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Abstract

The estimation of dynamic factor models for large sets of vari-
ables has attracted considerable attention recently, due to the in-
creased availability of large datasets. In this paper we propose a new
methodology for estimating factors from large datasets based on state
space models, discuss its theoretical properties and compare its per-
formance with that of two alternative estimation approaches based,
respectively, on static and dynamic principal components. The new
method appears to perform best in recovering the factors in a set of
simulation experiments, with static principal components a close sec-
ond best. Dynamic principal components appear to yield the best fit,
but sometimes there are leakages across the common and idiosyncratic
components of the series. A similar pattern emerges in an empirical
application with a large dataset of US macroeconomic time series.
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1 Introduction

Recent work in the macroeconometric literature considers the problem of
summarising efficiently a large set of variables and using this summary for
a variety of purposes including forecasting. Work in this field has been car-
ried out in a series of recent papers by Stock and Watson (2001) (SW) and
Forni et al (1998,2000,2001). Factor analysis has been the main tool used in
summarising the large datasets.
The main factor model used in the past to extract dynamic factors from

economic time series has been a state space model estimated using maxi-
mum likelihood. This model was used in conjunction with the Kalman filter
in a number of papers carrying out factor analysis (see, among others, Stock
and Watson (1989) and Camba-Mendez et al (2001)). However, maximum
likelihood estimation of a state space model is not practical when the dimen-
sion of the model becomes too large due to the computational cost. For the
case considered by SW where the number of time series is greater than the
number of observations, maximum likelihood estimation is not practically
feasible, even when a sophisticated EM algorithm is used for optimization,
as in Quah and Sargent (1993). For this reason, SW have suggested principal
component based estimation. This method can accommodate a very large
number of time series and there is no need for the number of obsevations to
exceed the number of variables. SW have shown that it can estimate con-
sistently the factor space asymptotically. In small samples and for a finite
number of series, the dynamic element of the principal component analysis is
not easy to interpret. Forni et al (1998) suggested an alternative procedure
based on dynamic principal components (see Chapter 9 of Brillinger (1981))
that incorporates an explicitly dynamic element in the construction of the
factors.
In this paper we suggest a third approach for factor estimation that re-

tains the attractive framework of a state space model but is computationally
feasible for very large datasets because it does not use maximum likelihood
but linear algebra methods, based on subspace algorithms used extensively
in engineering, to estimate the state. We analyze the asymptotic properties
of the new estimators, first for a fixed number of series, N , and then allowing
N to diverge. We show that as long as N grows less than T 1/3, where T
is the number of observations, the subspace algorithm still yields consistent
estimators for the space spanned by the factors. Moreover, we suggest a
modified subspace algorithm that permits to analyze datasets with N larger
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than T , i.e., more series than observations, and evaluate its performance us-
ing Monte Carlo simulations. Finally, we develop an information criterion
that leads to consistent selection of the number of factors to be included
in the model, along the lines of Bai and Ng (2002) for the static principal
component approach.
Our second contribution is an extensive simulation study of the relative

performance of the three competing estimation methods. We evaluate the
dynamic relationship between the true factors and their estimated counter-
parts both in the time and frequency domain, and we further examine the
properties of the resulting idiosyncratic component of the data. We find that
the state space based method performs better in a variety of experiments
compared to the principal component based methods, also when N > T ,
with the static principle component estimates ranked second. Though these
findings may depend on the experimental designs, they appear to be rather
robust.
Our final contribution is the analysis of a large dataset of 146 US macroe-

conomic time series, extracted from SW. As in the simulation experiments,
it turns out that the performance of static principal components and state
space methods is overall comparable. Moreover, when the state space based
factors are included in small scale monetary VARs, more reasonable responses
of output gap and inflation to interest rate shocks are obtained.
The paper is organised as follows. Section 2 reviews the static and dy-

namic principle component methodologies. Section 3 presents the state space
model approach and derives the properties of the estimators for the fixed N
case. Section 4 deals with the diverging N case and with correlation of the
idiosyncratic components. Section 5 develops a modified algorithm to an-
alyze datasets with N > T . Section 6 compares the competing methods
using Monte Carlo simulations. Section 7 discusses the empirical analysis
and section 8 concludes.

2 The dynamic factor model and the avail-

able estimators

Frequency domain analysis of the dynamic factor model was recently pro-
posed by Forni and Rechlin (1996, 1997, 1998), Forni and Lippi (1997, 1998),
Forni, Hallin Lippi and Reichlin (2000, FHLR henceforth). The model they
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adopt is
xit = b

0
i(L)ut + ξit, i ∈ N, t ∈ Z, (1)

where xit is a stationary univariate random variable, ut is a q × 1 vector of
common factors, χit = xit− ξit is the common component of xit, and ξit is its
idiosyncratic component. More precisely, ut is an orthonormal white noise
process, so that var(ujt) = 1, cov(ut, ut−k) = 0, and cov(ujt, ust−k) = 0 for
any j 6= s, t and k. ξn = {ξ1t, ..., ξnt}0 is a wide sense stationary process for
any n, and cov(ξjt, ust−k) = 0 for any j, s, t and k. bi(L) is a q × 1 vector
of square summable, bilateral filters, for any i. Hence, xnt = {x1t, ..., xnt}0 is
also a stationary vector process.
FHLR also require χnt, ξnt, and therefore xnt, to have rational spectral

density matrices, Σχ
n, Σ

ξ
n, and Σ

x
n, respectively. To achieve (asymptotic) iden-

tification, they assume that the first (largest) idiosyncratic dynamic eigen-
value, λξ

n1, is uniformly bounded, and that the first (largest) q common dy-
namic eigenvalues, λχ

n1, ...,λ
χ
nq, diverge, where dynamic eigenvalues are the

eigenvalues of the spectral density matrix, see e.g. Brillinger (1981, Chap.
9). In words, the former condition limits the effects of ξit on other cross-
sectional units. The latter, instead, requires ut to affect infinitely many
units.
The static version of this model was analyzed, among others, by Cham-

berlain and Rothschild (1983), Connor and Korajczyk (1986, 1993). When
the idiosyncratic components are uncorrelated across units the model is usu-
ally referred to as an exact static model, otherwise it is approximate. Geweke
(1977) and Sargent and Sims (1977) studied a dynamic factor model for a
limited number of units. Further developments were due to Sargent (1989),
Stock and Watson (1991) and Quah and Sargent (1993), but all these meth-
ods are not suited when n, the number of variables, is larger than 50-60, while
the procedure by FHLR can handle hundreds of variables. We will refer to
the procedure by FHLR as dynamic principle component analysis (DPCA)
A competing procedure for the large n case was developed by SW. The

model by SW, in its time invariant formulation, can be written as

xnt = Λft + ξnt, (2)

where ft is an r× 1 vector of common factors. Contrary to the specification
by FHLR, the factors are not required to be uncorrelated in time, and they
can be also correlated with the idiosyncratic component, only var(ft) = I
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is imposed for identification. Precise moment conditions on ft and ξnt, and
requirements on the loadings, are given in SW.
The specification in (2) is related to the one by FHLR in (1). When bi(L)

is unilateral and of finite order b, say bi(L) = b0i − b1iL − bbiLb, the model
in (1) can be written as in (2), where ft = (ut, ut−1, ut−b) and the ith row
of Λ has elements b0i, b1i, bbi. Hence, r = q(b + 1), and the factors ft are
dynamically singular, i.e., the spectral density matrix of ft has rank q.
Let us now briefly describe the estimation methods suggested by FHLR

and SW, more details can be found in the original papers. Five elements are
primarily of interest in a factor model: the number of factors, the factors
themselves, their loadings, the common component, and the idiosyncratic
component.
Let us assume for the moment that the number of common factors is

known. Then, FHLR suggest to estimate the common component of χit with
the following step-wise procedure. (i) Estimate the spectral density matrix
of xnt as

ΣTn (θh) =
MX

k=−M
ΓTnkωke

−ikθh , θh = 2πh/(2M + 1), h = 0, ..., 2M,

where ΓTnk is the sample covariance matrix of xnt and xnt−k, ωk is the Bartlett
lag window of size M (ωk = 1−k/(M +1)), and M diverges but M/T tends
to zero. (ii) Calculate the first q eigenvectors of ΣTn (θh), p

T
nj(θh), j = 1, ..., q,

for h = 0, ..., 2M . (iii) Define pTnj(L) as

pTnj(L) =
MX

k=−M
pTnj,kL

k, pTnj,k =
1

2M + 1

2MX
h=0

pTnj(θh)e
ikθh , k = −M, ...,M.

pTnj(L)xnt, j = 1, .., q, are the first q estimated dynamic principal components
of xnt. (iv) Run an OLS regression of xit on present, past, and future dynamic
principal components. The fitted value is the estimated common component
of xit, bχit. FHLR prove that, under mild conditions, bχit is a consistent
estimator of χit. In practice, M and the number of leads (s) and lags (g)
of pTnj(L)xnt to be included as regressors can be either chosen a priori or
determined by minimizing the information criterion

T

n

nX
i=1

log bσi + 2q(g + s+ 1), (3)
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where bσi is the estimated variance of the residuals from the ith regression.
Since the properties of the latter method are not known, in what follows we
fix M=3, s=3 and g=3, but a sensitivity analysis indicated that the results
are rather robust to this choice. Notice that for a static factor model M can
be set to zero.
Once the common component is estimated, the idiosyncratic one is ob-

tained simply as a residual, namely, bξit = xit − bχit.
The starting point in SW’s approach is instead the estimation of the fac-

tors, ft, and the loadings Λ. They define the estimators bft as the minimizers
of the objective function

VnT (f,Λ) =
1

nT

nX
i=1

TX
t=1

(xit − Λift)
2. (4)

Under the hypothesis of k common factors, it turns out that the optimal
estimators of the factors are (

√
T times) the k eigenvectors corresponding

to the k largest eigenvalues of the T × T matrix n−1Pn
i=1 xix

0
i, where xi =

(xi1, ..., xiT ). Moreover, the optimal estimators of Λ are the OLS estimators of
the coefficients in a regression of xit on the k estimated factors bft, i = 1, ..., n.
SW prove that when k = r, i.e. the exact number of common factors

is assumed, bft converges in probability to ft, apart from a full rank r × r
transformation matrix,H. When k > r, k−r estimated factors are redundant
linear combinations of the elements of ft. The rate of convergence is T

b,
where b < min(ρ/2 − 1,1), and ρ is the limiting value of log(N)/ log(T )
Hence, quicker convergence is achieved when the number of cross sectional
units grows faster than that of temporal observations.
When k = r, the estimators of the loading converge to ΛH−1, as can

be easily demonstrated when they are considered as OLS estimators in the
regression of xn on bft. Thus, a consistent estimator of the ith common com-
ponent can be obtained as bχit = bΛi bft. When k > r, it can be shown that
it is still possible to obtain consistent estimators of the common component;
this follows from Theorem 2 of SW. A natural choice for the estimator of the
idiosyncratic component is bξit = xit − bχit. We will refer to this estimation
method as PCA.
Finally, we have to discuss the determination of the number of factors.

No formal testing procedures are available at the moment. FHLR suggest:
(i) to estimate the spectral density matrix of xjt, j = 1, ..., n; (ii) to calculate
the dynamic eigenvalues for a grid of frequencies, λxjθ; (iii) to chose q on the
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basis of two properties: (a) when j increases the average over frequencies of
the first q dynamic eigenvalues diverges, while the average of the q+1th does
not; (b) for j = n, there should be a big gap between the variance of xnt
explained by the first q dynamic principal components and that explained
by the q + 1th principal component. An information criterion could be also
used. In particular, the criterion that FHLR suggest for selection of g and s,
equation (3), could be minimized also with respect to q.
SW, in a related context, also suggest to determine r by minimizing an

information criterion. Their proposed measure is

log bσi + qw log T/T b, (5)

where w is a positive constant. They prove that such a criterion leads to a
consistent choice of r. Yet, from their simulation experiments, more standard
criteria like the AIC or BIC perform better. Bai and Ng (2002) further refined
the information criterion approach within the SW framework.

3 The state space factor estimator

In this section we present the basic state space approach and then discuss
the asymptotic properties of the estimators when T diverges and N is fixed.
In the following sections we extend the framework to deal with the N go-
ing to infinity case, with the analysis of datasets with a larger cross-section
than time-series dimension, and with cross-sectionally or serially correlated
idiosyncratic errors.

3.1 The basic state space model

We consider the following state space model.

xnt = Cft +D
∗ut, t = 1, . . . , T (6)

ft = Aft−1 +B∗vt

xnt is an n-dimensional vector of strictly stationary zero-mean variables ob-
served at time t. ft is an k-dimensional vector of unobserved states (factors)
at time t, and ut and vt are multivariate, mutually uncorrelated, standard
orthogonal white noise sequences of dimension, respectively, n and k. D∗ is
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assumed to be nonsingular. The aim of the analysis is to obtain estimates of
the states ft, for t = 1, . . . , T .
This model is quite general. Its aim is to use the states as a summary

of the information available from the past on the future evolution of the
system. A large literature exists on the identification issues related with
the state space representation given in (6). An extensive discussion may be
found in Deistler and Hannan (1988). In particular, they show in Chapter 1
that (6) is equivalent to the prediction error representation of the state space
model given by

xnt = Cft +Dut, t = 1, . . . , T (7)

ft = Aft−1 +But−1

This form will be used for the derivation of our estimation algorithm. Note
that as at this stage the number of series, N , is large but fixed we need to
impose no conditions on the structure of C. Conditions on this matrix will
be discussed later when we consider the case of N tending to infinity.
As we have mentioned in the introduction, maximum likelihood tech-

niques, possibly using the Kalman filter, may be used to estimate the param-
eters of the model under some identification scheme. Yet, for large datasets
this is very computationally intensive. Quah and Sargent (1993) developed
an EM algorithm that allows to consider up to 50-60 variables, but it is still so
time-consuming that it is not feasible to evaluate its performance in a simu-
lation experiment. A convenient solution is provided by subspace algorithms
that avoid expensive iterative techniques and instead rely on matrix algebraic
methods to provide estimates for the factors as well as the parameters of the
state space representation.
There are many subspace algorithms, and vary in many respects, but a

unifying characteristic is their view of the state as the interface between the
past and the future in the sense that the best linear prediction of the future
of the observed series is a linear function of the state. A very good review
of existing subspace algorithms is given by Bauer (1998) in an econometric
context. Another review with an engineering perspective may be found in
Van Overschee and De Moor (1996).
The starting point of most subspace algorithms is the following represen-

tation of the system which follows from the state space representation in (7)
and the assumed nonsingularity of D.

Xf
t = OKXp

t + EEft (8)
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whereXf
t = (x

0
nt, x

0
nt+1, x

0
nt+2, . . .)

0,Xp
t = (x

0
nt−1, x

0
nt−2, . . .)

0, Eft = (u0t, u
0
t+1, . . .)

0,
O = [C 0, A0C 0, (A2)0C 0, . . .]0, K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .], B̄ =
BD−1 and

E =


D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D


The derivation of this representation is easy once we note that (i) Xf

t =
Oft + EEft and (ii) ft = KXp

t . The best linear predictor of the future of the
series at time t is given by OKXp

t . The state is given in this context by KXp
t

at time t. The task is therefore to provide an estimate for K. Obviously, the
above representation involves infinite dimensional vectors.
In practice, truncation is used to end up with finite sample approxima-

tions given byXf
s,t = (x

0
nt, x

0
nt+1, x

0
nt+2, . . . , x

0
nt+s−1)

0 andXp
p,t = (x

0
nt−1, x

0
nt−2, . . . , x

0
nt−p)

0.
Then an estimate of F = OK may be obtained by regressing Xf

s,t on X
p
p,t.

Following that, the most popular subspace algorithms use a singular value de-
composition (SVD) of an appropriately weighted version of the least squares
estimate of F , denoted by F̂ . In particular the algorithm we will use, due
to Larimore (1983), applies an SVD to Γ̂f F̂ Γ̂p, where Γ̂f , and Γ̂p are the
sample covariances of Xf

s,t and X
p
p,t respectively. These weights are used to

determine the importance of certain directions in F̂ . Then, the estimate of
K is given by

K̂ = Ŝ1/2k V̂ 0kΓ̂
p−1/2

where Û ŜV̂ 0 represents the SVD of Γ̂f
−1/2F̂ Γ̂p1/2 , V̂k denotes the matrix con-

taining the first k columns of V̂ and Ŝk denotes the heading k×k submatrix
of Ŝ. Ŝ contains the singular values of Γ̂f

−1/2F̂ Γ̂p1/2 in decreasing order.
Then, the factor estimates are given by K̂Xp

t . We refer to this method as
SSS.
For what follows it is important to note that the choice of the weighting

matrices is important but not crucial for the asymptotic properties of the
estimation method. They are only required to be nonsingular. So an alter-
native suggestion is to simply use identity matrices instead of the covariance
matrices. It is this suggestion we follow in the Monte Carlo study.
A second point to note is that consistent estimation of the factor space

requires that p increases at a rate greater than ln(T )α, for some α > 1 that
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depends on the maximum eigenvalue of A, but at a rate lower than T 1/3.
A simplified condition for the lower bound would be to set it to T 1/r for
any r > 3. We have found that a range of α between 1.05 and 1.5 for
this parameter provides a satisfactory performance. We have used the value
α = 1.25 for the simulation experiments.
For consistency s is also required to be set so as to satisfy sN > k. As

N is usually going to be very large for the applications we have in mind,
this restriction is not binding. We suggest two options. Either we set s = 1
or equal to the number of assumed factors k. In the experiments we have
carried out below we set s = k but we also evaluate the performance of the
method with s = 1. This is particularly relevant to avoid any use of future
information, as e.g. in a real time forecasting context.
Once estimates of the factors have been obtained, and if estimates of the

parameters (including the factor loadings) are subsequently required, least
squares methods may be used to obtain such estimates. These estimates have
been proved to be

√
T -consistent and asymptotically normal in Bauer (1998).

We note that the identification scheme used above is implicit and depends on
the normalisation used in the computation of the SVD. In particular the SVD
used in the simulations normalises the left and right singular value vectors
by restricting them to have an identity second moment matrix.
It is worth pointing out that the estimated parameters can be used

with the Kalman filter on the state space model to obtain both filtered
and smoothed estimates of the factors. We note that the SSS method pro-
duces factor estimates at time t conditional on data available at time t− 1.
Therefore, it may be reasonable to suggest that smoothed estimates from
the Kalman filter may be superior to those obtained by the SSS method.
However, the parameter estimates are conditional on the factor estimates
obtained in the first step by the SSS method. Limited experimentation using
the Monte Carlo setup reported in the next sections suggests that the loss
in performance of the smoothed Kalman filter factor estimate because of the
use of estimated parameters from the SSS method, is roughly similar to the
benefit of using all the data. In general, factors estimated using the SSS
method outperform filtered Kalman filter factor estimates.
Finally, we must note that the SSS method is also applicable in the case of

unbalanced panels. In analogy to the work of SW, use of the EM algorithm,
described there, can be made to provide estimates both of the factors and of
the missing elements in the dataset.

9



3.2 Asymptotic Properties

We now discuss the asymptotic properties of the factor estimators, derive
their standard errors, and suggest a consistent criterion for the selection of
the number of factors.
Let us denote the true number of factors by k0 and investigate in more

detail OLS estimation of the multivariate regression model

Xf
s,t = FXp

p,t + EEft (9)

for fixed s ≥ k0. Estimation of the above is equivalent to estimation of each
equation separately. We make the following assumptions

Assumption 1 ut is an i.i.d. (0,Σu) sequence with finite fourth moment.

Assumption 2 p1 ≤ p ≤ p2 where p1 = O(T 1/r), r > 3 and p2 = o(T 1/3)
Theorem 1 (Consistency). If we define f̂t = K̂Xp

t , then f̂t converges,
in probability, to the space spanned by the true factors
Proof. By (7) and (8) we can see that KXp

t . spans the space of the true
factors. So we need to concentrate on the properties of K̂ as an
estimator of K . By Theorem 4 of Berk (1974), who provides a variety

of results for parameter estimates in infinite autoregressions, we have that
F̂ is consistent for F and that

√
T −Np(F̂ −F) has an asymptotic normal

distribution with the standard OLS covariance matrix. This result follows
straightforwardly from equation (2.17) of Berk (1974) once we note that the
sum of the absolute values of the coefficients in each regression multiplied
by p1/2 tends to zero. This follows by the fact that the absolute value of the
maximum eigenvalue of F , denoted |λmax(F)| , is less than one implying
exponentially declining coefficients with respect to p. This implies consistent
estimation of the factors since K̂ is a continuous function of F̂ for large
enough T. Since both T and p grow, by assumption 2 the rate of convergence
of the factor estimates lies between (T − Np)1/2−1/2r and (T − Np)1/3. We
will denote the square of the rate of convergence by T ∗.

A remark on the nature of the consistency of the factor estimates is in
order. As we have seen the analysis of consistency and asymptotic nor-
mality is carried out in terms of the matrix K̂. If this matrix is consistent
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and asymptotically normal then the estimated factors have the same proper-
ties. This clearly assumes some identification scheme. In fact there are two
identification schemes involved. The first is the identification scheme that
identifies the matrices A,B,C,D from the unique transfer function of the
data xnt. Deistler and Hannan (1988) discuss in detail conditions needed for
this identification. The second identification scheme is implicit through the
normalisation carried out to obtain the SVD. These identification schemes
imply the existence of a nonsingular matrix such that f̂ consistently estimates
Hkf . Then, we have the following theorem on the asymptotic distribution
of the factor estimates.
Theorem 2 (Asymptotic distribution). If s = 1, the asymptotic

distribution of
√
T ∗(vec(f̂) − vec(Hkf)) with f = (f1, . . . , fT )

0 is N(0, Vf),
with

Vf = (Ik ⊗Xp)
∂g

∂(A1FA2)(A
0
2 ⊗A1)(Γp ⊗ Σ)(A2 ⊗A01)

∂g0

∂(A1FA2)(Ik ⊗X
p0)

where g is defined in the proof of the Theorem and for some nonsingular
matrix Hk

Proof. Asymptotic normality of the estimators follows from asymptotic
normality of K̂ which follows from the asymptotic normality of√T −Np(F̂−
F) proved in Theorem 4 of Berk (1974). The normality of K̂ follows by using
a simple Taylor expansion of the function implicitly defined by the SVD of
F̂ . Denote this function by g. The existence of the Taylor expansion follows
from continuity and differentiability of g which follows from Theorems 5.6
and 5.8 of Chatelin (1983).
The variance calculations will be carried out conditional on Xp

t , as when
obtaining variances of regression coefficients conditional on the regressors.
We assume a normalisation such that f = XpK̂0. Then, simple manipulations
indicate that

V
³√
T ∗(vec(f̂)− vec(f))

´
= (Ik⊗Xp)V

³√
T ∗

³
vec(K̂0)− vec(K0)

´´
(Ik⊗Xp0)

We need to derive the asymptotic variance of V
³√
T ∗

³
vec(K̂0)− vec(K0)

´´
.

In general, K̂0 is a function of the SVD of A1F̂A2, where A1 and A2 are
weighting matrices discussed before. Note the importance of sn ≥ k for the
calculation of the SVD. Moreover, the proof is valid for s = 1 only as there
is serial correlation in the error terms in (8) for s > 1. This case is discussed
in more detail in Section 9.0.2 below.
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We define formally the function g(.) such that vec(K̂0) = g
³
vec(A1F̂A2)

´
.

By a first order Taylor expansion of g(vec(A1F̂A2)) and g(vec(A1FA2))
around A1F∗A2, possible since g(.) ∈ C∞ and where each element of F∗
lies between the respective elements of F and F̂ , we have that

V
³√
T ∗

³
vec(K̂0)− vec(K0)

´´
=

∂g

∂(A1FA2)

V
³√
T ∗

³
vec(A1F̂A2)− vec(A1FA2)

´´ ∂g0

∂(A1FA2)
Consistency and a

√
T ∗ rate of convergence of the parameter estimates F̂ to

their true values implies that the remainder of the Taylor approximation is
op(1). So we need to derive the variance of

√
T
³
vec(A1F̂A2)− vec(A1FA2)

´
.

Again simple manipulations imply that

V
³√
T ∗

³
vec(A1F̂A2)− vec(A1FA2)

´´
= (A02⊗A1)V

³√
T ∗

³
vec(F̂)− vec(F)

´´
(A2⊗A01)

From multivariate regression analysis we know that

V
³√
T ∗

³
vec(F̂)− vec(F)

´´
= (Γp ⊗ Σ)

where Σ is the variance covariance matrix of the regression error, which yields
the result.

We now develop an information criterion that yields consistent selection
of the number of factors. Let us define the criterion as

IC(k) = ln|Σ̂ku|+ cT (k), (10)

where we assume that the penalty function cT (k) satisfies

Assumption 3 cT (k) = o(1).

We have

Theorem 3 (Consistency of IC(m)). When T diverges, argkink∈{1,...,kmax}IC(k) =
k0, ∀kmax.
Proof. We wish to prove (i) plimT ∗→∞ln|Σ̂ku|/ln|Σ̂k0u | > 1 for k < k0

and (ii) plimT∗→∞ln|Σ̂ku|/ln|Σ̂k0u | = 1 for k > k0 For (ii) we note that by
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the fact that the singular values of F̂ tend to their true values at a rate of√
T −Np and the fact that any (k0+i)-th largest singular value of F is equal

to zero, any observations of the (k0 + i)-th factor series will tend to zero at
rate
√
T −Np. As a result asymptotically any regression that involves more

than k0 factors will have a singular regressor matrix. We assume that any
such regression will not be further considered and therefore the probability
of picking k > k0 tends to zero asymptotically.
We now have to prove (i). We note that even for k < k0 the first k factors

are consistently estimated as they are obtained from the unrestricted OLS
estimates of F . In fact, for a given sample the factor estimates for the first
k factors in a model which assumes k1 > k factors are identical to those
in a model with k2 > k factors. This is easy to see once it is noted that
irrespective of the assumed number of factors the same SVD is carried out.
We examine the probability of the event ln|Σ̂ku|/ln|Σ̂k0u | > 1 We have that

Pr(ln|Σ̂ku|/ln|Σ̂k
0

u | < 1 + ²) = Pr
Ã
ln|1/(T −Np)X 0M̂kX|
ln|1/(T −Np)X 0M̂k0X| < 1 + ²

!
(11)

whereX = (x1, . . . , xT )
0, M̂k = I−f̂k(f̂k0 f̂k)−1f̂k0 , M̂k0 = I−f̂k0(f̂k00 f̂k0)−1f̂k00 ,

f̂k = (f̂k1 , . . . , f̂
k
T ) and f̂

k
t = (f̂1,t, . . . , f̂k,t)

0. If we show that the probability
in (11) is equal to

Pr

Ã
ln|1/(T −Np)X 0MkX|
ln|1/(T −Np)X 0Mk0X| < 1 + ²

!

where Mk and Mk0 are defined in the obvious way then the fact that the
above probability is less than ² for all ² > 0 follows from standard regression
results on uniform convergence and asymptotic normality of regression pa-
rameters and the analysis of, e.g. Sin and White (1996). To show that, we
need to show that

||1/(T −Np)X 0M̂kX − 1/(T −Np)X 0MkX|| = op(1)
for all k. This follows if we show that 1/(T −Np)||M̂k− Mk|| for all k. But
this follows from the fact that 1/(T −Np)||f − f̂ || = op(1)

4 The case: N →∞
In this section we firstly discuss correlation of the idiosyncratic errors. Then
we investigate whether the SSS method can yield consistent factor estimators
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when N diverges or, more generally, what are the conditions for consistency
when N diverges. Finally, we derive a proper modification of the IC criterion
for the selection of the number of factors for the diverging N case.

4.1 Correlation in the idiosyncratic errors

In this subsection we discuss the case of cross-sectional and/or serial correla-
tion of the idiosyncratic errors. This extension can be rather simply handled
within the state space method. Basically, the idiosyncratic errors can be
treated as additional pseudo-factors that enter only a few of the variables
via restrictions on the matrix of loadings C. These pseudo-factors can be
serially correlated processes or not depending on A.
The problem becomes one of distinguishing common factors and pseudo-

factors, i.e., cross-sectionally correlated idiosyncratic errors. This is virtually
impossible for finite N , while when N diverges a common factor is one which
enters an infinite number of series, i.e, the column of the, now infinite di-
mensional, matrix C associated with a common factor will have an infinity of
non-zero entries, and likewise a pseudo-factor will only have a finite number
of non-zero entries in the respective column of C. Let k1 denote the number
of common factors thus defined and k2 the number of pseudo-factors. Note
that k2 may tend to infinity but not faster than N . Then, following Forni et
al. (2000), we make the following assumption.

Assumption 4 The matrix OK in (8) has k1 singular values tending to
infinity as N tends to infinity and k2 non-zero finite singular values.

For example, the condition in the assumption is satisfied if k1 common
factors enter a non zero fraction, bN , 0 < b < 1, of the series xnt, in the
state space model given by (6), while k2(N) pseudo-factors enter a vanishing
proportion of the series xnt, i.e. each such factors enter c(N)N of the series
xnt where limN→∞c(N)N = 0 and k2(N) is at most O(N).

4.2 Consistency of the SSS estimator

To prove consistency of the SSS estimator, we need to add an assumption to
those in the previous section. In particular, we require

Assumption 5 Np = o(T 1/3); p = O(T 1/r), r > 3;
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Then we have

Theorem 4 (Consistency when N → ∞). If N is o(T 1/3−1/r), then
when N and T diverge f̂t = K̂Xp

t converges in probability to the space
spanned by the true factors.
Proof. Consistent estimation of the coefficients of the model in (9) by

OLS, and therefore of the factors, holds if the number of regressors in each of
the Ns equations tends to infinity at a rate lower than T 1/3 but the number
of lags, p, grows at a minimum rate of T 1/r where r > 0. Since the number
of regressors is Np we see that N can grow at rates of at most T 1/3−1/r.
Under these conditions the estimates of the factors will be consistent at rate
(T/Np)1/2 as the results by Berk (1974) applied to every equation separately
hold.
Thus, divergence of N requires to be accompanied by a faster divergence

of T for the SSS factor estimators to remain consistent.

4.3 Choice of the number of factors

With reference to the determination of the number of factors, in the previous
section we have suggested a simple information theoretic method for the fixed
N case. The method requires (i) to fix a maximum number of factors fmax

to search over, (ii) to estimate the factors for each assumed number of factors
k = 1, . . . , kmax, and (iii) to minimise the negative penalised loglikelhood of
the regression

xt = Cf̂t + ut, (12)

i.e. minimising ln|Σ̂ku| + cT (k) where Σ̂ku is the estimated covariance matrix
of ut and cT (k) is a penalty term depending on the choice of the information
criterion used.
We now propose a more general criterion that works also for the N di-

verging case. For this problem the analysis of Bai and Ng (2002) is relevant.
We will show that an information criterion of the form

IC(k1) = V (k1, f̂
k1) + k1g(N, T ) (13)

where

V (k1, f̂
k1) = (NT )−1

TX
t=1

tr[(xnt − Ĉf̂k1t )(xnt − Ĉf̂k1t )0] (14)
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f̂k1t are the factor estimates for the k1 first common factors (according to the
singular values), Ĉ is the OLS estimate of C based on f̂k1t and g(N, T ) is a
penalty term, provides a consistent estimate of the number of factors.
Before examining the properties of this criterion, note that any set of up

to k01 factor estimates are consistent estimates of the respective set of true
factors up to a nonsingular transformation determined by the normalisation
used in the SVD carried out during the estimation and the identification of
the state space model, see SW for a similar point . Thus, denoting the matrix
of the k1 first true factors by f

0,k1, we have that

(T/Np)1/2||fk1t −Hk01f0,k1t || = Op(1)
for some nonsingular matrix Hk1 . This follows from Theorem 4. Then, the
following theorem holds

Theorem 5. Let the factors be estimated by the SSS method. Let k̂1 =
argmin0≤k≤kmaxIC(k1). Then, limT→∞ Pr(k̂1 = r) = 1 if i) g(N,T )→ 0 and
ii) Ng(N,T )→∞ as N, T →∞.
Proof. Denote the true number of common factors k01. We must prove

that limN(T ),T→∞Pr(IC(k1) < IC(k01)) = 0 for all k1 6= k01, k1 < kmax. First,
denoting the matrix of the first k2 true idiosyncratic factors by f

0,2,k2 , we
examine

V (k1, (f
0,k1, f0,2,k2))− V (k1, (f0,k1))

for any finite k2. By the uncorrelatedness of f
0,k1 and f0,2,k2 we know that

for all elements of xnt in which f
0,2,k2 does not enter

1/T
TX
t=1

(xi,nt − Ĉ 0i,1,2(f0,k
0
1

t , f
0,2,k02
t )0)2 − 1/T

TX
t=1

(xi,nt − Ĉ 0i,1f0,k1t )2 = Op(T
−1)

For a finite number of elements of xnt

1/T
TX
t=1

(xi,nt − Ĉ 0i,1,2(f0,k
0
1

t , f
0,2,k02
t )0)2 − 1/T

TX
t=1

(xi,nt − Ĉ 0i,1f0,k1t )2 = Op(1)

So overall

V (k1, (f
0,k1, f0,2,k2))− V (k1, (f0,k1)) = Op(N−1) (15)

First consider k1 < k
0
1. Then

IC(k1)− IC(k01) = V (k1, f̂k1)− V (k01, f̂k
0
1)− (k01 − k1)g(N, T )
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and the required condition for the result is

Pr[V (k1, f̂
k1)− V (k01, f̂k

0
1) < (k01 − k1)g(N,T )] = 0

as N(T ), T →∞. Now

V (k1, f̂
k1)− V (k01, f̂k

0
1) = [V (k1, f̂

k1)− V (k1, fk1Hk1)] + [V (k1, f
k1Hk1)− V (k01, fk

0
1Hk01)] +

[V (k01, f
k01Hk01)− V (k01, f̂k

0
1)]

By the rate of convergence of the factor estimates and Lemma 2 of [?] we
have

V (k1, f̂
k1)− V (k1, fk1Hk1) = Op((T/Np)

−1)

and
V (k01, f̂

k01)− V (k01, fk
0
1Hk01) = Op((T/Np)

−1)

Then V (k1, f
k1Hk1)−V (k01, fk01Hk01) can be written as V (k1, f

k1Hk1)−V (k01, fk01)
which has positive limit by Lemma 3 of Bai and Ng (2002). Thus as long
as g(N,T ) → 0 Pr(IC(k1) < IC(k01)) = 0 for all k1 < k01. Then to prove
Pr(IC(k1) < IC(k

0
1)) = 0 for all k1 > k

0
1 we have to prove that

Pr[V (k01, f̂
k01)− V (k1, f̂k1) < (k1 − k01)g(N,T )] = 0

By (15) we know that asymptotically the analysis of the state space model
will be equivalent to the case of a model where there are no idiosyncratic
factors up to an order of probability of N−1. Then

|V (k01, f̂k
0
1)− V (k1, f̂k1)| ≤ 2maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f0,k

0
1)|

By following the analysis of Lemma 4 of Bai and Ng (2002) we know that

maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f0,k
0
1)| = Op((T/Np)−1)

Combining this with (15) and the fact that Np grows slower than T 1/3, gives
the required result since then (T/Np)−1 < N−1 .
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5 Dealing with Large Datasets

Up to now we have outlined a method for estimating factors which requires
the number of observations to be larger than the number of elements in Xp

t .
Given the work of SW and FHLR this is rather restrictive. We therefore
suggest a modification of the methodology to allow the number of series be
larger than the number of observations.
The problem arises because the least squares estimate of F does not exists

due to rank deficiency ofXp0Xp whereXp = (Xp
1 , . . . ,X

p
T )
0. As we mentioned

in the previous section we do not neccesarily want an estimate of F but an
estimate of the states XpK0. That could be obtained if we had an estimate
of XpF 0 and used a SVD of that. But it is well known (see e.g. Magnus
and Neudecker (1988) ) that although F̂ may not be estimable, XpF 0 always
is using least squares methods. In particular, the least squares estimate ofdXpF 0 is given by dXpF 0 = Xp(Xp0Xp)+Xp0Xf (16)

where Xf = (Xf
1 , . . . ,X

f
T ) and A

+ denotes the unique Moore-Penrose inverse
of matrix A. However, when the row dimension of Xp is smaller than its
column dimension, Xp(Xp0Xp)+Xp0 = I implying that dXpF 0 = Xf . A
decomposition of Xf is then easily seen to be similar, but not identical, to
the eigenvalue decomposition of the covariance matrix of Xf which is the
principle component method described in an earlier section. We will refer to
this method as SSS0. This method is static, abstracting from the fact that
s may be larger than 1, thereby leading to a decomposition involving leads
of xnt.
Alternative solutions exist to this problem. In particular, note that

we are after a subspace decomposition of the estimate of the fitted value
XpF 0. Essentially, we are after a reduced rank approximation of XpF 0
and several possibilities exist. The main requirement is that as the as-
sumed rank (number of factors) tends to the full rank of the estimate of
the fitted value, the approximation should tend to the estimated fitted valuedXpF 0 = Xp(Xp0Xp)+Xp0Xf = Xf . The alternative decomposition we sug-
gest is a SVD on Xf 00Xp(Xp0Xp)+ = Û ŜV̂ 0. Then the estimated factors
are given by K̂Xp

t where K̂ is obtained as before but using the SVD of
Xf 00Xp(Xp0Xp)+. We choose to set both weighting matrices to the iden-
tity matrix in this case. We also refer to this decomposition as SSS.
Clearly, the decomposition we suggest is simply a generalisation of the
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method in the previous section and if Np < T it reduces to that method.
As k tends to min(Ns,Np) the set of factor estimates tends to the OLS
estimated fitted value Xf . Its performance needs to be judged in terms of its
small sample properties in approximating (linear combinations of) the true
factors, which can be determined via simulations. More generally, we see
that the essence of the method is to provide a reduced rank approximation
of the expectation of the future of the process conditional on its past. We will
concentrate on SSS given that one of the focuses of this paper is on explicitly
dynamic factor extraction methods.
We now briefly discuss the relationship between the SSS method and ML

estimation. Although in standard regression F is not estimable because there
are more parameters to determine than observations to use, this does not ex-
tend to reduced rank regression. In particular note that since F has reduced
rank structure there are fewer free parameters to estimate. If the number of
free parameters is less that NT then it is clear that F is estimable by maxi-
mum likelihood. ML estimation, here, cannot be proven to be equivalent to
the standard reduced rank ML estimator since that requires nonsingularity
of the second moment matrix of the regressors, but is easily carried out using
iterative techniques. In our context, estimability is likely since the number of
factors, which is equal to the rank of F , is much smaller than the number of
series, N. Therefore, in principle F is estimable. However, as we noted ear-
lier, due to the dynamic nature of the model unbiasedness of this estimate
does not hold in finite samples and therefore no formal argument on the
properties of ML estimation of F is possible. However, assume that a similar
situation arises in i.i.d. data where we consider a reduced rank regression of
Y on X. Then, reduced rank ML estimation is unbiased. Denote this ML
estimator of F by F̂ML. Denote F̂MP = (X 0X)+X 0Y . We know that in this
case, E(X F̂ML0) = E(X F̂MP 0). Since the structure is of a reduced rank
form it follows that E(X F̂ML0) = E(X F̂MP 0r ) where F̂MPr is the reduced
rank approximation to F̂MP obtained via SVD, and where r is the known
true rank of F . Conditioning on X gives XE( F̂ML0 − F̂MP 0r ) = 0. This
holds if and only if either E( F̂ML0− F̂MP 0r ) = 0 or E( F̂ML0− F̂MP 0r ) belongs
to the null space of X . It is, thus, seen that there is a close relationship
between the estimation method we suggest and ML estimation.
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6 Monte Carlo experiments

6.1 Setup

In this section we investigate the small sample properties of the factor esti-
mates obtained through the three factor extraction methods. We concentrate
on two aspects of the estimated factors. The first aspect concerns the rela-
tionship between the true and estimated common components obtained from
the three methods. The common component estimate for the FHLR method
is a direct product of their method. For the other two methods which pro-
vide estimates of the factors, we estimate the common components by a
regression of the series on the estimated factors. The fitted values from this
regression are the estimates of the common components. As we carry out
a Monte Carlo exercise we know the true common components conditional
on the data generation process we use, which will be discussed below. We
use two measures to quantify the relationship between true and estimated
common components. The first is a simple correlation between them. The
second is the spectral coherency between them for selected frequencies.
The second aspect of interest is the set of properties of the idiosyncratic

component of each series. We examine whether this component is white noise
as in the DGP by using an LM(4) test and presenting the probability values
of the test. The statistics we present are averages over all series in each
Monte Carlo replication and over all Monte Carlo replications.
A very important question concerns the choice of the data generation

process. As the FHLR and SW methods are nonparametric they provide
little guidance as to the model that should generate the data. A very general
but, of course, parametric model underlies the state space factor extraction
method. Therefore, we adopt a state space model to generate the data. We
assume a VARMA model for the transition equation. We therefore have the
following model:

xt = Cft + ²t, t = 1, . . . , T

A(L)ft = B(L)ut (17)

where A(L) = I −A1(L)− . . .−Ap(L), B(L) = I +B1(L) + . . .+Bq(L). Of
course, this can be rewritten in the standard state space format where the
(redefined) state vector ft follows a VAR(1) process. Note that in this case
the number of factors in the VAR(1) representation will be equal to p+ q.
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We consider four groups of experiments and in general we present re-
sults for the following (N, T ) pairs: (50,50), (50,100), (50,300), (100,50) and
(100,100). Using the criterion p = log T 1.25 yields Np > T so that in gen-
eral we adopt the modified SSS procedure of Section 5. To consider the
standard SSS method of Section 3 we also consider an experiment where
(N,T ) = (50, 300) but the lag order p is set to 5, and one with the lead order
s set to 1 rather than to k (the number of factors), to evaluate the role of
future information.
In the first group of experiments we assume that we have a single VARMA

factor with 6 different specifications (these are labelled experiments 1-6):

• a1 = 0.2, b1 = 0.4
• a1 = 0.7, b1 = 0.2
• a1 = 0.3, a2 = 0.1, b1 = 0.15, b2 = 0.15
• a1 = 0.2, b1 = −0.4
• a1 = 0.7, b1 = −0.2
• a1 = 0.3, a2 = 0.1, b1 = −0.15, b2 = −0.15

In the second group we investigate the case of serially correlated idiosyn-
cratic errors. The DGP for that is specified as in Experiments 1-6 but with
each idiosyncratic error being an AR(1) process with coefficient 0.2 rather
than an i.i.d. process. These experiments are labelled 7-12. The results are
rather robust to higher values of serial correlation but 0.2 is a reasonable
value in practice since usually the common component captures most of the
persistence of the series.
In the third group of experiments we investigate the case of cross-correlated

errors by assuming that the contemporaneous covariance matrix of the id-
iosyncratic errors is tridiagonal with diagonal elements equal to 1 and off-
diagonal elements equal to 0.2. Again the specification of Experiments 1-6
is used for the factors. For this group we restrict attention to the following
(N,T ) pairs: (50,50) and (50,100).
In the fourth group of experiments we use a 3 dimensional VAR(1) as the

data generation process for the factors as opposed to an ARMA process. The
coefficient matrix is a diagonal matrix with diagonal elements equal to 0.5.
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For this group we restrict attention to the following (N,T ) pairs: (50,50) and
(100,100).
For each group of experiments, the C matrix is generated using standard

normal variates as elements. The error terms are generated as standard
normal pseudo-random variables for experiments 1-6. The same holds for the
errors terms in the AR processes of the idiosyncratic errors in experiments
7-12. 500 replications for each experiment are undertaken.
Finally, we need to specify the number of factors assumed in the esti-

mation. Since the small sample properties of the information criteria for
factor determination are not yet well known, using a data dependent method
for determining the number of factors is likely to dilute the results of the
Monte Carlo exercises because it will not be clear whether the factor selec-
tion criterion or the factor estimation method is the cause of the observed
performance. Thus, we fix a priori the number of factors to p+q, which is
larger than the true number of factors in the FHLR setup and should provide
a reasonable approximation for SW too.

6.2 Results

The simulation results for the first two groups of experiments (using the
modified SSS method) are summarized in Tables 1-5.
Starting with the smaller datasets (N=50, Tables 1-3), the SSS method

clearly outperforms the other two in terms of correlation between true and
estimated common components. The maximum improvement is obtained
for experiment 6 (ARMA(2,2) factor) and T=300 where the SSS correlation
is 12% larger than the PCA correlation. No method outperforms the SSS
method for N=50 with the exception of experiment 2 for some sample sizes
where the PCA correlation exceeds the SSS correlation by up to 9%. There is
little evidence that the idiosyncratic component is serially correlated for any
of the methods for experiments 1-6. The DPCA method provides slightly
more evidence for serial correlation. In the case of serially correlated errors
(Experiments 7-12) the same ranking of methods arises indicating that at
least for low serial correlation the methods perform satisfactorily. Note that
rejection of the LM test in the case of serially correlated idiosyncratic errors
is clearly something to be expected.
Moving on to the N=100 experiments (Tables 4-5) we see that the SSS

method retains superiority albeit the gap with PCA shrinks. The maxi-
mum improvement for correlation is around 6% for experiment 6 and T=100.
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Again there is little evidence of serial correlation in the estimated idiosyn-
cratic component with the exception of the DPCA method in general, for
experiments 1-6 and the SSS method for experiment 2, where some weak
evidence of serial correlation exists. Similar results arise for experiments
7-12.
We briefly comment on the estimated coherencies between true and es-

timated common components for the three methods, (figures are available
upon request). Overall, all methods seem to have higher coherencies at lower
frequencies indicating that the lower frequency components of the common
components are easier to capture. This is indicated by the negative slope
of the estimated coherencies. The only exception to this is experiment 5
(ARMA(1,1) factor with negative MA coefficient). Another interesting fea-
ture is that even for experiment 2 where the PCA method performs better
than the SSS method, the SSS method has a better than or equal perfor-
mance to the PCA method for lower frequencies. Finally, the DPCA method
has in many cases a non-monotonic coherency espacially for large datasets
(N=100).
The DPCA method shows consistently lower correlation between true

and estimated common components. It shows, in general, more evidence
of serial correlation, although not to any significant extent. Additionally,
from results we are not presenting here the DPCA method has the lowest
variance for the idiosyncratic component or, in other words, has the highest
explanatory power of the series in terms of the common components. These
results seem to indicate that i) part of the idiosyncratic component seems
to leak into the estimated common component in the DPCA case, thus re-
ducing the correlation between true and estimated common components and
the variance of the idiosyncratic component and ii) some (smaller in terms of
variance) part of the common component leaks into the estimated idiosyn-
cratic component thus increasing the serial correlation of the idiosyncratic
component. The conclusion from these results is that if one cares about iso-
lating common components as summaries of underlying common features of
the data, then a high R2 may not always be the appropriate guide.
We can now compare the performance of the modified and standard SSS

methods by comparing Tables 3 and 6 (N=50, T=300, but p=5 in Table 6).
The differences are always minor and not statistically significant, though in
general larger than those for PCA and DPCA which are only due to Monte
Carlo variability. The SSS method still systematically outperforms PCA and
DPCA in Table 6. In Table 7 we then report the results for s = 1 rather than
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s = k. In this case the performance of SSS slightly deteriorates, it remains
better than DPCA but is often beaten by PCA, though the differences are
small.
Cross correlation in the errors (experiments for group 3, results in Tables

8 and 9) yields again the ranking SSS-PCA-DPCA. It is worth mentioning
that for all methods there is no deterioration of performance with respect
to the idiosyncratic errors case, compare the figures in Tables 1 and 2 with
those in Tables 8 and 9.
To conclude, we briefly discuss the results from the factor-VAR experi-

ments (group 4) in Table 10. In this case the three methods have very similar
properties in terms of the estimated factors. This may indicate that for sim-
ple autoregressive processes with short lags there is little to choose between
them.

7 An empirical example

In this section we use a dynamic factor model estimated with the three meth-
ods to analyze a large balanced dataset of 146 US macroeconomic variables,
over the period 1959:1-1998:12. The dataset is extracted by the one in SW,
dropping series with missing observations and other data irregularities. A list
of all the variables, together with the stationarity transformation applied, is
presented in the Appendix, see SW for additional details.
To start with, we estimate the common component of each variable ac-

cording to the three methods, and then compute the resulting (adjusted)
R2 and the correlation among the three common components. SW showed
that the first two SW factors are the most relevant for forecasting several
variables in the dataset, while Favero, Marcellino and Neglia (2002) found
that 3 or 4 FHLR factors are sufficient according to the dynamic eigenvalues
criterion described in Section 2. Since it is better to overestimate the number
of factors rather than underestimate it, we have chosen to use six factors.
We have also repeated the analysis with three factors, but similar results are
obtained. For the SSS method the number of lags (p) was set to 3, that
allows to use the standard procedure of Section 3, the number of leads (s) to
1, to avoid any use of future information, and an AR specification is assumed
for each of the factors. For FHLR we set M = 3, g = s = 2, as in Favero et
al. (2002).
Table 11 reports the results. Focusing on the R2 first, the performance
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of SSS and PCA is comparable, the latter is slightly better than the former
on average (0.44 versus 0.39), while DPCA is ranked first, with an average
R2 over all variables of about 0.52. A similar pattern emerges from a more
disaggregate analysis, DPCA yields a higher R2 for most variables. The
better fit of DPCA could be explained by the longer sample available, which
improves substantially the multivariate spectrum estimation, and by the use
of future information in the computation of the spectrum On the other
hand, as the Monte Carlo results show, the better fit may be an artefact
of the tendency of the DPCA method to soak up part of the idiosyncratic
component in the data.
The correlation among the estimated common components is highest for

SSS-PCA, with an average value of 0.93, slightly lower but still considerable
for PCA-DPCA, 0.76, and SSS-DPCA, 0.73. Overall, these values are in line
with the Monte Carlo simulations, which showed a higher similarity of PCA
and SSS.
The second exercise we consider is the inclusion of the estimated factors in

a monetary VAR to evaluate the response of inflation and the output gap to
unexpected monetary shocks, see e.g. Stock and Watson (2002) for a recent
review of the methodology. Favero and Marcellino (2001) showed that for
several European countries responses more in line with economic theory are
obtained when the SW factors are included in the VAR, and the standard
error around the responses decreases. Favero et al. (2002) obtained a similar
result in the case of the US, though the gains are smaller, and DPCA seems
to perform slightly better than PCA. The rationale for the better results with
the factors in the VAR is that they summarize the information contained in
large datasets, thus reducing the common problem of omitted variable bias
in small scale VARs. Here we are interested in the relative performance of
the SSS method.
The VARs we consider are for the output gap (USGAP), inflation (US-

INFL), a commodity price index, the effective exchange rate, the federal
fund rate (USPR) and six factors treated as exogenous regressors. Four lags
are included for each endogenous variable and the VAR is estimated over
the sample 1980:1-1998:12 to cover a relatively homogenous period from the
monetary policy point of view but long enough to obtain reliable estimates
of the parameters. Impulse response functions are obtained with a Choleski
decomposition with the variables ordered as listed above, see Favero et al
(2002) for additional details.
The responses of USGAP, USINFL and USPR to a one standard deviation
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shock in USPR are graphed in Figure 1 for the cases where the factors are
excluded from the VAR (base), and when they are included as exogenous
regressors and estimated according to each of the three methods. To use a
comparable information set, the DPCA are lagged three periods, since two
future quarters are used to compute the spectrum, while the PCA and SSS
only once.
The base case shows a positive (though not significant) response of US-

INFL for about 3 years, what is commonly named price puzzle since inflation
should instead decrease. The positive reaction of USGAP is also not in line
with standard economic theory. The inclusion of the dynamic principal com-
ponents does not change sensibly the pattern of response; with static prin-
cipal components the USGAP decreases (after deletion of the first factor);
and with the SSS factors also the price puzzle is eliminated. To obtain such
a result with PCA or DPCA a larger number of factors has to be included
in the VAR, up to 12.
In summary, this section supports the usefulness of factor models for the

analysis of large datasets of variables but also to address important economic
questions. In the particular applications we consider, the performance of the
three factor estimation methods is rather similar, with a slight advantage for
our SSS.

8 Conclusions

In this paper we have developed an estimation method for dynamic factor
models of large dimension based on a subspace algorithm applied to the
state space representation of the model (SSS). We have derived the asymp-
totic properties of the estimators, formulae for their standards errors, and
information criteria for a consistent selection of the number of factors.
Then we have undertaken an extensive comparative analysis of the per-

formance of alternative factor estimation methods. We have focused on the
relationship between true and estimated common components as measured by
the correlation and coherency between them. Additionally, we have examined
the serial correlation properties of the estimated idiosyncratic components.
Our main conclusion is that the SSS method, which takes explicit account
of the dynamic nature of the data generating process, performs better than
alternative approaches for a number of experimental setups. Static principal
components seem to perform satisfactorily overall, while dynamic principal
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components appear slightly less able to distinguish between common and
idiosyncratic factors, in the particular setup we have considered which is,
nevertheless, quite general.
Finally, we have provided an empirical application with a large dataset

for the US, that further confirms the good empirical performance of the SSS
method and, more generally, the usefulness of the dynamic factor model as
a modelling tool for datasets of large dimension.
There are many other interesting directions for research in this field, and

we are currently working on two of them. First, structural identification of
the factors or of the uderlying shocks, along the lines of the structural VAR
literature. This is simpler in our model based framework than in other non-
paramteric approaches to large scale factor modelling. Second, the common
assumption of weakly stationary variables can be relaxed, since state space
modelling of nonstationary data and estimation of linear dynamic models
with non-stationary regressors, the two main components of our SSS ap-
proach, are well developed.
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9 Appendix - Some additional results

9.0.1 SSS and SSS0 in small samples

We undertake a small Monte Carlo experiment to evaluate the relative prop-
erties of the SSS0 and SSS decompositions. We generate data according to
the model

Y = F δ0 + ²,

F = Xγ,

where Y,X, ε are T ×N matrices, and X and ² are matrices of independent
standard normal random variables and independent normal variables of vari-
ance a respectively. The parameter a controls the signal to noise ratio and
in our experiment takes the values 0.1,0.5,1,5,15,30. We evaluate the ap-
proximation error of SSS0 and SSS by the average eigenvalue of G0G where
G is the difference between Xγδ0 and the estimated fitted value assuming
one factor. In other words we approximate the fitted value by its rank-1
approximation. We set T = 20 and vary N as N = 10, 11, ..., 50. Figure 1
presents the approximation error. Some interesting results arise. For high
signal to noise ratios (low a) SSS0 performs better than SSS but only in the
vicinity of N = 20. Otherwise the two methods work equally well. For low
signal to noise ratios the SSS works better than SSS0 as expected given that
the presence of a large ² leads to the deterioration of the performance of
SSS0. The finding for high signal to noise ratios generalises to other values
of T . It seems that SSS works well as long as N and T are different for this
particularly simple setup. Whether the inverse of X 0X exists or not does not
appear to be relevant in these experiments.

9.0.2 Improved Factor Estimation

There exists potential for improving upon the standard method of estimating
the factors. This is related to the structure of the covariance matrix of the
error term of (8). If the lead truncation index, s, is greater than 1, or D is
not diagonal, then (8) should be estimated by generalised least squares as
there is serial correlation in these error terms. We conjecture that, following
results in standard regression analysis, consistency, the rate of convergence
and asymptotic normality of the factor estimates are not affected by the
presence of serial correlation. Of course the asymptotic variance of the factor
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estimates will be different reflecting the use of GLS. Further, the asymptotic
variance of feasible GLS is likely to be different to that of infeasible GLS.
We will address only the case of large datasets (i.e. Np > T ) since the

standard case follows easily from that if we note that the Moore-Penrose
inverse of a matrix is equal to the inverse of a matrix if that exists. Define
X p = I ⊗ Xp, X f = vec(Xf), Ef = (Ef1 , E

f
2 , . . . , E

f
T )
0 and Ef = vec(Ef).

We first note that the covariance of Ef follows from the definition of E in (8).
It is a complicated function of A,B,C,D. The parameters involved can
be estimated from the estimation of the state space model following OLS
estimation of the factors. Once we have an estimate of the covariance matrix
of E , denoted V̂ we can use this to obtain the best affine estimate of vec(XpF)
as derived by Magnus and Neudecker (1988) and given by

vec( dXpF) = X p(X p0V̂+X p)+X p0V̂+X f (18)

Then, we can apply the SVD to (X p0V̂+X p)+X p0V̂+X f as before . Even if
no improved estimation is undertaken V̂ maybe used to obtain the correct
standard errors for the factors under OLS estimation for s > 1.

29



References

[1] Bai, J. and S. Ng (2002), “Determining the number of factors in approx-
imate factor models”, Econometrica, 70, 191-223.

[2] Bauer, D. (1998), “Some Asymptotic Theory for the Estimation of Lin-
ear Systems Using Maximum Likelihood Methods or Subspace Algo-
rithms”, Ph.d. Thesis.

[3] Berk K. N. (1974), “Consistent Autoregressive Spectral Estimates” ,
Annals of Statistics, 2(3) , 489—502.

[4] Brillinger D.R. (1981), Time Series: Data Analysis and Theory,
McGraw-Hill.

[5] Camba-Mendez G., G. Kapetanios, R. J. Smith and M. R. Weale (2001),
”An Automatic Leading Indicator of Economic Activity: Forecasting
GDP Growth for European Countries”, Econometrics Journal, 4(1),
S56-90.

[6] Chatelin (1983), Spectral Approximation of Linear Operators, Academic
Press

[7] Chamberlain, G. and M. Rothschild (1983), “Arbitrage factor structure,
and mean variance analysis of large asset markets”, Econometrica, 51,
1281-1304.

[8] Connor, G. and R.A. Korajczyk (1986), “Performance measurement
with the arbitrage pricing theory”, Journal of Financial Economics, 15,
373-394.

[9] Connor, G. and R.A. Korajczyk (1993), “A test for the number of factors
in an approximate factor model”, Journal of Finance, 48, 1263-1291.

[10] Deistler M. and E.J. Hannan (1988), “The Statistical Analysis of Linear
Systems”, John Wiley.

[11] Favero, C.A. and Marcellino, M. (2001), “Large datasets, small models
and monetary policy in Europe”, CEPR WP 3098.

30



[12] Favero, C.A., Marcellino, M. and Neglia, F.H. (2002), “Principal com-
ponents at work: the empirical analysis of monetary policy with large
datasets”, IGIER WP 223.

[13] Forni, M. and L. Reichlin (1996), “Dynamic common factors in large
cross-sections”, Empirical Economics, 21, 27-42.

[14] Forni, M. and L. Reichlin (1997), “National policies and local economies:
Europe and the United States”, CEPR WP 1632.

[15] Forni, M. and L. Reichlin (1998), “Let’s get real: A dynamic factor an-
alytical approach to disaggregated business cycle”, Review of Economic
Studies, 65, 453-474.

[16] Forni, M., Hallin, M., Lippi, M. and L. Reichlin (1998), “The generalized
factor model: identification and estimation”, The Review of Economic
and Statistics, forthcoming.

[17] Forni, M., Hallin, M., Lippi, M. and L. Reichlin (1999), “Reference
cycles: The NBER methodology revisited”, manuscript.

[18] Geweke, J. (1977), “The dynamic factor analysis of economic time se-
ries”, ch. 19 in Aigner, D.J. and A.S. Goldberger (eds.), Latent variables
in socio-economic models, Amsterdam: North Holland.

[19] W.E. Larimore (1983), “System Identification, Reduced Order Filters
and Modelling via Canonical Variate Analysis”, Proc. 1983 Amer. Con-
trol Conference, pp. 445-451.

[20] J. Magnus and H. Neudecker (1988), “Matrix Differential Calculus with
Applications to Statistics and Econometrics”, John Wiley.

[21] P. Van Overschee and B. De Moor (1996), “Subspace Identification for
Linear Systems”, Kluwer Academic Publishers.

[22] Quah, D. and T.J. Sargent (1993), “A dynamic index model for large
cross-sections”, ch. 7 in Stock, J.H. and M.W. Watson (eds.), Business
cycles, indicators and forecasting, University of Chicago Press for the
NBER.

31



[23] Sargent, T.J. and C.A. Sims (1977), “Business cycle modelling without
pretending to have too much a-priori economic theory”, in Sims, C.A.
(ed.), New methods in business cycle research, Minneapolis: Federal
Reserve Bank of Minneapolis.

[24] Sin, C. Y. and H. White (1996), “Information criteria for selecting pos-
sibly misspecied parametric models”, Journal of Econometrics, 71, 207-
225.

[25] Stock, J.H. and M.W. Watson (1989), “New indexes of coincident and
leading economic indicators”, NBER Macroeconomic Annual, 351-393.

[26] Stock, J.H. and M.W. Watson (1991), “A probability model of the coin-
cident economic indicators”, ch.4 in Lahiri, K. and G.H. Moore (eds.),
Leading economic indicators: New approaches and forecasting records,
New York: Cambridge University Press.

[27] Stock, J.H. and M.W. Watson (2001), “Macroeconomic Forecasting Us-
ing Diffusion Indexes”, Journal of Business and Economic Statistics, 20,
147-162.

32



Table 1: Results for case: N=50, T=50

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.821(0.055) 0.852(0.058) 0.727(0.055) 0.068(0.035) 0.069(0.037) 0.093(0.039)
Exp 2 0.861(0.049) 0.857(0.067) 0.782(0.055) 0.073(0.037) 0.097(0.090) 0.102(0.044)
Exp 3 0.738(0.049) 0.783(0.055) 0.630(0.052) 0.069(0.037) 0.087(0.046) 0.137(0.052)
Exp 4 0.804(0.053) 0.842(0.055) 0.702(0.051) 0.067(0.035) 0.066(0.036) 0.096(0.042)
Exp 5 0.826(0.053) 0.851(0.055) 0.733(0.053) 0.068(0.035) 0.071(0.038) 0.102(0.043)
Exp 6 0.708(0.052) 0.753(0.067) 0.597(0.051) 0.066(0.034) 0.076(0.039) 0.132(0.050)
Exp 7 0.814(0.055) 0.839(0.059) 0.722(0.053) 0.104(0.040) 0.114(0.045) 0.133(0.052)
Exp 8 0.850(0.052) 0.841(0.067) 0.774(0.056) 0.104(0.042) 0.140(0.095) 0.133(0.048)
Exp 9 0.729(0.057) 0.759(0.067) 0.627(0.060) 0.083(0.039) 0.100(0.050) 0.161(0.055)
Exp 10 0.801(0.051) 0.844(0.055) 0.700(0.048) 0.110(0.045) 0.133(0.051) 0.149(0.053)
Exp 11 0.817(0.053) 0.833(0.059) 0.728(0.054) 0.104(0.044) 0.121(0.053) 0.142(0.049)
Exp 12 0.697(0.055) 0.734(0.075) 0.589(0.054) 0.083(0.040) 0.116(0.049) 0.158(0.054)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 2: Results for case: N=50, T=100

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.857(0.043) 0.895(0.042) 0.782(0.045) 0.058(0.032) 0.061(0.034) 0.070(0.036)
Exp 2 0.892(0.038) 0.873(0.057) 0.832(0.042) 0.060(0.033) 0.140(0.139) 0.073(0.037)
Exp 3 0.777(0.046) 0.843(0.044) 0.690(0.048) 0.055(0.031) 0.066(0.036) 0.086(0.039)
Exp 4 0.842(0.043) 0.888(0.044) 0.757(0.044) 0.055(0.032) 0.056(0.034) 0.066(0.035)
Exp 5 0.862(0.041) 0.884(0.048) 0.788(0.044) 0.060(0.034) 0.077(0.068) 0.073(0.037)
Exp 6 0.751(0.043) 0.838(0.043) 0.657(0.043) 0.057(0.031) 0.060(0.034) 0.083(0.038)
Exp 7 0.852(0.041) 0.887(0.042) 0.778(0.042) 0.213(0.055) 0.245(0.063) 0.237(0.060)
Exp 8 0.881(0.041) 0.851(0.070) 0.823(0.043) 0.205(0.056) 0.348(0.161) 0.228(0.061)
Exp 9 0.768(0.046) 0.823(0.048) 0.684(0.047) 0.161(0.051) 0.207(0.072) 0.228(0.061)
Exp 10 0.834(0.044) 0.885(0.046) 0.752(0.044) 0.228(0.059) 0.257(0.060) 0.259(0.059)
Exp 11 0.852(0.044) 0.871(0.048) 0.779(0.044) 0.210(0.059) 0.255(0.078) 0.238(0.063)
Exp 12 0.746(0.043) 0.830(0.045) 0.653(0.044) 0.165(0.054) 0.238(0.064) 0.226(0.058)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 3: Results for case: N=50, T=300

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.888(0.033) 0.923(0.031) 0.838(0.035) 0.051(0.032) 0.074(0.053) 0.056(0.033)
Exp 2 0.913(0.028) 0.827(0.100) 0.875(0.031) 0.053(0.032) 0.383(0.232) 0.058(0.032)
Exp 3 0.816(0.037) 0.889(0.031) 0.756(0.040) 0.050(0.032) 0.096(0.085) 0.061(0.034)
Exp 4 0.872(0.032) 0.928(0.031) 0.813(0.035) 0.051(0.033) 0.052(0.032) 0.058(0.033)
Exp 5 0.893(0.033) 0.900(0.040) 0.841(0.036) 0.054(0.032) 0.141(0.129) 0.058(0.034)
Exp 6 0.791(0.036) 0.903(0.031) 0.725(0.038) 0.052(0.033) 0.054(0.034) 0.063(0.035)
Exp 7 0.885(0.034) 0.921(0.032) 0.833(0.036) 0.729(0.066) 0.782(0.065) 0.743(0.066)
Exp 8 0.910(0.031) 0.833(0.080) 0.873(0.032) 0.722(0.064) 0.886(0.074) 0.735(0.064)
Exp 9 0.808(0.036) 0.883(0.033) 0.750(0.038) 0.668(0.068) 0.781(0.076) 0.718(0.067)
Exp 10 0.870(0.034) 0.929(0.032) 0.811(0.037) 0.739(0.063) 0.757(0.060) 0.757(0.061)
Exp 11 0.888(0.034) 0.892(0.043) 0.839(0.036) 0.723(0.069) 0.805(0.081) 0.741(0.066)
Exp 12 0.782(0.039) 0.897(0.035) 0.719(0.040) 0.677(0.069) 0.753(0.062) 0.725(0.060)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 4: Results for case: N=100, T=50

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.843(0.037) 0.860(0.038) 0.744(0.040) 0.067(0.025) 0.069(0.027) 0.102(0.031)
Exp 2 0.870(0.038) 0.836(0.071) 0.788(0.043) 0.072(0.025) 0.108(0.100) 0.107(0.034)
Exp 3 0.762(0.046) 0.778(0.055) 0.643(0.050) 0.070(0.025) 0.088(0.034) 0.159(0.043)
Exp 4 0.822(0.040) 0.844(0.040) 0.715(0.039) 0.064(0.024) 0.064(0.025) 0.098(0.032)
Exp 5 0.840(0.041) 0.841(0.048) 0.739(0.044) 0.070(0.025) 0.073(0.039) 0.106(0.033)
Exp 6 0.735(0.042) 0.743(0.078) 0.610(0.042) 0.067(0.027) 0.079(0.030) 0.145(0.040)
Exp 7 0.830(0.040) 0.840(0.046) 0.735(0.042) 0.103(0.030) 0.112(0.034) 0.138(0.036)
Exp 8 0.861(0.039) 0.829(0.057) 0.786(0.043) 0.102(0.031) 0.148(0.093) 0.137(0.037)
Exp 9 0.749(0.043) 0.754(0.052) 0.637(0.046) 0.083(0.029) 0.098(0.035) 0.172(0.042)
Exp 10 0.818(0.039) 0.846(0.041) 0.714(0.038) 0.112(0.032) 0.128(0.033) 0.155(0.039)
Exp 11 0.832(0.038) 0.816(0.061) 0.738(0.042) 0.101(0.031) 0.114(0.049) 0.144(0.038)
Exp 12 0.725(0.042) 0.723(0.083) 0.606(0.043) 0.086(0.029) 0.110(0.038) 0.170(0.046)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 5: Results for case: N=100, T=100

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.877(0.029) 0.892(0.028) 0.798(0.033) 0.058(0.023) 0.063(0.028) 0.073(0.026)
Exp 2 0.904(0.028) 0.829(0.085) 0.844(0.031) 0.060(0.023) 0.192(0.186) 0.075(0.027)
Exp 3 0.805(0.031) 0.835(0.032) 0.708(0.036) 0.059(0.024) 0.069(0.038) 0.091(0.028)
Exp 4 0.861(0.031) 0.891(0.031) 0.773(0.033) 0.057(0.023) 0.057(0.023) 0.068(0.027)
Exp 5 0.879(0.031) 0.869(0.052) 0.802(0.034) 0.058(0.024) 0.087(0.086) 0.072(0.027)
Exp 6 0.784(0.032) 0.843(0.032) 0.678(0.034) 0.056(0.022) 0.060(0.024) 0.089(0.028)
Exp 7 0.869(0.031) 0.883(0.032) 0.793(0.032) 0.211(0.042) 0.250(0.057) 0.233(0.044)
Exp 8 0.897(0.030) 0.815(0.095) 0.839(0.033) 0.209(0.042) 0.389(0.179) 0.228(0.042)
Exp 9 0.798(0.034) 0.817(0.036) 0.706(0.036) 0.163(0.037) 0.199(0.067) 0.227(0.042)
Exp 10 0.854(0.031) 0.888(0.031) 0.768(0.031) 0.229(0.044) 0.252(0.045) 0.262(0.045)
Exp 11 0.867(0.033) 0.852(0.047) 0.794(0.033) 0.209(0.040) 0.270(0.096) 0.240(0.043)
Exp 12 0.775(0.033) 0.831(0.036) 0.675(0.034) 0.168(0.038) 0.232(0.052) 0.234(0.042)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 6: Results for case: N=50, T=300, p=5

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.887(0.033) 0.885(0.034) 0.836(0.036) 0.053(0.032) 0.041(0.028) 0.058(0.032)
Exp 2 0.919(0.030) 0.929(0.027) 0.878(0.033) 0.054(0.032) 0.039(0.027) 0.059(0.034)
Exp 3 0.814(0.035) 0.863(0.032) 0.755(0.038) 0.053(0.032) 0.040(0.029) 0.064(0.034)
Exp 4 0.793(0.038) 0.835(0.035) 0.727(0.041) 0.052(0.031) 0.043(0.029) 0.065(0.037)
Exp 5 0.892(0.032) 0.894(0.032) 0.842(0.033) 0.054(0.033) 0.041(0.027) 0.057(0.033)
Exp 6 0.872(0.035) 0.856(0.036) 0.813(0.036) 0.052(0.032) 0.042(0.028) 0.057(0.035)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 7: Results for case: N= 50 T= 300, s=1, p=5

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.889(0.032) 0.847(0.034) 0.837(0.035) 0.051(0.031) 0.039(0.027) 0.056(0.033)
Exp 2 0.917(0.028) 0.898(0.030) 0.877(0.032) 0.053(0.032) 0.040(0.028) 0.055(0.032)
Exp 3 0.817(0.035) 0.787(0.037) 0.758(0.038) 0.052(0.030) 0.039(0.028) 0.062(0.034)
Exp 4 0.788(0.039) 0.744(0.038) 0.723(0.040) 0.051(0.030) 0.039(0.027) 0.061(0.033)
Exp 5 0.893(0.033) 0.853(0.035) 0.842(0.035) 0.051(0.032) 0.038(0.027) 0.055(0.032)
Exp 6 0.870(0.033) 0.810(0.036) 0.811(0.036) 0.050(0.031) 0.037(0.027) 0.055(0.033)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component

39



Table 8: Results for cross-correlated idiosyncratic errors (Case: N=50
T=50)

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.822(0.049) 0.857(0.049) 0.729(0.048) 0.069(0.036) 0.072(0.036) 0.099(0.044)
Exp 2 0.851(0.049) 0.852(0.063) 0.773(0.056) 0.073(0.038) 0.097(0.093) 0.105(0.044)
Exp 3 0.729(0.053) 0.781(0.058) 0.627(0.056) 0.070(0.036) 0.083(0.040) 0.137(0.052)
Exp 4 0.801(0.054) 0.843(0.057) 0.702(0.053) 0.062(0.033) 0.064(0.034) 0.091(0.040)
Exp 5 0.818(0.053) 0.848(0.055) 0.725(0.054) 0.069(0.036) 0.075(0.040) 0.098(0.041)
Exp 6 0.705(0.053) 0.761(0.065) 0.598(0.052) 0.067(0.036) 0.075(0.041) 0.128(0.046)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 9: Results for cross-correlated idiosyncratic errors (Case: N=50
T=100)

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.849(0.043) 0.891(0.045) 0.775(0.044) 0.058(0.034) 0.059(0.034) 0.070(0.036)
Exp 2 0.884(0.036) 0.870(0.054) 0.825(0.038) 0.061(0.034) 0.141(0.134) 0.073(0.036)
Exp 3 0.767(0.044) 0.844(0.044) 0.685(0.046) 0.058(0.031) 0.066(0.041) 0.087(0.040)
Exp 4 0.834(0.043) 0.889(0.042) 0.752(0.042) 0.054(0.033) 0.057(0.034) 0.067(0.036)
Exp 5 0.854(0.045) 0.884(0.043) 0.782(0.047) 0.057(0.031) 0.066(0.050) 0.069(0.036)
Exp 6 0.738(0.045) 0.835(0.045) 0.649(0.044) 0.059(0.033) 0.064(0.035) 0.081(0.039)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Table 10: Results for trivariate VAR(1) case

Exp. Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

N=50,T=50 0.976(0.008) 0.966(0.010) 0.949(0.013) 0.075(0.039) 0.072(0.039) 0.122(0.050)
N=100,T=100 0.988(0.003) 0.956(0.012) 0.974(0.005) 0.062(0.025) 0.094(0.060) 0.081(0.028)

aMean Correlation between true and estimated common component
bMean probability value of LM serial correlation test of idiosyncratic component
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Figure 2: Comparison of SSS and SSS0
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Table 11: US dataset – Fit of factor model and correlations of permanent components 
 

  Adjusted-R^2   Correlations  

Var. SSS PCA DPCA PCA-DPCA PCA-SSS SSS-DPCA 

1 0.6814 0.7699 0.829 0.9329 0.9375 0.8917 
2 0.6761 0.7129 0.8129 0.9004 0.9454 0.871 
3 0.6305 0.6523 0.758 0.8853 0.9541 0.8634 
4 0.5283 0.5195 0.7094 0.8214 0.9486 0.8212 
5 0.4465 0.4743 0.6009 0.8522 0.9524 0.8309 
6 0.2114 0.1758 0.3822 0.6444 0.9379 0.6742 
7 0.4345 0.4805 0.4896 0.912 0.9426 0.8652 
8 0.3726 0.4408 0.496 0.8939 0.9031 0.8326 
9 0.4658 0.5665 0.6118 0.9312 0.9278 0.8785 

10 0.3188 0.3673 0.4421 0.8646 0.9158 0.8139 
11 0.6825 0.7838 0.8472 0.9326 0.9316 0.8862 
12 0.6071 0.7032 0.7573 0.9241 0.9328 0.8742 
13 0.4208 0.452 0.5672 0.8653 0.9163 0.8375 
14 0.0329 0.0322 0.0646 0.5548 0.9292 0.5701 
15 0.0387 0.0631 0.0915 0.4253 0.8912 0.3895 
16 0.6165 0.7973 0.8476 0.9427 0.9017 0.8279 
17 0.2577 0.3234 0.4394 0.8328 0.8695 0.7011 
18 0.634 0.7441 0.8345 0.9348 0.894 0.8326 
19 0.239 0.2603 0.3577 0.784 0.9049 0.733 
20 0.2608 0.2972 0.3569 0.8385 0.9057 0.7743 
21 0.5834 0.8001 0.9311 0.9004 0.8785 0.7624 
22 0.669 0.6364 0.8275 0.8727 0.8244 0.8456 
23 0.7052 0.8005 0.8323 0.9164 0.8914 0.8877 
24 0.7946 0.8686 0.9241 0.9263 0.8816 0.8962 
25 0.758 0.8185 0.9228 0.9103 0.8575 0.8709 
26 0.7738 0.8629 0.9146 0.9309 0.8761 0.8826 
27 0.5916 0.7607 0.7532 0.9388 0.902 0.8422 
28 0.6228 0.7719 0.7692 0.9365 0.8983 0.8435 
29 0.6263 0.7738 0.7673 0.9495 0.9058 0.8601 
30 0.2442 0.2805 0.3475 0.7501 0.8559 0.6864 
31 0.5725 0.7312 0.7513 0.9447 0.916 0.8468 
32 0.5314 0.673 0.6878 0.9442 0.921 0.8534 
33 0.3525 0.4671 0.532 0.8795 0.888 0.7646 
34 0.3113 0.4196 0.4553 0.8605 0.9055 0.7614 
35 0.3166 0.4155 0.4809 0.867 0.8857 0.7529 
36 0.1767 0.2019 0.3267 0.7337 0.8858 0.7101 
37 0.1837 0.2109 0.2597 0.8029 0.9155 0.7393 
38 0.179 0.1859 0.1657 0.796 0.858 0.7797 
39 0.3901 0.2453 0.8319 0.5377 0.7654 0.6717 
40 0.3541 0.1466 0.8492 0.4288 0.7255 0.6556 
41 0.0134 0.0151 0.1761 0.32 0.8822 0.3223 
42 0.0113 0.0103 0.1243 0.3305 0.928 0.3022 
43 0.5367 0.6399 0.8634 0.8325 0.8705 0.771 
44 0.3702 0.3897 0.6201 0.7503 0.8831 0.7532 
45 0.4422 0.4908 0.5396 0.911 0.9119 0.8671 
46 0.5508 0.6057 0.7857 0.8327 0.8641 0.7868 
47 0.3253 0.4393 0.6302 0.7968 0.8302 0.7102 
48 0.5487 0.5976 0.8732 0.8053 0.8541 0.7778 
49 0.3917 0.3029 0.564 0.6836 0.8812 0.7745 



50 0.7778 0.7765 0.8364 0.9283 0.981 0.9221 
51 0.6335 0.6354 0.7501 0.8992 0.9787 0.8885 
52 0.5694 0.5818 0.6858 0.9052 0.9766 0.8894 
53 0.285 0.2709 0.3764 0.7855 0.9718 0.7875 
54 0.297 0.31 0.3867 0.7735 0.9806 0.7679 
55 0.3232 0.3262 0.4428 0.8221 0.9649 0.8081 
56 0.1686 0.1761 0.175 0.6944 0.9894 0.6878 
57 0.3444 0.3476 0.5994 0.6969 0.9797 0.6861 
58 0.154 0.1604 0.4729 0.5593 0.972 0.5403 
59 0.3281 0.4199 0.4618 0.8007 0.9194 0.7203 
60 0.3017 0.408 0.3864 0.8422 0.9052 0.7473 
61 0.2657 0.3732 0.3544 0.8636 0.9079 0.7856 
62 0.1351 0.1558 0.1316 0.6577 0.9228 0.5539 
63 0.1047 0.1085 0.108 0.7662 0.9244 0.7121 
64 0.0877 0.1388 0.3009 0.5727 0.9037 0.4793 
65 0.7791 0.7885 0.8375 0.9234 0.9798 0.918 
66 0.6465 0.6664 0.7411 0.9114 0.9742 0.8984 
67 0.293 0.3 0.3778 0.7703 0.9852 0.7703 
68 0.2321 0.2513 0.551 0.5616 0.9784 0.5478 
69 0.6014 0.7659 0.8804 0.9329 0.9073 0.838 
70 0.4828 0.7023 0.8258 0.9167 0.8953 0.7923 
71 0.4903 0.7081 0.8179 0.9328 0.8882 0.8041 
72 0.5319 0.5553 0.6797 0.8897 0.9108 0.8541 
73 0.539 0.6093 0.6724 0.9241 0.9177 0.8666 
74 0.6329 0.7839 0.8631 0.9348 0.9211 0.8475 
75 0.4916 0.5131 0.6241 0.8864 0.9243 0.8533 
76 0.5661 0.5849 0.6218 0.9348 0.9748 0.9136 
77 0.5717 0.6329 0.8017 0.8488 0.9704 0.8122 
78 0.2186 0.244 0.4698 0.627 0.9437 0.596 
79 0.6991 0.7512 0.8295 0.8987 0.9819 0.8716 
80 0.5231 0.5734 0.7408 0.8193 0.9743 0.7883 
81 0.5658 0.6267 0.7947 0.8458 0.9732 0.8114 
82 0.4699 0.5224 0.7255 0.7895 0.9685 0.7563 
83 0.4102 0.4062 0.4811 0.8065 0.9888 0.8133 
84 0.2102 0.2173 0.3042 0.7549 0.9823 0.7533 
85 0.4266 0.4769 0.5993 0.8394 0.9431 0.8024 
86 0.4131 0.4635 0.5853 0.8357 0.94 0.7987 
87 0.146 0.2514 0.3088 0.7986 0.8595 0.6641 
88 0.1631 0.1878 0.4318 0.6002 0.9298 0.5773 
89 0.1549 0.1815 0.4328 0.5939 0.9268 0.5687 
90 0.0694 0.0812 0.2015 0.5179 0.9669 0.492 
91 0.058 0.0626 0.1771 0.4467 0.9338 0.4074 
92 0.0335 0.0361 0.1034 0.3441 0.9027 0.3414 
93 0.2214 0.2675 0.4387 0.6479 0.9247 0.5903 
94 0.0137 0.02 0.1346 0.2883 0.9453 0.2732 
95 0.014 0.0157 0.1845 0.2313 0.9432 0.2251 
96 0.0517 0.0668 0.1584 0.4858 0.9656 0.4595 
97 0.3773 0.4453 0.4041 0.7251 0.9554 0.6749 
98 0.384 0.4497 0.401 0.7304 0.9579 0.6828 
99 0.3673 0.43 0.3856 0.7272 0.9579 0.6797 

100 0.3121 0.3641 0.3231 0.7255 0.9566 0.6743 
101 0.313 0.3582 0.286 0.7649 0.9599 0.7398 
102 0.4412 0.4389 0.8244 0.6871 0.8703 0.7029 
103 0.4357 0.4135 0.7201 0.7238 0.8734 0.7474 
104 0.4303 0.473 0.5235 0.7507 0.9726 0.741 



105 0.4134 0.4591 0.5108 0.733 0.9712 0.7214 
106 0.452 0.5108 0.4867 0.7773 0.9634 0.7531 
107 0.4545 0.5214 0.4437 0.8104 0.95 0.7654 
108 0.3232 0.3427 0.4046 0.7212 0.9657 0.7204 
109 0.2168 0.2478 0.1945 0.6611 0.9165 0.6907 
110 0.1852 0.1882 0.1817 0.6266 0.9296 0.6689 
111 0.1829 0.1912 0.1947 0.6069 0.9281 0.6443 
112 0.1316 0.1785 0.0957 0.6858 0.871 0.6749 
113 0.0796 0.0759 0.0786 0.6324 0.9539 0.6083 
114 0.5288 0.6087 0.6156 0.9139 0.9311 0.8603 
115 0.264 0.2741 0.2966 0.7347 0.9901 0.7302 
116 0.2833 0.2949 0.316 0.7504 0.9904 0.7439 
117 0.0218 0.0219 0.0615 0.4527 0.9649 0.4569 
118 0.6339 0.6569 0.5729 0.8286 0.986 0.8158 
119 0.0793 0.0814 0.0569 0.6599 0.9912 0.6518 
120 0.2821 0.2967 0.2632 0.7351 0.9852 0.7235 
121 -0.0004 0.0007 0.1036 0.2642 0.9734 0.2445 
122 0.6449 0.6732 0.5692 0.8349 0.9889 0.8213 
123 0.0242 0.0263 0.0588 0.5574 0.9742 0.542 
124 0.0364 0.0356 0.2172 0.3279 0.9671 0.3277 
125 0.3036 0.3109 0.2654 0.771 0.9848 0.757 
126 0.6334 0.6511 0.5024 0.8488 0.9916 0.8431 
127 0.5824 0.6004 0.5246 0.8198 0.9857 0.808 
128 0.6372 0.6647 0.5359 0.8291 0.9895 0.819 
129 0.0163 0.0209 0.0454 0.5307 0.958 0.4847 
130 0.6828 0.7039 0.5455 0.8449 0.9907 0.8359 
131 0.0852 0.0925 0.1441 0.5238 0.9776 0.5111 
132 0.2675 0.3751 0.4279 0.8325 0.9008 0.7214 
133 0.3626 0.3897 0.5481 0.7041 0.9841 0.6871 
134 0.23 0.247 0.4103 0.6295 0.9864 0.6137 
135 0.182 0.191 0.4429 0.5765 0.9797 0.5624 
136 0.1009 0.1119 0.1045 0.7097 0.9448 0.7012 
137 0.1908 0.2008 0.3419 0.5938 0.9852 0.5813 
138 0.6577 0.7324 0.6881 0.9026 0.94 0.8659 
139 0.71 0.8267 0.7605 0.9401 0.9255 0.8699 
140 0.7093 0.8429 0.8057 0.9315 0.9231 0.8546 
141 0.5761 0.7534 0.7613 0.9163 0.906 0.8063 
142 0.6671 0.852 0.8994 0.9305 0.8844 0.8361 
143 0.6792 0.8552 0.9104 0.9301 0.8775 0.8409 
144 0.7032 0.8496 0.9087 0.9325 0.8691 0.8632 
145 0.6404 0.8514 0.8978 0.9426 0.8644 0.8439 
146 0.6837 0.8601 0.8902 0.941 0.8799 0.8527 

mean 0.3875 0.4365 0.5179 0.7644 0.9295 0.7288 
sd 0.2207 0.2557 0.2587 0.1682 0.0468 0.1513 

       
Note: The table reports the adjusted R2 in a regression of the variable on the common component and the 
correlation between each pair of estimated common components 
See the Data Appendix for variable definitions.  
    
 



Figure 1: The role of factors in monetary VARs 
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Note: Impulse response function to an interest rate shock in the base case (no factors in VAR), with static 
principal components (PCA), dynamic principal components (DPCA), and state space factors (SSS). 



 
DATA APPENDIX  

  
This appendix lists the variables used in the empirical analysis,  
 with a short description and the transformation applied.   
The transformation codes are: 1 = no transformation; 2 = first difference; 3= second difference;  
4 = logarithm; 5 = first difference of logarithm; 6 = second difference of logarithm.  

  
Variable Transf 
1 INDUSTRIAL PRODUCTION: TOTAL INDEX(1992=100,SA)  5 
2 INDUSTRIAL PRODUCTION: PRODUCTS,TOTAL(1992=100,SA)  5 
3 INDUSTRIAL PRODUCTION: FINAL PRODUCTS(1992=100,SA)  5 
4 INDUSTRIAL PRODUCTION: CONSUMER GOODS(1992=100,SA)  5 
5 INDUSTRIAL PRODUCTION: DURABLE CONSUMER GOODS(1992=100,SA) 5 
6 INDUSTRIAL PRODUCTION: NONDURABLE CONDSUMER GOODS(1992=100,SA) 5 
7 INDUSTRIAL PRODUCTION: BUSINESS EQUIPMENT(1992=100,SA)  5 
8 INDUSTRIAL PRODUCTION: INTERMEDIATE PRODUCTS(1992=100,SA)  5 
9 INDUSTRIAL PRODUCTION: MATERIALS(1992=100,SA)  5 
10 INDUSTRIAL PRODUCTION: NONDURABLE GOODS MATERIALS(1992=100,SA) 5 
11 INDUSTRIAL PRODUCTION: MANUFACTURING(1992=100,SA)  5 
12 INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING(1992=100,SA)  5 
13 INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING(1992=100,SA)  5 
14 INDUSTRIAL PRODUCTION: MINING(1992=100,SA)  5 
15 INDUSTRIAL PRODUCTION: UTILITIES(1992-=100,SA)  5 
16 CAPACITY UTIL RATE: MANUFACTURING,TOTAL(%OF CAPACITY,SA)(FRB) 1 
17 PURCHASING MANAGERS' INDEX (SA) 1 
18 NAPM PRODUCTION INDEX (PERCENT) 1 
19 PERSONAL INCOME (CHAINED) (BIL 92$, SAAR) 5 
20 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS "(1967=100;SA)"  5 
21 EMPLOYMENT: "RATIO;" HELP-WANTED ADS:NO.UNEMPLOYED CLF  4 
22 CIVILIAN LABOR FORCE:EMPLOYED,TOTAL (THOUS.,SA)  5 
23 CIVILIAN LABOR FORCE:EMPLOYED,NONAGRIC.INDUSTRIES(THOUS.,SA)  5 
24 UNEMPLOYMENT RATE:ALL WORKERS,16 YEARS & OVER(%,SA) 1 
25 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS(SA)  1 
26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5WKS(THOUS.,SA)  1 
27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS(THOUS.,SA)  1 
28 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS +(THOUS.,SA)  1 
29 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS(THOUS.,SA)  1 
30 EMPLOYEES ON NONAG.PAYROLLS:TOTAL(THOUS.,SA)  5 
31 EMPLOYEES ON NONAG.PAYROLLS:TOTAL,PRIVATE (THOUS,SA)  5 
32 EMPLOYEES ON NONAG.PAYROLLS:GOODS-PRODUCING(THOUS.,SA)  5 
33 EMPLOYEES ON NONAG.PAYROLLS:CONTRACT CONSTRUCTION(THOUS.,SA)  5 
34 EMPLOYEES ON NONAG.PAYROLLS:MANUFACTURING(THOUS.,SA)  5 
35 EMPLOYEES ON NONAG.PAYROLLS:DURABLE GOODS(THOUS.,SA)  5 
36 EMPLOYEES ON NONAG.PAYROLLS:NONDURABLE GOODS(THOUS.,SA)  5 
37 EMPLOYEES ON NONAG.PAYROLLS:SERVICE-PRODUCING(THOUS.,SA)  5 
38 EMPLOYEES ON NONAG.PAYROLLS:WHOLESALE & RETAIL TRADE (THOUS.,SA)  5 
39 EMPLOYEES ON NONAG.PAYROLLS:FINANCE,INSUR.&REAL ESTATE (THOUS.,SA  5 
40 EMPLOYEES ON NONAG.PAYROLLS:SERVICES(THOUS.,SA)  5 
41 EMPLOYEES ON NONAG.PAYROLLS:GOVERNMENT(THOUS.,SA)  5 
42 AVG. WEEKLY HRS. OF PRODUCTION WKRS.: MANUFACTURING (SA)  1 
43 AVG. WEEKLY HRS. OF PROD. WKRS.:MFG., OVERTIME HRS. (SA)  1 
44 NAPM employment index (percent) 1 
45 MANUFACTURING & TRADE: TOTAL(MIL OF CHAINED 1992 DOLLARS)(SA)  5 
46 MANUFACTURING & "TRADE: MANUFACTURING;TOTAL 5 



47 MANUFACTURING & "TRADE: MFG;" DURABLE GOODS  5 
48 MANUFACT.& "TRADE:MFG;NONDURABLE" GOODS  5 
49 MERCHANT WHOLESALERS: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
50 MERCHANT WHOLESALERS:DURABLE GOODS TOTAL  5 
51 MERCHANT WHOLESALERS:NONDURABLE GOODS  5 
52 RETAILTRADE: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
53 RETAILTRADE: NONDURABLE GOODS (MIL OF 1992 DOLLARS)(SA)  5 
54 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL(BIL 92$,SAAR)  5 
55 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL DURABLES(BIL 92$,SAAR) 5 
56 PERSONAL CONSUMPTION EXPEND (CHAINED)-NONDURABLES(BIL 92$,SAAR)  5 
57 PERSONAL CONSUMPTION EXPEND (CHAINED)-SERVICES(BIL 92$,SAAR)  5 
58 PERSONAL CONS EXPEND (CHAINED)-NEW CARS (BIL 92$,SAAR) 5 
59 HOUSING "STARTS: NONFARM(1947-58);TOTAL" FARM&NONFARM(1959-)(THOUS.,SA  4 
60 HOUSING STARTS: NORTHEAST (THOUS.U.)S.A.  4 
61 HOUSING STARTS: MIDWEST (THOUS.U.)S.A.  4 
62 HOUSING STARTS: SOUTH (THOUS.U.)S.A.  4 
63 HOUSING STARTS: WEST (THOUS.U.)S.A.  4 
64 HOUSING AUTHORIZED:TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)  4 
65 MOBILE HOMES: MANUFACTURERS' SHIPMENTS(THOUS.OF UNITS,SAAR)  4 
66 MANUFACTURING & TRADE INVENTORIES:TOTAL(MIL OF CHAINED 1992)(SA)  5 
67 INVENTORIES,BUSINESS,MFG(MIL OF CHAINED 1992 DOLLARS, SA) 5 
68 INVENTORIES,BUSINESS DURABLES(MIL OF CHAINED 1992 DOLLARS, SA) 5 
69 INVENTORIES,BUSINESS,NONDURABLES(MIL OF CHAINED 1992 DOLLARS, SA)  5 
70 MANUFACTURING & TRADE INV:MERCHANT WHOLESALERS 5 
71 MANUFACTURING & TRADE INV:RETAIL TRADE (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
72 RATIO FOR MFG & TRADE:INVENTORY/SALES (CHAINED 1992 DOLLARS, SA)  2 
73 RATIO FOR MFG & "TRADE:MFG;INVENTORY/SALES"(87$)(S.A.)  2 
74 RATIO FOR MFG & "TRADE:WHOLESALER;INVENTORY/SALES(87$)(S.A.)"  2 
75 RATIO FOR MFG & TRADE:RETAIL"TRADE;INVENTORY/SALES(87$)(S.A.)"  2 
76 NAPM INVENTORIES INDEX (PERCENT)  1 
77 NAPM NEW ORDERS INDEX (PERCENT)  1 
78 NAPM VENDOR DELIVERIES INDEX (PERCENT)  1 
79 NEW ORDERS (NET)-CONSUMER GOODS & MATERIALS, 1992 DOLLARS(BCI) 5 
80 NEW ORDERS, DURABLE GOODS INDUSTRIES, 1992 DOLLARS(BCI)  5 
81 NEW ORDERS, NONDEFENSE CAPITAL GOODS,IN 1992 DOLLARS(BCI)  5 
82 MFG NEW ORDERS:ALL MANUFACTURING INDUSTRIES,TOTAL(MIL$,SA)  5 
83 MFG NEW ORDERS:MFG INDUSTRIES WITH UNFILLED ORDERS(MIL$,SA)  5 
84 MFG NEW ORDERS:DURABLE GOODS INDUSTRIES, TOTAL(MIL$,SA)  5 
85 MFG NEW ORDERS:DURABLE GOODS INDUST WITH UNFILLED ORDERS(MIL$,SA)  5 
86 MFG NEW ORDERS:NONDURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)  5 
87 MFG NEW ORDERS:NONDURABLE GDS IND.WITH UNFILLED ORDERS(MIL$,SA)  5 
88 MFG UNFILLED ORDERS: ALL MANUFACTURING INDUSTRIES,TOTAL(MIL$,SA)  5 
89 MFG UNFILLED ORDERS: DURABLE GOODS INDUSTRIES,TOTAL(MIL$,SA)  5 
90 MFG UNFILLED ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL(MIL$,SA)  5 
91 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT (BIL$,SA)  5 
92 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT IN 1992 DOLLARS(BCI) 5 
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