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Abstract

In this paper we propose a strategy for forecasting the term structure of interest

rates which may produce significant gains in predictive accuracy. The key idea is to

use the restrictions implied by Affine Term Structure Models (ATSM) on a vector

autoregression (VAR) as prior information rather than imposing them dogmatically.

This allows to account for possible model misspecification. We apply the method

to a system of five US yields, and we find that the gains in predictive accuracy can

be substantial. In particular, for horizons longer than 1-step ahead, our proposed

method produces systematically better forecasts than those obtained by using a pure

ATSM or an unrestricted VAR, and it also outperforms very competitive benchmarks

as the Minnesota prior, the Diebold-Li (2006) model, and the random walk.

Keywords: Bayesian methods, Forecasting, Term Structure.

JEL: C11, C53, E43, E47.

1 Introduction

Finance theory suggests that the current term structure should contain information

about future term structures. Is it actually possible to use finance theory to extract

this information and improve the forecasts of the Treasury yields? Giving an answer to

this question is very important, as out of sample yield curve forecasting is key for the

conduct of monetary policy as well as for bond portfolio management.

In the last years the finance literature has produced major advances in term struc-

ture modeling, building on the assumption of absence of arbitrage opportunities in the

markets, but surprisingly only a few papers have studied the issue of forecasting the

yield curve. Among these, De Jong (2000) and Dai and Singleton (2000) have focused



on in sample forecasting, while only Duffee (2002) and Ang and Piazzesi (2003) have

focused on out of sample forecasting. Duffee (2002) has shown that beating a random

walk with a traditional no arbitrage affine term structure model is difficult. Ang and

Piazzesi (2003) show that imposing no-arbitrage restrictions and an essentially affine

specification of market prices of risk improves out-of-sample forecasts from a VAR(12),

but the gain respect to a random walk forecast is small.

Better results have been obtained outside the no-arbitrage paradigm by Diebold and

Li (2006), who used the Nelson and Siegel (1987) exponential components framework

to forecast the yield curve and found that it produces one-year-ahead forecasts that are

noticeably more accurate than standard benchmarks. However, as stressed out by Duffee

(2002), even if forecasting the yields is important in its own rights, having a model which

is both consistent with finance theory and produces accurate forecasts is of key relevance,

because explaining the time variation in expected returns means explaining the failure

of the expectations hypothesis of the term structure of interest rates.

The absence of arbitrage ensures that the yield movements are consistent, controlling

for risk, with the shape of the term structure at each point in time. As discussed by

Diebold et al. (2005) this consistency will likely hold in deep and well-organized bond

markets, but if the underlying term structure model is misspecifed the no arbitrage

restrictions may actually degrade empirical performance. Most of the empirical imple-

mentations of no-arbitrage term structure models focused on the special case in which

bond yields are affine functions of some state vector. As discussed in Piazzesi (2003)

this assumption provides tractability, at the cost of some restrictive assumptions on the

risk-adjusted dynamics of the state vector.

We believe that the reason behind the poor forecasting performance of no arbitrage

affine term structure models is not the failure of no-arbitrage assumptions, but rather

the failure of the additional specification restrictions implied by the model. As stressed

by Sims (2003), if in the true data generating process a given set of restrictions holds up

to some noise, then imposing the restrictions exactly would be suboptimal.

In this paper we propose to use a no arbitrage affine term structure model (ATSM)

taking into account its possible misspecification. The key idea is to use the restrictions

implied by the ATSM on a vector autoregression (VAR) as prior information rather

than imposing them dogmatically. To implement the ATSM prior, we follow Del Negro

and Schorfheide (2004) and use a set of dummy artificial observations which are first

generated under the assumption of the validity of the ATSM and then added to the data.

When applied to a system of five US yields our proposed method produces sub-

stantial gains in predictive accuracy. In particular, while at the 1-step ahead horizon
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the evidence is mixed, for longer forecast horizons the proposed method systematically

outperforms the unrestricted VAR and a pure ATSM, and also outperforms very com-

petitive benchmarks as the model by Diebold and Li (2006), the random walk, and the

Minnesota prior.

The paper ties together two streams of research. The first is the literature on no

arbitrage term structure models started from the seminal work of Vasicek (1977) and

Cox et al. (1985), and continued to its modern multi-factor extensions by Duffie and

Kan (1996), Dai and Singleton (2000), De Jong (2000), Duffee (2002), Ang and Piazzesi

(2003). The second stream belongs to the macroeconomic literature and focuses on

deriving priors from economic models for VARs. It has been initiated by Ingram and

Whiteman (1987) who used a RBC model to derive priors for a VAR, and has been

recently revived in a series of papers by Del Negro and Schorfheide (2004, 2005, 2007) who

provided a full-blown approach to estimate VARs imposing priors from DSGE models.

Finally, we have to mention the fact that, starting from the seminal work of Ang

and Piazzesi (2003), a series of papers has considered the joint modeling of the term

structure of interest rates and macroeconomic factors. Prominent examples are Ang et

al. (2004), Diebold et al (2006), Rudebush and Wu (2004), Mönch (2005), Favero et al

(2007). Considering also macroeconomic information is beyond the scope of the present

paper, but is on our agenda for further research.

The paper is organized as follows: in Section 2 we briefly describe the ATSM, while

in Section 3 we discuss the econometric methodology. Section 4 presents estimation

results, Section 5 focuses on forecasting. Section 6 concludes.

2 A Baseline Affine Term Structure Model

In this subsection we shall describe the ATSM used in the paper. We use the model of

Ang and Piazzesi (2003). Formally, that model is a discrete-time version of the affine

class introduced by Duffie and Kan (1996), where bond prices are exponential affine

functions of underlying state variables. In particular we use the so called "yield-only"

version of the model, in which only unobservable latent factors (and not also observable

macroeconomic factors) are used as states. In what follows we just provide a brief

summary of the model, the interested reader may refer to Ang and Piazzesi (2003) for a

complete discussion and additional details.

The assumption of no arbitrage (Harrison and Kreps, 1979) guarantees the existence

of a risk neutral measure Q such that the price of an asset Vt that does not pay any

dividends at time t+ 1 satisfies Vt = EQ
t (exp(−rt)Vt+1), where the expectation is taken
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under the measure Q and rt is the short term rate. The assumption of no arbitrage

is equivalent to the assumption of the existence of the Radon-Nikodym derivative ξt+1,

which allows to convert the risk neutral measure to the data generating measure as

EQ
t (Zt+1) = EQ

t (ξt+1Zt+1)/ξt, where Zt is a random variable. Assume ξt+1 follows a

log-normal process:

ξt+1 = ξt exp(−0.5Λ0tΛt − Λ0tεt+1), (1)

where Λt are called market prices of risk and are an affine function of a vector of k

factors Ft:

Λt = Λ0 + Λ1Ft, (2)

where Λ0 is a k-dimensional vector and Λ1 a k × k matrix. Also the short term rate is

assumed to be an affine function of Ft:

rt = δ0 + δ01Ft, (3)

where δ0 is a scalar and δ1 a k-dimensional vector. We assume the factors follow a

zero-mean stationary vector process:

Ft = ΨFt−1 +Ωεt, (4)

where εt ∼ iidN(0,Σε) with Σε = I with no loss of generality. The nominal pricing

kernel is defined as:

mt+1 = exp(−rt)ξt+1/ξt = exp(−δ0 − δ01Ft − 0.5Λ0tΛt − Λ0tεt+1), (5)

where the second equality comes using (3) and (1). The nominal pricing kernel prices all

assets in the economy, so by letting pnt denote the time t price of a n-period zero coupon

we have:

pn+1t = Et(mt+1p
n
t+1). (6)

By using the above equations is possible to show that bond prices are an affine function

of the state variables:

pnt = exp(Ān + B̄0nFt), (7)

where Ān and B̄n are a scalar and a k-dimensional vector obeying to:

Ān+1 = Ān + B̄0n(−ΩΛ0) + 0.5B̄0nΩΩ0B̄n − δ0

B̄0n+1 = B̄0n(Ψ− ΩΛ1)− δ01
, (8)
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with Ā1 = −δ0 and B̄1 = −δ1. See Ang and Piazzesi (2003) for a derivation. The
continuously compounded yield on a n-period zero coupon bond is:

y
(n)
t = − ln pnt /n = An +B0nFt, (9)

with An = −Ā1/n and Bn = −B̄1/n, so yields are also an affine function of the factors.
Equations (4) and (9) can be interpreted as a state and a space equation, so the state

space for a vector of yields of q different maturities can be written as:

Ft = ΨFt−1 +Ωεt,

Yt = A+BFt + vt,
(10)

where Yt = (y
(1)
t , y

(2)
t , ..., y

(q)
t )0 is a q−dimensional vector process collecting all the yields

at hand, A = (A1, A2, ...Aq)
0 and B = (B1, B2, ..., Bq)

0 are functions of the structural

coefficients of the model according to equation (8), and where vt is a vector of iid Gaussian

measurement errors with variance Σv. For future reference we collect the coefficients in

θ = {Λ0,Λ1, δ0, δ1,Ψ,Ω,Σv} and we record the moments of the state space system in

(10):
E[Yt, Y

0
t ] = AA0 +BΣFB

0 +BΩΣεv +ΣεvΩB
0 +Σv,

E[Yt, Y
0
t−h] = AA0 +BΨh(ΣFB

0 +ΩΣεv),
(11)

where ΣF = E[FtF
0
t ] obeys to ΣF = ΨΣFΨ

0 +ΩΣεΩ0.

3 Econometric Methodology

In this section we briefly describe the econometric methodology used in the paper. We

use the approach proposed by Del Negro and Schorfheide (2004), from which this section

draws heavily and to which the interested reader may want to refer for a complete

discussion. Basically we adapt to our case their framework which was originally designed

for deriving priors from DSGE models.

Consider a VAR(p) representation of the q−dimensional vector process collecting all
the yields at hand:

Yt = Φ0 +Φ1Yt−1 + ...+ΦpYt−p + ut (12)

where Yt = (y
(1)
t , y

(2)
t , ..., y

(q)
t ) and ut is a vector of one-step-ahead forecast errors having

a multivariate normal distribution with variance Σu. The VAR in (12) can be interpreted

as an approximation of the Moving Average (MA) representation of Yt. The approxi-

mation gets better as more dynamics is added to the system. Importantly, as is clear
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from equation (10), the ATSM features a MA representation. As the ATSM depends on

a vector of coefficients θ having much less elements than the elements of the coefficient

matrices of the VAR, the validity of the ATSM imposes a set of restrictions on the VAR

in (12).

The key idea is to impose such restrictions in a non-dogmatic way, and in particular to

let them hold with some degree of uncertainty which can be controlled by the researcher.

This amounts to treating the ATSM restrictions as a prior on the coefficients on the VAR.

The tightness of the prior would naturally provide a measure of the uncertainty around

the restrictions, i.e. of the misspecification of the model. To implement the ATSM prior,

following Del Negro and Schorfheide (2004), we use a set of dummy artificial observations

which are first generated under the maintained assumption of the validity of the ATSM

and then added to the data. The ratio of dummy over actual observations will measure

the weight of the prior information relative to the sample information.

Rewrite the VAR in the data-matrix notation:

Y = XΦ+ U, (13)

where Y is a T×q data-matrix with rows Y 0t , X is a T×k (where k = 1+qp) data-matrix
with rows xt = (1, Y 0t−1, Y

0
t−2, ...Y

0
t−p), Φ = (Φ0,Φ1, ...,Φp)

0, and U is a T ×q data-matrix

with rows u0t. Conditional on Y1−p, ..., Y0, the VAR has likelihood:

p(Y | Φ,Σu) ∝ |Σu|−T/2 exp{−0.5tr[Σ−1u (Y 0Y − Φ0X 0Y − Y 0XΦ+ Φ0X 0XΦ)]}. (14)

Now assume there exist T ∗ = λT artificial observations Y ∗,X∗, generated from the

ATSM with a given θ. The likelihood of the artificial data is:

p(Y ∗(θ) | Φ,Σu) ∝ |Σu|−λT/2 exp{−0.5tr[Σ−1u (Y ∗0Y ∗−Φ0X∗0Y ∗−Y ∗0X∗Φ+Φ0X∗0X∗Φ)]}.
(15)

The likelihood function of the combined sample of actual and artificial data is:

p(Y ∗(θ), Y | Φ,Σu) = p(Y ∗(θ) | Φ,Σu)p(Y | Φ,Σu). (16)

The term p(Y ∗(θ) | Φ,Σu) can be interpreted as a prior density for Φ and Σu (conditional
on θ) as it contains information about the VAR parameters contained in the sample of

artificial observations.

The next step is to remove the stochastic variation, which is undesirable, from

p(Y ∗(θ) | Φ,Σu). To do so it is sufficient to replace the sample moments Y ∗0Y ∗, Y ∗0X∗, and
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X∗0X∗ with their expected values. Define Γ∗yy(θ),Γ
∗
yx(θ), and Γ

∗
xx(θ), which can be

computed using equation (11), as the population moments under the validity of the

ATSM. The expected values of Y ∗0Y ∗, Y ∗0X∗, and X∗0X∗ are simply given by the cor-

responding population moments multiplied by the number of artificial observations,

respectively λTΓ∗yy(θ), λTΓ
∗
yx(θ) and λTΓ∗xx(θ). Provided that λT ≥ k + q and Γ∗xx(θ)

is invertible, this gives a proper, nondegenerate, Normal-Inverted Wishart prior density

(Φ,Σu | θ):

Φ | Σu, θ ∼ N(Φ∗(θ),Σu ⊗ (λTΓ∗xx(θ))−1), (17)

Σu | θ ∼ IW (λTΣ∗u(θ), λT − k, q), (18)

where Φ∗(θ) and Σ∗u(θ) are the VAR coefficients under the maintained assumption of the

validity of the ATSM:

Φ∗(θ) = Γ∗−1xx (θ)Γ
∗
xy(θ), (19)

Σ∗u(θ) = Γ∗yy(θ)− Γ∗yx(θ)Γ∗−1xx (θ)Γ
∗
xy(θ). (20)

Conditional on θ the ATSM prior and the likelihood function are conjugate, so the

posterior distribution of Φ and Σu is also Normal-Inverted Wishart (see Zellner 1971):

Φ | Y, Σu, θ ∼ N(Φ̃(θ),Σu ⊗ (λTΓ∗xx(θ) +X 0X)−1), (21)

Σu | Y, θ ∼ IW ((λ+ 1)T Σ̃u(θ), (λ+ 1)T − k, q), (22)

where Φ̃(θ) and Σ̃u(θ) are the maximum-likelihood estimates of Φ and Σu based on both

the artificial and the actual data:

Φ̃(θ) = (λTΓ∗xx(θ) +X 0X)−1(λTΓ∗xy(θ) +X 0Y ), (23)

Σ̃u(θ) =
1

λT + T
[(λTΓ∗xy(θ) + Y 0Y )− (λTΓ∗yx(θ) + Y 0X)(λTΓ∗xx(θ) (24)

+X 0X)−1(λTΓ∗xy(θ) +X 0Y )].

The parameter λ = T ∗/T is the ratio between artificial and actual data and it can

be interpreted as the tightness of the prior. When λ → 0, no artificial data are used

and as is clear from (23) the posterior mean of Φ approaches the OLS estimate. On the

other side, when λ → ∞ the number of artificial data is very high compared to actual

data, so the posterior mean of Φ approaches the prior mean Φ∗(θ) (see equations (23)

and (19)), and the procedure is equivalent to estimating the VAR subject to the ATSM
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restrictions. Indeed it is possible to show that for fixed T and λ → ∞ the marginal

likelihood function:

p(Y | θ) = p(Y | Φ,Σu)p(Φ,Σu | θ)/p(Φ,Σu | Y ) (25)

=
|λTΓ∗xx(θ) +X 0X|−

q
2

¯̄̄
(λ+ 1)T Σ̃u(θ)

¯̄̄− (λ+1)T−k
2

|λTΓ∗xx(θ)|−
q
2 |λTΣ∗u(θ)|−

λT−k
2

×2π
−qT
2 2

q((λ+1)T−k)
2 Πqi=1Γ[((λ+ 1)T − k + 1− i)/2]

2
q(λT−k)

2 Πqi=1Γ[(λT − k + 1− i)/2]
,

where Γ[.] denotes the gamma function, approaches the (quasi)-likelihood function of

the ATSM model. See Del Negro and Schorfheide (2004) for the proof. Importantly,

the approach allows to perform posterior inference also with respect to θ. The marginal

posterior p(θ | Y ) can be obtained simply by combining the marginal likelihood p(Y |
θ) with the prior p(θ), as explained in more detail in the next Section.

4 Estimation

In this section we estimate our VAR with ATSM prior. We start with describing the

data, the parameterization, and the estimation procedure used. Then we provide the es-

timation results obtained using the whole sample. Results of the forecasting experiment

are described in Section 5.

4.1 Data description

We estimate the model using monthly data (end of month rates) on US yields of five

different maturities, 1-month, 3-month, 1-year, 3-year and 5-year. We use Treasury

yield curve estimates of the Federal Reserve Board provided by Gurkaynak et al (2006)

and publicly available on the website http://www.federalreserve.gov/pubs/feds/2006. A

graph of the data is displayed in Figure 1.

To avoid problems of instability of the underlying data generating process during

the so called Volker-era, we use data starting from January 1983 until December 2006,

which provides us with a sample size of 24 years. As for the lag length of the VAR,

the BIC selects 1 lag and the AIC 2 lags, but in both these cases the LM test statistic

reported in Johansen (1995) rejects the null of no autocorrelation in the disturbances,

therefore we choose a richer specification with 4 lags which eliminates this problem.

To sum up, our baseline unrestricted VAR specification for the vector of yields Yt =
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(y
(1)
t , y

(3)
t , y

(12)
t , y

(24)
t , y

(60)
t )0 is:

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−3 +Φ4Yt−4 + ut. (26)

As Yt is 5 × 1, the matrices Φ0,Φ1,Φ2,Φ3,Φ4 contain a total of 105 coefficients to be
estimated.

4.2 Choice of parameterization

Given that scaling, shifting, or rotation of the factors provides observational equivalence,

a normalization is required. Following Dai and Singleton (2000) we impose the canonical

normalization of the model, i.e. we identify the factors by assuming lower triangular

structure for the matrix Ψ, and we set δ1 equal to a vector of ones. Given that we also

assumed the factors have zero mean, δ0 equals the unconditional mean of the short term

rate rt, so it can be estimated consistently in a preliminary step by using the sample

average of the 1-month yield y
(1)
t . As for second order coefficients, we assume Ω to be

diagonal, Σεv = 0, and Σv = σ2vI.

In view of the simulation approach needed to estimate the model, we try to keep

the number of parameter to be estimated as small as possible by assuming two factors.

As discussed in Diebold et al. (2005) two factors suffice to capture the time-series

variation and forecast yields, since the first two principal components account for almost

all (99 percent) of the variation in yields, while more than two factors (typically three)

will invariably be needed in order to obtain a close fit to the entire yield curve at any

point in time for pricing derivatives. Note that the chosen normalization implies that

the sum of the factors equals the (demeaned) short term rate, which is consistent with

interpreting the first factor as a level and the second as a slope factor.

Given the above assumptions equation (2) becomes:

Λt =

"
Λ
(1)
0

Λ
(2)
0

#
| {z }

Λ0

+

"
Λ
(11)
1 Λ

(12)
1

Λ
(21)
1 Λ

(22)
1

#
| {z }

Λ1

"
F
(1)
t−1

F
(2)
t−1

#
, (27)

and the state space in (10) simplifies to:"
F
(1)
t

F
(2)
t

#
=

"
ψ11 0

ψ21 ψ22

#
| {z }

Ψ

"
F
(1)
t−1

F
(2)
t−1

#
+

"
ω11 0

0 ω22

#
| {z }

Ω

"
ε
(1)
t−1
ε
(2)
t−1

#

Yt = A(Λ0,Λ1,Ψ,Ω) +B(Λ0,Λ1,Ψ,Ω)Ft + vt

(28)
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where A(Λ0,Λ1,Ψ,Ω) and B(Λ0,Λ1,Ψ,Ω) obey to equations (8) and var(vt) = σ2vI .

The vector of structural parameters to be estimated is:

θ = {ψ11, ψ21, ψ22, ω11, ω22, σ2v,Λ
(1)
0 ,Λ

(2)
0 ,Λ

(11)
1 ,Λ

(12)
1 ,Λ

(21)
1 ,Λ

(22)
1 }. (29)

4.3 Posterior simulation

The posterior distribution of the ATSM coefficients θ and of the VAR coefficients Φ (for

a given λ) is obtained by using MCMC methods, drawing in turn from p(θ | Y ), p(Σu |
Y, θ), and p(Φ | Y,Σu, θ).

To draw from p(θ | Y ) ∝ p(Y | θ)p(θ) we use a Random Walk Metropolis (RMW)

algorithm, which generates Markov chains with stationary distributions that correspond

to the posterior distributions of interest. The algorithm requires the evaluation of p(Y |
θ)p(θ). The marginal likelihood p(Y | θ) is provided by equation (25), while the prior
distribution p(θ) used throughout the paper is described in Table 1.

First, the algorithm is initialized by specifying an initial value θ0. Then for each

iteration s a proposal value ϑ for θs is drawn from the proposal distributionN(θs−1, c2Ξ),

where c is a scaling parameter and Ξ is a variance matrix. The jump from θs−1 to ϑ is

accepted with probability min{1, r(θs−1, ϑ | Y )}, where

r(θs−1, ϑ | Y ) = p(Y | ϑ)p(ϑ)
p(Y | θs−1)p(θs−1)

. (30)

If the jump is accepted, then the draw ϑ is kept and θs = ϑ, otherwise it is thrown away

and θs = θs−1. The algorithm terminates when the final draw s̄ is obtained.

We initialize the algorithm with θ0 equal to the maximum likelihood estimate of

the state space system in (28), and Ξ equal to the inverse of the Hessian in this point.

The parameter c is calibrated to 0.05, which provides a rejection percentage of about

35%. As the RWM algorithm generates draws that are influenced by the starting point

and correlated, we discard the initial draws and we perform skip-sampling. In the next

subsection we provide an informal assessment of the convergence of the algorithm in our

application, for a review of the regularity conditions needed to guarantee the convergence

of the Markov chain to the posterior distribution of interest see Geweke (2005).

Finally, given the sequence of draws {θs}s̄s=1 obtained from the RWM algorithm, we

obtain posterior estimates of Φ by drawing from p(Σu | Y, θ) and p(Φ | Y,Σu, θ) using
(22) and (21).
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4.4 Estimation results

The estimation results are conditional on the choice of the tightness parameter λ. We

carry on our analysis for a grid of values of the tightness hyperparameter, i.e. λ ∈
{∞, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0}. When λ → 0 the prior is very loose and the posterior

mean of Φ approaches the OLS estimate, while when λ→∞ the prior is very tight, which

amounts to estimating the VAR subject to the ATSM restrictions. For a theoretical

derivation of this result see Del Negro and Schorfheide (2004). To provide an intuitive

illustration of this point Figure 2 plots posterior estimates of some elements of Φ (the

coefficients on the first lag of the dependent variable for each equation of the VAR). As it

is clear from the graph, when λ→∞ the data do not influence the posterior estimates,

which stay close to the value implied by ATSM, while as λ increases, the posterior mean

moves towards the unrestricted OLS estimate of the coefficient.

In this section we briefly present the estimation results for the case λ→∞, which is
interesting as it corresponds to the Bayesian estimation of the exact ATSM model. Esti-

mation results for the other values of λ show the same pattern (in terms of convergence)

and are available upon request. To assess the convergence of our MCMC algorithm

we run four independent Markov chains with 2000000 draws. As the RWM algorithm

generates draws that are influenced by the starting point and correlated we discard the

first 20%, and then keep every 10th draw among the remaining. This provides us with

a total of 160000 draws.

Based on these draws, we plot in Figure 3 and Figure 4 the posterior distributions

of the VAR coefficients Φ and of the ATSM coefficients θ. As it is clear in Figure 3, the

four independent Markov chains do converge to the same distributions for all the VAR

coefficients. This is important because it means that the forecasts produced by the VAR

would converge to the same distribution as well. As shown in Figure 4, also the posterior

estimates of the coefficients governing the factors dynamics (ψ11, ψ21, ψ22, ω11, ω22) are

all converging to the same distribution. The implied posterior means of the factors are

indistinguishable among the four chains, and are plotted in Figure 5. To sum up, all four

chains converge to the same distribution of the VAR coefficients and factors dynamics.

Some problems arise for the coefficients in the price of risk equation: Figure 4 shows

that the posterior distributions of the coefficients in the Λ1 matrix are different among the

four chains. This latter result is driven by the likelihood being flat along this dimension.

Indeed, by looking at the rolling maximum likelihood estimates, the coefficients in Λ1
are not identified, they jump and move together in couples with different combinations

of their values providing roughly the same value for the likelihood. This is probably
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due to the high nonlinearity of the model at hand and raises issues about maximum

likelihood estimation of affine term structure models. Of course we may add additional

identification restrictions, or exploit the Bayesian framework to tackle the problem by

tightening the prior on Λ1. However, we do not pursue this strategy for two reasons.

First, we do not have enough information on the price of risk to specify a reasonable

informative prior on it. Second, estimating the structural parameters governing the price

of risk is not necessary for our aim, which is forecasting. As stressed above, to forecast

we use the reduced form system given by our VAR, whose posterior estimates do not

have problems of convergence.

5 Forecasting using the ATSM prior

We are now ready to perform a horse-race between the VAR with ATSM prior and

several competitors. This section is divided into three subsection. The first describes

the competing models, the second the forecasting exercise, the third provides results and

discussion.

5.1 Competing models

We compare the forecasting performance of our proposed model, which we label ATSM-

VAR, against six models: a random walk, two unrestricted VARs, the "exact" ATSM

model, the model by Diebold and Li (2006), and a VAR with a Minnesota prior.

Random Walk (RW)

Duffee (2002) has shown that beating a random walk with a traditional no arbitrage

affine term structure model is difficult. Therefore we include in the comparison a simple

random walk (RW) and use it as the benchmark model.

"Exact" Affine Term Structure Model (ATSM)

It is natural to include in the comparison a VAR in which the ATSM restrictions hold

exactly. This case corresponds to the ATSM-VAR with prior tightness λ = ∞ and is

basically a two-factor version of the "yields only" model of Ang and Piazzesi (2003).

Unrestricted VARs (UVAR4 and UVAR12)

We include in the comparison two unrestricted VARs with different lag length. The

first is a VAR with 4 lags (UVAR4) which corresponds to the ATSM-VAR with prior
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tightness set to zero (λ = 0). Then, we use a richer 12 lags specification (UVAR12),

which corresponds to the benchmark UVAR used by Ang and Piazzesi (2003).

Diebold-Li model (DL)

A model which has proven to be good in forecasting, especially at long horizons, is that

of Diebold and Li (2006), which is based on the Nelson and Siegel (1987) exponential

components framework. In particular, we use the specification of Diebold et al. (2006)

in which the model is written in its state space form before being estimated in a single

step via maximum likelihood. The starting point is the Nelson and Siegel (1987) yield

curve:

yt(τ) = β1 + β2
1− e−γτ

γτ
+ β3

µ
1− e−γτ

γτ
− e−γτ

¶
, (31)

where τ is the maturity and β1, β2,β3 and γ are parameters. Diebold and Li (2006)

interpreted equation (31) in a dynamic fashion as a latent factor model in which β1, β2,

and β3 are time-varying level, slope, and curvature factors (label them Lt, St, Ct) and

the terms that multiply these factors are factor loadings:

yt(τ) = Lt + St
1− e−γτ

γτ
+ Ct

µ
1− e−γτ

γτ
− e−γτ

¶
. (32)

Once the dynamic movements of the factors Lt, St, Ct are specified, then the model

immediately forms a state-space system which can be estimated via maximum likelihood.

We chose an univariate AR(1) representation for the three factors, as it has proven to

be better in forecasting1.

VAR with Minnesota Prior (MP)

Finally, to check whether the good forecasting performance is merely due to the use of

a shrinkage estimator, we include in the comparison the Minnesota prior (Doan et al

1984). The Minnesota prior (MP) shrinks parameter estimates towards a random walk

representation and has proven to be robustly good in forecasting (Litterman, 1986). In

our case this amounts to shrinking the diagonal elements of Φ1 in (12) toward one and

all the remaining coefficients toward zero.

We implement the Minnesota prior in the version proposed by Kadiyala and Karlsson

(1997). This prior has a Normal-Inverted Wishart form such that the expectation of Σu
1For completeness we have also tried with a VAR(1) specification as in Diebold et al (2006) and it

produces systematically worse results than the univariate AR(1) specification.
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is equal to the fixed residual variance matrix of the Minnesota prior, and the prior

expectation and variances of the coefficients Φk are:

E[Φ
(ij)
k ] =

(
1, for j = i, k = 1

0 otherwise
; V [Φ

(ij)
k ] = φk−2

σ2i
σ2j

. (33)

The hyperparameter φ measures the tightness of the prior: when φ = 0 the prior is

imposed exactly and the data do not influence the estimates, while as φ→∞ the prior

becomes loose and the posterior estimates approach the OLS estimates. The factor 1/k2

is the rate at which prior variance decreases with increasing lag length while the ratio

σ2i /σ
2
j accounts for the different scale and variability of the data. Finally, the prior on

the intercept is diffuse. Although the parameters should in principle be set using only

prior knowledge we follow common practice (see e.g. Litterman, 1986; Sims and Zha,

1998) and set the scale parameters σ2i equal the variance of a residual from a univariate

autoregressive model for the variables. Posterior estimates can be easily obtained (via

OLS) by implementing the prior in the form of dummy variable observations. For details

see Kadiyala and Karlsson (1997).

5.2 Forecasting exercise

At each point in time we estimate the competing models and use them to produce

forecasts up to 12-step ahead. We use a rolling estimation window of 10 years, so that

the first estimation sample is 1983:1 to 1992:12 and the last is 1995:12 2005:12, while

the first forecasting window is 1993:1 1993:12 and the last is 2006:1 2006:12.

Two of the models at hand, namely the ATSM-VAR and the MP, depend on tight-

ness hyperparameters (respectively λ and φ) that need to be calibrated before esti-

mation. We select ex-ante the optimal prior tightness by using a simple data-driven

procedure based on past forecasting performance. In particular we do a grid search

over the tightness hyperparameters selecting at each point in time, for each yield, the

model producing the smallest forecast error in the previous period. The grid used

for the ATSM-VAR is λ ∈ {∞, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0}, that used for the MP is

φ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
For a given λ, the ATSM-VAR is estimated as described in Section 3, The UVAR(4)

and the plain ATSM model are obtained as a by product imposing λ = 0 and λ = ∞.
The UVAR(12) is estimated with OLS, the DL model with maximum likelihood, and

the MP with OLS after rewriting the prior in the form of dummy observations.

We evaluate forecast accuracy using mean squared forecast error (MSFE) and mean
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absolute forecast error (MAFE) as loss functions. To assess whether the difference in

the forecasts is significant we use the test for predictive accuracy recently developed by

Giacomini and White (2006). This is a test of equal forecasting method accuracy and as

such can handle forecasts based on both nested and non-nested models, regardless from

the estimation procedures used in the derivation of the forecasts, including Bayesian

methods.

5.3 Empirical results

We report results for MSFE and MAFE of a given model M relative to the random

walk benchmark, at horizon h:

RMSFEM,h =
MSFEM

MSFERW,h
, RMAFEM,h =

MAFEM,h

MAFERW,h
. (34)

Relative Mean Squared Forecast Errors (RMSFE) are displayed in Table 2, while Relative

Mean Absolute Forecast Errors (RMAFE) are displayed in Table 3. A number below 1

signals that a given model improves over the random walk. The tables report results for

1, 3, 6, 9 and 12 step-ahead forecasts, complete tables including all the forecast horizons

are in the Appendix. The best forecasting models for each horizon and variable are

highlighted in bold, while the stars on the right of the cell entries signal the level at

which the Giacomini and White (2006) test rejects the null of equal forecasting method

accuracy.

Several conclusions can be drawn from the tables.

First, the evidence for the 1-step ahead horizon is mixed. For the 1-month yield all

the models but the UVAR12 are able to beat the RW, the best model being the MP,

followed by the exact ATSM and the UVAR4. The MP is the best model also for the 3-

month yield, followed by the UVAR4 and the ATSM-VAR, while the performance of the

exact ATSM and of DL becomes worse than the RW. For yields with longer maturities

(1-, 3-, 5- year) none of the models is able to beat the RW, with MP being the best for

the 1-year yield, DL for the 3-year yield and DL or exact ATSM (depending on the loss

function) for the 5-year yield.

Second, for longer horizons, the ATSM-VAR systematically outperforms all the other

models, with substantial and significant gains in terms of both RMSFE and RMAFE.

Importantly, it is the sole model able to systematically beat the RW. The MP shows a

good performance for the 1-month yield but it deteriorates a lot for yields with longer

maturities. The DL and the exact ATSM perform overall well, especially at very long
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forecast horizons, but still they provide smaller gains than the ATSM-VAR and are

occasionally outperformed by the RW.

Third, let us consider the results form the point of view of overparameterization.

The UVAR12 forecasts very poorly. This is due to its overparameterization, as the

more parsimonious UVAR4 is a clear improvement on it. Still, also the UVAR4 provides

poor forecasts respect to the other models (except for 1-step ahead forecasts for short

maturities). A further improvement is obtained by using shrinkage, i.e. using the MP.

Finally, related to the latter point, the inclusion of the Minnesota prior in the com-

parison also allows to check whether the good performance of the ATSM prior is merely

due to the fact that it reduces the dimensionality of the VAR by shrinking coefficients.

For forecast horizons above one-step ahead, the ATSM prior produces substantial gains

against the Minnesota prior. Therefore, shrinkage in itself does help to improve forecast

accuracy, but also the direction of the shrinkage (i.e. the assumed prior mean) plays a

fundamental role. In other words, our results suggest that shrinking coefficients in the

direction implied by ATSM models produces better forecasts than shrinking them to a

random walk representation.

6 Conclusions

In this paper we proposed to forecast the yield curve by using no arbitrage affine term

structure models, taking into account their possible misspecification. The key idea was

to use the restrictions implied by an ATSM on a VAR as prior information rather than

imposing them dogmatically. To do so we have used the approach proposed by Del Negro

and Schorfheide (2004) for deriving priors from DSGE models for VARs.

Applying the proposed method to a system of five US yields provided substantial

gains in forecast accuracy. In particular, while at the 1-step ahead horizon the evidence

is mixed, for longer forecast horizons the proposed method systematically outperformed

the unrestricted VAR and the exact ATSM, and it also outperformed very competitive

benchmarks as the model proposed by Diebold and Li (2006), the random walk, and the

Minnesota prior.

We believe that the inclusion of additional information in the model, and in particular

information related to relevant macroeconomic variables as in Ang and Piazzesi (2003),

could further improve the forecasting performance. Such extension would pose serious

computational burdens and is in our agenda for future research.
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Tables and Figures

Table1: Prior Distributions
Parameter Prior

Density Para(1) Para(2)
ψ11 Normal 0.9 0.1
ψ21 Normal 0.1 0.1
ψ22 Normal 0.9 0.1
ω11 InvGamma 1.0e-9 3
ω22 InvGamma 0.5e-7 3
Λ
(1)
0 Normal 0 1e+20
Λ
(2)
0 Normal 0 1e+20
Λ
(11)
1 Normal 0 1e+20
Λ
(21)
1 Normal 0 1e+20
Λ
(12)
1 Normal 0 1e+20
Λ
(22)
1 Normal 0 1e+20

σ2v InvGamma 1.2e-9 3

The Table reports the prior densities used throughout the paper. Para(1) and Para(2) are
mean and standard deviation for the Normal distributions and s and v for the Inverse Gamma
distributions (where p(σ | v, s) ∝ σ−v−1e−vs

2/2σ2).
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Table 2: Forecasts Comparisons RMSFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

exact ATSM
1 0.673 1.011 1.960*** 1.103** 1.136*
3 0.683*** 0.951 1.269** 1.030 1.019
6 0.783** 0.931 1.082 0.967 0.970
9 0.829** 0.907 0.979 0.913 0.917
12 0.849* 0.890 0.918 0.881** 0.886***

UVAR(12)
1 1.557** 2.167*** 3.549*** 3.665*** 3.606***
3 1.483 2.337* 3.792*** 4.216*** 4.217***
6 2.507 3.115* 4.419** 4.717*** 4.522***
9 3.085 3.815* 5.274** 5.721** 5.457***
12 4.079* 4.811* 6.067* 6.306** 5.954**

UVAR(4)
1 0.732 0.810 1.263 1.420*** 1.408***
3 0.594** 0.831 1.397* 1.673*** 1.710***
6 0.709 0.973 1.611* 1.956** 1.964**
9 0.912 1.157 1.695 2.035* 2.078*
12 1.079 1.278 1.690 1.977 2.051*

ATSM-VAR
1 0.744 0.846 1.078 1.226*** 1.191**
3 0.455*** 0.513** 0.776** 0.965 0.971
6 0.413** 0.482** 0.705*** 0.915 0.920
9 0.423** 0.472** 0.649*** 0.819* 0.833
12 0.434** 0.506** 0.641*** 0.804** 0.829*

Minn. Prior
1 0.655 0.692*** 1.032 1.160** 1.165**
3 0.459*** 0.718 1.192 1.376* 1.390**
6 0.645 0.908 1.377 1.624* 1.638*
9 0.810 1.030 1.433 1.729 1.778
12 0.955 1.120 1.430 1.702 1.778

Diebold-Li
1 0.815* 1.361 1.668*** 1.076 1.071
3 0.863** 1.157* 1.325** 1.084 1.066
6 0.921** 1.071 1.170 0.998 0.966
9 0.947* 1.025 1.062 0.944 0.923
12 0.954 0.987 0.968 0.862 0.848

The Table reports Relative Mean Squared Forecast Error of a given model against the Ran-
dom Walk benchmark. The stars * ** *** denote rejection (respectively at 10 ,5, and 1 percent)
of the null of equal forecasting method accuracy according to the Giacomini-White (2006) test.
The best model for each horizon and maturity is highlighted in bold.
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Table 3: Forecasts Comparisons RMAFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

exact ATSM
1 0.873** 1.010 1.455*** 1.057** 1.040
3 0.822*** 0.983 1.133** 1.010 1.012
6 0.877*** 0.967 1.025 0.989 0.995
9 0.898*** 0.949 0.981 0.949 0.971
12 0.916*** 0.943 0.967 0.931* 0.943*

UVAR(12)
1 1.497*** 1.570*** 1.770*** 1.781*** 1.778***
3 1.212 1.520* 1.877*** 1.903*** 1.882***
6 1.490 1.691* 1.953** 1.981*** 1.982***
9 1.597 1.834* 2.169** 2.209*** 2.260***
12 1.834 2.031* 2.314** 2.321*** 2.317***

UVAR(4)
1 0.908 0.936 1.117* 1.156*** 1.159***
3 0.759** 0.901 1.168 1.250** 1.250**
6 0.845 0.999 1.217 1.295* 1.312**
9 0.946 1.076 1.285 1.364 1.436*
12 1.025 1.135 1.310 1.371 1.426*

ATSM-VAR
1 0.913 0.925 1.025 1.079** 1.077**
3 0.672*** 0.686*** 0.842*** 0.960 0.965
6 0.646*** 0.679*** 0.795*** 0.917 0.906
9 0.642*** 0.665*** 0.748*** 0.836** 0.864*
12 0.626*** 0.672** 0.752*** 0.839** 0.878**

Minn. Prior
1 0.829*** 0.872** 1.019 1.070* 1.077**
3 0.673*** 0.802 1.027 1.103 1.114
6 0.790 0.922 1.089 1.165 1.191
9 0.881 0.994 1.151 1.231 1.298
12 0.955 1.040 1.188 1.263 1.314

Diebold-Li
1 0.908** 1.101** 1.312*** 1.048 1.047
3 0.936** 1.086** 1.174*** 1.044 1.026
6 0.951*** 1.053 1.084 0.997 0.996
9 0.956** 1.020 1.033 0.969 0.986
12 0.971* 1.003 0.992 0.919 0.931

The Table reports Relative Mean Absolute Forecast Error of a given model against the
Random Walk benchmark. The stars * ** *** denote rejection (respectively at 10 ,5, and 1
percent) of the null of equal forecasting method accuracy according to the Giacomini-White
(2006) test. The best model for each horizon and maturity is highlighted in bold.
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Figure 1: Data. Yields of 1-, 3-, 12-, 36-, 60- month maturities.
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Figure 2: Posterior distribution of the VAR coefficients for different values of the prior
tightness λ. The displayed coefficents are the diagonal elements of the matrix Φ1, i.e.
the coefficients on the first lag of the dependent variable for each equation of the VAR.
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Figure 3: Posterior distribution of ATSM-VAR coefficients, obtained with 4 independent
Markov chains. The matrices Φ1,Φ2,Φ3,Φ4 are 5× 5 matrices containing a total of 100
coefficients. The first 25 graphs going from the top left to the right are the coefficients
of Φ1, the following 25 are coefficients of Φ2, and so on. Within each group of 25 the
coefficients of the generic matrix Φi , are ordered by row.

25



0.94 0.96 0.98 1
0

0.5

1

1.5

2
x 104

Ψ11

0 0.5 1
0

5000

10000

15000

Ψ21

0.94 0.96 0.98 1
0

5000

10000

15000

Ψ22

0 2 4

x 10-9

0

0.5

1

1.5

2
x 104

ω11

0 0.5 1

x 10-7

0

0.5

1

1.5

2
x 104

ω22

-10000 -5000 0 5000
0

0.5

1

1.5

2
x 104

Λ0
(1)

-4000 -2000 0 2000
0

0.5

1

1.5

2
x 104

Λ0
(2)

-3.16 -3.14 -3.12 -3.1

x 106

0

5000

10000

15000

Λ1
(11)

-3.2 -3.15 -3.1

x 106

0

0.5

1

1.5

2
x 104

Λ1
(21)

-1 0 1 2

x 105

0

5000

10000

15000

Λ1
(12)

-2 -1 0 1

x 105

0

5000

10000

15000

Λ1
(22)

4 5 6 7

x 10-8

0

5000

10000

15000

σv
2

 

 

Chain 1 Chain 2 Chain 3 Chain 4

Figure 4: Posterior distribution of the structural ATSM coefficients, for 4 independent
Markov chains (case λ =∞).
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Figure 5: Estimated factors (case λ =∞). The factors are given by F̂t = (B̂0B̂)−1B̂0(Ŷ −
Â), where the hats denote the posterior means. Note that the Figure displays four plots
for each factor (one for each chain), but the plots are almost indistinguishable.
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Table Appendix.

The appendix reports Tables 2 and 3 with all the forecast horizons(1- to 12- step ahead).

Table 2: Forecasts Comparisons MSFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

exact ATSM
1 0.673 1.011 1.960*** 1.103** 1.136*
2 0.624*** 0.944 1.447*** 1.062 1.044
3 0.683*** 0.951 1.269** 1.030 1.019
4 0.714*** 0.947 1.183* 1.010 1.013
5 0.753*** 0.940 1.129 0.989 0.987
6 0.783** 0.931 1.082 0.967 0.970
7 0.801** 0.920 1.036 0.941 0.939
8 0.819** 0.912 1.004 0.923 0.920
9 0.829** 0.907 0.979 0.913 0.917
10 0.828** 0.897 0.952 0.898 0.904
11 0.832** 0.891 0.933 0.887* 0.887**
12 0.849* 0.890 0.918 0.881** 0.886***

UVAR(12)
1 1.557** 2.167*** 3.549*** 3.665*** 3.606***
2 1.385 2.187* 3.675*** 3.911*** 3.867***
3 1.483 2.337* 3.792*** 4.216*** 4.217***
4 1.699 2.621* 4.121*** 4.456*** 4.344***
5 2.079 2.866* 4.284** 4.581*** 4.411***
6 2.507 3.115* 4.419** 4.717*** 4.522***
7 2.544 3.230* 4.608** 4.918*** 4.706***
8 2.825 3.496* 4.904** 5.297** 5.055***
9 3.085 3.815* 5.274** 5.721** 5.457***
10 3.350 4.149* 5.619** 6.038** 5.753**
11 3.614 4.431* 5.825** 6.143** 5.811**
12 4.079* 4.811* 6.067* 6.306** 5.954**

UVAR(4)
1 0.732 0.810 1.263 1.420*** 1.408***
2 0.582*** 0.768 1.292** 1.492*** 1.502***
3 0.594** 0.831 1.397* 1.673*** 1.710***
4 0.602** 0.861 1.491* 1.801*** 1.820***
5 0.649* 0.914 1.559* 1.881*** 1.888***
6 0.709 0.973 1.611* 1.956** 1.964**
7 0.765 1.036 1.662* 2.007** 2.017**
8 0.852 1.107 1.684 2.029* 2.050**
9 0.912 1.157 1.695 2.035* 2.078*
10 0.966 1.201 1.689 2.008 2.062*
11 1.013 1.239 1.692 1.992 2.055*
12 1.079 1.278 1.690 1.977 2.051*
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Table 2 continued: Forecasts Comparisons MSFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

ATSM-VAR
1 0.744 0.846 1.078 1.226*** 1.191**
2 0.492*** 0.558*** 0.877 1.050 1.024

3 0.455*** 0.513** 0.776** 0.965 0.971
4 0.427*** 0.472*** 0.727*** 0.919 0.949

5 0.402*** 0.507** 0.730*** 0.924 0.931

6 0.413** 0.482** 0.705*** 0.915 0.920
7 0.408** 0.480** 0.662*** 0.890 0.871

8 0.413** 0.477** 0.665** 0.873 0.873
9 0.423** 0.472** 0.649*** 0.819* 0.833

10 0.416** 0.494** 0.652** 0.818* 0.830

11 0.400** 0.492** 0.645** 0.809* 0.825
12 0.434** 0.506** 0.641*** 0.804** 0.829*

Minn. Prior
1 0.655 0.692*** 1.032 1.160** 1.165**
2 0.478*** 0.660* 1.138 1.301** 1.303***
3 0.459*** 0.718 1.192 1.376* 1.390**
4 0.480*** 0.766 1.265 1.476* 1.490*
5 0.565** 0.840 1.325 1.547* 1.558**
6 0.645 0.908 1.377 1.624* 1.638*
7 0.698 0.957 1.415 1.682* 1.704*
8 0.759 1.000 1.427 1.713 1.747*
9 0.810 1.030 1.433 1.729 1.778
10 0.838 1.045 1.419 1.716 1.778
11 0.882 1.077 1.426 1.714 1.783
12 0.955 1.120 1.430 1.702 1.778

Diebold-Li
1 0.815* 1.361 1.668*** 1.076 1.071
2 0.833** 1.206* 1.429*** 1.088 1.061
3 0.863** 1.157* 1.325** 1.084 1.066
4 0.885** 1.124* 1.259** 1.059 1.043
5 0.906** 1.094* 1.209 1.019 0.991
6 0.921** 1.071 1.170 0.998 0.966
7 0.935** 1.055 1.129 0.982 0.955
8 0.945** 1.038 1.095 0.967 0.943
9 0.947* 1.025 1.062 0.944 0.923
10 0.949* 1.012 1.024 0.911 0.893
11 0.951* 1.000 0.994 0.883 0.865
12 0.954 0.987 0.968 0.862 0.848
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Table 3: Forecasts Comparisons MAFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

exact ASTM
1 0.873** 1.010 1.455*** 1.057** 1.040

2 0.825*** 0.979 1.242*** 1.026 1.005

3 0.822*** 0.983 1.133** 1.010 1.012
4 0.859*** 0.983 1.072 1.008 1.011
5 0.874*** 0.977 1.048 1.000 0.993
6 0.877*** 0.967 1.025 0.989 0.995
7 0.890*** 0.964 1.007 0.970 0.984
8 0.894*** 0.957 0.997 0.956 0.971
9 0.898*** 0.949 0.981 0.949 0.971
10 0.893*** 0.944 0.962 0.936* 0.957
11 0.900*** 0.942* 0.965 0.928* 0.944
12 0.916*** 0.943 0.967 0.931* 0.943*

UVAR(12)
1 1.497*** 1.570*** 1.770*** 1.781*** 1.778***
2 1.276* 1.495** 1.843*** 1.809*** 1.765***
3 1.212 1.520* 1.877*** 1.903*** 1.882***
4 1.265 1.592* 1.901*** 1.952*** 1.943***
5 1.380 1.627* 1.912*** 1.957*** 1.946***
6 1.490 1.691* 1.953** 1.981*** 1.982***
7 1.454 1.704 1.988** 1.986*** 2.011***
8 1.531 1.770* 2.070** 2.073*** 2.120***
9 1.597 1.834* 2.169** 2.209*** 2.260***
10 1.665 1.909* 2.230** 2.249*** 2.281***
11 1.724 1.959* 2.270** 2.276*** 2.299***
12 1.834 2.031* 2.314** 2.321*** 2.317***

UVAR(4)
1 0.908 0.936 1.117* 1.156*** 1.159***
2 0.784*** 0.869 1.138* 1.203*** 1.196***
3 0.759** 0.901 1.168 1.250** 1.250**
4 0.762** 0.941 1.195 1.294** 1.292**
5 0.802* 0.969 1.214 1.321** 1.331**
6 0.845 0.999 1.217 1.295* 1.312**
7 0.872 1.026 1.236 1.296* 1.327*
8 0.912 1.056 1.261 1.325 1.386**
9 0.946 1.076 1.285 1.364 1.436*
10 0.958 1.091 1.283 1.353 1.410*
11 0.982 1.113 1.300 1.365 1.423*
12 1.025 1.135 1.310 1.371 1.426*
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Table 3 continued: Forecasts Comparisons MAFE

1-month 3-month 12-month 36-month 60-month
yield yield yield yield yield

ASTM-VAR
1 0.913 0.925 1.025 1.079** 1.077**
2 0.708*** 0.768*** 0.923 1.018 1.009
3 0.672*** 0.686*** 0.842*** 0.960 0.965
4 0.655*** 0.679*** 0.811*** 0.926* 0.947

5 0.636*** 0.713*** 0.813*** 0.934 0.931

6 0.646*** 0.679*** 0.795*** 0.917 0.906
7 0.635*** 0.681*** 0.766*** 0.878* 0.880*

8 0.637*** 0.669*** 0.768*** 0.871* 0.891
9 0.642*** 0.665*** 0.748*** 0.836** 0.864*

10 0.621*** 0.679** 0.742*** 0.834** 0.846**

11 0.598*** 0.664*** 0.748*** 0.834** 0.864**
12 0.626*** 0.672** 0.752*** 0.839** 0.878**

Minn. Prior
1 0.829*** 0.872** 1.019 1.070* 1.077**
2 0.728*** 0.813** 1.052 1.141** 1.127**
3 0.673*** 0.802 1.027 1.103 1.114
4 0.679*** 0.841 1.056 1.135 1.140
5 0.737** 0.886 1.081 1.174 1.200*
6 0.790 0.922 1.089 1.165 1.191
7 0.811 0.947 1.112 1.171 1.195
8 0.847 0.978 1.138 1.195 1.245
9 0.881 0.994 1.151 1.231 1.298
10 0.887 1.002 1.162 1.238 1.295
11 0.916 1.023 1.176 1.258 1.317
12 0.955 1.040 1.188 1.263 1.314

Diebold-Li
1 0.908** 1.101** 1.312*** 1.048 1.047
2 0.923*** 1.093** 1.243*** 1.054 1.042
3 0.936** 1.086** 1.174*** 1.044 1.026
4 0.937*** 1.077** 1.141** 1.039 1.020
5 0.949** 1.066** 1.110 1.017 1.009
6 0.951*** 1.053 1.084 0.997 0.996
7 0.958*** 1.047 1.066 0.969 0.972
8 0.955** 1.030 1.048 0.957 0.970
9 0.956** 1.020 1.033 0.969 0.986
10 0.958** 1.013 1.006 0.931 0.949
11 0.963** 1.010 0.996 0.919 0.942
12 0.971* 1.003 0.992 0.919 0.931
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