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1 Introduction

The class of univariate and multivariate ARMA models is a flexible and

powerful modelling tool applicable in a variety of situations that has appeal-

ing theoretical properties. Nevertheless, its use in empirical work has been

limited because of severe practical estimation problems. Maximum likeli-

hood has received most of the attention as an estimation method for ARMA

models. Problems with the maximum likelihood method include slow conver-

gence and non-robustness with respect to initial conditions. An alternative

class of methods that has received little attention in the literature are least

squares methods. Exceptions include Hannan and Rissanen (1982), Koreisha

and Pukkila (1990a), Koreisha and Pukkila (1990), Koreisha and Yoshimoto

(1991) and Choudhury and Power (1998).

This note provides a easily implementable iterative least squares esti-

mation method for ARMA and VARMA models with intuitive theoretical

properties and good small sample properties as we show in a Monte Carlo

study. This procedure has not been suggested anywhere else in the literature

to the best of the author’s knowledge. Section 2 discusses the new method

and its theoretical properties. Section 3 presents the Monte Carlo results.

Section 4 concludes.

2 The Method

The model we consider is of the form

Φ(L)yt = Θ(L)εt, t = 1, . . . , T

where yt is an m dimensional series m ≥ 1, Φ(L) and Θ(L) are matrices of

lag polynomials of the form I − Φ1L − . . .ΦpL
p and I + Θ1L + . . . + ΘqL

q

respectively and εt is an m dimensional i.i.d. unobserved error sequence with

finite fourth moment. We will not distinguish between the scalar case (m = 1)

and the vector case (m > 1 ) to reduce the notational burden. Whenever
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the distinction matters we will draw attention to that fact. We assume that

the model is stable, invertible and identified. This implies that there are no

common factors in the lag polynomials in the scalar case and that, in the

vector case, the model is in a form which is sufficient for identification, i.e. in

a final equations form or in an echelon form (for details see Lutkepohl (1993,

pp. 246-248)).

Most of the previous work on least squares estimation methods suggest

the construction of an initial consistent estimate for the error sequence and

its use in a least squares procedure for the estimation of Φi, i = 1, . . . , p and

Θi, i = 1 . . . , q. Our suggestion is to iterate this least squares operation using

the new estimate of the error sequence until the estimate of the error sequence

converges. The consistency of the estimates follows straightforwardly from

the consistency of the initial estimate of the error sequence.

To formalise our approach we have the following: The initial estimate of

the error sequence denoted by ε̂0 = (ε̂0
1, . . . , ε̂

0
T ) may be obtained from the

residuals of an autoregression of the form C(L)yt = vt where the order of

the (matrix of) lag polynomials tends to infinity asymptotically. Discussion

of the conditions sufficient for consistency of ε̂0 may be found in a number

of papers (see e.g. Ng and Perron (1995)). It suffices to say that the rate

should be equal to or larger than c ln(T ) for some positive constant c. Then,

the parameters are estimated either from the regression

yt =

p∑

i=1

Φiyt−i +

q∑

i=1

Θiε̂
0
t−i + ηt (1)

or

yt − ε̂0
t =

p∑

i=1

Φiyt−i +

q∑

i=1

Θiε̂
0
t−i + ηt

Existing methods estimate these regressions either by OLS or GLS. Let us

denote these parameter estimates by Φ̂0
i , i = 1, . . . , p and Θ̂0

i , i = 1, . . . , q.

We simply suggest that the estimated residuals from (1) be reused iteratively

in regressions of the same form as (1) but with ε̂j in the place of ε̂0 where ε̂j

denotes the residuals of the j-th iteration. If the iterative procedure converges
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such that ||ε̂j+1 − ε̂j|| < ε for some suitably defined constant ε then the

adopted estimates are Φ̂j+1
i , i = 1, . . . , p and Θ̂j+1

i , i = 1, . . . , q. Otherwise,

after some prespecified number of iterations the procedure is abandoned and

the initial estimates are adopted as the final estimates. The procedure is

consistent and equivalent to other least squares methods asymptotically, since

the residuals from the long autoregression will converge to the true error

terms. Clearly, there is no obvious reason why the procedure will converge

in small samples, although the simulation results show that the procedure

converges most of the time for reasonably large samples. Nevertheless, we

can provide a simple numerical test for determining whether the procedure

is likely to converge in small samples.

We restrict the analysis to the scalar case. Extension to the vector

case is straightforward. Let us denote the estimated regressors at the j-

th iteration by X(ε̂j−1) and the vector of yt, t = 1, . . . , T by Y . Then,

ε̂j = [I − X(ε̂j−1)(X(ε̂j−1)′X(ε̂j−1)]−1X(ε̂j−1))Y = f(ε̂j−1;Y ). The iterative

procedure will converge if the above mapping is a contraction mapping1. A

sufficient condition for this is that the L∞ norm of the Jacobian of the above

mapping is less than unity in absolute value for all ε̂j−1 (see Judd (1998, pp.

167)). In small samples little can be said about this mapping. We exam-

ine the asymptotic structure of the Jacobian as a guide to its small sample

properties. The probability limit of the Jacobian is a strictly lower trian-

gular matrix whose non zero elements are the true coefficients of the MA

component of the model. To show that, in a simplified framework, consider

an ARMA(1,1) model. Then,

ε̂j
t = yt − φ̂j

1yt−1 − θ̂j
1ε̂

j−1
t−1

Whereas in small samples a change in ε̂j−1
t−1 will affect the whole of ε̂

j because

it will change the estimated parameters, asymptotically, the parameters will

not be affected by a change in ε̂j−1
t−1 only. The only term that will be affected

1A contraction mapping, f , defined on some subset, D, of a metric space (X , ρ) is an
operator such that ρ(f(x), f(x′)) ≤ ρ(x, x′), ∀x, x′ ∈ D.
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is ε̂j
t . The partial derivative will be equal to θ̂j

1. From this follows the fact

that the probability limit of the Jacobian is a banded strictly lower triangular

matrix whose non zero band is made up of the true coefficients of the MA

component.

The above line of argument suggests a conceptually simple numerical test

that could be carried out at each iteration to determine whether the iterative

procedure is likely to converge. We note that the Jacobian will, in small sam-

ples, almost surely be a solid matrix with full rank and linearly independent

eigenvectors. It then follows that that the mapping is a contraction map-

ping if the eigenvalues of the Jacobian are less than one in absolute value

for all ε̂j−1. Therefore, the eigenvalues of the Jacobian can be calculated

and checked at each iteration. Our experience suggests that even if at one

iteration one or more eigenvalues exceed unity in absolute value the iterative

procedure is unlikely to converge. The asymptotic analysis of the Jacobian

above suggests that, since both the trace and determinant of the Jacobian is

asymptotically zero, the eigenvalues are likely to be small in absolute value,

guaranteeing convergence, even in small samples. The results that we report

in the next section support this since convergence occurs most of the time.

The new estimation method we propose provides consistent estimates of

the parameters. It is intuitively appealing because it corrects the inherent

incongruity in existing methods whereby the ex post estimated residual is not

equal to the ex ante residual used to obtain the estimates. In more formal

terms and assuming convergence, the superiority of this method to, say, the

GLS method suggested by Koreisha and Pukkila (1990a) can be seen by

noting that this method eliminates the random noise component underlying

the justification of the GLS application. Further, the method is easy to

implement as it requires just a series of OLS estimations. Note that the

procedure can also be combined with the existing GLS method, which would

be used in the event of no convergence instead of the simple LS method, to

provide a hybrid estimation method.
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3 Monte Carlo study

In this section we present a Monte Carlo study of the new method mainly

in an ARMA framework but with one experiment on a VARMA model. For

the ARMA experiments we consider 5 different estimation methods. We

consider 8 ARMA experiments and one VARMA experiment. The ARMA

experiment parameters and lag orders are given together with the results

in Tables 1 to 3. The experiments have been chosen to conform with the

format of previous studies in the area, see e.g. Koreisha and Pukkila (1990).

The VARMA model is a VARMA(1,1) model and is given by a final equa-

tions form. The autoregressive parameter is 0.2 and the MA parameters

are vec(Θ1) = (0.25, 0.15,−0.2,−0.1). The data have been generated using
pseudo random standard normal numbers generated within GAUSS. To min-

imise the effect of initial conditions, which are set to 0, the first 10 observa-

tions for each sample have been dropped. We consider samples of 50,100 200

and 400 observations. 1000 Monte Carlo replications have been undertaken.

For the ARMA models the following estimation methods have been used:

(i) the iterative OLS method (IOLS), (ii) the Hannan-Rissanen (1982) OLS

method (OLS), (iii) the Koreisha and Pukkila (1990a) GLS method (KP),

(iv) the conditional maximum likelihood method with the true parameters as

initial estimates (ML 1) and (v) the conditional maximum likelihood method

with the OLS estimates as initial estimates (ML 2). For the VARMA model

only estimation methods (i), (ii) and (v) have been used. The least squares

method is in this case restricted OLS corresponding to the restrictions im-

posed by the final equations form of the model. The maximum number of

iterations for IOLS has been set to 500. If the ML estimation methods do

not converge after 1000 iterations the OLS estimates are adopted as the ML

estimates. We present the mean estimate of the parameter and the standard

deviation of the parameter estimate over the replications. We also present

the number of replications where the IOLS method did not converge (DNC in

the Tables). The results, presented in Tables 1 to 4, make interesting reading.
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For the ARMA models we see that both OLS and KP methods are biased

for some experiments, even for samples of 400 observations, whereas this is

never the case for IOLS. Further, the standard deviation of the parameter

estimates over the Monte Carlo replications are smaller for IOLS that all the

other LS methods in general and in particular the KP method. They also

favourably compare with the ML methods. In a number of cases they are

considerably smaller that those of the ML methods. Moving to the VARMA

experiment all methods perform reasonably well, but again the IOLS method

has lower standard deviation than the other methods. Overall, the two high-

est percentages of non convergent replications over the 1000 replications, out

of the nine experiments, for the IOLS method are 9.6% and 2.4 % for 100

observations, 2.3% and 0.3 % for 200 observations and 0.2% and 0.1 % for

400 observations.

4 Conclusion

In this note we have suggested a new iterative least squares method for es-

timating scalar and vector ARMA models. We have provided a simple test

for determining whether the iterative procedure is likely to converge in small

samples. The method is easy to implement and requires no specialised pro-

gramming routines. The Monte Carlo study showed that the method has

better small sample properties than existing least squares methods and com-

pares favourably with maximum likelihood estimation as well. Its use in the

context of VARMA models is of particular relevance given the computational

difficulty of ML estimation of these models.
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Table 1: Experiments 1-3

Exp. Number of Observations
50 100

ARMA(1,1)
(φ1, θ1)= ( 0.80 -0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2

φ1 0.557 0.613 0.468 0.508 0.492 0.690 0.745 0.622 0.678 0.717
std(φ1) 0.608 0.660 0.389 0.426 0.526 0.380 0.431 0.265 0.223 0.428

θ1 -0.298 -0.347 -0.201 -0.238 -0.221 -0.409 -0.448 -0.321 -0.389 -0.429
std(θ1) 0.630 0.680 0.390 0.431 0.528 0.405 0.464 0.268 0.243 0.457
DNC 85 11

200 400
ARMA(1,1)

(φ1, θ1)= ( 0.80 -0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.750 0.779 0.721 0.751 0.767 0.775 0.789 0.770 0.760 0.768

std(φ1) 0.117 0.183 0.166 0.109 0.171 0.076 0.113 0.101 0.174 0.150
θ1 -0.461 -0.470 -0.419 -0.457 -0.474 -0.478 -0.471 -0.463 -0.462 -0.470

std(θ1) 0.157 0.221 0.191 0.143 0.202 0.106 0.140 0.130 0.164 0.148
DNC 0 0

50 100
ARMA(1,1)

(φ1, θ1)= ( 0.50 -0.80 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.465 0.499 0.088 0.236 0.314 0.443 0.508 0.245 0.359 0.516

std(φ1) 3.693 3.702 0.378 1.825 3.673 1.370 1.414 0.327 1.328 1.407
θ1 -0.735 -0.745 -0.410 -0.523 -0.589 -0.730 -0.759 -0.585 -0.673 -0.806

std(θ1) 3.684 3.693 0.450 1.835 3.673 1.354 1.395 0.355 1.329 1.393
DNC 218 96

200 400
ARMA(1,1)

(φ1, θ1)= ( 0.50 -0.80 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.448 0.505 0.402 0.291 0.574 0.471 0.511 0.495 0.442 0.571

std(φ1) 0.319 0.485 0.282 0.430 0.475 0.158 0.332 0.244 0.327 0.337
θ1 -0.742 -0.756 -0.728 -0.582 -0.860 -0.766 -0.759 -0.799 -0.722 -0.847

std(θ1) 0.292 0.454 0.283 0.517 0.453 0.134 0.307 0.218 0.354 0.331
DNC 23 2

50 100
ARMA(1,1)

(φ1, θ1)= ( 0.50 0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.430 0.396 0.416 0.451 0.450 0.470 0.455 0.427 0.477 0.477

std(φ1) 0.179 0.222 0.370 0.158 0.167 0.120 0.141 0.386 0.113 0.113
θ1 0.539 0.509 0.493 0.528 0.530 0.514 0.465 0.510 0.511 0.511

std(θ1) 0.186 0.209 0.251 0.171 0.177 0.130 0.138 0.217 0.116 0.116
DNC 2 0

200 400
ARMA(1,1)

(φ1, θ1)= ( 0.50 0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.484 0.477 0.401 0.487 0.487 0.490 0.487 0.398 0.492 0.492

std(φ1) 0.081 0.092 0.339 0.078 0.078 0.060 0.067 0.379 0.057 0.057
θ1 0.510 0.453 0.527 0.508 0.508 0.505 0.445 0.531 0.505 0.505

std(θ1) 0.089 0.092 0.164 0.078 0.078 0.063 0.065 0.154 0.054 0.054
DNC 0 0
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Table 2: Experiments 4-6

Exp. Number of Observations
50 100

ARMA(1,1)
(φ1, θ1)= ( 0.80 0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2

φ1 0.718 0.707 0.672 0.724 0.725 0.761 0.756 0.698 0.764 0.764
std(φ1) 0.125 0.140 0.343 0.121 0.120 0.080 0.087 0.341 0.076 0.076

θ1 0.529 0.456 0.503 0.529 0.528 0.515 0.435 0.512 0.513 0.513
std(θ1) 0.152 0.142 0.246 0.147 0.146 0.109 0.097 0.180 0.100 0.100
DNC 1 0

200 400
ARMA(1,1)

(φ1, θ1)= ( 0.80 0.50 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.782 0.780 0.666 0.783 0.783 0.792 0.791 0.701 0.793 0.793

std(φ1) 0.053 0.056 0.405 0.051 0.051 0.035 0.037 0.422 0.034 0.034
θ1 0.506 0.424 0.531 0.505 0.505 0.501 0.418 0.521 0.501 0.501

std(θ1) 0.078 0.070 0.164 0.069 0.069 0.054 0.048 0.146 0.046 0.046
DNC 0 0

50 100
ARMA(1,1)

(φ1, θ1)= ( 0.50 0.80 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.435 0.410 0.473 0.470 0.469 0.469 0.454 0.470 0.485 0.485

std(φ1) 0.180 0.213 0.374 0.152 0.152 0.110 0.132 0.322 0.096 0.098
θ1 0.763 0.609 0.755 0.770 0.770 0.784 0.583 0.832 0.793 0.794

std(θ1) 0.151 0.184 0.285 0.124 0.122 0.105 0.121 0.217 0.077 0.078
DNC 65 14

200 400
ARMA(1,1)

(φ1, θ1)= ( 0.50 0.80 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.486 0.477 0.362 0.494 0.494 0.492 0.488 0.472 0.496 0.496

std(φ1) 0.073 0.090 0.304 0.064 0.064 0.051 0.062 0.289 0.045 0.045
θ1 0.794 0.571 0.828 0.798 0.798 0.796 0.563 0.795 0.799 0.799

std(θ1) 0.076 0.085 0.214 0.050 0.049 0.054 0.060 0.149 0.034 0.034
DNC 1 0

50 100
ARMA(1,2)

(φ1, θ1, θ2)= ( 0.60 0.00 0.64 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.484 0.453 0.550 0.535 0.526 0.554 0.527 0.587 0.573 0.575

std(φ1) 0.288 0.427 0.302 0.192 0.268 0.144 0.212 0.270 0.108 0.110
θ1 0.080 0.132 0.015 0.024 0.035 0.033 0.087 -0.013 0.010 0.009

std(θ1) 0.287 0.433 0.282 0.187 0.259 0.146 0.219 0.202 0.101 0.108
θ2 0.599 0.487 0.482 0.666 0.669 0.624 0.489 0.514 0.648 0.648

std(θ2) 0.166 0.208 0.228 0.180 0.184 0.108 0.137 0.160 0.098 0.100
DNC 124 24

200 400
ARMA(1,2)

(φ1, θ1, θ2)= ( 0.60 0.00 0.64 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.580 0.562 0.620 0.587 0.587 0.588 0.575 0.570 0.592 0.592

std(φ1) 0.081 0.128 0.261 0.072 0.072 0.058 0.088 0.212 0.051 0.051
θ1 0.014 0.062 -0.018 0.006 0.006 0.009 0.053 0.020 0.005 0.005

std(θ1) 0.089 0.140 0.156 0.068 0.068 0.062 0.095 0.124 0.047 0.047
θ2 0.633 0.487 0.583 0.642 0.642 0.638 0.486 0.660 0.642 0.642

std(θ2) 0.076 0.094 0.128 0.062 0.062 0.052 0.065 0.108 0.043 0.043
DNC 3 1
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Table 3: Experiments 7-8

Exp. Number of Observations
50 100

ARMA(2,1)
(φ1, φ2, θ1)= ( 1.00 -0.64 -0.60 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2

φ1 0.944 0.962 0.901 0.928 0.907 0.967 0.974 0.959 0.985 0.997
std(φ1) 0.280 0.328 0.249 0.317 0.343 0.137 0.190 0.168 0.126 0.149

φ2 -0.616 -0.623 -0.619 -0.618 -0.610 -0.627 -0.630 -0.623 -0.636 -0.639
std(φ2) 0.132 0.143 0.169 0.158 0.176 0.080 0.088 0.149 0.077 0.079

θ1 -0.558 -0.513 -0.490 -0.539 -0.514 -0.574 -0.517 -0.564 -0.603 -0.613
std(θ1) 0.321 0.355 0.291 0.352 0.388 0.170 0.211 0.220 0.152 0.174
DNC 51 2

200 400
ARMA(2,1)

(φ1, φ2, θ1)= ( 1.00 -0.64 -0.60 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 0.983 0.987 0.992 0.994 0.999 0.991 0.991 0.994 0.996 0.993

std(φ1) 0.091 0.135 0.128 0.082 0.108 0.062 0.095 0.120 0.072 0.114
φ2 -0.634 -0.636 -0.614 -0.640 -0.641 -0.638 -0.638 -0.574 -0.639 -0.637

std(φ2) 0.053 0.060 0.148 0.051 0.059 0.037 0.043 0.213 0.049 0.074
θ1 -0.584 -0.527 -0.619 -0.602 -0.606 -0.589 -0.530 -0.656 -0.599 -0.596

std(θ1) 0.118 0.156 0.191 0.100 0.122 0.079 0.109 0.200 0.082 0.121
DNC 0 0

50 100
ARMA(2,1)

(φ1, φ2, θ1)= ( 0.00 -0.64 -0.60 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 -0.018 -0.011 -0.008 -0.013 -0.017 -0.007 -0.002 0.009 -0.001 -0.002

std(φ1) 0.150 0.178 0.224 0.146 0.156 0.105 0.126 0.228 0.100 0.106
φ2 -0.630 -0.628 -0.647 -0.633 -0.632 -0.631 -0.629 -0.611 -0.631 -0.630

std(φ2) 0.120 0.124 0.228 0.118 0.118 0.085 0.087 0.270 0.082 0.083
θ1 -0.581 -0.486 -0.564 -0.598 -0.591 -0.596 -0.498 -0.607 -0.617 -0.616

std(θ1) 0.194 0.199 0.240 0.183 0.205 0.133 0.141 0.187 0.117 0.129
DNC 25 0

200 400
ARMA(2,1)

(φ1, φ2, θ1)= ( 0.00 -0.64 -0.60 ) IOLS OLS KP ML 1 ML 2 IOLS OLS KP ML 1 ML 2
φ1 -0.003 0.001 0.036 0.000 0.001 -0.003 -0.001 -0.003 -0.002 -0.001

std(φ1) 0.071 0.085 0.223 0.067 0.068 0.050 0.060 0.244 0.059 0.047
φ2 -0.636 -0.635 -0.564 -0.636 -0.636 -0.638 -0.638 -0.492 -0.638 -0.638

std(φ2) 0.059 0.061 0.317 0.057 0.057 0.041 0.042 0.416 0.042 0.040
θ1 -0.598 -0.500 -0.639 -0.609 -0.609 -0.598 -0.500 -0.651 -0.601 -0.603

std(θ1) 0.091 0.096 0.162 0.077 0.077 0.061 0.067 0.161 0.072 0.051
DNC 0 0
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Table 4: VARMA Experiment

Exp. Number of Observations
50 100

VARMA(1,1)
IOLS OLS ML IOLS OLS ML

φ1= 0.20 0.155 0.163 0.197 0.181 0.187 0.196
std(φ1) 0.251 0.296 0.285 0.185 0.206 0.217

θ1,1 = 0.25 0.269 0.252 0.232 0.252 0.242 0.248
std(θ1,1) 0.276 0.317 0.349 0.192 0.213 0.230

θ1,2 = -0.20 -0.204 -0.203 -0.193 -0.205 -0.205 -0.204
std(θ1,2) 0.156 0.155 0.179 0.104 0.103 0.104

θ2,1 = 0.15 0.153 0.149 0.151 0.150 0.149 0.154
std(θ2,1) 0.155 0.154 0.179 0.104 0.104 0.108

θ2,2 = -0.10 -0.075 -0.097 -0.091 -0.089 -0.101 -0.095
std(θ2,2) 0.300 0.329 0.368 0.213 0.230 0.250
DNC 5 0

200 400

IOLS OLS ML IOLS OLS ML
φ1= 0.20 0.187 0.189 0.198 0.196 0.197 0.202
std(φ1) 0.140 0.153 0.149 0.100 0.109 0.101

θ1,1 = 0.25 0.255 0.250 0.250 0.251 0.248 0.248
std(θ1,1) 0.144 0.158 0.158 0.103 0.113 0.105

θ1,2 = -0.20 -0.203 -0.203 -0.203 -0.202 -0.202 -0.203
std(θ1,2) 0.069 0.069 0.068 0.050 0.050 0.049

θ2,1 = 0.15 0.152 0.151 0.154 0.150 0.149 0.152
std(θ2,1) 0.072 0.072 0.073 0.051 0.051 0.052

θ2,2 = -0.10 -0.094 -0.100 -0.100 -0.100 -0.102 -0.103
std(θ2,2) 0.157 0.168 0.168 0.109 0.117 0.111
DNC 0 0
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