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The Wiener–Kolmogorov signal extraction filters, which are widely used in econo-

metric analysis, are constructed on the basis of statistical models of the processes

generating the data. The models may be heuristic devices that can be specified

in whichever ways are appropriate to ensure that the filters have the desired char-

acteristics. The digital Butterworth filters, which are described and illustrated in

the paper, are specified in this way. The components of an econometric time series

often give rise to spectral structures that fall within well-defined frequency bands

that are isolated from each other by spectral dead spaces. In such cases, we are in-

clined to use a Fourier-based method that operates in the frequency domain. This

new method can be assimilated to a finite-sample Wiener–Kolmogorov framework
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1. Introduction

The econometric methods of signal extraction that are based on linear filters
have attained a high level of sophistication. They have now coalesced into two
distinct categories.

In the first category are the methods that are favoured by the central
statistical agencies of many of the OECD counties. These were developed
in the North American agencies, notably in Statistics Canada (Dagum 1980)
and in the U.S. Bureau of the Census (Findley et al. 1998), and they have
been supported and refined in other agencies throughout Europe and in the
Antipodes. The methods are based upon a variety of moving-average smoothing
filters, and they are used, principally, in trend extraction and in deseasonalising
data series.

The success of the methods of the central statistical agencies has entailed
a widespread acceptance of a set of common conventions and definitions. Thus,
it is commonly agreed that a deseasonalised data series can be defined, fairly
and simply, as the product of the relevant methods of the central statistical
office.

However, the acceptance of such conventions, whilst necessary to ensure
comparability of statistics across nations, inhibits scientific innovation and dis-
covery. Therefore, academic interest has been focused mainly on the so-called
model-based procedures, which constitute the second category of econometric
signal-extraction methodology.

The model-based approaches are derived from the idea that the compo-
nents of an econometric times series, which are its trend, its secular cycles, its
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seasonal cycles and its irregular component, can all be modelled by autoregres-
sive integrated moving-average (ARIMA) processes of low orders. There are
several exponents of this genre who have taken slightly different approaches.

In the structural approach, which originated with Harrison and Stevens
(1976) and which has been developed by Harvey (1989) and others, such models
are fitted jointly to the data in a manner that renders their parameters readily
accessible. (These methods have been implemented in the STAMP program of
Koopman et al. 2000.)

In the alternative canonical approach, which has been advocated by
Hillmer and Tiao (1982) and by Maravall and Pierce (1987), amongst oth-
ers, the models of the individual components must be disentangled from a
fitted ARIMA model that represents their joint effects. (An accessible imple-
mentation is in the SEATS–TRAMO program of Gómez and Maravall, 1994,
1996—the DOS version—and of Caporello and A. Maravall 2004—the Windows
version.)

Another approach, which combines aspects of both the structural approach
and the canonical approach, has been pursued in the CAPTAIN MatLab Tool-
box program of Young et al. (2004). An account of some of the features of
this program and of its uses has been provided by Young, Pedregal and Tych
(1999).

The model-based procedures have the seeming advantage that they subsist
within a framework that facilitates conventional statistical inference. Thus,
for example, confidence intervals are easily generated that can surround the
estimated data components. However, the validity of such inferences depends
crucially upon the cogency of the linear time-invariant ARIMA models that are
applied to the components. The ability of such models to reflect the underlying
data structures is limited. In particular, the models are liable to be subverted
whenever the structures show any significant tendency to evolve through time.

In this paper, we shall also use statistical models in deriving the filters that
are used to isolate the data components, but the models will be treated mainly
as heuristic devices that will allow us to exploit the mathematical formalisms of
the Wiener–Kolmogorov theory of signal extraction. This theory indicates that
the optimal estimates of the data components are provided by their conditional
expectations that are formed in the light of the observed data and of the models
that are presumed to have generated them.

When the models themselves are to be fitted to the data, it is important
that they should be realistic—otherwise they will provide an insecure basis
for forming the supposedly optimal filters. However, in practice, they rarely
achieve much realism. When the models are used merely as heuristic devices,
they can be specified in whichever ways are appropriate to ensure that the
filters have the desired characteristics. Moreover, the desirable characteristics
will be unaffected, in the main, by the evolutions of the data components that
the resulting filters are designed to isolate.

The original Wiener–Kolmogorov theory was developed under the fictional
assumption that the data are generated by a stationary stochastic process and
that they form a doubly infinite sequence. In econometrics, one has to contend

2



with short nonstationary sequences; and, to cope with these, it is common to
resort to the Kalman filter.

The Kalman filter and the associated smoothing algorithms are compli-
cated and powerful devices, of which the workings can often seem obscure. The
difficulty can be attributed to the all-encompassing nature of the algorithms.
In this paper, we shall pursue a simpler approach that fulfils the same objec-
tive of obtaining quasi minimum-mean-square-error estimates, but which deals
directly with the specific features of the problem at hand. We shall use the
finite-sample version of the bidirectional Wiener–Kolmogorov filter that has
been expounded in previous papers of the present author (see Pollock, 1997,
2000, 2001, and 2002).

One of the contentions of this paper is that the components of an econo-
metric time series often give rise to spectral structures that fall within well-
defined frequency bands that are isolated from each other by spectral dead
spaces, wherein the are no Fourier ordinates of any significant magnitude. This
leads us to consider the nature of band-limited stochastic processes, which are
characterised by singular dispersion matrices. We find that the finite-sample
Wiener–Kolmogorov formulation lends itself readily to a specialisation that is
appropriate for dealing with band-limited components.

2. Filtering Short Stationary Sequences

We begin by considering the problem of estimating the signal component ξ(t)
and the noise component η(t) of a data sequence

y(t) = ξ(t) + η(t), (1)

where t ∈ {0,±1,±2, . . .} is the index of the discrete-time observations. Ac-
cording to the classical assumptions, which we shall later amend in various
ways, the signal and the noise are generated by stationary stochastic processes
that are mutually independent. It follows that the autocovariance generating
function of the data, defined by

γ(z) = γ0 +
∞∑
τ=1

γτ (zτ + z−τ ), (2)

is the sum of the autocovariance generating functions of its components. Thus

γ(z) = γξ(z) + γη(z). (3)

In practice, the available data will form a finite sequence, which consti-
tutes a vector y = [y0, y1, . . . , yT−1]′ with a signal component ξ and a noise
component η such that

y = ξ + η. (4)

The data might owe their stationarity to a prior differencing operation or to
an operation that has involved the extraction of a trend from the original data
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and the retention of the residue. For these vectors, the moment matrices are

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

(5)

The independence of ξ and η implies that D(y) = Ω = Ωξ + Ωη.
Here, the various variance–covariance or dispersion matrices, which have

a Toeplitz structure, may be obtained by replacing the argument z within the
relevant generating function by the matrix

LT = [e1, . . . , eT−1, 0], (6)

which is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by deleting
the leading column and appending a column of zeros to the end of the array.
The matrix LT , which has units on the first subdiagonal and zeros elsewhere,
is the finite-sample version of the lag operator. Using it in place of z in γ(z)
gives

D(y) = Ω = γ0I +
T−1∑
τ=1

γτ (LτT + F τT ), (7)

where FT = L′T is in place of z−1. Since LT and FT are nilpotent of degree T ,
such that LqT , F

q
T = 0 when q ≥ T , the index of summation has an upper limit

of T − 1.
The optimal predictors of the components ξ and η are their conditional

expectations, denoted by x and h, respectively, in (8) and (9):

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)}
= Ωξ(Ωξ + Ωη)−1y = x, (8)

E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)}
= Ωη(Ωξ + Ωη)−1y = h. (9)

These are the finite-sample versions of the so-called Wiener–Kolmogorov es-
timates. They constitute the minimum-mean-square-error estimates of the
components, under the assumption that the specifications in (5) are correct.
The assumptions provide a set of ordinary positive-definite variance–covariance
matrices that pertain to conventional linear stochastic processes, which have
spectra that extend across the frequency range.

We should observe that adding the estimates gives

y = x+ h, (10)

which is to say that the estimated components add up to the data vector y, as
do the true components ξ and η in equation (4).
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To investigate the mapping from y to x or, equally, the mapping from y to
h, we must take account of the various symmetries manifested by the Toeplitz
matrices Ωη and Ωξ. The generic Toeplitz matrix Ω is symmetric about the
principal (northwest-southeast) diagonal, which is ordinary symmetry. It is
symmetric about the secondary (northeast-southwest) diagonal, which is per-
symmetry. It is invariant with respect to rotations of 180◦ around the central
point at the intersection of its two diagonals, which is centrosymmetry.

Let H = [eT−1, . . . , e1, e0] be the counter-identity matrix, which has units
on the secondary diagonal and zeros elsewhere, and let Ω# be the counter
transpose, which is the reflection of Ω about the secondary diagonal. Then, the
symmetries of Ω may be recorded as follows:

(i) Symmetry:
(ii) Persymmetry:
(iii) Centrosymmetry:

Ω = Ω′,

Ω = Ω#, equivalently HΩH = Ω′,

Ω = (Ω#)′ = Ωr, equivalently HΩH = Ω.

(11)

The matrix of x = Zy, which is the estimating equation of the signal ξ, is
determined by the equation Ωξ = ZΩ, wherein both Ωξ and Ω = Ωξ + Ωη are
Toeplitz matrices. Therefore, since HΩξH = Ωξ, HΩH = Ω and HH = I, it
follows that

Ωξ = HΩξH = {HZH}{HΩH} = {HZH}Ω = ZΩ. (12)

In view of the nonsingularity of the factors, we conclude from this that HZH =
Z, which is to say that Z = Ωξ(Ωξ + Ωη)−1 is a centrosymmetric matrix, albeit
that it is not a Toeplitz matrix.

Let yr and xr be y and x in reverse. Then, the centrosymmetric property
of Z ensures that both x = Zy and xr = Zyr. This feature is in accordance
with the fact that the direction of time can be reversed without affecting the
statistical properties of a stationary process.

The filter weights that are provided by the rows of the matrices Z vary
as the filter progresses through the sample. As the sample size increases, the
weights in the central row of Z, when it has an odd number of rows, will tend
to the set of constant coefficients that would be derived under the assumption
of a doubly-infinite data sequence. These coefficients are symmetric about a
central value.

The weights of the final row of Z correspond to the coefficients of a one-
sided causal filter, whereas those in the first row correspond to the same filter
working in reversed time. As the sample size increases, the weights of the
final row tend to the coefficients of the expansion of the rational feedback filter
that represents the real-time component of the classical bidirectional Wiener–
Kolmogorov filter that is appropriate to infinite samples.

In calculating the estimates, we should avoid inverting any of the matrices
directly, since they are of the order of the sample size T , which is liable to be
large. Therefore, the centrosymmetric filtering matrix Z is to be regarded as
a theoretical entity rather than a practical one. A simple procedure begins by
solving the equation

(Ωξ + Ωη)b = y (13)
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for the value of b. Thereafter, we can find

x = Ωξb and h = Ωηb. (14)

As will be shown, it may be presumed, without loss of generality, that
Ωξ and Ωη correspond to the dispersion matrices of moving-average processes.
That is to say, they are sparse matrices with a limited number of central nonzero
bands and with zeros elsewhere. Therefore, the solution to equation (13) may
be found via an efficient Cholesky factorisation that sets Ωξ+Ωη = GG′, where
G is a lower-triangular matrix with a limited number of nonzero bands. The
system GG′b = y may be cast in the form of Gp = y and solved for p. Then
G′b = p can be solved for b.

The solution via the Cholesky decomposition constitutes a recursive bidi-
rectional filtering process that generates the vector b via two passes running
in opposite directions through the data. The vector p is the product of a pass
that runs forwards in time, and the vector b is generated from p in a reverse-
time pass. Then b is subjected to further non-recursive filtering operations,
described by (14), which produce x and h.

An alternative way of calculating the estimates is to use the Kalman filter
in combination with a fixed-interval smoothing algorithm. The Kalman filter
provides a sequence of the minimum-mean-square-error estimates, indexed by
t, in the form of E(ξt|It) and E(ηt|It), which make use only of the informa-
tion in It = [y0, y1, . . . , yt] that is available at time t. To make full use of all
of the sample information, the estimates must be subjected, via the smooth-
ing algorithm, to a retrospective enhancement using the information that has
transpired after time t up to the end of the sample.

A detailed account of the Kalman filter and of a variety of fixed-interval
smoothing algorithms has been provided by Pollock (2003). Also included is
an account of method of Ansley and Kohn (1985), which appears to be the
definitive way of handling the problem finding the initial conditions for the
Kalman filter algorithm when the data are assumed to be the generated by a
nonstationary linear process.

The Wiener–Kolmogorov principle of signal extraction is the foundation of
the model-based methods of unobserved components analysis that are nowadays
in widespread use. The parameters of the filters are determined in the process
of fitting ARIMA models to the data components. However, the principle also
supports a variety of heuristic filters of which the parameters are determined
by rule of thumb or in view of the desired characteristics of their frequency
response functions.

Amongst such heuristic filters is the digital version of the Butterworth
filter, which has been advocated by Pollock (1997, 1999, 2000, 2001a, 2001b).
The frequency response of the filter is maximally flat in the vicinity of the zero
frequency and it has a transition band, centred on a chosen cut-off frequency,
that can be narrowed by increasing the filter order. (Gómez 2001 has also
advocated the Butterworth filter, but he has widened its definition to include
filters, such as the filter of Hodrick and Prescott 1997, that do not share the
property of maximal flatness.)
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Figure 1. The quarterly series of the logarithms of consumption in the U.K., for the

years 1955 to 1994, with a linear function interpolated by least-squares regression.
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Figure 2. The residuals obtained by fitting a linear trend through the logarithmic

consumption data of Figure 1.
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Figure 3. The periodogram of the residuals obtained by fitting a linear trend through

the logarithmic consumption data of Figure 1. The gain of the lowpass Butterworth

filter of order n = 6 and with a cut-off frequency of π/4 is represented by the dotted

line. (The gain is unity at zero frequency.)
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The Butterworth filter, which is of the lowpass Wiener–Kolmogorov va-
riety, originates in a function that is the ratio of two quasi autocovariance
generating functions:

ψ(z) =
σ2
ξγξ(z)

σ2
ξγξ(z) + σ2

ηγη(z)

=
(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + λ(1− z)n(1− z−1)n
.

(15)

(Here, the normalised autocovariance functions γξ(z) and γη(z), which are au-
tocorrelation functions in other words, need to be scaled by the factors σ2

ξ and
σ2
η respectively, which stand for the variances of the white-noise processes from

which the signal and the noise components are supposedly derived by linear
filtering.)

The autocovariance generating functions relate to an heuristic statistical
model as opposed to a realistic one. The denominator function γ(z) = σ2

ξγξ(z)+
σ2
ηγη(z) stands in place of that of the data process and the numerator function
σ2
ξγξ(z) corresponds to that of the signal. Here, λ = σ2

η/σ
2
ξ = {1/ tan(ωC/2)}2n

incorporates the nominal cut-off frequency of ωC . By setting z = LT and
z−1 = FT in the numerator and the denominator of ψ(z), we derive the matrices
Ωξ and Ωξ + Ωη, respectively, which can be entered into equations (8) and (9).

We should observe that ψ(z) will continue to be expressed a rational func-
tion, regardless of whether the vectors ξ and η are generated by are moving-
average processes, as we have supposed so far, of by more general autoregressive
moving–average processes. Whichever is the case, the structures of the estimat-
ing equations under (8) and (9), which entail sparse Toeplitz matrices, will not
be affected.

To derive the two unidirectional filters, the rational function is factorised
as ψ(z) = β(z)β(z−1), where β(z), which relates to the direct-time filter, con-
tains the poles that lie outside the unit circle, and β(z−1), which relates to
the reverse-time filter, contains the poles that lie inside the circle. This fac-
torisation is described as the Cramér–Wold decomposition. In the case of the
Butterworth filter, analytic expressions for the roots of both the denominator
and the numerator, i.e. the poles and the zeros of the filter, are available. The
roots of the denominator have been given by Pollock (2000).

For most other Wiener–Kolmogorov filters specified in the manner of the
Butterworth filter, it is necessary to use an iterative procedure for finding the
Cramér–Wold decomposition. (See for, example Pollock 2003b.) The algorithm
of Wilson (1969), which is based on the Newton–Raphson procedure, is an
effective way of achieving the factorisation; and versions which are coded in C
and in Pascal have been provided by Pollock (1999). (See, also, Laurie 1980,
1982.)

There can be a reasonable objection to the assumption that the data com-
ponents are generated by ordinary linear stochastic processes that comprise the
full range of frequencies from zero up to the limiting Nyquist frequency of π
radians per period. (In discretely sampled systems, the frequencies in excess of
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the Nyquist value will be aliased by frequencies within the interval [0, π].) We
shall illustrate the grounds for questioning the assumption via an analysis of a
leading economic index.

Example 1. Figure 1 show the logarithms of the quarterly consumption data
for the U.K. for the years 1955–1994, through which a linear trend has been
interpolated by least-squares regression. When a quadratic polynomial trend
was fitted, it was discovered that the coefficient associated with t2 was not
significantly different from zero.

This implies that, over the years in question, the underlying growth of the
economy was at a constant exponential rate. Moreover, an exponential trend
represents a benchmark that can be used in defining the business cycle. (Flex-
ible methods of trend extraction that employ linear filters are described later,
beginning in section 4.) The residual deviations from the trend, which are
shown in Figure 2, represent a variable multiplicative factor by which the un-
derlying trend is modulated; and the residuals reveal both secular and seasonal
variations in consumption.

The periodogram of the residuals is shown in Figure 3. This has a low-
frequency spectral structure, which extends no further than the frequency value
of π/8. The remainder of the periodogram shows a dead space that is punctu-
ated by tall spikes in the vicinities of the frequencies of π/2 and π. The first
of these spikes corresponds to the fundamental frequency of the seasonal fluc-
tuations that play on the back of the more gentle variations that surround the
ascending line in Figure 1. The spike at π is corresponds to the first harmonic
of the seasonal frequency.

The low-frequency structure of Figure 3, which occupies the frequency
interval [0, π/8], can be isolated successfully by any of a wide variety of filters.
All that is required of such a filter is that its transition from pass band to
stop band occurs within the spectral dead space that stretches from π/8 to the
vicinity of π/2, where the spectral structure of the seasonal fluctuations is first
encountered. The Butterworth filter of order n = 6 with a cut off frequency of
π/4 fulfils this requirement. Its frequency response function is superimposed
on Figure 3. The effect of applying this filter to the data of Figure 2 is shown
in Figures 4 and 5.

A more exacting task is the extraction of the low-frequency components
from data that is observed at monthly intervals. In that case, the fundamental
seasonal frequency is at π/6 and the transition of the filter must occur within
a correspondingly reduced interval.

The sharpening of the transition can be achieved by raising the order
n of the filter. However, a sharp transition in the low frequency range can be
achieved with a recursive Wiener–Kolmogorov filter only at the cost of bringing
the poles of the filter into close proximity with the perimeter of the unit circle.
This can lead to problems of filter instability, which include the propagation
of numerical rounding errors and the prolongation of the transient effects of
ill-chosen start-up conditions.

These problems have been addressed within the context of the Wiener–
Kolmogorov specification by Pollock (2003b). Alternative specifications for
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recursive filters have been investigated in Pollock (2003a). In the next section,
we shall also deal with the problems of “sharp filtering” within the context of
the Wiener–Kolmogorov theory; but we shall forsake the method of recursive
filtering in favour of a method based on Fourier analysis.

3. Filtering via Circulant Matrices

A finite-sample analogue of a stationary stochastic process is a circular or pe-
riodic process y(t) = {yt; t = 0,±1,±2, . . .} that is completely specified by its
values at T consecutive points such that yt = yt mod T . For such processes, the
lag operator is replaced by the circulant matrix

KT = [e1, . . . , eT−1, e0], (16)

which is formed from the identity matrix IT by moving the leading vector to
the back of the array.

This operator effects the cyclic permutation of the elements of any (col-
umn) vector of order T . The matrix is T -periodic such that Kq+T

T = Kq
T .

Whereas LT y = [0, y0, . . . , yT−2]′ is obtained from y = [y0, y1, . . . , yT−1]′ by
deleting the final element and placing a zero in the leading position, the vector
KT y = [yT−1, y0, . . . , yT−2]′ is obtained from y by moving the final element to
the leading position.

The powers of KT form the basis for the set of circulant matrices. In
particular, we may define a matrix of circular autocovariances via the formula

D◦(y) = Ω◦ = γ(K)

= γ0I +
∞∑
τ=1

γτ (Kτ
T +K−τT )

= γ◦0I +
T−1∑
τ=1

γ◦τ (Kτ
T +K−τT ).

(17)

Here, γ◦τ ; τ = 0, . . . , T − 1 are the circular autocovariances defined by

γ◦τ =
∞∑
j=0

γ(jT+τ). (18)

The matrix operator KT has a spectral factorisation that is particularly
useful in analysing the properties of the discrete Fourier transform. The basis
of this factorisation is the so-called Fourier matrix. This is a symmetric matrix

U = T−1/2[W jt; t, j = 0, . . . , T − 1], (19)

of which the generic element in the jth row and tth column is

W jt = exp(−i2πtj/T ) = cos(ωjt)− i sin(ωjt),

where ωj = 2πj/T.
(20)
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Figure 4. The low-frequency component of the consumption residuals of Figure 2.

The component has been extracted by applying a lowpass Butterworth filter of order

n = 6 with a cut off point at ωc = π/4.
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Figure 5. The component extracted from the consumption residuals by applying a

highpass Butterworth filter of order 6 with a cut off point at ωc = π/4.
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Figure 6. The seasonal component of the consumption residuals, synthesised from

the Fourier ordinates in the vicinities of π/2 and π.
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The matrix U is a unitary, which is to say that it fulfils the condition

ŪU = UŪ = I, (21)

where Ū = T−1/2[W−jt; t, j = 0, . . . , T − 1] denotes the conjugate matrix.
The operator KT can be factorised as

K = ŪDU = UD̄Ū , (22)

where
D = diag{1,W,W 2, . . . ,WT−1}, (23)

with W = exp{2π/T}, is a diagonal matrix whose elements are the T roots of
unity, which are found on the circumference of the unit circle in the complex
plane. Observe also that D is T -periodic, such that Dq+T = Dq, and that
Kq
T = ŪDqU = UD̄qŪ for any integer q.

The spectral factorisation of the circulant autocovariance matrix gives

Ω◦ = γ(KT ) = Ūγ(D)U. (24)

Here, the jth element of the diagonal matrix γ(D) = Λ is

γ(exp{iωj}) = γ0 + 2
∞∑
τ=1

γτ cos(ωjτ). (25)

This represents the cosine Fourier transform of the sequence of the ordinary
autocovariances; and it corresponds to an ordinate (scaled by 2π) sampled at
the point ωj from the spectral density function of the linear (i.e. non-circular)
stationary stochastic process. (An account of the algebra of circulant matrices
has been provided by Pollock 2002. See, also, Gray 2002.)

The circulant autocovariance matrices that are the counterparts of the
ordinary autocovariance matrices defined in (5) are

Ω◦ξ = ŪΛξU, Ω◦η = ŪΛηU,

Ω◦ = ŪΛU = Ū(Λξ + Λη)U,
(26)

where Λη and Λξ are diagonal matrices of spectral ordinates. Any of these
autocovariance matrices may be singular in consequence of the presence of zero
elements on the diagonals. Using the circulant matrices instead of the ordinary
autocovariance matrices in the Wiener–Kolmogorov formulae of (8) and (9)
gives

x = ŪΛξ{Λξ + Λη}+Uy = ŪJξUy, (27)

h = ŪΛη{Λξ + Λη}+Uy = ŪJηUy. (28)

To accommodate the possibility that Λξ + Λη is singular, a generalised
inverse has been applied to it instead of an ordinary inverse. A generalised
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inverse can obtained by replacing the zero-valued diagonal elements, which
correspond to spectral ordinates falling within dead spaces, by nonzero values
and, thereafter, by inverting the matrix that has acquired the full rank. Observe
that, if Λξ and Λη are disjoint such that ΛξΛη = 0, then Jξ = Λξ{Λξ + Λη}+
is a matrix with units on the diagonal wherever Λξ has nonzero elements and
with zeros elsewhere. Analogous conditions apply to Jη = Λη{Λξ + Λη}+.

The formulae of (27) and (28) have a simple interpretation. First, the
discrete Fourier transform is applied to the data vector y to translate it into the
frequency domain. Then, a differential weighting, which might entail setting
some values to zero, is applied to the spectral ordinates of the transformed
vector via the diagonal matrices Jξ or Jη. Finally, to produce the estimate of
the component, the inverse Fourier transform is applied.

Implicit in the use of the discrete Fourier transform is the assumption
that the data sequence represents a single cycle of a periodic function. In the
periodic extension of the data, the values from the interval [0, T ) are reproduced
in successive segments of length T that precede and follow the data.

In one sense, there is no start-up problem affecting a Fourier-based filtering
procedure, since the periodic extension constitutes a doubly-infinite sequence.
However, there may be radical disjunctions at the points where one replication
of the data ends and another begins.

Such features are liable to be reflected in the periodogram in a way that
can obscure the underlying data structures. Thus, the ordinates of the Fourier
transform may be affected by a slew of values which serve the purpose only of
synthesising the end-of-sample disjunctions. One recourse is to taper both ends
of the sample so that they arrive the same level. Another recourse is to join
the sample to it mirror-image reflection and to use this combination in place
of the original data.

The problems of an end-of-sample disjunction are particularly acute in the
case of nonstationary data sequences that follow rising or falling trends; and
the trends have to be eliminated before the filters are applied. So far, we have
succeeded in eliminating the trend by fitting a polynomial function to the data.
An alternative recourse, which we shall pursue in the next section, is to make
use of differencing.

Example 2. Consider the task of extracting the seasonal component from the
residuals that have been obtained by fitting a linear function to the logarithmic
consumption data. The periodogram of Figure 3 suggests that the seasonal
sequence should be synthesised from a small number of Fourier ordinates that
are in the vicinity of the seasonal frequency and its harmonic. Apart from those
at either end of the frequency range, the ordinates come in conjugate complex
pairs. In addition to the pair of ordinates at π/2, we may take two ordinates
below and one above. Also, we may take ordinate at π, which is real-valued,
and the pair of ordinates immediately below.

The seasonal sequence, which is plotted in of Figure 6, is equally a compo-
nent of the sequence of Figure 4, which represents the residuals from the linear
detrending of the logarithmic consumption data, and a component of the se-
quence of Figure 5, which has been derived by applying a highpass Butterworth
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filter to remove a further low-frequency component—represented by the thick
line in Figure 4—that is unrelated to the seasons. In terms of the variances,
the seasonal sequence represents 47 percent of the Figure 4 sequence and 94
percent of the Figure 5 sequence.

4. Filtering Nonstationary Sequences

The problems of a trended data sequence may be overcome by differencing.
The matrix that takes the d-th difference of a vector of order T is given by

∇dT = (I − LT )d. (29)

We may partition the matrix so that ∇dT = [Q∗, Q]′, where Q′∗ has d rows.
The inverse matrix is partitioned conformably to give ∇−dT = [S∗, S]. We may
observe that

[S∗ S ]
[
Q′∗
Q′

]
= S∗Q

′
∗ + SQ′ = IT , (30)

and that [
Q′∗
Q′

]
[S∗ S ] =

[
Q′∗S∗ Q′∗S
Q′S∗ Q′S

]
=
[
Id 0
0 IT−d

]
. (31)

When the difference operator is applied to the data vector y, the first d
elements of the product, which are in g∗, are not true differences and they are
liable to be discarded:

∇dT y =
[
Q′∗
Q′

]
y =

[
g∗
g

]
. (32)

However, if the elements of g∗ are available, then the vector y can be recovered
from g = Q′y via the equation

y = S∗g∗ + Sg. (33)

The columns of the matrix S∗ provide a basis for the set of polynomials of
degree d − 1 defined over the integer values t = 0, 1, . . . , T − 1. Therefore,
p = S∗g∗ is a vector of polynomial ordinates, whilst g∗ can be regarded as a
vector of d polynomial parameters.

We may approach the filtering of a trended data sequence in the following
manner. First, we reduce the data to stationarity by differencing it an ap-
propriate number of times. (We rarely need to difference the data more than
twice.) From the differenced data, viewed in an appropriate manner, we may
discern the nature and the frequency ranges of the various data structures that
we wish to isolate.

Next, the components of the differenced data that correspond to these
structures may be extracted, either by a recursive filtering process—using, for
example, a Butterworth filter—or via the Fourier method described in the
preceding section.

Finally, the components of the differenced data may be integrated, with an
appropriate choice of initial conditions, to provide estimates of the components
of the original trended sequence.
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An apparent problem with this procedure is that the act of differencing is
liable to attenuate the components of the low-frequency data structure to such
an extent that they become invisible in the periodogram of the differenced data.
The problem is illustrated in Figure 8, which shows the periodogram of g = Q′y
in the case of the the once-differenced consumption data.

The problem vanishes when we recognise that we can discern the low-
frequency structure via the periodogram of the residual sequence

y − p = y − S∗(S′∗S∗)−1S′∗y

= Q(Q′Q)−1Q′y,
(34)

obtained by fitting to the data, by least-squares, a polynomial of degree d− 1.
The identity Q(Q′Q)−1Q′ = I − S∗(S′∗S∗)−1S′∗ follows from the fact that Q
and S∗ are complementary matrices with Rank[Q,S∗] = T and Q′S∗ = 0. It
will be recognised that the residuals contain the same information as does the
differenced data Q′y. Their periodogram, in the case of the consumption data,
has been displayed already in Figure 3.

To elucidate the procedures for extracting the components of a trended
data sequence, let us consider the case of the data vector y = ξ + η, where η,
which has E(η) = 0 and D(η) = Ωη, is from a stationary stochastic process and
where ξ is from a process that requires a d-fold differencing in order to reduce
it to a vector ζ = Q′ξ with a stationary distribution. Then we shall have

Q′y = Q′ξ +Q′η,

= ζ + κ = g,
(35)

and we may assume, by analogy with (5), that ζ and κ are characterised by
their first and second moments, which are

E(ζ) = 0, D(ζ) = Ωζ = Q′ΩξQ,

E(κ) = 0, D(κ) = Ωκ = Q′ΩηQ,

and C(ζ, κ) = 0.

(36)

Here, the derived dispersion matrices Ωζ and Ωκ retain the Toeplitz structure
that is a feature of Ωξ and Ωη.

Let the estimates of ζ and κ be denoted by z and k. If x and h are the
estimates of ξ and η respectively, then it is reasonable to require that Q′x = z
and Q′h = k so that

Q′y = Q′x+Q′h

= z + k = g.
(37)

The estimates z and k must be integrated to give

x = S∗z∗ + Sz and h = S∗k∗ + Sk. (38)

The criterion for finding the starting value z∗ is

Minimise (y − x)′Ω−1
η (y − x) = (y − S∗z∗ − Sz)′Ω−1

η (y − S∗z∗ − Sz). (39)
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This requires that the estimated trend x should adhere as closely as possible
to the data. The minimising value is

z∗ = (S′∗Ω
−1
η S∗)−1S′∗Ω

−1
η (y − Sz). (40)

Since y − x = h, an equivalent criterion is

Minimise h′Ω−1
η h = (S∗k∗ + Sz)′Ω−1

η (S∗k∗ + Sk), (41)

for which the minimising value is

k∗ = −(S′∗Ω
−1
η S∗)−1S′∗Ω

−1
η Sk. (42)

Using
P∗ = S∗(S′∗Ω

−1
η S∗)−1S′∗Ω

−1
η , (43)

we get, from (38), the following values:

x = P∗y + (I − P∗)Sz, and h = (I − P∗)Sk. (44)

The disadvantage in using these formulae directly is that the inverse matrix
Ω−1
η , which is of order T , is liable to have nonzero elements in every location.

(This will be so whenever Ωη has the form of an autocovariance matrix of a
moving-average process.)

The appropriate recourse is to use the identity

I − P∗ = I − S∗(S′∗Ω−1
η S∗)−1S′∗Ω

−1
η

= ΩηQ(Q′ΩηQ)−1Q′
(45)

to provide an alternative expression for the projection matrix I−P∗ that incor-
porates the band-limited matrix Ωη instead of its inverse. The equality follows
from the fact that, if Rank[R,S∗] = T and if S′∗Ω

−1
η R = 0, then

I − S∗(S′∗Ω−1
η S∗)−1S′∗Ω

−1
η = R(R′Ω−1

η R)−1R′Ω−1
η . (46)

Setting R = ΩηQ gives the result. Given that x = y− h, it follows that we can
write

x = y − (I − P∗)Sk
= y − ΩηQ(Q′ΩηQ)−1k,

(47)

where the second equality depends upon Q′S = I.
So far, we have not specified the method by which the estimates z and

k of the differenced components have been obtained. They may be obtained
equally via a recursive filtering method or via the Fourier that has been outlined
in the preceding section. In case we have used the Fourier method, we might
be inclined to use the circulant version of the dispersion matrix Ωη within the
foregoing formulae.
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Figure 7. The quarterly series of the logarithms of income (upper) and consumption

(lower) in the U.K. for the years 1955 to 1994 together with their interpolated trends.
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Figure 8. The periodogram of the first differences of the logarithmic consumption
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Figure 9. The bandpass estimates of the fluctuations, within the range of the

business-cycle frequencies, of the logarithmic income series (solid line) and of the

logarithmic consumption series (broken line).
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Let us consider, instead, the possibility of obtaining the estimate k via
recursive filtering. Then, with reference to equation (9), we can see that the
assumptions of (36) imply that the estimate should take the form of

k = Q′ΩηQ(Ωζ +Q′ΩηQ)−1Q′y, (48)

On substituting this in the equation of (47), we get

x = y − ΩηQ(Ωζ +Q′ΩηQ)−1Q′y. (49)

In the case of Butterworth filter, we take the quasi-autocorrelation func-
tions of the nonstationary signal sequence ξ(t) and of the stationary noise se-
quence η(t) to be

γξ(z) = σ2
ξ

(1 + z)n(1 + z−1)n

(1− z)d(1− z−1)d
and γη(z) = σ2

η(1− z)n−d(1− z−1)n−d (50)

respectively, which become the elements of (15) in the case where d = 0. We
may also define

γζ(z) = σ2
ξ (1 + z)n(1 + z−1)n and γκ(z) = (1− z)dγη(z)(1− z−1)d

= σ2
η(1− z)n(1− z−1)n,

(51)
which is a matter of renaming the elements of (15) when d > 0. The matrices
Ωζ and Ωκ = Q′ΩηQ are generated by setting z = LT−d and z−1 = L′T−d =
FT−d in γζ(z) and γκ(z) respectively and by scaling the resulting matrices by
the appropriate variances. Observe that the generating functions of (51) are
not affected by the order d of the differencing operator. Therefore, for the
Butterworth filter, only the dimension of the matrix Ωζ +Q′ΩηQ changes when
d varies. Its essential structure remains the same.

The computational procedure that has been described in section 2 can
also be applied when d > 0. That is to say, the solution of the equation
(Ωζ +Q′ΩηQ)b = g, where g = Q′y, is found via the Cholesky factorisation of
Ωζ +Q′ΩηQ = GG′. Thereafter, h = Ωηb and x = y − h are found.

Example 3. Figure 7 shows the quarterly sequences of the logarithms of
income (upper) and consumption (lower) in the U.K. for the years 1955 to
1994 together with their interpolated trends. We can afford to treat the income
sequence in the same manner as we treat the consumption sequence; and, in
what follows, we shall concentrate on the latter.

The periodogram of Figure 3, suggests that both the trend component and
the seasonal component of the consumption data are generated by band-limited
processes. The trend component is confined to the frequency interval [0, π/8]
and the seasonal component comprises a handful of nonzero Fourier ordinates
in the vicinities of π/2 and π. The remainder of the periodogram consists
of virtual dead spaces. When equation (4) is applied to these circumstances,
ξ, which is estimated by x, becomes the trend component and η, which is
estimated by h, becomes the seasonal component.
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The trend that interpolates the consumption data has been constructed
by extracting from the untrended, twice-differenced data sequence g = Q′y the
Fourier elements that lie in the frequency interval [0, π/8]. The sequence z
that is synthesised from these elements has then been integrated to create the
trend x = S∗z∗ + Sz. In seeking the starting value z∗ with which to initiate
the process of integration, we may consider minimising a criterion function
in the form of h′(Ω◦η)+h = h′ŪΛ+

η Uh, where (Ω◦η)+ = ŪΛ+
η U represents the

generalised inverse of the singular circulant autocovariance matrix D◦(η) = Ω◦η.
The elements of Λ+

η that correspond to zero-valued elements of Uh, which
lie in spectral dead spaces, can take arbitrary values. These values will have
no effect upon the value of the criterion function. Therefore, the generalised
inverse can be formed by replacing the nonzero elements of Λη by their inverses
and by placing arbitrary values elsewhere on the diagonal.

For want of a better assumption, we may assume that the Fourier ordinates
of the seasonal process are distributed uniformly within their designated bands.
In that case, the corresponding elements of Λη should all have same value, and
so, likewise, should the corresponding elements of Λ+

η .
The remaining elements of Λ+

η , which correspond to zero-valued Fourier
ordinates and which can take arbitrary values, may be set to the same values
as the elements corresponding to the seasonal ordinates. Thus Λ+

η , which needs
to be determined only up to a scalar factor, becomes an arbitrary multiple of
the identity matrix—and it may as well become the identity matrix itself. In
that case, we should have Ω◦η = ŪU = I and (Ω◦η)+ = I.

This simplification allows us to specialise equation (40) to give

z∗ = (S′∗S∗)
−1S′∗(y − Sz). (52)

In the case where the data is differenced twice, there is

S′∗ =
[

1 2 . . . T − 1 T
0 1 . . . T − 2 T − 1

]
(53)

The elements of the matrix S′∗S∗ can be found via the formulae

T∑
t=1

t2 =
1
6
T (T + 1)(2T + 1) and

T∑
t=1

t(t− 1) =
1
6
T (T + 1)(2T + 1)− 1

2
T (T + 1).

(54)

(A compendium of such results has been provided by Jolly 1961, and proofs
of the present results were given by Hall and Knight 1899.) The matrix is
somewhat ill-conditioned. Moreover, when the order of differencing exceeds two
or three, it is necessary, in calculating the polynomial ordinates of p = S∗z∗, to
use an orthogonal basis in place of the monomial basis that is provided by the
columns of S∗. However, this case is rare.
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5. Bandpass Filtering

Econometricians often characterise the business cycle in terms of a sinusoid
that fluctuates around a slow-moving trend. According to the definitions of
Burns and Mitchell (1946), the effects of the business cycle within an economic
index correspond to the sinusoidal elements therein that have periods of no less
than one-and-a-half years and of no more than eight years. A duration of one-
and-a-half years seems too short, and we prefer to set the shortest duration at 2
years—and this seems to be a common preference (see, for example, Christiano
and Fitzgerald 1998).

The business cycle, defined in this manner, is unlikely to correspond to any
self-contained spectral structure that might be discerned by inspecting the rele-
vant periodogram. In the case of quarterly data, the business cycle frequencies
range from π/16 radians per period to π/4 radians per period (corresponding
to a duration of 2 years.) Neither of these values corresponds to a natural break
in the periodogram of the consumption residuals of Figure 3.

The business-cycle frequencies may be extracted from the data using a
bandpass filter with nominal cut-off points at the designated frequencies. For
this purpose, economists have tended to use finite-impulse-response (FIR) or
moving-average filters that are derived by truncating the doubly-infinite se-
quence of filter coefficients associated with the unrealisable ideal bandpass fil-
ter. (See, for example, Baxter and King, 1999.) The effect of the truncation
is to create ripples in the stopbands of the frequency response function, which
entail considerable spectral leakage.

A superior bandpass filter can be realised using the Butterworth formu-
lation. One way of creating a bandpass filter is to apply the so-called Con-
stantinides (1970) transformation to a prototype lowpass filter with a nominal
cut-off point at π/2. The method is also described by Pollock (1999). In the
current application of business cycle analysis, this transformation will result in
a filter with a frequency response that has a far wider transition band at the
upper cut-off frequency than at the lower cut-off frequency.

A better way of creating a bandpass filter for the current application is to
apply two filters in succession. The first filter is a lowpass filter that is intended
to remove the components of frequencies in excess of π/4. The second is a
highpass filter that preserves the remaining components of frequencies in excess
of π/16 and eliminates those of lesser frequencies. The order of the first filter
should exceed that of the second filter so as to enhance the rate of transition at
the upper cut-off frequency. (Harvey and Trimbur 2003 have shown how this
sort of bandpass filter can be derived from an heuristic statistical model.)

Figure 10 shows the pole–zero diagrams of the 12th order lowpass and
the 6th order highpass filters; while Figure 11 shows the frequency response
functions of the two filters superimposed on the same diagram. It can be seen
that some of the poles of the highpass filter come very close to the circumference
of the unit circle. This feature can lead to problems of numerical instability.

One way of overcoming the problems of numerical instability is to sub-
sample the data that has resulted from applying the first filter. Since there
is no information in this data remaining in the interval [π/2, π], we can afford
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Figure 10. The pole–zero diagrams (left) of the lowpass Butterworth filter of order

n = 12 with a cut-off frequency of ωU = π/4 and (right) of the highpass filter of

order n = 6 with a cut-off frequency of ωL = π/16.
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Figure 11. The gain of the 12th order digital Butterworth lowpass filter with cut-off

frequency of ωU = π/4 and of 6th order highpass filter with cut-off frequency of

ωL = π/16, superimposed on the same diagram.

to omit alternate points so as to create a semi-annual sequence. The effect is
that the contents of the original data that lie in the frequency interval [0, π/2]
are mapped into the wider interval [0, π]. In the process, the lower cut-off
frequency moves from π/16 to π/8. The poles of the 6th-order Butterworth
filter with this cut-off point are no longer so close to the perimeter of the unit
circle, which implies a greater numerical stability. (More general methods of
sample-rate conversion have been described by Vaidyanathan 1993, amongst
others.)

An alternative recourse is to base the estimate of the business cycle compo-
nent on the Fourier ordinates of the data that fall within the specified frequency
range. In principal, the method entails no spectral leakage so long as it is ap-
plied to data that have been detrended in a manner that will ensure that there
are no disjunctions in the periodic extension where the end of one data segment
joins the beginning of another. This can be achieved by a process of differencing
followed by a judicious tapering of the ends of the data segment.
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Since the business cycle is an artificial construct, it is difficult to relate
the method of extraction to an underlying statistical model. However, under
certain assumptions, it becomes appropriate to treat this component in the
same manner as the noise component η within the trended vector y = ξ + η,
which has been the subject of the previous section.

Now the component vector ξ becomes the repository of the Fourier ele-
ments with frequencies that are less than the value of the lower cut-off fre-
quency of the pass band. The components of frequencies in excess of the upper
cut-off frequency can be assigned to a third component, which is eliminated via
the first lowpass filtering operation. The vector y can be taken to represent the
product of this operation.

Under these constructions, there are no spectral overlaps amongst the var-
ious components; and the appropriate statistical model is one that comprises
separable band-limited processes. It follows that the appropriate method for
extracting the business-cycle component is, indeed, the Fourier-based method
of Section 3. This is well-adapted to dealing with band-limited processes. The
relevant Fourier components of the business cycle, contained in the vector k,
must be extracted from a data vector g = z + k that has been detrended by
differencing. The estimate

h = S∗k∗ + Sk (55)

of the business cycle component is obtained by a process of summation that
reverses the differencing.

In the absence of prior knowledge of the distribution of the spectral ordi-
nates, we may set Ωη = I. In that case, the starting values are provided by the
simplified formula

k∗ = (S′∗S∗)
−1S′∗Sk. (56)

which is derived from equation (42) by setting Ω−1
η = I. The simplification

extends to the identity of (45), which becomes

P∗ = S∗(S′∗S∗)
−1S′∗

= I −Q(Q′Q)−1Q′ = I − PQ.
(57)

Therefore, the estimate of the business cycle component is also provided by

h = (I − P∗)Sk = Q(Q′Q)−1k, (58)

wherein the condition Q′S = I has been effective in simplifying the final ex-
pression.

Example 4. Figure 9 shows the business cycle fluctuations that have been
extracted from the quarterly logarithmic income and consumption data for the
U.K. over the period 1955 to 1994. In both cases, a Fourier bandpass filter, of
the sort describe in section 3, has been applied to data that have been reduced
to stationarity by second differencing.

A lower cut-off point at π/16 radians per period (corresponding to a cycle
of 8 years duration) and an upper cut-off point of π/4 radians per period
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(corresponding to a cycle of 2 years duration) have be chosen. The stationary
sequences, denoted by z in equation (37), which have been synthesised from the
selected Fourier ordinates, have been re-inflated in accordance with the formula
for the estimated trend x given by (38), wherein the constants of integration
of z∗ are given by (52).

There is evidence here that the fluctuations in consumption precede those
in income. This contradicts the common supposition that the business cycle
is driven by variations in ‘‘autonomous expenditures”, which do not include
consumption, and in the rate of investment.

One might be doubtful of the comparisons at the beginning and the end
of the sample, where the interpolated functions are not tied down by preceding
or succeeding data points and where they appear to be heading in opposite
directions. The problem could be overcome by adding a few extrapolated points
at either end of the sample that would serve to tie down the functions.

6. Multiple Components

The problems of econometric signal extraction have been handled, so far, within
the context of a model, described by equation (4), that has only a signal com-
ponent and a noise component. Allowance has been made for a non stationary
signal component. However, it might be required to partition the data amongst
more than two components. Thus, in a classical econometric time-series anal-
ysis, at least four components are identified. These are the trend, the business
cycle, the seasonal cycle and an irregular component.

The two-component model can also serve the purpose of extracting several
components, for the reason that its components are readily amenable, if neces-
sary, to further decompositions. Thus, for example, an initial decomposition of
the data sequence into a trend/cycle component and a residue can be followed
by decomposition of the residue into a seasonal cycle an irregular cycle. If the
data are stationary, it is unnecessary to perform such a multiple decomposition
sequentially—each component can be extracted separately.

If the data are nonstationary and if there are more than one nonstationary
component, then a sequential decomposition might be called for. A typical
model of an econometric time series, described by the equation y = ξ + η =
(µ+ ρ) + η, comprises both a trend/cycle component µ and a seasonal compo-
nent ρ that are described by ARIMA models with real and complex unit roots
respectively.

To reduce the data to stationarity, an operator is used that is the product
of the d-fold difference operator ∇dT = (I−LT )d and a deseasonalising operator
ΣT = (I−LsT )(I−LT )−1. (The operator Σ is used instead of (I−LsT ) because
it can be assumed, without loss of generality, that the seasonal deviations from
the trend have zero mean.) Let the product of the two operators be denoted
by MT = ΣT∇dT = [Q∗, Q]′, where Q′∗ contains the first d + s − 1 rows of the
matrix, and let the inverse operator M−1

T = [S∗, S] be partitioned conformably
such that S∗ contains the first d + s − 1 columns. The factors of M−1

T are
further partitioned as Σ−1

T = [SΣ∗, SΣ] and ∇−dT = [S∇∗, S∇].
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Let the components of the differenced data be denoted by Q′ξ = ζ, Q′µ =
ζµ and Q′ρ = ζρ. Then there is

Q′y = Q′ξ +Q′η

= Q′(µ+ ρ) + κ = (ζµ + ζρ) + κ.
(59)

Also, let the estimates of µ and ρ be denoted by m and r and those of ζµ and
ζρ by zm and zr. Then, in parallel with equation (59), there is

Q′y = Q′x+Q′h

= Q′(m+ r) + k = (zm + zr) + k.
(60)

The estimates zm, zr and k may be obtained from the differenced data g = Q′y
by a process of linear filtering. It is then required to form m, r and h from
these elements. First, consider

x = (m+ r) = S∗z∗ + Sz

= S∗z∗ + S(zm + zr).
(61)

Here, z∗ is computed according the formula of (40). Given x, an estimate
h = y−x of the irregular component can be formed. Next, there is an equation

S∗z∗ = [S∇∗ SΣ∗ ]
[
z∗m
z∗r

]
. (62)

This may be solved uniquely for z∗m and z∗r; and, for this purpose, only the
first s + d − 1 rows of the system are required. Thereafter, the estimates of µ
and ρ are given by

m = S∇∗z∗m + Szm and r = SΣ∗z∗r + Szr. (63)
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