Bjønnøs, Geir Høidal; Rime, Dagfinn

Working Paper

FX trading... LIVE!: Dealer behaviour and trading systems in foreign exchange markets

Memorandum, No. 2000,29

Provided in Cooperation with:
Department of Economics, University of Oslo

Suggested Citation: Bjønnøs, Geir Høidal; Rime, Dagfinn (2000) : FX trading... LIVE!: Dealer behaviour and trading systems in foreign exchange markets, Memorandum, No. 2000,29, University of Oslo, Department of Economics, Oslo

This Version is available at:
http://hdl.handle.net/10419/62960

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
FX Trading... LIVE!
Dealer Behavior and Trading Systems
in Foreign Exchange Markets

By
Geir Høidal Bjønnes and Dagfinn Rime

Department of Economics
University of Oslo
List of the last 10 Memoranda:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No 27</td>
<td>By Halvor Mehlum, Karl Moene and Ragnar Torvik: Predator or Prey? Parasitic enterprises in economic development. 24 p.</td>
</tr>
<tr>
<td>No 26</td>
<td>By Atle Seierstad: Sharpened nonsmooth maximum principle for control problems in finite dimensional state space. 13 p.</td>
</tr>
<tr>
<td>No 25</td>
<td>By Geir B. Asheim: Deriving Belief Operators from Preferences. 6 p.</td>
</tr>
<tr>
<td>No 23</td>
<td>By Knut Røed and Tao Zhang: A Note on the Weibull Distribution and Time Aggregation Bias. 9 p.</td>
</tr>
<tr>
<td>No 22</td>
<td>By Atle Seierstad: Nonsmooth maximum principle for control problems in Banach state space. 24 p.</td>
</tr>
<tr>
<td>No 21</td>
<td>By Diderik Lund: Imperfect loss offset and the after-tax expected rate of return to equity, with an application to rent taxation. 20 p.</td>
</tr>
<tr>
<td>No 19</td>
<td>By Knut Røed and Morten Nordberg: Have the Relative Employment Prospects for the Low-Skilled Deteriorated After All? 21 p.</td>
</tr>
</tbody>
</table>

A complete list of this memo-series is available in a PDF® format at: http://www.oekonomi.uio.no/memo/index.shtml
Abstract

The introduction of electronic broker systems in the foreign exchange (FX) market at the end of 1992 changed the structure of the market and opened new channels for trading. We study the impact of these systems on dealer behavior, using a unique data set on the complete transactions of four FX dealers. We find some support for an information effect in incoming trades conducted directly (bilaterally). For trades executed by electronic broker systems we find no information effects, but we find that sequences of trades in cumulative flow may be informative for prices. The new electronic systems have changed how dealers control their inventories by introducing new channels for this purpose. We find that dealers now control inventory by outgoing trades on electronic brokers, while outgoing trades earlier was regarded as unattractive for inventory control. Comparing our results to previous research indicates that the introduction of electronic brokers have changed the behavior of dealers.

Keywords: Foreign Exchange; Microstructure; Trading

JEL Classification: F31, G15
1 Introduction

Empirical work on foreign exchange market microstructure is still in its infancy. So far, most microstructure research in foreign exchange spot markets relies on indicative quotes from Reuters FXFX (Goodhart and Figliuoli (1991) and Bollerslev and Domowitz (1993), among others). These data make it possible to address important microstructure issues regarding bid and ask spread, volatility and heterogeneity issues. However, these data do not allow direct testing of dealer behavior since they provide no direct measures of quantity or dealer inventories. This information is the property of the banks, and is regarded as confidential information. The study by Lyons (1995) represents the first attempt to use proprietary inventory and transaction data, covering one dealer for one week in August 1992.

Lyons (1995) found strong support for the two main microstructural models, inventory control and information protection. Inventory control models (e.g. Garman (1976), Amihud and Mendelson (1980) and Ho and Stoll (1981)) focus on how risk-averse dealers adjusts prices to control their inventory of an asset. The idea is that a dealer with a larger inventory of the currency than desired, will set a lower price to attract buyers. This is called “quote shading.” Thus, the spread arises as a price to compensate the Market Maker for not being able to hold the preferred portfolio. Information-based models (e.g. Kyle (1985), Glosten and Milgrom (1985) and Admati and Pfleiderer (1988)) consider adverse selection problems when some dealers have private information. When dealers receive trades, they revise their expectations (upward in case of a buy order, and downward in case of a sell order) and set spreads to protect themselves against informed traders.

This paper employs a very detailed data set on the complete trading records of four foreign exchange dealers during one week in March 1998. The data set contains all relevant information about each trade such as transaction time, transaction prices and quantities, and who initiated the trade. Compared with the previous studies using similar data sets (Lyons, 1995; Yao, 1998), our data set is more detailed. For instance, we can more often determine which dealer was initiating the trade. Using this data set we make two distinct contributions.

First, we replicate the study by Lyons (1995). This is particularly interesting because the introduction of electronic brokers at the end of 1992 has changed the structure of the foreign exchange market. In 1992, interbank trading volume were equally split between direct bilateral trades and traditional voice-broker trades (Cheung and Chinn, 1999; Cheung, Chinn, and Marsh, 2000). However, the market share of the electronic brokers has increased rapidly. Cheung and Chinn (1999) and Cheung et al. (2000) estimate their market share to roughly 50% of interbank trading at the time of our study. Now, direct bilateral trading constitute 35% of total interbank trading, while traditional voice-broker trading constitutes only 15% of total interbank trading. We believe that the strong inventory control and information effects found by Lyons are weakened under this new microstructure. The information effect may be weakened because the introduction of the electronic brokers have increased transparency. The electronic brokers let the dealers see the price and direction of the last trades. The inventory control effect may be weakened because the electronic brokers have introduced new channels for trading. Compared with traditional voice-

1 The exact period and the name of the bank will be confidential until the final version of the paper.
2 The data set of Yao (1998) is from 1995, during the introductory phase of the electronic brokers.
brokers, the electronic brokers offer higher execution speed and competitive quotes.

Second, we highlight the diversity of trading styles in the foreign exchange market. The previous mentioned studies by Lyons (1995) and Yao (1998) focus on only a single dealer each. Hence, this paper increases the number of dealers studied from two to six. Since our data set is very detailed, we are not only able to examine how these dealers set quotes individually. We can also examine more closely how they use the different trading channels to control their inventories. The model used by Lyons (1995) and Yao (1998) focus on only incoming trades.\(^3\) An important issue is thus how dealers use outgoing trades.

Our results indicate that there are differences in informativeness in the different trading systems. In direct trading (on the electronic systems Reuters D2000-1) we find evidence of an information effect, while there is no information effect in indirect trading (through the electronic broker system Reuters D2000-2 and EBS). A weaker information effect on the electronic brokers is in line with the view that these have led to increased transparency. However, according to dealers the main information on brokers is that they give a picture of overall market flow. We find that sequences of trades in cumulative order flow are informative for prices. When it comes to inventory effects, the results are more ambiguous concerning incoming trades. There is indication that two of the dealers use incoming trades for inventory control. Inventory control through outgoing trades on the electronic brokers seems to be the preferred channel. Weak inventory effects can be due more options available for this purpose, making it easier and less costly to adjust inventory.

The rest of the paper is organized as follows. Section 2 describes important market characteristics relevant for our study. The data set is presented in section 3. Section 4 outlines the Madhavan and Smidt (1991) model. This model is similar to the model used by Lyons (1995) and Yao (1998). Section 5 presents estimation method and results. The paper ends with conclusions and a discussion for future research (Section 7). All details about derivations are shown in the appendix.

2 Important Market Characteristics

This section describes the foreign exchange spot market. Particularly, we focus on the different trading options available to the dealers. We try to relate these trading options to the main microstructural models: information and inventory control models.

The trading options available to foreign exchange dealers in the interbank market can be summarized in a 2×2 matrix, as shown in figure 1. Dealers can trade directly with another dealer through Reuters D2000-1 or telephone, or indirectly with a broker, either a voice broker or one of the electronic brokers EBS or Reuters D2000-2 (rows). In each trade the dealer can either set a price (quote) at which others can trade (incoming), or the dealer can trade at other dealers quotes (outgoing) (columns).

To control their inventory position or to establish speculative positions, dealers can shade their bids in incoming trades, or they can use outgoing trades. In incoming direct trades, dealers may be

\(^3\)Incoming trades means that it is the counterparty who initiated the trade. Similarly, outgoing trades means that our dealer initiates the trade with his counterparty.
afraid of using bid shading since this might signal their position to the contacting dealer, who know
their identity (Lyons, 1995). This concern is most important for dealers with large customer base.
Trading with customers is regarded as valuable private information by the dealers. By shading
quotes in direct trades they risk that other dealers get a signal of their inventory, and hence of their
private information. In incoming indirect trades, the identity of your counterparty is unknown.
Therefore, we might expect that dealers shade their quotes more in indirect trades. However, in
indirect trades the dealer decides when to trade, and most of the time the spread is very small
and good for large amounts. Thus, bid shading might not be necessary unless trading very large
quantities. This is due to the increasing popularity of electronic broking systems. The advantage
with incoming trades is that the dealer can trade at the most favorable side of the bid or the ask,
while the advantage with outgoing trades is higher speed of execution.

In addition to that your counterparty is known in a direct trade while he is not in an indirect
trade, there are some other noteworthy differences between trading direct and indirect via a broker.
First, in a direct trade, it is expected that the contacted dealer give two-way quotes (bid and ask).
In an incoming indirect trade, the dealer decides whether to give two-way quotes or only one-way
quotes (bid or ask). In our sample, the dealers typically only give one-way quotes in indirect
trades. Second, in an incoming direct trade there is no timing decision. In an incoming indirect
trade, there is obviously a timing decision since the dealer decides when to place quotes to brokers.
Third, direct trading is usually preferred over indirect trading when trading large amounts. This
is probably because the initiator can choose counterparties that he knows quotes reasonable prices
for such volumes. However, this may (or has already?) change with the increased volume traded
on electronic broker systems. Finally, in an indirect trade you may have several counterparties,
while you can only have one counterparty in a direct trade. These differences make us believe that
brokered trades are less informative than direct trades.

Next, we want to relate the different trading systems to the transparency of the foreign ex-
change market. An important feature of the foreign exchange market, distinguishing it from stock
markets, is the decentralized multiple dealer structure, and the low transparency of trading.
Trans-
parency is usually defined as the degree of information dissipation in the market. In the foreign
exchange market, all direct trades are unknown except to the two parties in a trade. In indirect
trades with voice-brokers, a small subset of the trades is communicated to the market via in-
tercoms. On electronic broker systems, all trades are communicated to the dealers in a “trade
window”. Thus, transparency may increase with the growing popularity of the electronic brokers.
Since low transparency indicates that private information may exist in the market, the increased
importance of electronic broker systems may decrease the degree of private information. However,
well-informed dealers with large customer trades may have incentives to hide their information by

<table>
<thead>
<tr>
<th>Figure 1: Trading options</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming (Nonaggressor)</td>
<td>Outgoing (Aggressor)</td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>Trade at own quotes</td>
<td>Trade at other dealers’ quotes</td>
</tr>
<tr>
<td>Indirect</td>
<td>Dealer give quote(s) to a broker</td>
<td>Dealer trade at quotes given by a broker</td>
</tr>
</tbody>
</table>

When a dealer trade at another dealer’s quote, he is taking the initiative to the trade and is often called the “aggressor”.
trading direct. We expect that private information is easier to exploit in the DEM/USD market than in the NOK/DEM market. The market for NOK/DEM is highly concentrated with only few market makers. Thus, it is very difficult to hide information from a large customer order trade.

Table 1 illustrates the changing market structure over the last few years. The interbank trading is split into three categories: Direct trades, traditional broker trades and electronic broker trades. The “Nature of Business” refers to banks’ trading. Customer trading is the main source of demand for currency. The two columns with “Survey Data” are calculated from Cheung and Chinn (1999) and Cheung et al. (2000). These surveys favor customer orders somewhat compared with previous works which have estimated customer orders at around 20% of turnover (see BIS, 1998). We calculate similar numbers for our dealers and Lyons’ (1995) dealer.

From table 1 we see that both direct trading and especially traditional voice-brokers have lost market shares to electronic broking systems.\(^4\) Except Dealer 3, our dealers rely more heavily on electronic broker systems than the average. Dealer 3’s trading is close to the average. Lyons’ (1995) dealer is not only very different from our dealers, but is also different from the average dealer in 1992/1993. First, he relies more heavily on direct trading and less heavily on traditional voice brokers than the average. Second, he has no customer order. This dealer earns money from the bid and ask spread in the inter-dealer market. This means that the majority of his trades are direct and incoming (80% is incoming). To adjust his inventory position he uses bid shading instead of outgoing trades.

3 Data

The data set employed in this study consists of complete trading records for four spot dealers over a five-day period in March 1998. All dealers work in the same Scandinavian commercial bank. The bank is a major player in the foreign exchange market with a long history with foreign exchange trading.

\(^4\)Since voice-brokers have no access to the electronic brokers, there is also the problem of knowing the prices they compete against. Furthermore, their information advantage from seeing much flow has also decreased making it even harder to give competitive quotes. Dealers have also told us that the market share of the electronic systems is increasing very fast. In DEM/USD (or USD/EUR), the winning electronic broker system seems to be EBS. The liquidity is very high. Sometimes it is possible to trade for amounts of EUR 100 million.
The data set includes transaction prices, quantities and dealer inventories. The advantages of such a data set over other foreign exchange data alternatives (mostly indicative quotes), are that transaction prices better reflects market activity, and that for testing of dealer behavior one need inventory observations (see Lyons, 1995). This is especially important when trading intensity is high. Compared with new data sets with transaction prices from electronic trading systems, e.g. Payne (1999), our data set has the advantage that it includes dealer inventories and reflects the dealers’ choice between different trading systems. Thus, our data allows a direct test of inventory models and the investigation of trading strategies.

The data set consists of two components: (i) the dealers’ record from an internal system used for controlling inventory positions, and (ii) information from electronic trading systems. The first part of the data set consists of all trades. From this information we are able to calculate the dealers inventory positions (section 3.1). The second part of the data set provides detailed information on trades executed on electronic broker systems (section 3.2). Finally, we present our final data set (section 3.3).

3.1 Inventory positions

The first component of the data set consists of all trades, including trades with voice-brokers, direct trades completed by telephone, internal trades and customer trades. Trades executed by electronic systems, Reuters D2000-1 and D2000-2, and EBS, are electronically entered into the record. Other trades must be entered manually. A dealer starts the day with his overnight position, and enters his trades during the day. Thus, we can track the dealers’ inventory position. The record gives the dealers’ information on their inventories and accumulated profits during the day and during the last month. In this part of the data set, we have information on transaction time, transaction price, volume, counterpart and which currency the dealer bought and which he sold.

Figure 2 presents inventory positions measured in USD for the three DEM/USD dealers and in DEM for the NOK/DEM dealer. There are pronounced differences in the development of dealer inventories during the week. Dealer 1 has a maximum long dollar position was USD 21 million, while the maximum short dollar position was USD 22 million. Dealer 2 has only small open positions. During the week, he never had positions for more than USD 4 million. Still, he earned on average USD 8030 each day. Compared with Dealer 1, the inventory of Dealer 2 shows much less persistence. After initiating an open position, Dealer 2 squares the position in the next trade. Dealer 3 has a maximum long DEM position of DEM 51 million and a maximum short position of DEM 40 million. Dealer 4 has a maximum USD position of USD 8 million and a maximum short position of USD 11 million. All dealers ends the day with a position close to zero. This finding is consistent with Lyons (1995) and Yao (1998).

The dealers informed us that Dealer 1 and Dealer 2 always end the day with a position close to zero. However, Dealer 3 and Dealer 4 may have overnight positions. The most likely explanation for this is that (i) the volatility in European currency crosses is low and (ii) it is expensive to square the position at the end of the day in less traded currency pairs.
The evolution of dealers inventory over the week. Dealer 1 (panel a), 2 (panel b) and 4s (panel d) inventory are in USD million, while Dealer 3s inventory is in DEM million. The horizontal axis is in "transaction"-time. Vertical lines indicate end of day. The numbers are in USD million.
3.2 Information from electronic trading systems

The second component of the data set consists of all trades executed on the three electronic trading systems, Reuters Dealing 2000-1, Reuters Dealing 2000-2 and EBS.

3.2.1 Reuters Dealing 2000-1

The Reuters D2000-1 allows dealers to communicate quotes and trades bilaterally via computer rather than verbally over the telephone. There are some advantages by using Reuters D2000-1 compared with using telephone. First, D2000-1 allows dealers to request or handle quotes with four different counterparties simultaneously. Second, the computerized documentation reduces the paperwork required by the dealers. These advantages explain why almost all direct inter-bank trades are executed by D2000-1.

From the Reuters D2000-1 system, we have the following information: (i) The time the communication is initiated and ended (to the second); (ii) the name of the counterpart; (iii) who is initiating the trade; (iv) the quantity requested; (v) the bid and ask quotes (may also be just bid or ask); and if the conversation results in a trade, (vi) the quantity traded; and (vii) the transaction price.

Figure 3 provides an example of a D2000-1 conversation when a trade takes place. A conversation starts by a dealer contacting another dealer. The contacting dealer usually asks for bid and ask quotes for a certain amount, for instance USD one million. When seeing the quotes, the contacting dealer states whether he wants to buy or sell. In some cases, he may ask for better quotes, or end the conversation without trading. However, most conversations result in a trade. All D2000-1 transactions in the data set take place at the quoted bid or ask.

3.2.2 Electronic broker systems

Electronic broker systems do the same job as humans (voice-brokers), but are more efficient. A bank dealer with access to one of the electronic broker systems can enter his buy and/or sell price into the system as a market maker. D2000-2 and EBS show only the highest bid and the lowest ask, thereby minimizing the spread. These will normally be entered by different banks, but the identity of the inputting bank is not shown. The total quantity that is entered for trade on these quotes is also shown. This means that when more than one bank input the same best bid (ask) price, the quantity shown is the sum of that offered by these banks. This quantity is shown as integers of USD one million, and in some bilateral cases DEM one million. When the quantity is at least ten million, “R” is entered on the D2000-2 screen. EBS shows two set of bid and ask quotes, for amounts up to ten million USD or DEM, and for amounts of at least ten millions. This information is optional on the D2000-2 screen. The limit orders below the best bid and above the best ask, and the respective quantities, are entered and stored in the systems, but not revealed over D2000-2 and EBS. Another bank dealer, possibly in the same bank, can hit the bid or the ask, by typing instructions on his own machine.

In some cases, the contacting dealer also tells whether he wants to buy or sell.

6In some cases, the contacting dealer also tells whether he wants to buy or sell.
Figure 3: D2000-1 conversation

From "CODE" "FULL NAME HERE" *0728GMT ????98 */7576
Our Terminal: "CODE" Our user: "FULL NAME HERE"

DEM 1
45.47
BA> I BUY
TO CONFIRM AT 1,8147 I SELL 1 MIO USD
VAL ??(+2)??98
MY DEM TO "FULL NAME HERE"
THANKS AND BYE
TO CONFIRM AT 1,8147 I BUY 1 MIO USD
VAL ??(+2)??98
MY USD TO "FULL NAME HERE"
THANKS FOR DEAL FROS. CHEERS
#
END REMOTE

^ ## TKT EDIT OF CNV 7576 BY "CODE" 0728GMT ????98
^ STATUS CONFIRMED
^ ##ENDED AT 07:27 GMT#

(293 CHARS)

An example of a D2000-1 conversation when a trade takes place. The first word means that the call came “From” another dealer. There are information regarding the institution code and the name of the counterpart, and the time (Greenwich Mean), the date, and the number assigned to the communication. DEM 1 means that this is a request for a spot DEM/USD quote for up to USD 1 million, since it is implicitly understood that it is DEM against USD. At line 4, we find the quoted bid and ask price. Only the last two digits of the four decimals are quoted. In this case, the bid quote is 1.8145 and the ask quote is 1.8147. When confirming the transaction, the communication record provides the first three digits. In this case, the calling dealer buys USD 1 million at the price 1.8147. The record confirms the exact price and quantity. The transaction price always equals the bid or the ask. There is also information regarding the settlement bank. “My DEM to “Settlement bank” identifies the settlement bank of “our bank”, while “My USD to “Settlement bank” identifies the settlement bank of the other bank. It is usual to end a conversation with standard phrases, such as “thanks and bye,” “thanks for deals friends.”
In our data set, trades executed by electronic broker systems provide almost exactly the same information as the D2000-1 records. The exception is that only the transaction price can be observed, that is, we cannot see the bid and ask spread. However, the spread is tight - very often only one pip (that is, 0.0001 DEM).

3.3 The final data set

Table 2 reports statistics on the dealers’ daily activity during the sample period. Dealer 1 has an average daily trading volume of USD 443 million. Dealer 2 averages USD 142 million in DEM/USD. He also has some trading in European currency crosses. Dealer 3’s average daily trading volume in NOK/DEM is DEM 292 million. He also trades in other currency pairs. Most important is customer trading in NOK/USD. Dealer is one of the major players in the Norwegian market, with 25% of the daily trading volume of USD 0.7 billion in NOK/DEM in the Norwegian market (BIS, 1998). Dealer 4 also trades in several currency pairs. Her trading in DEM/USD averages USD 145 million. Trading in SEK/DEM is also important for this dealer. From table 2 we can see that there is considerable daily variation in turnover.

<table>
<thead>
<tr>
<th></th>
<th>Mon.</th>
<th>Tue.</th>
<th>Wed.</th>
<th>Thu.</th>
<th>Fri.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dealer 1</td>
<td>DEM/USD Amount</td>
<td>302</td>
<td>491</td>
<td>464</td>
<td>395</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>133</td>
<td>221</td>
<td>192</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>Dealer 2</td>
<td>DEM/USD Amount</td>
<td>138</td>
<td>164</td>
<td>178</td>
<td>82</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>95</td>
<td>99</td>
<td>111</td>
<td>56</td>
<td>91</td>
</tr>
<tr>
<td>Dealer 3</td>
<td>NOK/DEM Amount</td>
<td>373</td>
<td>304</td>
<td>325</td>
<td>79</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>73</td>
<td>71</td>
<td>87</td>
<td>31</td>
<td>70</td>
</tr>
<tr>
<td>Dealer 4</td>
<td>DEM/USD Amount</td>
<td>115</td>
<td>201</td>
<td>82</td>
<td>31</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>64</td>
<td>126</td>
<td>47</td>
<td>18</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>All trades Number</td>
<td>104</td>
<td>111</td>
<td>133</td>
<td>67</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 2: Trading volumes and number of trades

Figure 4 presents two plots. The transaction prices for DEM/USD is presented in the left section of the figure, while transaction prices for NOK/DEM is presented in the right section.

Tables 3-6 present some statistics about the different types of trades. Dealer 2 and Dealer 4 rely almost exclusively on electronic broker systems when trading DEM/USD. Electronic broker systems are also important for Dealer 1. Electronic broker systems account for 77 per cent of his total volume. Note that most of the outgoing trades are executed by D2000-2, while most of the incoming trades are executed by EBS. The dealers told us that their choice of trading incoming or outgoing at electronic trading systems is related to the fee structure. Dealer 3 also uses electronic broker systems to some extent, but only for 28% of total volume. The majority of these trades

7 Another slight difference is that EBS deals are only time stamped in minutes while D2000-1 deals and D2000-2 deals are time stamped in seconds.

8 This number reflects NOK/DEM trading with at least one Norwegian bank as counterpart. Taking account of some NOK/DEM trading executed outside of Norway the share will be somewhat lower.
Figure 4: Transaction prices

Transaction prices during the week. The source is all the spot transactions conducted electronically by the whole FX department of the bank. The horizontal axis is in “transaction”-time. Vertical lines indicate end of day.

are executed by D2000-2 because there is no active trading in NOK/DEM at EBS. Dealer 1 and Dealer 3 also use traditional voice brokers. For Dealer 1 voice-broker trades account for 11% of total volume, while for Dealer 3 the number is 8%.

Table 3: Descriptive statistics: Dealer 1

<table>
<thead>
<tr>
<th></th>
<th>Direct trading</th>
<th>Electronic brokers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D2000-1</td>
<td>D2000-2</td>
<td>EBS</td>
<td>Voice broker</td>
<td>Customer</td>
<td>Internal trades</td>
<td>Total</td>
</tr>
<tr>
<td>No. of trades</td>
<td>78</td>
<td>1</td>
<td>109</td>
<td>276</td>
<td>250</td>
<td>177</td>
<td>57</td>
</tr>
<tr>
<td>– % total</td>
<td>7.9</td>
<td>0.1</td>
<td>11.0</td>
<td>27.8</td>
<td>25.2</td>
<td>17.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Volume</td>
<td>125</td>
<td>5</td>
<td>203</td>
<td>606</td>
<td>456</td>
<td>447</td>
<td>242</td>
</tr>
<tr>
<td>– % total</td>
<td>5.6</td>
<td>0.2</td>
<td>9.2</td>
<td>27.4</td>
<td>20.6</td>
<td>10.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Average size</td>
<td>1.6</td>
<td>NA</td>
<td>1.9</td>
<td>2.2</td>
<td>1.8</td>
<td>2.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Median size</td>
<td>1.0</td>
<td>NA</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Stdev.</td>
<td>1.7</td>
<td>NA</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Min</td>
<td>0.3</td>
<td>NA</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Max</td>
<td>10.0</td>
<td>NA</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
<td>9.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

The table lists different types of trades over the sample period, one week in March 1998. If possible, the trades are separated as incoming (inc.) or outgoing (out.). All dealers use D2000-1 only for incoming trades. All volume numbers are measured in USD. Dealer 1 did only trade in DEM/USD.

Dealer 1 and Dealer 3 use direct trading to some extent, that is, they give quotes on request. They do not use outgoing direct trades since this was regarded as expensive. Dealer 3 was also concerned by not signalling his inventory position. For Dealer 1 direct trading account for less than 10% of total volume, while for Dealer 3 direct trading account for 23% of total volume.

Dealer 2 and Dealer 4 have some customer trading, but not in DEM/USD. For Dealer 1 customer trades account for only 3% of total trading. Customer trading is very important for Dealer 3. About 17% of his trading in NOK/DEM are with customers. In addition, he has considerable customer trading in other currency crosses. Most important is NOK/USD.

Dealers use internal trades to adjust their inventory position. Instead of trading in the market, they can trade with another dealer in the same bank. All dealers have some internal trades. Other types of trades, order and option/hedge, are less important for these dealers.
Table 4: Descriptive statistics: Dealer 2

<table>
<thead>
<tr>
<th></th>
<th>Direct trading</th>
<th>Electronic brokers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D2000-1 Inc.</td>
<td>D2000-2 Inc.</td>
<td>EBS Inc.</td>
<td>Customer</td>
<td>Internal</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of trades</td>
<td>5</td>
<td>0</td>
<td>35</td>
<td>191</td>
<td>151</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– % total</td>
<td>1.1</td>
<td>0.0</td>
<td>7.7</td>
<td>42.3</td>
<td>33.4</td>
<td>14.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volume</td>
<td>5</td>
<td>0</td>
<td>63</td>
<td>316</td>
<td>215</td>
<td>106</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– % total</td>
<td>0.7</td>
<td>0.0</td>
<td>8.8</td>
<td>44.4</td>
<td>30.2</td>
<td>14.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average size</td>
<td>1.0</td>
<td>NA</td>
<td>1.8</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Median size</td>
<td>1.0</td>
<td>NA</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Stdev.</td>
<td>0.4</td>
<td>NA</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Min</td>
<td>0.5</td>
<td>NA</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Max</td>
<td>1.5</td>
<td>NA</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

The table lists different types of trades over the sample period, one week in March 1998. If possible, the trades are separated as incoming (inc.) or outgoing (out.). All dealers use D2000-1 only for incoming trades. All volume numbers are measured in USD.

Dealer 2 had 62 trades in other exchange rates than DEM/USD, which is 12.1% of the total number of trades.

Table 5: Descriptive statistics: Dealer 3

<table>
<thead>
<tr>
<th></th>
<th>Direct trading</th>
<th>Electronic brokers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D2000-1 Inc.</td>
<td>D2000-2 Inc.</td>
<td>EBS Inc.</td>
<td>Customer</td>
<td>Internal</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of trades</td>
<td>90</td>
<td>3</td>
<td>59</td>
<td>46</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>– % total</td>
<td>27.1</td>
<td>0.9</td>
<td>17.8</td>
<td>13.9</td>
<td>0.0</td>
<td>0.6</td>
<td>4.8</td>
<td>17.1</td>
</tr>
<tr>
<td>Volume</td>
<td>337</td>
<td>4</td>
<td>223</td>
<td>176</td>
<td>0</td>
<td>20</td>
<td>114</td>
<td>246</td>
</tr>
<tr>
<td>– % total</td>
<td>23.1</td>
<td>0.3</td>
<td>15.3</td>
<td>12.1</td>
<td>0.0</td>
<td>1.4</td>
<td>7.8</td>
<td>18.3</td>
</tr>
<tr>
<td>Average size</td>
<td>3.7</td>
<td>1.4</td>
<td>3.8</td>
<td>3.8</td>
<td>NA</td>
<td>10.0</td>
<td>7.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Median size</td>
<td>0.6</td>
<td>1.5</td>
<td>3.0</td>
<td>3.0</td>
<td>NA</td>
<td>10.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Stdev.</td>
<td>4.9</td>
<td>0.3</td>
<td>2.5</td>
<td>2.5</td>
<td>NA</td>
<td>0.0</td>
<td>2.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Min</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>10.0</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Max</td>
<td>40.0</td>
<td>2.0</td>
<td>20.0</td>
<td>14.0</td>
<td>NA</td>
<td>10.0</td>
<td>15.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

The table lists different types of trades over the sample period, one week in March 1998. If possible, the trades are separated as incoming (inc.) or outgoing (out.). All dealers use D2000-1 only for incoming trades. All volume numbers are measured in DEM.

Dealer 3 had 253 trades in other exchange rates than NOK/DEM, which is 38.1% of the total number of trades.

Table 6: Descriptive statistics: Dealer 4

<table>
<thead>
<tr>
<th></th>
<th>Direct trading</th>
<th>Electronic brokers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D2000-1 Inc.</td>
<td>D2000-2 Inc.</td>
<td>EBS Inc.</td>
<td>Customer</td>
<td>Internal</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of trades</td>
<td>0</td>
<td>1</td>
<td>110</td>
<td>109</td>
<td>168</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– % total</td>
<td>0.0</td>
<td>0.2</td>
<td>25.3</td>
<td>25.1</td>
<td>38.6</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Volume</td>
<td>0</td>
<td>1</td>
<td>196</td>
<td>235</td>
<td>227</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– % total</td>
<td>0.0</td>
<td>0.1</td>
<td>27.0</td>
<td>32.3</td>
<td>31.2</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Average size</td>
<td>NA</td>
<td>1</td>
<td>1.8</td>
<td>2.2</td>
<td>1.4</td>
<td>1.7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Median size</td>
<td>NA</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Stdev.</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.0</td>
<td>0.6</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Min</td>
<td>NA</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Max</td>
<td>NA</td>
<td>1</td>
<td>5.0</td>
<td>8.0</td>
<td>5.0</td>
<td>3.0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

The table lists different types of trades over the sample period, one week in March 1998. If possible, the trades are separated as incoming (inc.) or outgoing (out.). All dealers use D2000-1 only for incoming trades. All volume numbers are measured in USD.

Dealer 4 had 353 trades in other exchange rates than DEM/USD, which is 44.8% of the total number of trades. Most important was trading in SEK/DEM.
4 The model

This section presents the model which we test empirically. We use the model of Madhavan and Smidt (1991), which is the same model as in Lyons (1995) and Yao (1998).

Consider a pure exchange economy with a risk free and a risky asset. The risky asset represents currency. There are \(n \) dealers, and \(T \) periods (the whole trading day). The model focuses on the pricing decision of a representative dealer \(i \) (market maker), so each period is characterized by one incoming order at dealer \(i \)'s quote. Incoming means that the bilateral contact was initiated by dealer \(i \)'s counterparty, denoted \(j \) (aggressor). So periods are in “trading”- or “transaction”-time, and not in “clock-time”. At time \(T \) the true value, \(\tilde{V} \), of the currency is revealed. The value in period 0 is known and equal to \(r_0 \). After trading in period \(t \), there arrives some new public information \(r_t \sim IID (0, \sigma^2_r) \). Private information is short-lived in the sense that when \(r_t \) arrives at time \(t \) agents know that the true value is described as \(V_t = \sum_{\tau=0}^{t} r_\tau \).

Information and inventory effects are incorporated through two postulated behavioral equations:

\[
Q_{jt} = \theta (\mu_{jt} - P_a) + X_{jt} \tag{1}
\]

\[
P_a = \mu_a - \alpha (I_a - I^*_a) + \gamma D_t. \tag{2}
\]

Equation (1) states that the quantity \(Q_{jt} \) dealer \(j \) wants to trade in period \(t \), depends on the difference between his conditional expectation of \(V_t (\mu_{jt}) \) and \(i \)'s quote \((P_a) \). In addition dealer \(j \)'s desired trade \(Q_{jt} \) includes an mean zero stochastic element \(X_{jt} \), which represent inventory-adjustment trading and is uncorrelated with \(V_t \). The demand of the contacting dealer \(j \), (1), is optimal when dealers maximize exponential utility over end-of-period wealth. If his conditional expectation is above (below) dealer \(i \)'s quote, he tends to buy (sell) dollars. Since \(X_{jt} \) is only known to trader \(j \), \(Q_{jt} \) only provides a noisy signal to dealer \(i \) of \(V_t \). Note that \(Q_{jt} \) will be positive for sales to dealer \(j \) and negative for purchases.

Equation (2) is a typical inventory model, where price \((P_a) \) is linearly related to the dealer’s current inventory \((I_a) \). \(I^*_a \) is \(i \)'s desired inventory position, and \(\alpha (\geq 0) \) measures the inventory response effect. The effect from inventory is negative because the dealer may want to “shade” (reduce) his price to induce a sale if the inventory is above the preferred level. Dealer \(i \)'s conditional expectation of \(V_t \) is given by \(\mu_a \). \(D_t \) is a direction-dummy that takes the value 1 if it is a sale (trade at the ask) and \(-1 \) if it is a buy (trade at the bid), as seen from the Market Maker. Since the quoted spread is expected to widen with quantity to protect against adverse selection, we can think of \(\gamma D_t \) as half of the spread for quantities close to zero.

The price is set such that it is ex post regret-free after observing the trade \(Q_{jt} \). Regret-free, in the sense of Glosten and Milgrom (1985), means that conditional on observing the size and the direction of the order, dealer \(i \) does not want to change his quote. In reality dealers give both buy and sell prices for a given quantity. If the contacting dealer buys, the bid price reflects the expectation conditional on a buy.

When transparency is low there may exist private information, and this can be modeled through the informational environment. Figure 5 summarizes the information structure, seen from the
Both dealers’ prior belief (μ_t) on the full information value V_t are each period based on public information, such as public news and information on market-wide order flows from voice-brokers or electronic broker systems, and is given by

$$\mu_t = V_t + \tilde{\eta}_t. \quad (3)$$

The noise term, $\tilde{\eta}_t$, is independently normally distributed around zero with variance σ^2_{η}. Also at the beginning of each period t, dealer j receives a private signal C_{jt} of V_t,

$$\tilde{C}_{jt} = V_t + \tilde{\omega}_{jt}, \quad (4)$$

where the noise term, $\tilde{\omega}_{jt}$, is independently normally distributed around zero with σ^2_{ω}. The most important source of private information is a customer deal. For dealer i the quantity actually traded with dealer j gives a signal of C_{jt}.

To derive the price-schedule we need to insert for the expectations in (2) and (1). After observing the private signal C_{jt}, dealer j’s posterior (μ_{jt}) can be expressed as

$$\mu_{jt} = \lambda \mu_t + (1 - \lambda) C_{jt}, \quad (5)$$

where $\lambda = \sigma^2_{\omega} / (\sigma^2_{\eta} + \sigma^2_{\omega})$ since $\tilde{\eta}_t$ and $\tilde{\omega}_{jt}$ are independent of one another. Dealer i conditions on various possible Q_{jt}’s when setting his prices. More specifically, dealer i forms the sufficient statistic Z_{jt} given by

$$Z_{jt} = \frac{Q_{jt} / \theta + P_{it} - \lambda \mu_t}{1 - \lambda} = V_t + \omega_{jt} + \frac{1}{\theta(1 - \lambda)} X_{jt}. \quad (6)$$

Equations (1) and (5) are used to derive the second equality. Z_{jt} is normally distributed with mean V_t and variance $\sigma^2_{Z_{jt}}$ (equal to the variance of the two last terms). Furthermore, Z_{jt} is statistically

In the model, only dealer j observes a private signal, while the quoting dealer i does not. However, most interbank dealers receive some private signals from customer order flows. A dealer cannot choose when information arrives. Therefore, a Market Maker may have private information while he gives quotes. Bjønnes and Rime (2000) extends the Madhavan and Smidt (1991) model to a situation where both dealer j and dealer i observe a private signal.

Notice, although C_{jt} is a private signal, it is drawn from a common distribution. This is necessary to posit the demand equation in (1) where the θ-parameter is common for all dealers.
independent of \(\mu_t \). Dealer \(i \)'s posterior belief (\(\mu_{it} \)) is a weighted average of \(\mu_t \) and \(Z_{jt} \),

\[
\mu_{it} = \kappa \mu_t + (1 - \kappa) Z_{jt},
\]

(7)

where \(\kappa = \sigma_{Zjt}^2 / (\sigma_{\eta}^2 + \sigma_{Zjt}^2) \). Using the first equality in (6), we see that dealer \(i \)'s posterior belief is expressed as a function of any \(Q_{jt} \),

\[
\mu_{it} = \phi \mu_t + (1 - \phi) \left(\frac{Q_{jt}}{\theta} + P_{it} \right),
\]

(8)

where \(\phi = \kappa - \lambda (1 - \kappa) / (1 - \lambda) \).\(^{11}\) Inserting (8) into (2) gives

\[
P_{it} = \mu_t + \frac{1 - \phi}{\phi \theta} Q_{jt} - \frac{\alpha}{\phi} (I_{it} - I_{it}^*) + \frac{\gamma}{\phi} D_t + \epsilon_{it}.
\]

(9)

To test this equation, we need to replace \(\mu_t \) which is unobservable to the econometrician. The usual way to do this (e.g. Madhavan and Smidt, 1991; Lyons, 1995) is to express the period \(t \) prior belief as equal to the period \(t - 1 \) posterior, plus an expectational error term \(\epsilon_{it} \). The error term represents public information that arrives between trades. Hence,

\[
\mu_t = \mu_{it-1} + \epsilon_{it} = P_{it-1} + \alpha (I_{it-1} - I_{it}^*) - \gamma D_{t-1} + \epsilon_{it}.
\]

(10)

Substituting this expression for \(\mu_t \) into (9), gives

\[
\Delta P_{it} = \left(\frac{\alpha}{\phi} - \alpha \right) I_{it}^* + \left(\frac{1 - \phi}{\phi \theta} \right) Q_{jt} - \left(\frac{\alpha}{\phi} \right) I_{it-1} + \alpha I_{it-1} + \left(\frac{\gamma}{\phi} \right) D_t - \gamma D_{t-1} + \epsilon_{it}.
\]

(11)

Thus, the baseline model to test is

\[
\Delta P_{it} = \beta_0 + \beta_1 Q_{jt} + \beta_2 I_{it} + \beta_3 I_{it-1} + \beta_4 D_t + \beta_5 D_{t-1} + \epsilon_{it},
\]

(12)

where

\[
\epsilon_{it} = \beta_6 \nu_{it-1} + v_t, v_t \sim IID \left(0, \sigma_v^2 \right).
\]

(13)

This baseline model corresponds to the model in Lyons (1995), excluding his variable on market wide order flows. Since we are computing the price change between successor incoming trades, the perfect collinearity between inventory and trade quantity breaks down. The error term in (13) is MA(1) with \(\beta_6 < 0 \) due to the use of former incoming trade as an proxy for this periods prior belief (See Appendix). The coefficients \(\beta_1 \) and \(\beta_3 \) measure the information effect and inventory effect, respectively, while \(\beta_4 \) measure the transaction costs for small quantities. The model predicts that \(\{ \beta_1, \beta_3, \beta_4 \} > 0 \), \(\{ \beta_2, \beta_5 \} < 0 \), \(|\beta_2| > \beta_3 \), \(|\beta_4| > |\beta_5| \). The latter inequalities derive from the fact that \(0 < \phi < 1 \).

\(^{11}\)In the model it is assumed that the precision of a signal reflected in \(\theta \) is the same for all dealers. However, larger banks see more customer order flow. Thus, the assumption of equal precision may not hold. Since dealers know the identity of the counterparty in a bilateral trade, one can argue that they also have some knowledge of their precision. In broker trades the counterparty is anonymous when quoting. With information on counterparties, it is possible to construct variables that captures this by interviewing the dealers in question about whether a specific bank are better or worse informed than him (see Bjønnes and Rime, 2000).
5 Results

We start with presenting some descriptive statistics on the regression variables (section 5.1). Estimation results for the baseline model are presented in section 5.2. Here, our results are directly comparable to similar studies, for instance Lyons (1995) and Madhavan and Smidt (1991). Next, we discuss the results in section 5.3. In section 6 we examine dealer behavior more closely.

5.1 Descriptive statistics

Table 7 reports sample moments for relevant variables used in estimation plus inter-transaction times. The baseline model considers only incoming trades. Hence, we focus on the incoming interbank trades. For our dealers, between 94 and 100% of all trades are signed as incoming or outgoing. 65% of the signed interbank trades are incoming. Dealer 2 has the lowest share of incoming trades (43%), while Dealer 3 has the highest share (76%).

We focus on DEM/USD trading for Dealer 1, Dealer 2 and Dealer 4, and NOK/DEM trading for Dealer 3. Inventories are measured in USD for the DEM/USD dealers and in DEM for the NOK/DEM dealer. However, Dealer 2, Dealer 3 and Dealer 4 trade in several currency pairs. Since the exchange rate is the relative price between two currencies, the DEM inventories for the three DEM/USD dealers need not mirror the USD inventory exactly. Similarly, the NOK inventory of Dealer 3 may not mirror his DEM inventory exactly. This is a potential problem. We believe that a DEM/USD dealer located in Europe face higher risks with a USD inventory than a DEM inventory. Similarly, a dealer in NOK/DEM working in Norway will most likely be more concerned about his DEM inventory than his NOK inventory. The correlation between Dealer 2’s USD and DEM inventories is -0.98, while the correlation between Dealer 4’s USD and DEM inventories is -0.53. The correlation between Dealer 3’s DEM and NOK inventories is -0.79.

5.2 Baseline model

Table 8 presents the results for the four dealers over the five-day sample. The results of Lyons (1995) are also reported for comparison. We have deleted the overnight price changes since it is the pricing decision intra day the model is intended to explain. In most formulations we use the Generalized Method of Moments (GMM) estimation of Hansen (1982), with the Newey and West (1987) correction of the covariance matrix for heteroscedasticity and autocorrelation of unknown form. Madhavan and Smidt (1991) and Yao (1998) use GMM, while Lyons (1995) uses the Hildreth-Lu procedure, which is a linear estimation procedure for autoregressive error terms. We choose GMM because (i) it does not require the usual normality assumption, and because (ii) standard errors can be adjusted to take account of both heteroscedasticity and serial correlation. In all of the regressions the set of instruments equal the set of regressors. In this case, the parameter estimates parallel OLS parameter estimates. Whether we use GMM or Hildreth-Lu does not affect any of our conclusions.

The model receives very little support when estimated for our dealers. The “+” and “-” in parentheses in the first column indicate the expected sign of the coefficient. The only variables that are correctly signed and significant are the coefficients on D_t and D_{t-1}, which measure the
Table 7: Descriptive statistics: Sample moments for incoming trades

<table>
<thead>
<tr>
<th></th>
<th>ΔP_{it}</th>
<th>Abs(ΔP_{it})</th>
<th>Q_{jt}</th>
<th>Abs(Q_{jt})</th>
<th>I_t</th>
<th>Abs(I_t)</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dealer</td>
<td>Mean</td>
<td>0.1</td>
<td>4.5</td>
<td>0.25</td>
<td>1.80</td>
<td>-0.05</td>
<td>4.25</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0</td>
<td>3.0</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>1 Maximum</td>
<td>46.0</td>
<td>82.0</td>
<td>10.00</td>
<td>10.00</td>
<td>18.38</td>
<td>21.82</td>
</tr>
<tr>
<td>DEM/</td>
<td>Minimum</td>
<td>-82.0</td>
<td>0.0</td>
<td>-5.00</td>
<td>0.25</td>
<td>-21.82</td>
<td>0.00</td>
</tr>
<tr>
<td>USD</td>
<td>Std. Dev.</td>
<td>7.7</td>
<td>6.3</td>
<td>2.22</td>
<td>1.32</td>
<td>5.72</td>
<td>3.81</td>
</tr>
<tr>
<td>Dealer</td>
<td>Mean</td>
<td>-0.3</td>
<td>6.9</td>
<td>0.18</td>
<td>1.48</td>
<td>0.06</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0</td>
<td>4.0</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2 Maximum</td>
<td>51.0</td>
<td>51.0</td>
<td>3.00</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>DEM/</td>
<td>Minimum</td>
<td>-50.0</td>
<td>0.0</td>
<td>-3.00</td>
<td>0.50</td>
<td>-3.00</td>
<td>0.00</td>
</tr>
<tr>
<td>USD</td>
<td>Std. Dev.</td>
<td>11.0</td>
<td>8.6</td>
<td>1.64</td>
<td>0.71</td>
<td>1.16</td>
<td>0.95</td>
</tr>
<tr>
<td>Dealer</td>
<td>Mean</td>
<td>0.4</td>
<td>12.1</td>
<td>-0.85</td>
<td>3.77</td>
<td>1.17</td>
<td>9.50</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0</td>
<td>10.0</td>
<td>-0.28</td>
<td>2.00</td>
<td>1.72</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>3 Maximum</td>
<td>50.0</td>
<td>55.0</td>
<td>20.00</td>
<td>40.00</td>
<td>48.13</td>
<td>48.13</td>
</tr>
<tr>
<td>NOK/</td>
<td>Minimum</td>
<td>-55.0</td>
<td>0.0</td>
<td>-40.00</td>
<td>0.02</td>
<td>-40.17</td>
<td>0.15</td>
</tr>
<tr>
<td>DEM</td>
<td>Std. Dev.</td>
<td>16.8</td>
<td>11.7</td>
<td>6.40</td>
<td>5.24</td>
<td>13.25</td>
<td>9.27</td>
</tr>
<tr>
<td>Dealer</td>
<td>Mean</td>
<td>-0.1</td>
<td>4.5</td>
<td>-0.20</td>
<td>1.53</td>
<td>-0.50</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>-0.1</td>
<td>2.0</td>
<td>-1.00</td>
<td>1.00</td>
<td>-0.76</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>4 Maximum</td>
<td>40.0</td>
<td>41.0</td>
<td>5.00</td>
<td>5.00</td>
<td>8.24</td>
<td>10.76</td>
</tr>
<tr>
<td>DEM/</td>
<td>Minimum</td>
<td>-41.0</td>
<td>0.0</td>
<td>-5.00</td>
<td>1.00</td>
<td>-10.76</td>
<td>0.00</td>
</tr>
<tr>
<td>USD</td>
<td>Std. Dev.</td>
<td>8.0</td>
<td>6.7</td>
<td>1.73</td>
<td>0.83</td>
<td>2.64</td>
<td>1.71</td>
</tr>
</tbody>
</table>

$ΔP_{it}$ is the change in price between two incoming trades in pips, and Abs($ΔP_{it}$) is the absolute value of this change. Q_{jt} is signed incoming trade measured in millions, positive for a purchase from dealer j, and negative for a sale. Abs(Q_{jt}) is the absolute value of each incoming trade. I_t is inventory at the end of period t, and Abs(I_t) is the absolute value of the inventory. Δt is inter-transaction time between two incoming trades in minutes. Sample: One week in March 1998.

Effective spread for Q_{jt} close to zero. For DEM/USD, the estimated baseline spread, D_t, varies between 3.3 to 10.5 pips. These estimates are implausible high. For NOK/DEM the estimated spread is 10.8. There is no evidence that dealers increase the quoted spread when volume (Q_{jt}) increases due to private information. Similarly, there is no evidence that dealers adjust their quotes to induce a trade in a certain direction, so to control inventory.

In search for information and inventory effects, we did several experiments. First, we excluded small trades (less than one million). Second, we tried to exclude extreme observations (large price changes). Third, we included customer orders in the sample. Fourth, we addressed the potential importance of transaction time. The Madhavan and Smidt model does not imply any relation between inter-transaction time and the information content of order flow. However, other modelling approaches suggest such a relationship. In Easley and O’Hara (1992) order flow is more informative when trading intensity is high, while Admati and Pfleiderer (1988) suggest the opposite. None of the experiments changed the results presented in table 8 significantly.

Next, consider the results for Lyons dealer. Here, all coefficients have expected signs and are significantly different from zero. From the coefficient on D_t, the estimated baseline spread is 2.1 pips (2×1.04). The dealer widens his spread with 2.8 pips ($2 \times 0.14 \times 10$) per USD ten million to protect against adverse selection. Furthermore, the dealer tends to motivate inventory decumulation by shading the price by 0.8 pips (10×0.078) for every USD ten million of net open position.
Table 8: Results for the baseline model, equation (12). Regression of ΔP_t between incoming trades.

<table>
<thead>
<tr>
<th></th>
<th>Dealer 1 DEM/USD</th>
<th>Dealer 2 DEM/USD</th>
<th>Dealer 3 NOK/DEM</th>
<th>Dealer 4 DEM/USD</th>
<th>Lyons DEM/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.01</td>
<td>-0.86</td>
<td>-1.24</td>
<td>0.92</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(-1.05)</td>
<td>(-1.14)</td>
<td>(1.24)</td>
<td>(-0.99)</td>
</tr>
<tr>
<td>Trade Q_{jt} (+)</td>
<td>-0.13</td>
<td>-0.96</td>
<td>-1.41</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.50)</td>
<td>(-1.11)</td>
<td>(0.50)</td>
<td>(-0.89)</td>
<td>***(3.03)</td>
</tr>
<tr>
<td>Inventory I_t (-)</td>
<td>0.06</td>
<td>2.52</td>
<td>-0.07</td>
<td>-0.80</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>***(3.19)</td>
<td>(-0.37)</td>
<td>(-0.75)</td>
<td>***(-3.56)</td>
</tr>
<tr>
<td>Inventory I_{t-1} (+)</td>
<td>-0.03</td>
<td>-0.98</td>
<td>-0.13</td>
<td>0.36</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(-0.30)</td>
<td>(-0.79)</td>
<td>(-0.67)</td>
<td>(0.37)</td>
<td>***(2.95)</td>
</tr>
<tr>
<td>Direction D_t (+)</td>
<td>1.65</td>
<td>5.24</td>
<td>5.38</td>
<td>3.62</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>***(2.47)</td>
<td>***(3.03)</td>
<td>***(3.59)</td>
<td>***(1.96)</td>
<td>***(4.86)</td>
</tr>
<tr>
<td>Direction D_{t-1} (-)</td>
<td>-0.25</td>
<td>-1.07</td>
<td>-7.26</td>
<td>-0.23</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>(-0.71)</td>
<td>(-1.65)</td>
<td>***(-5.31)</td>
<td>(-0.29)</td>
<td>***(-6.28)</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-0.06</td>
<td>-0.09</td>
<td>0.03</td>
<td>0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-1.02)</td>
<td>(-0.91)</td>
<td>(0.49)</td>
<td>(1.02)</td>
<td>***(-2.61)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.02</td>
<td>0.08</td>
<td>0.23</td>
<td>0.01</td>
<td>0.22</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.99</td>
<td>1.97</td>
<td>2.10</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>432</td>
<td>186</td>
<td>144</td>
<td>272</td>
<td>839</td>
</tr>
</tbody>
</table>

Estimated by GMM and variable Newey-West correction. t-values in parenthesis, and ***“, **“ and ”*“ indicate significance at the 1%, 5% and 10%-level respectively. All coefficients multiplied by 10^4, except the AR(1) term. ”Lyons DEM/USD” is from Lyons’ (1995). He uses the Hildreth-Lu procedure. The dependent variable is ΔP_t, and is the change in price between incoming trades. Q_{jt} is signed incoming trade measured in millions, positive for a purchase from dealer j, and negative for a sale. I_t is inventory at the end of period t. D_t is an indicator variable picking up the direction of the trade, positive for purchases (at the ask) and negative for sales (at the bid). The ”+” and ”-” in parentheses in the first row indicate the expected sign of the coefficient. We use all incoming trades at the D2000-1 (direct trading), D2000-2 and EBS (indirect trading).

5.3 Discussion

The two most obvious explanations for these different results are (i) difference in trading styles and (ii) changes in trading environment. Of course, as the message of this paper and microstructure theory in general, the two explanations are interrelated. Lyons’ dealer is a typical “jobber”, that is, he makes money from the bid and ask spread in the interbank market. To earn money he must be at the favorable side of the bid and ask most of the time. This means that the majority of trades must be incoming trades. Of total 952 signed trades, 843 are incoming trades. Most of his trading is through the direct system D2000-1.12 As discussed in section 2, direct trading is probably the most informative trading channel. The dealer also had agreements to trade with several large dealers, making it important to protect against private information. This may explain the information effect. The inventory effect may also be explained by his trading style. Given that most of the trades are direct incoming, he must wait for other dealers to initiate a trade. To attract trades, and then earn from the bid and ask spread, he must give competitive quotes. By shading quotes he makes one price particularly attractive. Furthermore, he did not have any customer order flow, i.e. no private information signals, and hence would be less worried about that shading of prices for control of inventory would signal his inventory. However, as a major dealer he took part in a lot of informative trading. Finally, in 1992 when Lyons’ dealer operated, trading opportunities were limited to direct trading through D2000-1 or telephone, or indirect trading through voice-brokers. Among these, D2000-1 was the most popular. A majority of direct trading went through D2000-1.

(over 90% a couple of years later, according to Evans and Lyons (1999)), and between 60 and 70% of interbank trades were direct in 1992 (BIS, 1993).

Like Lyons’ dealer, Dealer 1, Dealer 2 and Dealer 4 have only limited customer order flows. However, these dealers do not make money from the bid and ask spread. For Dealer 1 and Dealer 2 more than 50% of the interbank trading volume were outgoing. For Dealer 4, 41% of the interbank trading volume were outgoing. Thus, it seems that these dealers try to make money from exchange rate movements, and therefore must use outgoing trades, instead of “earning” half of the spread by giving quotes in incoming trades. In doing so, all three dealers rely heavily on electronic broker systems. They take limited positions for a short time. Most pronounced is this trading strategy for Dealer 2. The size of the position taking depends on the liquidity of the electronic broker systems. Execution speed and price are important. Instead of trading large quantities, they frequently trade smaller quantities. Thus, their trading style may explain the insignificant coefficients.

Dealer 3 has large customer order flows. He told us that he refuses to use bid shading because he was concerned about signalling his inventory position to other dealers. The lack of any information effect is harder to explain. Can his position as the largest Market Maker in this market be of importance? The data in Bjønnes and Rime (2000) indicate that he regards most of his counterparts as inferiorly informed.

As we have seen, there are several reasons to believe that the model is better suited for “jobbers” like Lyons’ dealer than for other types of dealers. In a survey by Cheung et al. (2000), dealers in UK were asked which best characterized their dealing method. The answers were equally shared between the four categories: “Technical trading-based”, “Customer orders-based”, “Fundamentals-based” and “Jobbing”. Our dealers belong to the three first mentioned categories. Further, between 1992/1993 and 1997/1998, the share of dealers that said they belonged to the “Jobber” category decreased remarkably. Is the introduction of electronic broking systems and tiny spreads some of the explanation for this dramatic fall in this category? In the survey the dealers were also asked about which factors that determine the spread. Most important was the “market convention”. If they change the spread from the “market norm,” the most important factor was liquidity. Changing volume and inventory effects were considered as less important. These answers may explain some of our failures to find evidence of any information or inventory effect.

6 Information effect and inventory control under the new market structure

We will proceed with investigating information and inventory effects under the new microstructure. We start with estimating the Madhavan-Smidt model for possible differences between indirect and direct trades (6.1). Next, we consider inventory control and information effect separately. Inventory control is analyzed in 6.2, while information effect is analyzed in 6.3.

However, “market conventions” may include an private information component (see Table 16 in the next section). Typically, large dealers establish such “market conventions”, for instance that their quotes are good for at least USD 10 million and that the spread is fixed. For larger amounts (for instance USD 50 million), there can be another “market convention” with a wider spread. Thus, even with “market conventions” the spread may widen with quantity traded. This is not recognized by Cheung et al. (2000).
The information effect and the degree of bid shading may depend on the trading system used. As mentioned in Section 2, there are at least four important differences between direct and indirect trading. These four characteristics suggest that broker trades may be less informative than trades executed directly. It is also likely that dealers shade quotes differently depending on whether they trade direct or indirect. In direct trades, dealers may be afraid of using bid shading since this might signal their position. This is not the case in indirect trades. Therefore, we expect dealers to shade quotes less when trading direct.

We model the information content in the different trading systems such that the updated belief depends on which system is used, hence,

\[\mu_t = d_t \left[\kappa^D \mu_t + \left(1 - \kappa^D \right) Z_{jt} \right] + (1 - d_t) \left[\kappa^I \mu_t + \left(1 - \kappa^I \right) Z_{jt} \right], \]

(14)

where \(d_t \) is a dummy that equals one if the trade is direct and zero if the trade is indirect, and \(Z_{jt} \) is defined as in equation (6). The superscript “D” means direct, while the superscript “I” means indirect, so \(\kappa^D \) and \(\kappa^I \) are the weights on prior belief when the trade is direct and indirect, respectively. The hypothesis is that \(Z_{jt} \) is a more precise signal in direct trades, that is, \(\kappa^D < \kappa^I \). This implies that \(\phi^D < \phi^I \) in the updating formula (see appendix).

We also open for the possibility that dealers’ inventory control behavior differ on different systems, such that

\[P_t = \mu_t - \left[\alpha^D d_t + \alpha^I (1 - d_t) \right] (I_t^* - I_t^*) + \frac{\gamma}{1 - \alpha^D} D_t. \]

(15)

The relative size of \(\alpha^D \) and \(\alpha^I \) is not obvious. It may be that the risk of revealing your inventory through shading in direct trading makes \(\alpha^D < \alpha^I \). However it may also be that the high degree of liquidity on the electronic brokers makes shading unnecessary, so \(\alpha^I = 0 \).

Given that there already exist different trading systems with very different characteristics in the market, and has done so for several years, we believe such an description of information content and dealer behavior as above may be part of a equilibrium. We do not pretend however that this is derived from first principles.

Inserting (14) into (15), and replacing for \(\mu_t \) in a similar manner as before, gives

\[\Delta P_t = \left[\alpha^D d_t + \alpha^I (1 - d_t) \right] I_t^* - \left[\alpha^D d_{t-1} + \alpha^I (1 - d_{t-1}) \right] I_{t-1}^* + \frac{1 - \phi^D}{\phi^D} d_t + \frac{1 - \phi^I}{\phi^I} (1 - d_t) \]

\[Q_{jt} - \left[\alpha^D d_t + \alpha^I (1 - d_t) \right] I_t

\[+ \left[\frac{\gamma}{1 - \alpha^D} d_t + \frac{\gamma}{1 - \alpha^I} (1 - d_t) \right] D_t - \gamma D_{t-1} + \epsilon_t \]

(16)

Therefore, the model to test is

\[\Delta P_t = \beta_0 + \beta_0^D d_t + \beta_0^I (1 - d_t) + \beta_0^D Q_{jt} + \beta_1^D (1 - d_t) Q_{jt} + \beta_2^D d_t I_t + \beta_2^I (1 - d_t) I_t

\[+ \beta_3^D d_t I_{t-1} + \beta_3^I (1 - d_t-1) I_{t-1} + \beta_4^D d_t D_t + \beta_4^I (1 - d_t) D_t + \beta_5 D_{t-1} + \epsilon_t. \]

(17)
The model predicts that \(\{ \beta_1^{D}, \beta_1^{I}, \beta_3^{D}, \beta_3^{I}, \beta_4^{D}, \beta_4^{I} \} > 0, \{ \beta_1^{D}, \beta_2^{D}, \beta_5 \} < 0 \). The coefficient \(\beta_5 \) is the same as in the benchmark model. The coefficients \(\beta_1^{D} \) and \(\beta_1^{I} \) capture the information effect, while \(\beta_3^{D} \) and \(\beta_3^{I} \) capture the inventory control effect. If the information effect is more important when trading direct, we expect that \(\beta_1^{D} \) is significantly greater than \(\beta_1^{I} \). We also expect that quote shading is less attractive in direct trades. If this is the case, \(\beta_3^{I} \) should be significantly greater than \(\beta_3^{D} \). The error term will be MA(1) of the same reasons as above.

Table 9: Results for the system model, equation (17). Regression of \(\Delta P_{it} \)

<table>
<thead>
<tr>
<th></th>
<th>Dealer 1 DEM/USD</th>
<th>Dealer 3 NOK/DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.25</td>
<td>-1.20</td>
</tr>
<tr>
<td>Direct dummy (d_t)</td>
<td>-0.02</td>
<td>0.71</td>
</tr>
<tr>
<td>Direct dummy (d_{t-1})</td>
<td>0.99</td>
<td>3.10</td>
</tr>
<tr>
<td>Direct trade (d_t Q_{jt} (+))</td>
<td>1.07</td>
<td>-0.07</td>
</tr>
<tr>
<td>Indirect trade ((1 - d_t) Q_{jt} (+))</td>
<td>-0.37</td>
<td>1.10</td>
</tr>
<tr>
<td>Inventory (d_t I_{it} (-))</td>
<td>0.37</td>
<td>-0.22</td>
</tr>
<tr>
<td>Inventory ((1 - d_t) I_{it} (-))</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Inventory (d_{t-1} I_{it-1} (+))</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Inventory ((1 - d_{t-1}) I_{it-1} (+))</td>
<td>-0.11</td>
<td>-0.17</td>
</tr>
<tr>
<td>Direct (d_t D_t (+))</td>
<td>1.42</td>
<td>6.55</td>
</tr>
<tr>
<td>Indirect ((1 - d_t) D_t (+))</td>
<td>1.91</td>
<td>2.30</td>
</tr>
<tr>
<td>(D_{t-1} (-))</td>
<td>-0.37</td>
<td>-2.46</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.04</td>
<td>-0.16</td>
</tr>
</tbody>
</table>

Adjusted \(R^2 \) 0.04 0.20
Durbin-Watson stat 1.97 2.03
Observations 432 143

Estimated by GMM and variable Newey-West correction. \(t \)-values in parenthesis, and ***, ***, * indicate significance at the 1%, 5% and 10%-level respectively. All coefficients multiplied by \(10^4 \), except the AR(1) term. The dependent variable is \(\Delta P_{it} \) is the change in price between to incoming trades. \(Q_{jt} \) is signed incoming trade measured in millions, positive for a purchase from dealer \(j \), and negative for a sale. \(I_{it} \) is inventory at the end of period \(t \). \(D_t \) is an indicator variable picking up the direction of the trade, positive for purchases (at the ask) and negative for sales (at the bid). \(d_t \) is a dummy variable taking the value 1 if the trade is direct and 0 otherwise. The “+” and “-” in parentheses in the first row indicate the expected sign of the coefficient.

In table 9 we test this model. This test is only conducted for Dealer 1 and 3 since they are the only dealers with sufficient transactions at the direct trading system D2000-1. Again, the baseline spread variables enter with correct sign. This formulation however shows that at least for DEM/USD (Dealer 1) the direct trading channel seems to be more informative with an significant information effect coefficient on \(Q_{jt} \). Dealer 1 increases his spread with 2 pips for a USD 1 million trade. This number is implausibly large. However, the coefficient is only significantly different from zero at the ten-percent level. Somewhat surprising is that for Dealer 1 the indirect baseline
spread \((1 - d_j)D_t\) is larger than the direct baseline spread \(d_jD_t\). The opposite is the case for Dealer 3, where also there is a positive and significant effect from indirect trades.

Table 10: Results for baseline model, equation (12). Regression of \(\Delta P_{it}\) in incoming direct trades.

<table>
<thead>
<tr>
<th></th>
<th>Dealer 1 DEM/USD</th>
<th>Dealer 3 NOK/DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.42</td>
<td>-2.24</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(-1.23)</td>
</tr>
<tr>
<td>Trade (Q_{jt}) (+)</td>
<td>1.66</td>
<td>-0.73</td>
</tr>
<tr>
<td></td>
<td>**(2.07)</td>
<td>(-1.42)</td>
</tr>
<tr>
<td>Inventory (I_t) (-)</td>
<td>1.02</td>
<td>-0.80</td>
</tr>
<tr>
<td></td>
<td>*(1.71)</td>
<td>(-1.46)</td>
</tr>
<tr>
<td>Inventory (I_{it-1}) (+)</td>
<td>-0.81</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>(-1.62)</td>
<td>(0.69)</td>
</tr>
<tr>
<td>Direction (D_t) (+)</td>
<td>1.79</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td>(1.58)</td>
<td>***(3.12)</td>
</tr>
<tr>
<td>Direction (D_{it-1}) (-)</td>
<td>-1.42</td>
<td>-7.29</td>
</tr>
<tr>
<td></td>
<td>(-1.38)</td>
<td>***(-3.64)</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.84</td>
<td>1.93</td>
</tr>
<tr>
<td>Observations</td>
<td>75</td>
<td>87</td>
</tr>
</tbody>
</table>

Estimated by GMM and variable Newey-West correction. \(t\)-values in parenthesis, and “***”, “**” and “*” indicate significance at the 1%, 5% and 10%-level respectively. All coefficients multiplied by \(10^4\), except the AR(1) term. The dependent variable is \(\Delta P_{it}\), and is the change in price between two incoming trades. \(Q_{jt}\) is signed incoming trade measured in millions, positive for a purchase from dealer \(j\), and negative for a sale. \(I_t\) is inventory at the end of period \(t\). \(D_t\) is an indicator variable picking up the direction of the trade, positive for purchases (at the ask) and negative for sales (at the bid). The “+” and “−” in parentheses in the first row indicate the expected sign of the coefficient. We use only incoming trades through the D2000-1 (direct trading).

Table 10 presents estimation results for direct trades alone. This table confirms the information effect for DEM/USD. There are also indications that the Madhavan-Smidt model probably is better suited for direct trading than indirect trading, as indicated by the increased fit in the regression for Dealer 1.

6.2 Inventory control

Figure 2 show that inventory control is important to our dealers. To provide a brief estimate of mean reversion in dealer inventories, we estimate the following regression

\[
I_t - I_{it-1} = \alpha - \beta I_{it-1} + \epsilon_t, \quad (18)
\]

where \(I_{it-1}\) is the inventory in after the previous trade, incoming or outgoing. Here, the target inventory is assumed to be a constant. Most likely, the target inventory changes over time because of speculative positions taken (Lyons, 1997). Table 11 presents the results. All constant terms are close to zero, which means that the target inventory is close to zero. This is not a surprise given that most dealers close their positions at the end of the day. All slope coefficients are highly significant, varying between -0.11 and -0.80. The highest estimate means that 80% of deviations from target inventory is reversed during the next trade. With an average intertransaction time of only a few minutes, mean reversion is very fast.

If we let the target inventory vary, this would probably lead to intensified mean reversion.
Table 11: Results for equation (18). Mean reversion in dealer inventory I_d

<table>
<thead>
<tr>
<th>Dealer 1</th>
<th>Dealer 2</th>
<th>Dealer 3</th>
<th>Dealer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEM/USD</td>
<td>DEM/USD</td>
<td>NOK/DEM</td>
<td>DEM/USD</td>
</tr>
<tr>
<td>Constant</td>
<td>0.04</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>(0.45)</td>
<td>*(2.00)</td>
<td>(0.27)</td>
<td>(-1.41)</td>
</tr>
<tr>
<td>Lagged inventory (I_{d-1})</td>
<td>-0.11</td>
<td>-0.80</td>
<td>-0.19</td>
</tr>
<tr>
<td>***(-7.30)</td>
<td>***(-17.28)</td>
<td>***(5.11)</td>
<td>***(-7.52)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.05</td>
<td>0.40</td>
<td>0.09</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.30</td>
<td>2.01</td>
<td>2.04</td>
</tr>
<tr>
<td>Observations</td>
<td>912</td>
<td>446</td>
<td>246</td>
</tr>
</tbody>
</table>

Estimated by ordinary least squares. t-values in parenthesis, and "***", "**" and "+" indicate significance at the 1%, 5% and 10%-level respectively. The dependent variable is the change in dealer inventories measured in USD or DEM millions from the previous trade (in DEM/USD for Dealer 1, Dealer 2 and Dealer 4 and in NOK/DEM for Dealer 3), incoming or outgoing. I_{d-1} is inventory after the previous trade, incoming or outgoing.

Dealers also have several other options for controlling their inventory positions besides shading quotes in incoming trades, as presented in table 12 (excluding internal trades). Trades that increase the absolute size of the inventory are accumulating, while trades that decrease the absolute size of the inventory are decumulating. The majority of the incoming direct trades are accumulating. This is not surprising. If the dealer previous to an incoming direct trade has an inventory position close to zero, the trade will most likely generate an increase in the absolute inventory position since it is the contacting dealer who decides the quantity.

Table 12: Accumulating and decumulating trades

<table>
<thead>
<tr>
<th>Dealer 1</th>
<th>Dealer 2</th>
<th>Dealer 3</th>
<th>Dealer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct D2000-1</td>
<td>Incoming Electronic broker trades D2000-2 EBS</td>
<td>Outgoing Electronic broker trades D2000-2 EBS</td>
<td>Voice-broker</td>
</tr>
<tr>
<td>Decumulating</td>
<td>30</td>
<td>39</td>
<td>154</td>
</tr>
<tr>
<td>Accumulating</td>
<td>48</td>
<td>70</td>
<td>96</td>
</tr>
<tr>
<td>Dealer 2: Decumulating</td>
<td>1</td>
<td>7</td>
<td>131</td>
</tr>
<tr>
<td>Accumulating</td>
<td>4</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Dealer 3: Decumulating</td>
<td>40</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Accumulating</td>
<td>50</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Dealer 4: Decumulating</td>
<td>NA</td>
<td>66</td>
<td>122</td>
</tr>
<tr>
<td>Accumulating</td>
<td>NA</td>
<td>44</td>
<td>46</td>
</tr>
</tbody>
</table>

Trades that increase the absolute size of the inventory are accumulating, while trades that decrease the absolute size of the inventory are decumulating. All direct trades are incoming. Voice-broker trades are not signed.

For three of the dealers, the majority of incoming brokered trades are decumulating. There is no clear tendency that outgoing trades are decumulating. Interestingly, for three of the dealers (Dealer 1, Dealer 2 and Dealer 3) a trading pattern emerges. Most pronounced is this pattern for Dealer 2. Typically, a position is established by an outgoing trade on D2000-2 (accumulating). Next, the position is closed by an incoming trade on EBS (decumulating). The idea behind the trading strategy is to establish a position on the “slow/rigid” system (D2000-2) and closing the position at the “fast system” (EBS), according to the dealers. Thus, they trade outgoing at the “slow system” to initiate a trade. The position is closed by trading incoming at the “fast system.”
6.2.1 Inventory control in incoming trades

Given that inventory control seems to be at work, there might be effects in incoming trades that we have not uncovered. In particular, in the estimation of the baseline model in table 8 we assumed that the preferred inventory I^*_t was a constant. It might very well be time-varying, and Lyons suggested that it may be related to the expectation and hence related to trade Q_j. This still makes a significant coefficient for Q_j representing an information effect, but one should be careful with interpretation of the magnitude.

Another approach to the time varying preferred inventory, which focuses more on estimation of inventory control than information effect, might be to use of the sign of the last outgoing trade’s effect on inventory, as suggested by Yao. Information considerations aside, an outgoing purchase when inventory already is positive is an indication that preferred inventory is larger than the present. We implement this with an dummy being 1 (−1) if the preferred inventory was larger (smaller) than the present inventory, according to the test above. This is tested in the baseline model in table 13. All the Signed inventory dummies’ coefficients are correctly signed, and significant for dealer 2 and 3.\footnote{One could estimate I^*_t as an time varying coefficient with the Kalman filter, for example following a AR(1) process. This approach does not give any additional insights in our case.}

Table 13: Regression of ΔP_{it} from incoming trades. $(I_t - I^*_t)$ implemented as a dummy, \{1,−1\}, from inventory-accumulation in last outgoing trade.

<table>
<thead>
<tr>
<th>Dealer 1 (DEM/USD)</th>
<th>Dealer 2 (DEM/USD)</th>
<th>Dealer 3 (NOK/DEM)</th>
<th>Dealer 4 (DEM/USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.04</td>
<td>-0.50</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>(−0.13)</td>
<td>(−0.63)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>Trade Q_j (+)</td>
<td>-0.16</td>
<td>-1.94</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(−0.71)</td>
<td>**(−2.00)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>Signed Inventory (−)</td>
<td>-0.21</td>
<td>-1.94</td>
<td>-2.87</td>
</tr>
<tr>
<td></td>
<td>(−0.48)</td>
<td>***(−2.72)</td>
<td>**(−2.25)</td>
</tr>
<tr>
<td>Inventory $I_{t−1}$ (+)</td>
<td>0.01</td>
<td>-0.10</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(−0.09)</td>
<td>*(−1.70)</td>
</tr>
<tr>
<td>Direction D_t (+)</td>
<td>1.66</td>
<td>4.25</td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td>***(2.63)</td>
<td>***(2.62)</td>
<td>***(5.27)</td>
</tr>
<tr>
<td>Direction $D_{t−1}$ (−)</td>
<td>-0.39</td>
<td>-1.25</td>
<td>-2.60</td>
</tr>
<tr>
<td></td>
<td>(−1.12)</td>
<td>*(−1.66)</td>
<td>*(−1.71)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.03</td>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.10</td>
<td>2.08</td>
<td>2.29</td>
</tr>
<tr>
<td>Observations</td>
<td>432</td>
<td>186</td>
<td>144</td>
</tr>
</tbody>
</table>

Estimated by GMM and variable Newey-West correction. \(t\)-values in parenthesis, and ***", **" and *" indicate significance at the 1%, 5% and 10%-level respectively. All coefficients multiplied by 10^4. The dependent variable is ΔP_{it} is the change in price between to incoming trades. Q_j is signed incoming trade measured in millions, positive for a purchase from dealer j, and negative for a sale. “Signed inventory” is a dummy that represents $(I_t - I^*_t)$, and equals 1 if previous outgoing trade accumulated inventory and −1 otherwise. $I_{t−1}$ is inventory at the end of period $t−1$. D_t is an indicator variable picking up the direction of the trade, positive for purchases (at the ask) and negative for sales (at the bid). The “+” and “−” in parentheses in the first row indicate the expected sign of the coefficient.

6.2.2 Outgoing trades

In the foreign exchange market, dealers can control their inventory position by trading at other dealers quotes. Trading at other dealers quotes may have turned to be a more attractive option...
after the introduction of the electronic brokers. When trading outgoing through the D2000-1 a dealer not only have to pay half the spread (buy at the high price and sell at the low price), but in addition reveals his identity. Outgoing trades on the electronic brokers only leads to the dealer paying half the spread. In both cases, the advantage with outgoing trading is that he can time the trade himself if there are quotes available. The dealers in our sample do all their outgoing trade on the electronic brokers.

<table>
<thead>
<tr>
<th>Dealer 1</th>
<th>Dealer 2</th>
<th>Dealer 3</th>
<th>Dealer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.367</td>
<td>-0.024</td>
<td>-0.735</td>
</tr>
<tr>
<td>(3.97)</td>
<td>(-0.16)</td>
<td>(4.10)</td>
<td>(7.74)</td>
</tr>
<tr>
<td>Trade size Abs(Q_{jt})</td>
<td>0.103</td>
<td>0.030</td>
<td>0.005</td>
</tr>
<tr>
<td>(3.95)</td>
<td>(0.34)</td>
<td>(0.29)</td>
<td>(3.95)</td>
</tr>
<tr>
<td>Inventory size Abs(I_{it})</td>
<td>0.033</td>
<td>0.245</td>
<td>0.003</td>
</tr>
<tr>
<td>(3.04)</td>
<td>(3.45)</td>
<td>(0.31)</td>
<td>(1.60)</td>
</tr>
<tr>
<td>Price change, Abs(ΔP_{jt})</td>
<td>30.379</td>
<td>211.521</td>
<td>-68.113</td>
</tr>
<tr>
<td>(0.53)</td>
<td>*(1.74)</td>
<td>(-0.96)</td>
<td>(4.11)</td>
</tr>
<tr>
<td>Incoming/Outgoing last trade</td>
<td>-0.034</td>
<td>-0.254</td>
<td>-0.507</td>
</tr>
<tr>
<td>*(1.74)</td>
<td>*(1.74)</td>
<td>*(1.74)</td>
<td>*(1.74)</td>
</tr>
<tr>
<td>McFadden’s R^2</td>
<td>0.02</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Observations</td>
<td>912</td>
<td>446</td>
<td>246</td>
</tr>
</tbody>
</table>

Probit regression of Incoming/Outgoing trade decision. Incoming trades are 0, while outgoing trades are coded 1. R^2 is McFadden’s analog to ordinary R^2-measures.

In table 14 we study closer what motivates incoming and outgoing trade decision. We let the dependent variable be a dummy, which equals 1 if the trade is outgoing and 0 if it is incoming, and estimates propensities to trade incoming or outgoing with a probit regression. There is a tendency that the dealers choose to initiate trades (outgoing) if the last trade was incoming, consistent with the above mentioned trading strategy. For dealer 1 and 2 there are also sign that they use outgoing trades for inventory control, since a large inventory in absolute terms leads to outgoing trades. Absolute price changes are intended to capture volatility, and in case of dealer 2 and 4, this seems to make them rely on outgoing trades.

To test outgoing trades directly, we now let each period be one outgoing trade. Notice that there are no simultaneity between Q_{it} and P_{jt} in an outgoing trade, since all outgoing trades are at the electronic brokers, where the individual dealer is price taker. We base the empirical analysis on a version of the demand equation (1) in section 4,

$$Q_{it} = \theta (\mu_{it} - P_{jt}) - \zeta (I_{it} - I^*)$$

(19)

where $\zeta (I_{it} - I^*)$ captures inventory control. For the conditional expectation μ_{it}, we insert

$$\mu_{it} = P_{it-\tau} - \gamma D_{1-\tau} + \epsilon_{it}.$$

(20)

In other words, the conditional expectation is the previous price, $P_{it-\tau}$, irrespective of whether it was incoming or outgoing, corrected for whether it was at the bid or the ask, $\gamma D_{1-\tau}$, and added an
expectational error ε. When we insert this for μ into (19) we get

$$Q_\mu = \theta(P_\mu - \gamma D_{\mu} - P_\mu) - \zeta(I_{it} - I_{i}^*) + \varepsilon_\mu.$$

The estimable equation becomes

$$Q_\mu = \beta_0 + \beta_1 P_{it} + \beta_2 D_{it} + \beta_3 P_{jt} + \beta_4 I_{it} + \varepsilon_\mu,$$

where we have instrumented for I_{it} with the inventory from previous trade, I_{it}^τ.

The results are presented in table 15, with expected signs in parenthesis. The estimated coefficients on the price variables are either insignificant and/or of wrong sign. The negative coefficient on the inventory variable I_{it}^τ indicates that if the dealer had a long position in previous incoming trade he would on average place an sell order to decrease his inventory when trading outgoing.

| Table 15: Results for equation (22). Regression of outgoing trades |
|-------------------|-------------------|-------------------|-------------------|
| | Dealer 1 DEM/USD | Dealer 2 DEM/USD | Dealer 3 NOK/DEM | Dealer 4 DEM/USD |
| Constant | -33.111 | -6.333 | 519.879 | -92.861 |
| | (-1.15) | (-0.31) | (0.58) | **(-2.56) |
| Lagged price | | | | |
| $P_{t-1}(+) | -7.214 | -174.239 | 280.763 | 28.289 |
| | (-0.06) | ***(-2.84) | (0.47) | (0.35) |
| Direction lagged | | | | |
| $D_{t-1}(-) | 0.004 | 0.327 | -1.394 | -0.026 |
| | (0.03) | ***(3.32) | *(-1.95) | (-0.14) |
| Price $P_t(-) | 25.568 | 177.826 | -405.219 | 22.400 |
| | (0.20) | ***(2.91) | (-0.72) | (0.27) |
| Inventory, lagged| | | | |
| $I_{t-1}(-) | -0.073 | -0.901 | -0.059 | -0.185 |
| | ***(-3.44) | ***(-10.96) | (-0.63) | ***(-2.67) |
| Adjusted R^2 | 0.03 | 0.34 | 0.09 | 0.07 |
| Durbin-Watson stat| 2.64 | 2.04 | 2.28 | 1.83 |
| Observations | 452 | 255 | 48 | 144 |

Estimated by GMM and Newey-West correction. t-values in parenthesis, and ***, ** and * indicate significance at the 1%, 5% and 10%-level respectively.

Regressing outgoing trade on a constant, change in price, and inventory does not change any of the results.

6.3 Information effect

6.3.1 Spread

To examine information effects more closely, we consider all direct trades (D2000-1) by Dealer 1 and Dealer 3 where two-way quotes are available. Bid and ask quotes are available for 62 of Dealer 2's trades and for 61 of Dealer 3’s trades. All trades were executed at the bid or the ask.

To formally test whether the quoted spread increases with quantity, we pool all the direct trades. We run the following regression,

$$Spread = \beta_0 + \beta_1 \cdot abs(Q_{jt}) + \varepsilon_\mu,$$

where $abs(Q_{jt})$ is the absolute quantity. The results are shown in table 16. The estimated spread...
for a USD one million trade (DEM/USD) is 1.90 pips, while the estimated spread for a DEM one
million trade is 13.5 pips (NOK/DEM). The coefficient on absolute quantity traded is positive and
significantly different from zero for both DEM/USD and NOK/DEM. In DEM/USD the quoted
spread widens with 1.40 pips per USD ten million traded, and with 15.0 pips per DEM ten million
traded for NOK/DEM. The estimated spread for a USD ten million trade is 3.2 pips (1.76 + 1.4).
Note that this increase in quoted spread is much smaller than estimated by Lyons for the effective
spread to protect against adverse selection. Lyons estimated the effective spread to 4.8 pips for
USD ten million on observations from 1992. In NOK/DEM the estimated quoted spread for a
DEM ten million trade is 26 pips which is close to the “market norm” (30 pips). In fact, the quoted
spreads for all DEM 10 million trades are all 30 pips.

Table 16: Results for equation (23). Regression of observed spread from D2000-1 trades on
quantity traded

<table>
<thead>
<tr>
<th></th>
<th>DEM/USD</th>
<th>NOK/DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.76</td>
<td>10.98</td>
</tr>
<tr>
<td>Abs(Q_{jt})</td>
<td>0.14</td>
<td>1.50</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.21</td>
<td>0.60</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>0.92</td>
<td>2.61</td>
</tr>
<tr>
<td>Observations</td>
<td>67</td>
<td>62</td>
</tr>
</tbody>
</table>

Estimated by OLS. t-values in parenthesis, and ****, ***, and * indicate significance at the 1%, 5% and 10%-level respectively.
All coefficients multiplied by 10⁴. The dependent variable is the observed spread in pips. Abs(Q_{jt}) is the trade (absolute) quantity measured in millions.

In trades executed by electronic brokers, we are not able to observe the spread. Next, we want
to test whether the effective spread increases with quantity in the electronic broker market. As
shown in table 8 one may argue that bid shading is not very likely for controlling inventory in
foreign exchange markets. Thus, we set α = 0. The resulting model is now

$$\Delta P_{it} = \left(\frac{1 - \phi}{\phi^2} \right) Q_{jt} + \left(\frac{\gamma}{\phi^2} \right) D_t - \gamma D_{t-1} + \varepsilon_{it}. \quad (24)$$

This model is very close to the Glosten and Harris (1988) model. The only exception is that in
their model the coefficients on D_t and D_{t-1} are restricted to be identical.¹⁶

We use the following regression equation to estimate possible information effects and effective
bid and ask spread in the electronic broker market:

$$\Delta P_{it} = \beta_1 Q_{jt} + \beta_4 D_t + \beta_5 D_{t-1} + \varepsilon_{it}. \quad (25)$$

To increase estimation power, we pool all the incoming trades for the different dealers. The es-
timated baseline bid-and-ask spread for DEM/USD is 2.8 pips, and 16.6 pips for NOK/DEM.
We find no evidence of any information effect (table 17). However, we should be careful with
interpreting these results such that spread does not increase with quantity. Probably, the dealers

¹⁶If we assume that there is neither any information effect ($\phi = 1$) nor any inventory effect ($\alpha = 0$), the Madhavan
and Smith model becomes $\Delta P_{it} = \gamma D_t - \gamma D_{t-1} + \varepsilon_{it}$, which is the Roll (1984) model, with the assumption that D_t and
ε_{it} are independently distributed with zero means.
examine the bid and ask and how much can be traded at the bid and ask before they decide how much to trade. Therefore, they trade for larger quantities when the market is deep.

Table 17: Results for equation (25). Regression of ΔP_{it} between incoming, electronic brokered, trades.

<table>
<thead>
<tr>
<th></th>
<th>DEM/USD</th>
<th>NOK/DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Q_{jt}</td>
<td>0.105</td>
<td>-0.413</td>
</tr>
<tr>
<td>D_{jt}</td>
<td>1.400</td>
<td>8.302</td>
</tr>
<tr>
<td>(3.68)</td>
<td>(5.56)</td>
<td></td>
</tr>
<tr>
<td>Direction lagged D_{jt-1}</td>
<td>-0.336</td>
<td>-2.294</td>
</tr>
<tr>
<td>(-1.95)*</td>
<td>(-2.08)*</td>
<td></td>
</tr>
<tr>
<td>AR(1)</td>
<td>-0.045</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>(-0.98)</td>
<td>(-0.58)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.00</td>
<td>1.91</td>
</tr>
<tr>
<td>Observations</td>
<td>891</td>
<td>145</td>
</tr>
</tbody>
</table>

Estimated by GMM and variable Newey-West correction. t-values in parenthesis, and ***, ** and * indicate significance at the 1%, 5% and 10%-level respectively. All coefficients multiplied by 10^4, except the AR(1) term. The dependent variable is ΔP_{it} is the change in price between to incoming (electronic brokered) trades. Q_{jt} is signed incoming trade measured in millions, positive for a purchase from dealer j, and negative for a sale. D_{jt} is an indicator variable picking up the direction of the trade, positive for purchases (at the ask) and negative for sales (at the bid). We pool data for all dealers.

6.3.2 Cumulative flow

One of the potentially most important consequences of the introduction of the electronic brokers is that the market may become more transparent as more trading is done through this channel. This is because the dealers can observe the direction of all trades conducted on the electronic brokers, and hence see more of the market flow.

Figure 6: Transaction prices and Cumulative order flow

Transaction prices and cumulative trading in DEM/USD (left), and NOK/DEM (right) during the week. The source is all the spot transactions conducted electronically by the whole FX department of the bank. The horizontal axis is in “transaction”-time. Vertical lines indicate end of day.

As a larger part of the flow become observable, dealers might give more attention to the flow on the brokers than on single trades. In figure 6 we draw the exchange rate and the cumulative order flow on the electronic brokers. The cumulative flow is created by using the direction and size of the initiator in any trade the bank’s FX department is part of on the electronic brokers. Although the cumulative flow only incorporates the trading of this specific bank, we believe it is sufficiently representative of the trading of the market since it is based on the trading of a total
of 19 dealers, and since it is not limited to the initiatives of this specific bank only. In particular for the DEM/USD rate, there seems to be a strong relation between the two variables. Figure 6 is very similar to the figures in Evans and Lyons (1999), where they develop a model where the price depends on cumulated signed flow.\(^{17}\) All the four series in the figure have unit roots. The graphs then suggest that the price and the cumulative flow are cointegrated. We find the following cointegrating relationships:

\[
\text{DEM/USD: } P_t = 1.80 + 0.000106\text{CumFlow}_{\text{DEM/USD}}
\]

\[
\text{NOK/DEM: } P_t = 4.18 + 0.000254\text{CumFlow}_{\text{NOK/DEM}} - 0.000162t
\]

Both cointegrating relations is significant and correctly signed with respect to the cumulative order flow. In case of the DEM/USD we have excluded the price-jump between Wednesday and Thursday from the estimation. A buying pressure of USD, i.e. a large positive cumulative flow, goes together with a high price of USD measured in DEM. The time trend is included in the NOK/DEM relation so to pick up short-term nonlinearities present in the sample. If we drop the trend from the cointegrating relation, the sign end up the “wrong” way in the case of NOK/DEM. However, the graph suggests that the relationship is actually positive for several of the days. When we re-estimate the cointegrating relationships for each day separately, we get

\[
\text{Monday: } P_t = 4.18 + 0.000149\text{CumFlow}_{\text{NOK/DEM}}
\]

\[
\text{Tuesday: } P_t = 4.16 + 0.000354\text{CumFlow}_{\text{NOK/DEM}}
\]

\[
\text{Wednesday: } P_t = 4.16 + 0.000043\text{CumFlow}_{\text{NOK/DEM}}
\]

\[
\text{Thursday: } P_t = 4.16 - 0.000022\text{CumFlow}_{\text{NOK/DEM}}
\]

\[
\text{Friday: } P_t = 4.18 + 0.000075\text{CumFlow}_{\text{NOK/DEM}}
\]

We find that in four of the five days the cointegrating relationship implies a positive relation. For two of these days, it is also significant. Our main point with these intra-day cointegration relations is to show that the negative relation for the whole week when we drop the trend, need not imply that this is the case for NOK/DEM in general.

Given that the cumulative flow on the electronic brokers tracks prices, and this is observable for the dealers, the lack of information effect in single trades may be because dealers rather focus on the flow from the electronic brokers to learn currency value.

\(^{17}\)Evans and Lyons (1999) find that price changes depend significantly on unexpected period flow, for daily data. This is further confirmed in Rime (2000a) and Rime (2000b), for weekly data from Norway and U.S.A respectively.
7 Conclusion and future work

In this paper, we have studied the behavior of four interbank foreign exchange dealers. We have done this study with a detailed data set from March 1998, with transaction prices, trading quantities, dealer inventories, exact timing, and which trading system were used for the transaction. The four dealers trade in different exchange rates and have different trading styles. In particular, we study how and if dealers set prices to protect against private information (information effects), and how they control inventory to adjust their risk exposure.

In a widely cited paper, Lyons (1995), using data from 1992, found support for both information and inventory effects in the pricing of a market maker. The market maker of Lyons increased his spread to protect against private information, and adjusted the midpoint in the spread (quote shading) to induce trade in a preferred directions to adjust inventory. Using the same model as Lyons, the Madhavan and Smidt (1991)-model, we find no support for neither information nor inventory effects. We believe this is primarily due to the change in structure of the foreign exchange market. In 1992, most trading was bilateral direct trading through the electronic system Reuters D2000-1. Since then, the electronic brokers Reuters D2000-2 and EBS have gained popularity. Through these systems, dealers can see a larger share of the trading of the market. Hence, transparency may have increased, making individual trades less important for information updating. The electronic brokers may also have turned out to be more attractive options for inventory control. First, the electronic brokers are very liquid systems, where the dealers do not have to shade quotes to control inventory. Second, outgoing trades through the electronic brokers may be a more attractive option for inventory control than outgoing trades in direct trading since the dealers stay anonymous on the electronic brokers.

When we study the quoted bid ask spreads from direct trading, we find that spreads indeed widen with the size of transaction. This leads us to conclude that there is an information effect in direct trading. Lyons’ data were solely from direct trading, and the Madhavan and Smidt model is probably best suited to this kind of trading. We also find that the information effect is confirmed when we estimate the Madhavan and Smidt model for direct trades only.

When it comes to the electronic brokers, the conjecture that sequences of trades may be more informative than single trades is supported. We find that the cumulative order flow on the electronic brokers and exchange rates are cointegrated, with a higher price when the cumulative flow is high and positive. If there is a buying pressure of USD for DEM in the market, the price of USD measured in DEM will be higher.

Introduction of the new electronic brokers means more options for controlling inventory not recognized in the theoretical model. The dealers can choose between shading quotes in direct trading (the traditional method), hitting others quotes either in direct trading or on the electronic brokers (indirect trading), or they can enter quotes on the electronic brokers. Lack of evidence of bid shading as a tool for inventory control should therefore not be surprising. We find evidence that dealers use outgoing trades for controlling inventory. Trading outgoing is more likely when inventory is large in absolute value. Furthermore, the dealers sell in outgoing trades when they have large long positions, and buy in outgoing trades when they have large short positions.

Finally, the high share of outgoing trades for our dealers may indicate that they are more like
“speculators,” i.e. make money on rate changes, than “market makers” that make money on the bid ask spread.

It seems that the dealer Lyons studied had a trading style particularly well suited for analysis with the Madhavan and Smidt model. Lyons’ dealer had a high share of incoming direct trades, and hence had to control inventory partly through quote-shading. Furthermore, the dealer worked in an investment bank, and did not see any customer order flow. The risk of revealing inventory was therefore not that crucial.

Our results indicate that the Madhavan and Smidt model is not that applicable to foreign exchange trading as first believed. The Madhavan and Smidt model focuses on the pricing decision of a market maker in incoming trades. With the new microstructure of the foreign exchange market, we believe that outgoing trades have become a more viable option for dealers. To understand the foreign exchange market we believe it is important to do research not only on the market makers decision but also on the aggressors decision (outgoing trade). New theories that address risk management and information updating in an trading environment with both direct and indirect trading are in great demand.

A Baseline model of Lyons (1995)

When it is a incoming trade we employ the setup from Lyons (1995).

\begin{align}
Q_{jt} &= \theta (\mu_{jt} - P_t) + X_{jt} \tag{33} \\
P_t &= \mu_t - \alpha_t (I_t - I_t') + \gamma D_t. \tag{34}
\end{align}

To derive the price-schedule we need to insert for the expectations in (34) and (33). After observing the private signal C_{jt}, dealer j’s posterior (μ_{jt}) can be expressed as:

\begin{equation}
\mu_{jt} = \lambda \mu_t + (1 - \lambda) C_{jt}, \tag{35}
\end{equation}

where $\lambda = \sigma^2_{\beta_j}/(\sigma^2_{\mu_t} + \sigma^2_{\beta_j})$. Dealer i conditions on various possible Q_{jt}’s, and sets prices that are ex post regret-free as in Glosten and Milgrom (1985). More specifically, dealer i forms the statistic Z_{jt} from the observed demand of j:\(^{18}\)

\begin{equation}
Z_{jt} = \frac{Q_{jt}/\theta + P_t - \lambda \mu_t}{1 - \lambda} = V_t + \omega_{jt} + \frac{1}{\theta(1 - \lambda)} X_{jt}, \tag{36}
\end{equation}

Equation (33) and (4) are used to derive the second equality. Z_{jt} is normally distributed with mean V_t and variance $\sigma^2_{Z_j}$ (equal to the variance of the two last terms). Furthermore, Z_{jt} is statistically independent of μ_t. Dealer i’s posterior belief (μ_{it}) is a weighted average of μ_t and Z_{jt}:

\begin{equation}
\mu_{it} = \kappa \mu_t + (1 - \kappa) Z_{jt}, \tag{37}
\end{equation}

\(^{18}\)Actual demand Q_{jt}, θ and the traded price P_t is observable to dealer i. In addition dealer i also knows the common prior and the variances of the signals. Z_{jt} is then derived as follows,

\[Q_{jt}/\theta + P_t = \mu_{jt} + X_{jt}/\theta = \lambda \mu_t + (1 - \lambda) C_{jt} + X_{jt}/\theta\]

Subtracting $\lambda \mu_t$ on both sides and dividing through with $(1 - \lambda)$ gives an unbiased estimate of C_{jt}.
where $\kappa = \sigma^2_{\varepsilon}/(\sigma^2_{\varepsilon} + \sigma^2_{\eta_2})$. Using the first equality in (36), we see that dealer \(i \)'s posterior belief is expressed as a function of any Q_{μ}:

$$
\mu_{it} = \phi \mu_t + (1 - \phi) \left(\frac{Q_{\mu}}{\theta} + P_{it} \right),
$$

(38)

where $\phi = \kappa - \lambda(1 - \kappa)/(1 - \lambda)$, a weight-parameter from the Bayesian updating that makes the quote regret-free. $\phi \in [0, 1]$ and we can write the coefficients as a sum equal one since

\[
\kappa - \frac{\lambda(1 - \kappa)}{1 - \lambda} + \frac{1 - \kappa}{1 - \lambda} = \frac{\kappa(1 - \lambda) - \lambda(1 - \kappa) + 1 - \kappa}{1 - \lambda} = 1
\]

Inserting (38) into (34) gives:

$$
P_{it} = \phi \mu_t + (1 - \phi) \left(\frac{Q_{\mu}}{\theta} + P_{it} \right) - \alpha (I_{it} - I^*_t) + \gamma D_t
$$

(40)

Substituting this expression for μ_{it} into (39), gives

$$
\Delta P_{it} = \alpha \left(\frac{1}{\phi} - 1 \right) I^*_t + \frac{1 - \phi}{\phi \theta} Q_{\mu} - \frac{\alpha}{\phi} I_{it} + \alpha I_{it-1} + \gamma D_t - \gamma D_{t-1} + \varepsilon_{it}.
$$

(41)

Thus, the benchmark model to test is:

$$
\Delta P_{it} = \beta_0 + \beta_1 Q_{\mu} + \beta_2 I_{it-1} + \beta_3 I_{it-1} + \beta_4 D_t + \beta_5 D_{t-1} + \varepsilon_{it}.
$$

(42)

The model predicts that $\{\beta_1, \beta_2, \beta_3\} > 0, \{\beta_2, \beta_3\} < 0, |\beta_2| > \beta_3, \beta_4 > |\beta_5|$. The latter inequalities derive from the fact that $0 < \phi < 1$.

Since the error term ε_{it} is interpreted as an expectational error between period t and $t - 1$ it will be related to last periods expectation, which again influences the pricing decision in that period. The error term will therefore have a dynamic structure:

\[
\varepsilon_{it} = I_{it} - I_{it-1}
\]

\[
\mu_{it} = V_t + \eta_t
\]

\[
\mu_{it-1} = \kappa \mu_{it-1} + (1 - \kappa) Z_{it-1}
\]

\[
= \kappa (V_{i-1} + \eta_{i-1}) + (1 - \kappa) \left[V_{i-1} + \omega_{i-1} + \frac{1}{\theta(1 - \lambda)} X_{i-1} \right]
\]

\[
= V_{i-1} + \kappa \eta_{i-1} + (1 - \kappa) \left[\omega_{i-1} + \frac{1}{\theta(1 - \lambda)} X_{i-1} \right]
\]

\[
\Rightarrow \varepsilon_{it} = V_t + \eta_t - V_{i-1} - \kappa \eta_{i-1} - (1 - \kappa) \left[\omega_{i-1} + \frac{1}{\theta(1 - \lambda)} X_{i-1} \right]
\]
The properties of the error term:

\[
E [\varepsilon_t] = E [V_t - V_{t-1}] = 0
\]

\[
E [\varepsilon_t \varepsilon_{t-s}] = \begin{cases}
(1 + \kappa^2) \sigma_t^2 + (1 - \kappa)^2 \left[\sigma_{\omega}^2 + \left(\frac{\lambda - 1}{\lambda} \right)^2 \sigma_\lambda^2 \right] & \text{when } s = 0 \\
-\kappa \sigma_t^2 & \text{when } s = 1 \\
0 & \text{when } s > 1
\end{cases}
\]

We can write the error term as a MA(1) process,

\[
\varepsilon_t = \beta_0 \nu_{t-1} + \nu_t, \quad \beta_0 < 0
\]

where \(\nu_t \sim \text{IID}(0, \sigma_\nu^2) \). These properties will be the same for all the models.

B Direct and indirect trading

As argued earlier, trades conducted directly carry probably more information than those conducted indirectly. Hence, we let the updated belief depend on the system used for the trade in the following way

\[
\mu_t = d_t \left[\kappa^D \mu_t + (1 - \kappa^D) Z_{\mu} \right] + (1 - d_t) \left[\kappa^I \mu_t + (1 - \kappa^I) Z_{\mu} \right],
\]

where \(d_t \) is a dummy that equals 1 if the trade is a direct, and 0 if the trade is indirect. \(\kappa^D \) and \(\kappa^I \) are the weights on prior belief when the trade is direct or indirect respectively. The hypothesis is that \(Z_{\mu} \) is a more precise signal in direct trades, and hence \(\kappa^D < \kappa^I \). This implies \(\phi^D < \phi^I \), which means that the information effect is smaller for indirect trade. We see this from differentiating the coefficient to \(Q_{\mu} \) with respect to \(\phi \), which gives

\[
\frac{-\phi \theta - (1 - \phi) \theta}{(\phi \theta)^2} = \frac{-1}{\phi^2} \leq 0
\]

Updated beliefs can be written as

\[
\mu_t = \begin{cases}
[d_t \kappa^D + (1 - d_t) \kappa^I] \mu_t + [d_t (1 - \kappa^D) + (1 - d_t) (1 - \kappa^I)] Z_{\mu} & \text{when } s = 0 \\
[d_t \kappa^D + (1 - d_t) \kappa^I] \mu_t + \frac{d_t (1 - \kappa^D) + (1 - d_t) (1 - \kappa^I)}{1 - \lambda} \left(\frac{Q_{\mu}}{\theta} + P_{\mu} - \lambda \mu_t \right) & \text{when } s = 1 \\
0 & \text{when } s > 1
\end{cases}
\]

These properties will be the same for all the models.

\[\mu_0 = \alpha d_t + \alpha (1 - d_t) \]
two systems. This imply using the following equations:

\[
\begin{align*}
\mu_t &= d_t \left[\kappa^D \mu_t + (1 - \kappa^D) Z_{it} \right] + (1 - d_t) \left[\kappa^I \mu_t + (1 - \kappa^I) Z_{it} \right] \\
I_t &= \mu_t - \left[\alpha^D d_t + \alpha^I (1 - d_t) \right] \left(I_{t-1} - I_t \right) + \gamma D_t, \\
m_t &= P_{it-1} + \left[\alpha^D d_{it-1} + \alpha^I (1 - d_{it-1}) \right] \left(I_{t-1} - I_t \right) - \gamma D_{it-1} + \epsilon_{it}
\end{align*}
\]

The pricing schedule then becomes:

\[
P_{it} = \mu_t + \frac{1 - [d_t \phi^D + (1 - d_t) \phi^I]}{[d_t \phi^D + (1 - d_t) \phi^I] \theta} Q_{jt} - \frac{\alpha^D d_t + \alpha^I (1 - d_t)}{d_t \phi^D + (1 - d_t) \phi^I} (I_{it} - I_t^*) + \frac{\gamma}{d_t \phi^D + (1 - d_t) \phi^I} D_t
\]

It is easier to work with if we rewrite the coefficients containing dummies:

\[
\frac{1 - [d_t \phi^D + (1 - d_t) \phi^I]}{[d_t \phi^D + (1 - d_t) \phi^I] \theta} = \begin{cases}
\frac{1 - \phi^D}{\phi^D \theta} & \text{when } d_t = 1 \\
\frac{1 - \phi^I}{\phi^I \theta} & \text{when } d_t = 0
\end{cases}
\]

\[
\frac{\alpha^D d_t + \alpha^I (1 - d_t)}{d_t \phi^D + (1 - d_t) \phi^I} = \begin{cases}
\frac{\alpha^D}{\phi^D} & \text{when } d_t = 1 \\
\frac{\alpha^I}{\phi^I} & \text{when } d_t = 0
\end{cases}
\]

\[
\frac{\gamma}{d_t \phi^D + (1 - d_t) \phi^I} = \begin{cases}
\gamma \frac{1}{\phi^D} & \text{when } d_t = 1 \\
\gamma \frac{1}{\phi^I} & \text{when } d_t = 0
\end{cases}
\]

This gives us

\[
P_{it} = \mu_t + \left[\frac{1 - \phi^D}{\phi^D \theta} d_t + \frac{1 - \phi^I}{\phi^I \theta} (1 - d_t) \right] Q_{jt} - \left[\frac{\alpha^D}{\phi^D} d_t + \frac{\alpha^I}{\phi^I} (1 - d_t) \right] (I_{it} - I_t^*) + \left[\frac{\gamma}{\phi^D} d_t + \frac{\gamma}{\phi^I} (1 - d_t) \right] D_t \quad (47)
\]

To get an estimable equation we insert the expectation:

\[
P_{it} = P_{it-1} + \left[\alpha^D d_{it-1} + \alpha^I (1 - d_{it-1}) \right] \left(I_{it-1} - I_t^* \right) - \gamma D_{it-1} + \left[\frac{1 - \phi^D}{\phi^D \theta} d_t + \frac{1 - \phi^I}{\phi^I \theta} (1 - d_t) \right] Q_{jt} - \left[\frac{\alpha^D}{\phi^D} d_t + \frac{\alpha^I}{\phi^I} (1 - d_t) \right] (I_{it} - I_t^*) + \left[\frac{\gamma}{\phi^D} d_t + \frac{\gamma}{\phi^I} (1 - d_t) \right] D_t + \epsilon_{it}
\]

Collecting terms:

\[
\Delta P_{it} = \left[\frac{\alpha^D}{\phi^D} d_t + \frac{\alpha^I}{\phi^I} (1 - d_t) \right] I_t^* - \left[\alpha^D d_{it-1} + \alpha^I (1 - d_{it-1}) \right] I_t^* + \left[\frac{1 - \phi^D}{\phi^D \theta} d_t + \frac{1 - \phi^I}{\phi^I \theta} (1 - d_t) \right] Q_{jt} - \left[\frac{\alpha^D}{\phi^D} d_t + \frac{\alpha^I}{\phi^I} (1 - d_t) \right] I_t - \left[\alpha^D d_{it-1} + \alpha^I (1 - d_{it-1}) \right] I_{it-1} + \left[\frac{\gamma}{\phi^D} d_t + \frac{\gamma}{\phi^I} (1 - d_t) \right] D_t - \gamma D_{it-1} + \epsilon_{it}
\]

Econometric equation:

\[
\Delta P_{it} = \beta_0 + \beta_1 d_t + \beta_1^* d_{it-1} + \beta_1^D d_t Q_{jt} + \beta_1^I (1 - d_t) Q_{jt} + \beta_2 d_t I_t + \beta_2^* (1 - d_t) I_{it-1} + \beta_3 d_{it-1} I_{it-1} + \beta_3^* (1 - d_{it-1}) I_{it-1} + \beta_4 d_t D_t + \beta_4^* (1 - d_t) D_t + \beta_5 D_{it-1} + \epsilon_{it}
\]

(49)
Regression coefficients:

\[
\begin{align*}
\beta_0 &= \alpha^I \left(\frac{1}{\phi^I} - 1 \right) l_i^I \approx 0 \\
\beta_{0,1}^D &= - (\alpha^D - \alpha^I) l_i^I \approx 0 \\
\beta_0^I &= \frac{1 - \phi^D}{\phi^D \theta} > 0 \\
\beta_1^D &= \frac{\alpha^D}{\phi^D} < 0 \\
\beta_1^I &= \frac{\alpha^I}{\phi^I} < 0 \\
\beta_2^I &= \frac{\gamma}{\phi^I} > 0 \\
\beta_3^I &= \frac{\gamma}{\phi^D} \approx 0 \\
\beta_4^I &= \frac{\gamma}{\phi^I} > 0 \\
\beta_5^I &= -\gamma < 0
\end{align*}
\]

The coefficients \(\beta_1^D \) and \(\beta_1^I \) capture information effect, while \(\beta_3^D \) and \(\beta_3^I \) capture inventory control. The coefficient \(\beta_5^I \) is the same as in the benchmark model, \(\beta_1^D \).

References

