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Abstract

This paper develops theoretical results for the estimation of radial basis
function neural network specifications, for dependent data, that do not re-
quire iterative estimation techniques. Use of the properties of regression based
boosting algorithms is made. Both consistency and rate results are derived.
An application to nonparametric specification testing illustrates the usefulness
of the results.
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1 Introduction

The consideration of flexible nonlinear specifications has played a significant part in

the development of nonparametric modeling in statistics and econometrics. Such non-

linear specifications form part of a toolkit that has been used to provide approxima-

tions to unknown functions in diverse areas such as, e.g., nonparametric specification

testing, time series model building and specification of diffusion process models.

A major issue in the use of flexible nonlinear specifications is the need for robust

and efficient estimation algorithms. Unfortunately, the problem of estimating such

nonlinear models has meant that traditionally focus has been restricted to series
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expansions, i.e. specifications that involve linear combinations of basis functions,

such as trigonometric functions or polynomials. Such basis functions do not involve

unknown parameters and therefore, estimation boils down to linear least squares

estimation of the linear combination coefficients.

Such restrictions, however, have considerable costs in the sense that many classes

of powerful flexible nonlinear specifications are excluded. One such class is neural

networks. Neural networks are similar to other classes of approximators in that

basis functions are linearly combined to provide an approximation1. However, these

basis functions typically involve unknown parameters. Since these parameters need

to be estimated and the number of nodes, formed from the basis function, may be

quite large, estimation of neural network specifications is not trivial. The estimation

problem has been addressed in ways specific to the application being considered. For

example in the case of neglected nonlinearity testing in regression models, work by

Lee, White, and Granger (1993) has rested on the use of randomly generated nodes

which bypasses the need for estimation. More importantly, in this case, the attendant

problem of lack of identification under the null hypothesis of no nonlinearity is thus

solved.

In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have introduced

a new class of neural networks in the context of a diverse set of testing problems

in econometrics. These neural network specifications based on radial basis functions

(RBF), provide a novel way for alleviating the aforementioned estimation (and in some

cases identification) problem although these specifications are used in the context of

testing rather than estimation in the above papers. Although radial basis functions

involve the use of nodes that contain unknown parameters, these parameters can

1For a good review see Bishop (1995). Cybenko (1989), Hornik, Stinchcombe, and White (1989)
and Park and Sandberg (1991) provide basic approximation results for large classes of neural network
specifications.
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be selected in such a way that removes the need for nonlinear estimation. Then,

linear least squares completes the estimation of the neural network specification.

Furthermore, the selection of the basis function parameters has an extremely useful

by-product. It provides a ranking for the nodes which is not readily available for

neural networks unlike trigonometric or polynomial approximations where the ranking

of the nodes is natural. This estimation approach proved extremely effective. In

most testing contexts where the RBF neural networks (RBFNN) were used, they

were either clear favourites in terms of test power or very close to the favourites. The

main advantage of this line of work compared to standard series expansions such as

trigonometric expansions is the fact that through the use of parameters the actual

set of nodes used for approximation adapts in a data driven way to the problems at

hand. This extends the idea of adaptation which, in this context, is usually taken to

mean that the number of nodes is chosen in a data dependent way. So, in the case

of RBFNN the adaptation is dual since the number of nodes can also be adaptively

selected.

The above line of work built on a literature that focused mainly on practical

applicability and relevance. It did not stress theoretical rigour but small sample per-

formance. Of course, another vast strand of the statistical and econometric literature

focused on the theoretical properties of nonparametric methods based on series ex-

pansions. That work provides a theoretical account of the properties of these methods

when applied to problems such as estimation or specification testing. Examples of

such work include Bierens (1984), Aerts, Claeskens, and Hart (1999), Newey (1997)

and, more recently, Guerre and Lavergne (2005) and Guay and Guerre (2006). Re-

views may be found in, e.g., Hart (1997) and Pagan and Ullah (2000). Clearly, there

is a gap on whether the existing theoretical analysis relates to neural network spec-

ifications and especially RBFNNs. This is clearly of interest since the good small
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sample performance of RBFNNs suggests that they merit further focus.

This is the aim of the current paper. We provide a theoretical analysis of RBFNNs.

In particular, the method of selecting the parameters of the nodes is analysed using

the fact that this method bears very close similarity to a form of boosting. Boosting

refers to a set of algorithms which have become very popular in disciplines such as

machine learning and, more recently, statistics, in the context of classification and

prediction (see, e.g., Freund and Schapire (1996), Friedman, Hastie, and Tibshirani

(2000), Schapire (2002), Friedman (2001) and Buhlmann (2006)). The link between

boosting and neural networks is not new. For example, one of the early references

on boosting in machine learning, uses neural networks (see Drucker, Schapire, and

Simard (1993)). Further, greedy algorithms which are closely related to boosting

have been considered in the context of neural network training by, e.g., Jones (1992).

However, our treatment has a number of distinctive features. In particular, the for-

mal statistical link and results developed between boosting and RBFNNs is to our

knowledge novel. Another major distinctive feature is the attention paid to problems

arising out of the consideration of dependent data which is of great importance in

developing forecasting models. The focus of the paper is solely theoretical. We feel

that existing small sample evidence in terms of specification testing, is more than

compelling in favour of RBFNNs.

The structure of the paper is as follows: Section 2 presents the preliminary setting

of the paper. Section 3 presents the main theoretical result. Section 4 presents

an application to nonparametric specification testing. Finally, Section 5 concludes.

Proofs are relegated to the Appendix.
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2 Setup

Consider a regression model of the form

yt = µ(xt) + εt (1)

The aim is to estimate the unknown regression function by an RBFNN series expan-

sion of the form

µ̂(xt) =
m∑

i=1

ciψ(xt, ti, σT ) (2)

where the RBF nodes, ψ(xt, ti, σT ), are radially symmetrical, integrable, bounded

functions and ti are referred to as the centres of the RBFs. Examples include the

Gaussian function of the form exp

(
−

(
||x−ti||

σT

)2
)

, or the multiquadratic function
(

1 +
(
||x−ti||

σT

)2
)−1

, σT > 0, where ||.|| denotes Euclidean distance. Obviously, es-

timation of (2) is challenging since unlike standard series expansions, there are two

problems that need attention: the first is that ψ(x, ti, σT ) contain unknown parame-

ters, in particular the centres, and the second is that the nodes are not ranked so that

the choice of the nodes in the series expansion is not obvious. Once the order of the

nodes and the centres are determined the series expansion can be estimated by least

squares.

A popular algorithm for solving the above problem has been suggested by Orr

(1995). In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have modi-

fied that algorithm for specifically econometric applications with some success. In this

paper we modify it further to bring it more in line with the regression based boosting

algorithm of Buhlmann (2006). We define this new algorithm as Algorithm 1 below,

and label it as the (RBF) Boosting Algorithm.

Algorithm 1 (RBF) Boosting algorithm

1. Let σT be some sequence such that σT = o(1). We construct the initial set of T

RBF nodes given by: Ψ(1,...,T ) = {ψ(x, x1, σT ), ψ(x, x2, σT ), . . . , ψ(x, xT , σT )}.
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2. These are ranked according to their ability to reduce the residual variance, when

each ψ(xt, xi, σT ), i = 1, . . . , T , is entered individually in (2).

3. The node that minimises the residual variance becomes the first node in the

ranking of the nodes. Denote this node by ψ(x, xS1 , σT ). Denote the residual

from the regression of yt on ψ(xt, xS1 , σT ), by y
(1)
t . Let S̃1 = {S1}. Let Ψ(1,...,T )/S̃1

be the set of nodes in Ψ(1,...,T ) apart from the nodes indexed by the elements of

S̃1.

4. Set i = 1.

5. The nodes in Ψ(1,...,T )/S̃1 are ranked according to their ability to reduce the resid-

ual variance of y
(i)
t , when y

(i)
t is regressed on each ψ(xt, xi, σT ), i ∈ S̃1.

6. The node that minimises the residual variance becomes the i + 1-th node in the

ranking of the nodes. Denote this node by ψ(x, xSi+1
, σT ). Denote the residual

from the regression of y
(i)
t on ψ(xt, xSi+1

, σT ), by y
(i+1)
t . Let S̃i+1 = S̃i+1∪{Si+1}.

Let Ψ(1,...,T )/S̃i+1 be the set of nodes in Ψ(1,...,T ) apart from the nodes indexed by

the elements of S̃i+1.

7. If i = m for some m = mT →∞ stop, else set i = i + 1 and go to Step 5.

Some remarks are in order for this algorithm.

Remark 1 The choice for m is not discussed in Algorithm 1 apart from noting that

m →∞. Theorem 1 suggests that the maximum possible rate is logarithmic in T .

Remark 2 The sequence σT is left unspecified in Algorithm 1. The proof of The-

orem 1 suggests that the choice σT = O
(
(ln ln T )−1) is acceptable. Given the very

slow rate involved, it is reasonable to consider ad hoc data-based values following the

practice established by Orr (1995). Accordingly, in practice this tuning parameter is

set such that σT = σ where σ = 2 maxt |xt − xt−1|.
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Remark 3 The choice of the initial set of RBF nodes given by:

Ψ(1,...,T ) = {ψ(x, x1, σT ), ψ(x, x2, σT ), . . . , ψ(x, xT , σT )}

may be straightforwardly generalised to Ψ(1,...,pT ) where pT is chosen to reflect a subset

of the observations or possibly be of a larger order than T . Theorem 1 allows under

appropriate conditions both cases. Therefore, in the ensuing theoretical analysis pT is

left unspecified as long as pT →∞.

Remark 4 Algorithm 1 is more computationally demanding than that used in Blake

and Kapetanios (2007, 2000, 2003a,b). There the nodes are ranked only once accord-

ing to their ability to reduce the residual variance, when entered individually in (2).

Clearly, Algorithm 1 is likely to provide a better fit than the approach of Blake and

Kapetanios (2007, 2000, 2003a,b), although the two algorithms are very similar. The

cost is a potential increase in computational effort of the order of T (T + 1)/2. In

practice this is likely to be substantially less as the stopping rule, m, will limit the

number of nodes added and halt the computational task.

Remark 5 Although the discussion in this paper is couched in terms of RBFNNs it

is worth noting that extensions to other neural network specifications such as neural

networks based on logistic function nodes are possible once a grid of possible parame-

ter values is constructed. One such specification is considered in White (2006) where

an algorithm is constructed but no formal theoretical justification for it is given. The

advantage of RBFNNs, in the context of Algorithm 1, is the fact that the construc-

tion of the grid is obtained by using the actual sample observations thus ensuring an

appropriate coverage of the relevant state space for the processes under consideration.
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3 Theoretical Results

In this section we present our main theoretical result. The following assumptions will

be needed.

Assumption 1 E|εs
t | < ∞ for some s > max(2/ξ, 4) where ξ is defined in Lemmas

1 and 2 in the appendix.

Assumption 2 µ(.) is L2-bounded.

Assumption 3 Either of the following assumptions hold: (i) Let Ft be the Borel

field generated by (x1, ε0), . . . , (xt, εt−1). The sequence {εt}∞t=−∞ is a martingale dif-

ference sequence with E(εt|Ft) = 0, E(ε2
t |Ft) = σ2(xt−1) where σ(.) is continuous and

bounded away from zero. (ii) {εt}∞t=−∞ is a zero mean sequence with finite variance

σ2. {xt}∞t=−∞ and {εt}∞t=−∞ are independent sequences.

Assumption 4 xt is a stationary vector L2−NED (near epoque dependent) process

of size -3 on some α mixing process η1t of size −C, C > 1. εt is a stationary L2−NED

process of size -3 on some α mixing process η2t of size −C, C > 1. pT = o(T 1/4).

Assumption 5 xt and εt are a stationary vector and stationary scalar α-mixing

processes with α-mixing coefficients given by α(k) = C1C
k
2 , C1 > 0, 0 < C2 < 1.

pT = O(TC3) for some C3 > 0.

Remark 6 Assumptions 4 and 5 provide alternative dependence structures for xt

and εt. Note the dependence of the rate for pT on these dependence assumptions.

Assumptions 4 is much weaker: firstly because it does not assume mixing and second

because the mixing process on which xt and εt depend, have α-mixing coefficients which

decline at a polynomial rate rather that the exponential rate of assumption 5. The

stronger dependence assumption 5 however allows for a much faster rate of increase

in pT .
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Then, the following theorem proved in the appendix holds:

Theorem 1 Let assumptions 1-3 and assumption 4 or assumption 5 hold. The esti-

mate of the regression function µ(xt), obtained using the iterative boosting algorithm 1

and denoted µ̂(xt), satisfies µ̂(xt)− µ(xt) = op

(
m−1/C1

)
, for all C1 > 6 and some se-

quence σT = o(1), if m < loga T , for all a that satisfy loga e < ln(5/2)
4

if the conditions

of Lemma 1 are satisfied. If further, the conditions of Lemma 2 are satisfied then

m < loga T , for all a that satisfy loga e < ln(5/2)
2

. As a by-product of this estimation,

an ordering of the radial basis function neural network nodes is obtained.

To the best of our knowledge, this theorem provides the first consistency and rate

result for a boosting algorithm in the context of neural networks for dynamic models.

Remark 7 The rate of convergence to the true unknown regression function µ, given

in Theorem 1, is rather sharp. Not all logarithmic rates are accommodated. The

nature of the logarithmic rates allowed depends crucially on the dependence assump-

tion made about xt and εt as well as the tail behaviour of εt as we can see from the

conditions of Lemma 2.

4 Application to Nonparametric Specification Test-

ing

In this section we provide an application of the result of Theorem 1 in the context of

nonparametric specification testing following Guay and Guerre (2006). Let the true

model be given by (1). Then, a hypothesis of interest is that µ(.) belongs to some

parametric family {m(.; θ), θ ∈ Θ ⊂ Rw}. The null hypothesis then becomes

H0 : µ(.) = m(.; θ) for some θ ∈ Θ

Assuming the existence of some estimator θ̂T for θ obtained by some estimation

method such as, e.g., nonlinear least squares, a set of residuals, ût is obtained. Then,
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the null hypothesis may be tested by testing for the presence of some function of

xt, say µ1(xt) in a regression model of the residuals. Guay and Guerre (2006) use a

trigonometric based series expansion for this purpose. We suggest use of an RBFNN

expansion along the lines of the previous section. The rest of the testing framework

of Guay and Guerre (2006) is retained. Once an ordered set of m RBFNN nodes is

available via algorithm 1, this set is used in place of the set of trigonometric functions.

Guay and Guerre (2006) suggest the use of a data dependent method to determine

the final number of nodes to enter in the testing regression. This method depends

on a penalty term of order (ln ln T )1/2 to counterbalance the increase in fit from the

use of more nodes in the testing regression. This is similar to the method adopted in

Blake and Kapetanios (2007, 2000, 2003a,b) to construct various specification tests.

The penalty terms used in Blake and Kapetanios (2003b) are the ones associated

with either the Akaike or the Bayesian information criteria. These penalties are not

optimal in the sense of Guay and Guerre (2006) since the Akaike penalty term results

in a test which does not have an asymptotic χ2 approximation whereas the Bayesian

criterion, with a penalty term of order ln T , is too parsimonious. In the context of

the information criterion-based work of Blake and Kapetanios (2003b) the Hannan-

Quinn criterion with a penalty term of order ln ln T seems a more appropriate choice.

Note that Guay and Guerre (2006) allow for the minimum number of nodes to be

of order (ln T )C C > 0 which for 0 < C < 1 is acceptable according to Theorem 1,

whereas they allow for a polynomial order for the maximum number of nodes which

is not available for the RBFNN approximation since the number of nodes that can

be ordered via algorithm 1 is of logarithmic order of magnitude. Below we provide a

formal justification for using the RBFNN approximation in the framework of Guay

and Guerre (2006).

For this section the assumptions of Section 3 are augmented and superceded where
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appropriate by the following assumptions.

Assumption 6 xt and εt are a stationary vector and stationary scalar α-mixing

processes with α-mixing coefficients given by α(k) = C1k
−C2, C1 > 0, C2 > 1. pT =

o(T 1/4).

Assumption 7 E(ε8
t ) < ∞.

Assumption 8 xt has a density f(.) which is bounded away from zero and infinity.

Assumption 9 The parameter set Θ is a subset of Rp and the following conditions

hold. (i) The regression function m(x; θ) is twice continuously differentiable with

bounded first and second derivatives. (ii) For any L2-bounded function µ(.), there

exists a parameter sequence, θT in Θ such that T 1/2(θ̂T − θT ) = Op(1), with θT = θ if

µ(.) = m(, ., θ) for some θ in Θ.

Assumption 10 For the regression model yt = µ(xt)+εt, sup |σ̂(x)−σ(x)| = Op(vT )

and all d/2 derivatives of σ̂(x) are bounded from above by vT , where vT = o(T 1/C),

for some C > 0.

Remark 8 Assumption 6 is considerably weaker than assumption 5 but considerably

stronger than assumption 4. Assumption 7 strengthens assumption 1. Assumptions 9

and 10 are taken almost verbatim from Guay and Guerre (2006) and are technical

ones needed to prove Theorems 1-3 of that paper.

Then, the following theorem, proved in the appendix, holds.

Theorem 2 Under assumptions 1-3 (i) and assumptions 6-10, the results of Theo-

rems 1 and 3 of Guay and Guerre (2006) hold with the rate of polynomial approx-

imation of the unknown regression function via the series expansion changed from
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−s/d to C, C < 1/6 where s is the Holder smoothness order of the unknown regres-

sion function and the maximum allowable rate of growth for the maximum allowable

number of nodes, Kmax, changed from a polynomial rate in T to a logarithmic rate as

described in Theorem 1.

Remark 9 It is also straightforward to see that a version of Theorem 2 of Guay and

Guerre (2006) holds. In particular, since only a logarithmic rate is allowed for the

number of nodes in the testing regression, the RBFNN based nonparametric specifica-

tion test cannot detect polynomially small local alternatives but only logarithmically

small ones, unlike the trigonometric based nonparametric specification test of Guay

and Guerre (2006).

5 Conclusions

The use of series expansions as flexible nonlinear specifications for a variety of esti-

mation and testing problems in statistics and econometrics is widespread. Limits to

their use arise because many series expansions consist of basis functions that contain

parameters. These parameters need to be somehow estimated. This necessitates the

use of iterative techniques with the attendant computational and robustness costs.

On the other hand such series expansions give rise to methods that have excellent

small sample properties as the work of Blake and Kapetanios (2007, 2000, 2003a,b)

suggests. This paper formalises the methodology adopted in these papers and shows

that it can provide a consistent estimate of an unknown regression function. A result

on the rate of the approximation is also obtained. Use of theory on boosting algo-

rithms is used in the process of deriving these results. The paper concludes with an

application of the theoretical result to nonparametric specification testing.
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A Proofs

A.1 Lemmas

The following two lemmas are needed for the main results.

Lemma 1 Under Assumptions 1-3 and assumption 4 or assumption 5, with 0 < ξ <

1/2:

sup
1≤j,k≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ = Op(T
−ξ/2), (3)

sup
1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)εt

∣∣∣∣∣ = Op(T
−ξ/2), (4)

sup
1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

f(xt)gj(xt)− E (f(xt)gj(xt))

∣∣∣∣∣ = Op(T
−ξ/2) (5)

and

sup
1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)yt − E (gj(xt)yt)

∣∣∣∣∣ = Op(T
−ξ/2), (6)

where gj, j = 1, . . . , pT are bounded continuous functions, f(.) =
∑pT

j=1 βjgj(.) and

∑pT

j=1 |βj| = o(T 1/s) for all s > 0.

Proof of Lemma 1. For (3) we need to consider the different implications of as-

sumptions 4 and 5 for the bounded quantity gj(xt), j = 1, . . . , pT . We start with

assumption 4 which allows a greater extent of temporal dependence in xt at the ex-

pense of a slower rate of increase in pT . Let the autocovariance function of gj(xt)gk(xt)

be denoted by cjk,τ . By Markov’s inequality it easily follows that

Pr

(∣∣∣∣∣
T∑

i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
≤ 2T

ε2

T∑
τ=0

cjk,τ . (7)

We examine the behaviour of the RHS of (7). By assumption 4 xt is an L2 −NED

process of size −3. By the fact that gj(.) is a bounded function for all j, gj(.) satisfies

the following uniform Lipschitz condition for all finite constant vectors a and b and

some finite constant scalar C

|gj(a)− gj(b)| ≤ Cρ(a, b),
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where ρ(a, b) =
∑d

i=1 |ai − bi|. Then, by Theorem 17.12 of Davidson (1994) it follows

that gj(xt) is an L2 − NED process of size −3. Note that ‖gj(xt)‖r ≤ ∞ for all

finite r. Then, by example 17.17 of Davidson (1994), gj(xt)gk(xt) is an L2 − NED

process of size −3(r−2)/2(r−1) for all finite r which implies that it is an L2−NED

process of size −3/2. Then, by Theorem 17.7 of Davidson (1994), and the mixing

assumption in assumption 4,
∑T

τ=0 cjk,τ < ∞ since the Theorem requires a NED size

of −1. Setting ε = Tε in (7) gives a rate of convergence to zero for the RHS of (7) of

T−1. Now, (3) holds if

Pr

(
T ξ/2 sup

1≤j,k≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
= o(1), (8)

for all 0 < ξ < 1/2. But

Pr

(
T ξ/2 sup

1≤j,k≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
≤ (9)

p2
T Pr

(
T ξ/2

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
.

Using (7), the RHS of (9) is majorised by Cp2
T T ξ−1. But, by assumption 4, pT =

o(T 1/4). Hence, Cp2
T T ξ−1 = o(1) and (8) follows. We now prove (3) under assumption

5. Now, pT is allowed to grow at a faster polynomial rate that 1/4 but this implies that

the rate obtained in (7) is too slow. We therefore make use of Bernstein’s inequality.

Theorem 3.3 of White and Wooldridge (1991) gives a Bernstein inequality allowing

for α-mixing stationary xt. Using Theorem 3.49 of White (1999), we note that if xt

is α-mixing of a given size then gj(xt)gk(xt) is also α-mixing of the same size. Then,

noting that gj(xt)gk(xt) has a finite upper bound, we get from Theorem 3.3 of White

and Wooldridge (1991) that, for some finite constants C1 and C2 and for all 0 < β < 1

Pr

(∣∣∣∣∣
T∑

i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
≤ C1 exp

(
−C2εT

− 1
2

)
. (10)
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Setting ε = T 1−ξ/2ε we get

p2
T Pr

(
T ξ/2

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ > ε

)
≤

C1p
2
T exp

(−C2εT
1/2−ξ/2

)
.

Thus,

C1p
2
T exp

(−C2εT
1/2−ξ/2

)
= o(1),

for all ε > 0, as long as pT = O(T q) for all q > 0.

We now consider (4). Once again we consider the different implications of assump-

tions 4 and 5. Starting with assumption 4 we note that by the Markov inequality we

get

Pr

(∣∣∣∣∣
T∑

i=1

gj(xt)εt

∣∣∣∣∣ > ε

)
≤ 2T

ε2

T∑
τ=0

cj,τ , (11)

where cj,τ denotes the autocovariance function of gj(xt)εt. If assumption 3 (i) holds

then all autocovariances are trivially zero and so
∑T

τ=0 cj,τ < ∞. We now examine the

situation under assumption 3 (ii). A difference between the treatment of gj(xt)gk(xt)

and gj(xt)εt arises since gj(xt)εt is not bounded. By assumption 4, ‖εt‖r ≤ ∞ for

some r > 4. Since both gj(xt) and εt are L2 − NED processes of size −3 it follows

by example 17.17 of Davidson (1994), that gj(xt)εt is an L2 − NED process of size

−3(r − 2)/2(r − 1) for r > 4. Hence, gj(xt)εt is an L2 − NED process of, at most,

size −1. Thus, by Theorem 17.7 of Davidson (1994), and mixing assumption part of

assumption 4,
∑T

τ=0 cj,τ < ∞. Thus

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)εt

∣∣∣∣∣ > ε

)
≤ pT Pr

(
T ξ/2

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)εt

∣∣∣∣∣ > ε

)
. (12)

Then, the RHS of (12) is majorised by CpT T ξ−1 which, by assumption 4, that pT =

o(T 1/4), is o(1). Next, we establish (4) under assumption 5. Direct use of Bernstein’s

inequality for dependent processes is not possible as it applies to bounded random

variables. So we use a truncation argument to get the inequality we need. Let

ε̃t =

{
εt, if |εt| ≤ CT

sign(CT )CT , if |εt| > CT
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where CT is a sequence to be defined below. We have that

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)εt

∣∣∣∣∣ > ε

)
≤ (13)

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε/3

)
+

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt) (εt − ε̃t)

∣∣∣∣∣ > ε/3

)
+

I

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

E (gj(xt) (εt − ε̃t))

∣∣∣∣∣ > ε/3

)
,

where I(.) denotes the indicator function. We look, in turn, at the three terms on the

RHS of (13). For the first term we can use the Bernstein inequality of (10). However,

it takes the slightly different form below since ε̃t is not bounded by a constant but by

CT .

Pr

(∣∣∣∣∣
T∑

i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε

)
≤ C1 exp

(
−C2εT

− 1
2

CT

)
.

Then, setting ε = T 1−ξ/2ε and CT = T ξ/2, we have that

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε/3

)
≤

C1pT exp
(−C2εT

1/2−ξ
)

= o(1).

We next look at the second term of the RHS of (13). We have that

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt) (εt − ε̃t)

∣∣∣∣∣ > ε/3

)
≤ Pr (∃t such that |εt| > CT ) ≤

T Pr ( |εt| > CT ) ≤ T
E |εt|s
Cs

T

.

But

T
E |εt|s
Cs

T

= O(T 1−sξ/2) = o(1)

since, by assumption 1, s > 2/ξ. Finally, we consider the third term of the RHS of

(13). By the uncorrelatedness of g(xt) and εt and the boundedness of gj(xt) the term

can be bounded by

T ξ/2E (gj(xt) (εt − ε̃t)) ≤ T ξ/2Egj(xt)E (εt − ε̃t) ≤ C |E (εt − ε̃t)| .
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This can be bounded by

|E (εt − ε̃t)| ≤
∫

I(|x| > CT ) (CT + |x|) dPε(x) =

CT Pr( |εt| > CT ) +

∫
|x| I(|x| > CT )dPε(x) ≤

C1−s
T E |εt|s +

(
E |εt|2

)1/2
Pr (|εt| > CT )1/2 = o

(
C−2

T

)
= o

(
T−ξ

)
.

This proves (4) under both assumptions 4 and 5. We next consider (5),

sup
1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

f(xt)gj(xt)− E (f(xt)gj(xt))

∣∣∣∣∣ ≤

pT∑
j=1

|βj| sup
1≤j,k≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)gk(xt)− E (gj(xt)gk(xt))

∣∣∣∣∣ ≤
(

pT∑
j=1

|βj|
)

Op(T
−ξ/2).

But
∑pT

j=1 |βj| = o(T 1/s) for all s > 0 hence giving the result. Finally, (6) easily

follows from (4) and (5).

Lemma 2 Let Assumptions 1-3 and assumption 5 hold and assume that 0 < ξ < b

for any 1/2 < b < 1. Further, assume that

Pr (|εt| > a) ≤ C1 exp (−C2a
p)

where C1 > 0, C2 > 0 and p > 1. Then, Lemma 1 holds.

Proof of Lemma 2. The result of the Lemma will be established if we show that

(4) holds under the conditions of the Lemma since it is easy to see from the proof

of Lemma 1 that (3) and (5) follow under the conditions of the current Lemma. We

revisit the analysis of the Berstein inequality for unbounded random variables used

in Lemma 1. A different truncation argument is then used. Let

ε̃t =

{
εt, if |εt| ≤ CT

0, if |εt| > CT
and ε̄t =

{
0, if |εt| ≤ CT

εt, if |εt| > CT
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where CT is a sequence to be defined below. Then,

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)εt

∣∣∣∣∣ > ε

)
≤ (14)

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t) + T−1

T∑
i=1

gj(xt)ε̄t − E (gj(xt)ε̄t)

∣∣∣∣∣ > ε

)
≤

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε/2

)
+

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̄t − E (gj(xt)ε̄t)

∣∣∣∣∣ > ε/2

)
.

For the first term of the RHS of (14), we can using Theorem 3.3 of White and

Wooldridge (1991) to get

Pr

(∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε/2

)
≤ C1pT exp

(
−C2ε

T 1/2

CT

)
.

Then,

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̃t − E (gj(xt)ε̃t)

∣∣∣∣∣ > ε/2

)
≤

C1pT exp

(
−C2ε

T 1/2−ξ/2

CT

)
≤ C1pT exp

(
−C2ε

T (1−b)/2

CT

)
.

We let CT = T q. It is clear that we need (1− b)/2 > q. Then,

C1pT exp

(
−C2ε

T (1−b)/2

CT

)
= o(1)

for all polynomial rates of growth for pT . We next examine the second term of the

RHS of (14). Using

Pr

(
T ξ/2 sup

1≤j≤pT

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̄t − E (gj(xt)ε̄t)

∣∣∣∣∣ > ε/2

)
(15)

≤ pT Pr

(
T ξ/2

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̄t − E (gj(xt)ε̄t)

∣∣∣∣∣ > ε/2

)

we focus on the RHS of (15). Then we have, using Markov’s inequality,

Pr

(
T ξ/2

∣∣∣∣∣T
−1

T∑
i=1

gj(xt)ε̄t − E (gj(xt)ε̄t)

∣∣∣∣∣ > ε/2

)
≤
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Pr

(
T ξ/2−1

T∑
i=1

|gj(xt)ε̄t − E (gj(xt)ε̄t)| > ε/2

)
≤ CT ξ/2−1

T∑
i=1

E |gj(xt)ε̄t| .

By the boundedness of gj(.) and Holder’s inequality,

E |gj(xt)ε̄t| = E |gj(xt)εtI(|εt| > CT )| ≤

C (E (|εt|p))1/p
(E (I (|εt| > CT ))u)

1/u
=

C (E (|εt|p))1/p
Pr (|εt| > CT )1/u

where p−1 + u−1 = 1. Since (E (|εt|p))1/p
< ∞ and

Pr (|εt| > CT ) ≤ C1 exp (−C2C
p
T ) ,

it follows that

Pr

(
T ξ/2−1

T∑
i=1

|gj(xt)ε̄t − E (gj(xt)ε̄t)| > ε/2

)
≤ CT ξ/2−1

T∑
i=1

exp (−C2C
p
T )1/u ≤

CT ξ/2−1

T∑
i=1

exp (−C2C
p
T ) ≤ CT ξ/2exp (−C2C

p
T ) =

CT ξ/2 exp (−C2T
qp) = o(1),

for all p > 0 and q > 0. Hence, the result follows.

A.2 Proofs of Theorems

Proof of Theorem 1. We split the problem in two parts: the approximation part

and the estimation part. The approximation part relates to approximating µ(x) by

a approximating function of the form

ψ(x; pT ) =

pT∑
i=1

ciψ(x, ti, σT ), (16)

where ψ(x, ti, σT ) is a radial basis function node with centre ti and radius σT . The

first part of the approximation proof relates to the ability of sums of the form (16) to
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approximate L2-bounded functions and the conditions required for such an approxi-

mation. For that we consider the work of Park and Sandberg (1991). Let

ψ̃(x; pT ) =

pT∑
i=1

ψ̄(x, ti, σT )µc(x)

(
2τT

pT σT

)d

, (17)

where

ψ̄(x, ti, σT ) =
ψ(x, ti, σT )∫
Rr ψ̄(x, ti, σT )

, (18)

ti is a partitioning of [−τT , τT ]d such that all partition intervals are o(p−C
T ) for some

0 < C < 1 and µc(x) is some continuous function that approximates arbitrarily well

µ(x). This latter fact is possible since the space of continuous functions is dense in

the space of L2 bounded functions. Then, Park and Sandberg (1991) show that

ψ̃(x; pT )− µ(x) = o(1),

for all x not belonging to some set on R of measure zero, as pT → ∞, σT → 0 and

τT → ∞. The latter two limits can have arbitrarily slow rates with respect to T . It

is clear that (17) is of the form (16) with

ci =
µc(x)∫

Rr ψ̄(x, ti, σT )

(
2τT

pT σT

)d

.

So

sup
T∈R

pT∑
i=1

|ci| = o
(
(logaT )C

)
, (19)

for all C > 0, if σT and τT converge to zero and ∞ at slow enough rates; e.g. they

behave as (ln ln T )−1 and ln ln T respectively. Finally, Girosi and Anzelloti (1993)

show that the approximation has a rate of p
1/2
T . This concludes the first part of the

proof.

The second part relates to the estimation part. Given the above approximation

argument we now assume the existence of a representation of the form (16) for the

regression function µ(xt). We wish to estimate a representation of the form

ψ(x; m) =
m∑

i=1

ciψ(x, ti, σT ), (20)
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where ti, i = 1, . . . , m are centres that are obtained by some partition of [−τT , τT ]d,

τT and σT are defined above, m → ∞, m = o(pT ) and, more importantly, order the

centres, ti via the boosting algorithm. To do that we use the framework of Buhlmann

(2006). That framework is not directly applicable to our setting because it deals

with independent observations. We therefore extend a number of results there to

accommodate our needs. Let

ψ̂(x; m) =
m∑

i=1

ĉSi
ψ(x, tSi

, σT )

denote the estimated regression function after m iterations of the boosting algo-

rithm where (S1,S2 . . .) denotes the re-ordering of the centres (1, 2, . . . , ) obtained by

the boosting algorithm. Then, Theorem 1 of Buhlmann (2006) states that ψ̂(x; m)

converges to ψ(x; pT ) as m → ∞ at a slow enough rate, i.e. m = o(ln T ) and

pT = O(eT 1−ξ
). In order to use this result in our framework we need to (i) accommo-

date dependence in the data, (ii) allow for supT∈R
∑pT

i=1 |ci| → ∞ and (iii) determine

a rate at which ψ̂(x; m) converges to ψ(x; pT ). We deal with each issue in turn.

First we substitute Lemma 1 of Buhlmann (2006) with our Lemmas 1 and 2 which

deal with dependent data. Secondly, we need to deal with the unboundedness of

supT∈R
∑pT

i=1 |ci|. Note that it is sufficient for our results to only allow for a rate of

growth of supT∈R
∑pT

i=1 |ci| that is arbitrarily slow with respect to T . Accommodat-

ing this unboundedness can be done by examining Theorem 5.1 of Temlyakov (2000)

which is used in (6.5) of Buhlmann (2006). Let the remainder function at the i-th

step of the boosting algorithm for some original regression function f , be denoted by

Rif . Further, let b be defined by

∣∣〈Ri−1ψ(x; pT ), ψ(x, tSi
, σT )

〉∣∣ ≥ b sup
1≤j≤pT

∣∣〈Ri−1ψ(x; pT ), ψ(x, tj, σT )
〉∣∣ ,

where tSi
is the centre selected at the i-th step of the boosting algorithm. Then, by
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Theorem 5.1 of Temlyakov (2000),

∥∥Riψ(x; pT )
∥∥ ≤

(
sup
T∈R

pT∑
i=1

|ci|
)

(1 + m)
−b

2(2+b) .

Then, if

(1 + m)
−b

2(2+b) = O
(
(logaT )

−b
2(2+b)

)
,

it follows that by letting supT∈R
∑pT

i=1 |ci| grow slowly enough, as in, e.g., (19) ,

(
sup
T∈R

pT∑
i=1

|ci|
)

(1 + m)
−b

2(2+b) = O
(
(logaT )

−b
2(2+b)

)
,

as well. Finally, we need to determine a rate at which ψ̂(x; m) converges to ψ(x; pT ).

But
∣∣∣ψ̂(x; m)− ψ(x; pT )

∣∣∣ ≤ ‖Rmµ‖ . (21)

Then, using (6.17), (6.19) of Buhlmann (2006) and considering sharper bounds in the

analysis preceding (6.19) of Buhlmann (2006),

‖Rmψ(x; pT )‖ ≤ C1 (1 + m)
−b

2(2+b) + C2m (5/2)m T−ξ + C3C
m
4 T−ξ, (22)

for all C4 > 5/2, on the set AT , where AT denotes the set of events where (3)-(6)

simultaneously occur. The sharper bounds referred to above relate to the following.

The third term of the RHS of (22) arises out of bounding
∥∥∥Rmψ(x; pT )− R̃mψ(x; pT )

∥∥∥
where R̃mψ(x; pT ) is a ‘semi’-population version of the remainder function R that uses

population covariances rather than sample covariances. Buhlmann (2006) shows that

∥∥∥Rmψ(x; pT )− R̃mψ(x; pT )
∥∥∥ ≤

∥∥∥Rm−1ψ(x; pT )− R̃m−1ψ(x; pT )
∥∥∥ + C3(5/2)m−1T−ξ.

Then

∥∥∥Rmψ(x; pT )− R̃mψ(x; pT )
∥∥∥ ≤ C6T

−ξ

m∑
i=1

(5/2)m−1 ≤ C6T
−ξ(5/2)m,

rather than
∥∥∥Rmψ(x; pT )− R̃mψ(x; pT )

∥∥∥ ≤ C6T
−ξ3m,
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given in (6.19) of Buhlmann (2006). We note that in algorithm 1, b can be arbitrarily

close to 1. Since by Lemmas 1 and 2 Pr(AT ) = 1−O(T−ξ/8), it follows that

‖Rmψ(x; pT )‖ ≤ C1m
−C5 + C3C

m
4 T−ξ, (23)

for all C5 > 6 and all C4 > 5/2. If Lemma 1 holds then if m < loga T , for all a that

satisfies loga e < ln(5/2)
4

, it follows that there exists C4 > 5/2 such that Cm
4 T−ξ/2 <

T loga C4−ξ/2 and since ξ < 1/2, loga C4 − ξ/2 < 0. If Lemma 2 holds then ξ < 1 and

so a only needs to satisfy loga e < ln(5/2)
2

. Under these conditions, the second term

of the RHS of (23) declines polynomially in T , whereas the first term declines at a

slower logarithmic rate, in T , which therefore dominates. Overall

‖µ̂(xt)− µ(xt)‖ ≤ ‖Rmψ(x; pT )‖+ ‖µ− ψ(x; pT )‖ = op

(
m−1/C1

)
, (24)

for all xt and for all C1 > 6, proving the theorem. Note that the above proof does not

explicitly consider the possible heteroscedasticity of εt. However, the extension to this

case follows easily upon noting Corrolary 1 of Buhlmann (2006) and the martingale

difference assumption in assumption 3.

Proof of Theorem 2. The proof consists of showing that all conditions used in

Theorems 1 and 3 of Guay and Guerre (2006) and therefore by extension, in the

relevant parts of Propositions 1, 2 and Lemmas 1, A.1-A3 of the same paper, for

the trigonometric series expansion, hold for the neural network expansion apart from

the different polynomial approximation rate. These conditions, and the location of

their use in the context of Guay and Guerre (2006), in parentheses, are (A1) uni-

form boundedness and orthonormality of the basis functions used to construct the

approximation to the unknown regression function, (Lemmas A.1-A.3); (A2) The

cardinality of the set of the possible number of nodes for the approximation should
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be ln T , (Lemma A.2); (A3) The series expansion approximates the unknown regres-

sion function at a polynomial rate (Lemma 1). (A2) and (A3) follow immediately

from Theorem 1 and algorithm 1. We investigate (A1). The set of radial basis func-

tions is uniformly bounded by definition for any radial basis function. However, the

ordered set of functions arising out of the boosting algorithm is not orthonormal.

Nevertheless, it can be made orthonormal using a number of possible orthonormal-

isation algorithms. We consider the Gram-Schmidt orthonormalisation algorithm.

Let Ψm = {ψ(x, t1, σT ), . . . , ψ(x, tm, σT )} denote a set of radial basis functions used,

in a regression, to approximate µ1. Let the transformed set of functions be de-

noted Ψ̆m =
{

ψ̆(x, t1, σT ), . . . , ψ̆(x, tm, σT )
}

where Ψ̆m has been obtained from Ψm

by Gram-Schmidt orthonormalisation as follows:

ψ̆(x, t1, σT ) =
ψ(x, t1, σT )

‖ψ(x, t1, σT )‖ (25)

ψ̆(x, t2, σT ) =
ψ(x, t2, σT )−

〈
ψ(x, t2, σT ), ψ̆(x, t1, σT )

〉
ψ̆(x, t1, σT )

∥∥∥ψ(x, t2, σT )−
〈
ψ(x, t2, σT ), ψ̆(x, t1, σT )

〉
ψ̆(x, t1, σT )

∥∥∥
(26)

. . .

ψ̆(x, tm, σT ) =
ψ(x, tm, σT )−∑m−1

i=1

〈
ψ(x, tm, σT ), ψ̆(x, ti, σT )

〉
ψ̆(x, ti, σT )

∥∥∥ψ(x, tm, σT )−∑m−1
i=1

〈
ψ(x, tm, σT ), ψ̆(x, ti, σT )

〉
ψ̆(x, ti, σT )

∥∥∥
(27)

In order to prove the equivalence of using either Ψm or Ψ̆m in a regression to approx-

imate µ1 we simply note that for all i

ψ̆(x, ti, σT ) =
i∑

j=1

c̆jiψ(x, tj, σT )

where the c̆ji’s are determined in the recursions (25)-(27). Therefore,

ψ(x; m) =
m∑

i=1

c̆iψ̆(x, ti, σT ) =
m∑

i=1

c̆i

(
i∑

j=1

c̆jiψ(x, tj, σT )

)
=

24



m∑
i=1

i∑
j=1

c̆ic̆jiψ(x, tj, σT ) =
m∑

i=1

ciψ(x, ti, σT )

where by grouping appropriate terms

ci =
m∑

`=i

c̆`c̆i`

This completes the proof.
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