements. Each of the two equation systems has only three scalar unknowns, \(w^a_H, w^a_L, \alpha \in \{A,N\} \), since \(w^a_H = w^a_L \) by (9b). Each equation system consists of (9c), (9d), and the first-order condition for (9a), with the relevant \(\varphi^\alpha \) taken from (8).

4. We calculate the pooling contract \(w^P \) that is offered by all insurers in period 1 if the equilibrium is pooling. This is defined in (10), which gives two equations in two scalar unknowns, \(w^P_1 \) and \(w^P_2 \). The first equation is the first-order condition for (10a). Since we have a formula for the inverse of the \(v^\theta \) function, that equation gives us \(w^P_2 \) as a function of \(w^P_1 \). Next, we observe that (10b) must be satisfied with equality and solve that equation numerically for \(w^P_1 \).

5. We check whether cream skimming is profitable, thus destroying the pooling equilibrium. We must calculate the profit \(\pi (w^C (w^P), 0) \) that can be earned from cream-skimming the pooling contract, with \(w^C (w) \) defined in (14) above. First, we determine whether \(S^C (w^P) \) is empty. This may occur if \(k < 1 \), in which case \(u \) (expected utility) values are positive, and any indifference curve intersects the horizontal axis at \(u^{-1}(u^\theta/(1-p^\theta)) \), where \(u^\theta \) is the utility level of that curve, \(\theta \in \{H, L\} \). For \(k < 1 \), one (for \(u^H \)) or both of the two indifference curves delimiting \(S^C (w^P) \) may be non-existing if the right-hand sides of the inequalities in (11) have low values. The utility levels defining the two indifference curves, if they exist, are found by rearranging the two inequalities as two equations with \(u^H(w) \) and \(u^L(w) \) on the left hand sides, respectively. We know that \(u^H(w) < u^L(w) \) when both are positive. The existence of the \(u^H \) indifference curve is checked by checking that the corresponding right-hand side is positive. Its intersection with the \(u^L \) indifference curve within the feasible set \(W \) is checked by checking that \(u^H(w)/(1-p^H) > u^L(w)/(1-p^L) \), so that the intersections with the horizontal axis (in Figure 1) occur in the opposite order of the intersections with the \(w_2 = w_1 \) line. Next, if \(S^C (w^P) \) is non-empty, we calculate cream-skimming profits. We solve for the intersection of the two indifference curves by solving (14) numerically. If profit at this point is positive, then cream skimming destroys the pooling equilibrium.

6. We check whether dregs skimming is profitable, thus destroying the pool-
ing equilibrium. We must calculate the profit \(\pi(w^D(w^P)) \) that can be earned from dregs-skimming it, with \(w^D(w^P) \) defined in (16) above. First we determine whether \(S^D(w^P) \) is empty. This may occur if \(k > 1 \), in which case \(u \) values are negative, and each indifference curve lies to the northeast of its asymptotes \(w_1 = v^{-1}(w^0/(1-p^0)) \) and \(w_2 = v^{-1}(w^0/p^0) \). If \(S^D(w^P) \) is non-empty, its profit-maximizing element is the solution to (16). We only need to solve for a scalar, since \(w^1(w^P) = w^2(w^P) \) by (16a). We solve for \(u^H(w^D(w^P)) \) analytically from (16b) and then check whether it has the same sign as \(1-k \). In that case, \(S^D(w^P) \) is non-empty, and the profit-maximizing element (or rather, the scalar) is given by \(v^{-1}(w^H(w^D(w^P))) \). If profit at this point is positive, then dregs skimming destroys the pooling equilibrium.

5 Results

We have no theorems giving conditions for the existence of a pooling equilibrium, or for its non-existence due to profitable dregs skimming and/or cream skimming. We have, however, run the computer through a large number of parameter combinations and have found that pooling is a prevalent phenomenon, and that, when pooling is not viable in equilibrium, profitable dregs skimming is a major reason for this. Instead of a report of all computations we have done, we organize it around a reasonable base case and sensitivity analyses of it.

We believe a reasonable, albeit stylized, picture of an insurance market is one where the probability of a considerable accident is moderate for a huge majority of the consumers, while a small minority of the consumers contaminate the market by having a much higher accident probability. Therefore, our base case is one where the fraction of high-risks \(\phi^0 \) as well as the low-risk accident probability \(p^L \) are rather small; where the high-risk accident probability \(p^H \) is much larger than \(p^L \); and where the accident damage \((w^0_0 - w^0_2) \) is considerable relative to the initial endowment \(w^0_0 \). In particular, our base case has: \(w^0 = (10,6) \), \(\phi^0 = 0.10 \), \(p^L = 0.08 \), and \(p^H = 0.30 \). Based on Szpiro (1986b), who finds the measure of relative risk aversion to be between 1.0 and 2.0 in a number of countries, we use \(k = 1.5 \) for our base case. The discount factor is set to 1.0.

There exists a pooling equilibrium in this base case. This equilibrium is the one illustrated in Figure 1 above. In Figures 2-5 below, we report graphically the results of our sensitivity analyses. In each graph, we vary two of the parameters to see how the candidate pooling contract fares against cream and dregs skimming, while the other five parameters are kept at their base-case values. In each Figure, the base case is encircled.

In Figure 2, we vary the fraction of high-risks, \(\phi^0 \), between 0.05 and 0.45 and the risk-aversion parameter \(k \) between 0.3 and 2.7. The picture we get is quite typical: Pooling is wide-spread. And when it is not viable, profitable dregs skimming is a major reason for it. Although we insist that a low \(\phi^0 \) is more reasonable than a high one, it is evident from the picture that such a low fraction of high-risk consumers is important for the occurrence of pooling in equilibrium.
But we also see that, for low and moderate degrees of risk aversion, it is dregs skimming that eventually destroys the viability of the pooling equilibrium as φ^0 increases. For higher values of k, on the other hand, it is cream skimming that makes pooling non-viable.

In Figure 3, we let the low-risk accident probability p^L vary between 0.02 and 0.18 and the high-risk probability p^H between 0.05 and 0.45, but in such a way that $p^H > p^L$. We see that pooling again is prevalent and particularly so when p^L is high, i.e., when it is close to p^H. This indicates that decreasing the consumer heterogeneity, in the sense of decreasing the difference between the two accident probabilities, makes pooling more likely. We also see that, again, it is dregs skimming that beats the pooling contract in those cases where the pooling equilibrium is not viable.

In Figure 4, we picture variations in the discount factor together with variations in the low-risk accident probability. We let δ vary from 0.2 to 1.8; values of δ above 1 may be interpreted as the second period having a longer duration than the first period, for example as a representation of “the future”. In this Figure, p^L varies between 0.05 and 0.29. We see that a low discount factor leads to cream skimming of the candidate pooling contract and that dregs skimming has but a minor role to play here. But we also see that pooling may occur for quite low discount factors. In particular, when p^L is so high that the consumer heterogeneity almost vanishes - remember, $p^H = 0.30$ throughout - we get pooling for discount factors as low as 0.6. This is in contrast to similar studies done earlier for the monopoly case, i.e., where one principal offers single-period contracts to agents in two periods. For example, Dionne and Fluet (2000), in their analysis of the model of Laffont and Tirole (1993), do not report full pooling for any discount factor below 1.0.

In Figure 5, we vary the fraction of high-risks, φ^0, together with w^0_2, the consumer’s wealth in the case of an accident. In particular, φ^0 varies from 0.03 to 0.35, while w^0_2 varies between 1 and 9. Note that the lower w^0_2 is, the larger is the damage that an accident causes. Interestingly, cream skimming is only viable in cases where the damage is large, while the opposite is true for dregs skimming. Thus, there is scope for a pooling equilibrium in cases of a damage of medium size, even in cases where φ^0 is not very low.

Our results are not conclusive in a strict sense, since we only report a few computer runs, although they are carefully chosen. One should, therefore, be careful in interpreting them. The picture we get, however, beside the prevalence of pooling and dregs skimming, is that pooling occurs when the discount factor is high; when the fraction of high-risks is low; when consumer heterogeneity is low, and when the accident damage and the degree of risk aversion are moderate.

The effect of the discount factor is straightforward: A low discount factor means consumers do not care much for the next period, implying, in terms of Figure 1, that the two sets of cream-skimming and dregs-skimming contracts are

7 Other computer runs we have done show that this monotonic relationship between consumer heterogeneity and occurrence of pooling does not hold when the consumer types are more evenly distributed, i.e., when φ^0 is higher than in our base case.
closer to the skimmed contract w^P than when the discount factor is high. While this does not necessarily affect very much the profitability of dregs skimming, it has a positive effect on the profitability of cream skimming. For a sufficiently low discount factor, therefore, cream skimming is profitable and pooling becomes non-viable.

When the fraction of high-risks is low, and provided there was a pooling contract on the market in period 1, insurers find it profitable to offer cross-subsidizing contract menus to their old customers in period 2, particularly those consumers without a first-period accident. Thus, high-risk consumers may have something to gain, through this cross-subsidization, by sticking to the pooling contract in period 1. This implies that, as the fraction of high-risks decreases, the high-risk participation constraint for dregs-skimming contracts gets stricter and the profitability of dregs skimming deteriorates. Thus, pooling is viable for a low fraction of high-risks, whereas an increase in this fraction implies that dregs skimming becomes profitable and, thus, pooling non-viable.

With respect to consumer heterogeneity, note that, when most consumers are low-risks, so that φ^0 is very low, the pooling contract w^P in the candidate pooling equilibrium is much more affected by a change in p^L than by a change in p^H. At the same time, $w^D(w^P)$, the most profitable dregs-skimming contract, is mostly affected by a change in p^H and $w^C(w^P)$, the most profitable cream-skimming contract, mostly by a change in p^L. All in all, therefore, a change in p^L has an ambiguous effect on the viability of a pooling equilibrium when φ^0 is low, since it affects both the pooling contract w^P and the cream-skimming contract $w^C(w^P)$. A change in p^H, on the other hand, affects the dregs-skimming contract $w^D(w^P)$ for the most part. Thus, an increase in p^H, increasing consumer heterogeneity through a decrease in p^L, on the other hand, has very often no clear effect. This explains why, when φ^0 is low, pooling and dregs skimming dominate, while cream skimming has no big role to play. For higher values of φ^0, however, this is turned around, with pooling being non-viable, largely because of cream skimming being profitable.

The effect of an increase in the degree of risk aversion is to make indifference curves more concave. Thus, in cases of a low fraction of high-risks, which we focus on here, a decrease in consumers’ risk aversion has the effect that the candidate pooling contract w^P moves downwards in Figure 1, i.e., an increase in k decreases w^P with little effect in w^L. As w^P moves downwards, so does the sets of dregs- and cream-skimming contracts that correspond to it. While this has little effect on the profitability of cream-skimming, it enhances that of dregs-skimming. Thus, when consumers’ risk aversion is small, the candidate pooling contract is dominated by profitable dregs skimming, as Figure 2 illustrates.

A similar mechanism is at work as one varies the size of the accident damage. Varying w_0^2 from high (small damage) to low (large damage) has little effect on the candidate pooling contract and, therefore, little effect on the sets of dregs-and cream-skimming contracts. Thus, an increase in w_0^2 moves the high-risk zero-profit line in Figure 1 upwards so that, in the end, dregs-skimming becomes
profitable. Thus, dregs-skimming tends to profitable when the damage is low, as Figure 5 indicates.

6 Concluding remarks

This paper has shown, through numerical analysis of a two-period insurance market with asymmetric information, how the performance of such a market is dependent on the viability of a pooling equilibrium, and how this viability in turn depends not only on whether cream skimming is profitable but also, and often more importantly, on whether dregs skimming, the detraction of high-risk consumers from the candidate equilibrium pooling contract, is profitable.

Our results indicate that pooling is widespread. In particular, we have found that markets with a low fraction of high-risk consumers is conducive to pooling. This is interesting in light of the prediction of the single-period model of Rothschild and Stiglitz (1976) for this case: Whereas, in the single-period model, few high-risks mean non-existence of a pure-strategy equilibrium and, therefore, a prediction of an unstable market, we have found a theoretical basis for predicting not only a stable market, but one where there is no separation, in cases where most consumers are low-risks.

We also believe it interesting, and something that should be intriguing for future research, that the profitability of dregs skimming, rather than of cream skimming, for such a large sets of parameters is the reason for pooling not to survive in equilibrium. As indicated above, this occurs particularly when the fraction of high-risks is low. But this is a situation we believe is prevalent: a market being contaminated by a small fraction of low-value consumers. It seems wise, therefore, to continue exploring the dregs-skimming phenomenon that we have pointed to in the present work.

7 References

Figure 1: Contracts in (w_1, w_2) diagram for $w_1^0=10.00$, $w_2^0=6.00$, $p^H=0.30$, $p^L=0.08$, $\varphi^0=0.15$, $\delta=1.00$, $k=1.50$
Figure 2: Equilibrium type as function of φ^0 and k
for $w_1^0=10.00$, $w_2^0=6.00$, $p^H=0.30$, $p^L=0.08$, $\delta=1.00$
Figure 3: Equilibrium type as function of p^L and p^H
for $w_1^0=10.00$, $w_2^0=6.00$, $\varphi^0=0.15$, $\delta=1.00$, $k=1.50$
Figure 4: Equilibrium type as function of p^L and δ
for $w_1^0=10.00$, $w_2^0=6.00$, $p^H=0.30$, $\varphi^0=0.15$, $k=1.50$
Figure 5: Equilibrium type as function of ϕ^0 and w_2^0
for $w_1^0=10.00$, $p^H=0.30$, $p^L=0.08$, $\delta=1.00$, $k=1.50$

- X Pooling
- □ Cream
- △ Dregs
- + Both
- X Base case

ϕ^0 vs. w_2^0 grid with corresponding symbols for each equilibrium type.