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Abstract

The question of variable selection in a regression model is a major open research
topic in econometrics. Traditionally two broad classes of methods have been used.
One is sequential testing and the other is information criteria. The advent of large
datasets used by institutions such as central banks has exacerbated this model selection
problem. This paper provides a new solution in the context of information criteria.
The solution rests on the judicious selection of a subset of models for consideration
using nonstandard optimisation algorithms for information criterion minimisation. In
particular, simulated annealing and genetic algorithms are considered. Both a Monte
Carlo study and an empirical forecasting application to UK CPI infation suggest that
the new methods are worthy of further consideration.
Keywords: Simulated Annealing, Genetic Algorithms, Information Criteria, Model
Selection, Forecasting, Inflation
JEL: C110, C150, C530

1 Introduction

The question of variable selection in a regression model is a major open research topic in

econometrics. Traditionally, model selection in regression models has been addressed using

two broad classes of tools. The first such class is based on sequential testing. This idea un-

derlies the widely used ‘general-to-specific’ approach, developed and popularised in a number

of papers by David Hendry and his co-authors, such as Krolzig and Hendry (2001). Briefly

summarised, this approach involves starting from a general dynamic statistical model which

captures the characteristics of the data and via sequential testing reducing the complexity

of this model while retaining the congruence of the resulting model.
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The second class of tools considers information theoretic ideas to model selection. Such

ideas have given rise to a variety of tools generically known as information criteria. These

criteria provide a score for every model considered which is a combination of the fit of the

model and a penalty term for model complexity. The model that optimises the criterion is

chosen to be the best representation of the data.

Recently, the problem of model selection has taken on increased significance due to the

emergence and increased usage of large datasets. A major impetus for the use of large

datasets, has been provided by work on forecasting carried out in institutions such as central

banks who need macroeconomic forecasts to conduct monetary policy. In this context model

selection faces two new challenges. Firstly, it faces competition from approaches that do not

require an initial whittling down of the amount of available data, but are specifically de-

signed to use all of them. One such approach which is increasingly popular is factor analysis

(see Stock and Watson (2002)). The second challenge is perhaps the most obvious one. It

relates to the fact that the performance of either sequential testing or information criterion

optimisation will inevitably decline monotonically with respect to an increasing set of models.

This paper tries to address the problems that large datasets pose to information crite-

rion optimisation. The most pressing problem is the sheer number of models that need to

be evaluated as the number of available variables, denoted by N , increases. To state the

problem starkly, the number of models that needs to be evaluated is equal to 2N . Setting

N to 30 or 40 indicates the extent of the problem. Of course such numbers of variables are

commonly considered when statistical forecasting models are built.

The only possible solution to this problem is to evaluate information criteria only for a

subset of the models in the model set. This paper suggests a possible answer to the selection

of this subset. Insight into the solution we suggest may be obtained by viewing the problem

as one of optimising a function (the information criterion) over a domain. Unfortunately,

standard optimisation techniques cannot be applied since the domain is discrete. Never-

theless, there are techniques which can address this issue, such as simulated annealing and

genetic algorithms. We investigate these in detail. Comparing the new method we suggest

with a sequential testing alternative in a Monte Carlo study illustrates the potential of the

new approach. Given the importance of good forecasting performance for selected models we

also consider model selection for forecasting. In this case we do not optimise the penalised

in sample fit but the out-of-sample forecast RMSE of the model during a short period prior
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to the forecast period. Once again the new method outperforms the standard forecasting

AR model.

The paper is organised as follows: Section 2 presents the main idea of the paper. Section 3

outlines the non-standard optimisation algorithms we consider. Section 4 presents a Monte

Carlo study. Section 5 presents an empirical forecasting application. Finally, Section 6

concludes.

2 Theory

Let us consider the following regression model

yt = α + β0′x0
t + εt, j = 1, . . . , N, t = 1, . . . , T (1)

where x0
t is a k-dimensional vector of predetermined variables. The superscript 0 denotes

the true regression model. Denote, the set of all available variables at time t by xt =

(x1,t, . . . xN,t)
′, where it is currently assumed that x0

t ∈ xt. xt is an N -dimensional vector.

The aim of the analysis is to determine x0
t . Formally, let J = (J 1, . . . , J N)′ denote a vector

of zeros and ones (which we will refer to as string). Let J 0 be the string for which J 0
i = 1,

if xi,t ∈ x0
t and zero otherwise. We wish to estimate J 0.

To do this we consider the use of information criteria to select the variables that go in

(1). The generic form of such criteria is usually

IC(J ) = −2L(J ) + CT (J ) (2)

where L(J ) is the log-likelihood of the model associated with string J and CT (J ) is the

penalty term associated with the string J . The three most usual penalty terms are 2m̃(J ),

ln(T )m̃(J ) and 2ln(ln(T ))m̃(J ) associated with the Akaike, Schwartz (Schwarz (1978))

and Hannan-Quinn (Hannan and Quinn (1979)) information criteria. m̃(J ) is the number

of free parameters associated with the modelling of the dataset associated with J . Note

that, in this case, m̃(J ) = J ′J . It is straightforward under relatively weak conditions on

xj,t and εj,t, and using the results of say, Sin and White (1996), to show that the string which

minimises IC(.) will converge to J 0 with probability approaching one as T →∞ as long as

CT (J ) →∞ and CT (J )/T → 0.

More specifically, the assumptions needed for the results of Sin and White (1996) to

hold are mild and can be summarised as follows, assuming estimation of the models is un-
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dertaken in the context of Gaussian or pseudo maximum likelihood (which in the simplest

case, of spherical errors, is equivalent to OLS): (i) Assumption A of Sin and White (1996)

requires measurability, continuity and twice differentiability of the log-likelihood function

and a standard identifiability assumption; (ii) A uniform weak law of large numbers for the

log-likelihood of each observation and its second derivative; (iii) A central limit theorem

for the first derivative of the log-likelihood of each observation. (ii) and (iii) above can be

obtained by assuming, e.g., that xj,t are weakly dependent, say, near epoque dependent,

processes and εj,t are martingale difference processes. Hence, it is clear that consistency of

model selection as long as the penalty related conditions hold is straightforwardly obtained.

The problem is of course how to minimise the information criterion. For small dimen-

sional xt, evaluating the information criterion for all strings may be feasible, as, e.g., in lag

order selection. In the case of lag selection the problem is made easier by the fact that there

exists a natural ordering of the variables. But, in the general variable selection case, as soon

as N exceeds say 30 or 40 units, this strategy is bound to fail. Since J is a binary sequence

there exist 2N strings to be evaluated. For example, when N = 50 and optimistically as-

suming that 100000 strings can be evaluated per second, we still need about 357 years for

an evaluation of all strings. Clearly this is infeasible.

We may alternatively treat this as a maximisation problem. Nevertheless, clearly stan-

dard maximisation algorithms do not apply due to the discreteness of the domain over

which the objective function (information criterion) needs to be optimised. We resort to

two powerful non-standard maximisation algorithm classes: simulated annealing and genetic

algorithms. These are discussed in the next section.

3 Nonstandard Optimisation Algorithms

In the previous section we reviewed the translation of the problem of model selection to

a problem of maximising an information criterion. On the one hand the space where the

information criterion is defined is discrete and hence standard optimisation methods can-

not be applied. On the other hand, standard grid search which is usually implemented to

maximise the information criterion, as in, e.g., lag selection, is clearly infeasible due to the

computational burden of the problem. One alternative is to resort to nonstandard optimisa-

tion algorithms that do not require neither smoothness nor continuity for the algorithm to
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converge.

3.1 Simulated Annealing

Simulated annealing is a generic term used to refer to a family of powerful optimisation

algorithms. In essence, it is a method that uses the objective function to create a non-

homogeneous Markov chain that asymptotically converges to the optimum of the objective

function. It is especially well suited for functions defined in discrete spaces like the informa-

tion criteria considered here. Below, we give a description of the algorithm together with the

necessary arguments that illustrate its validity in our context. We describe the operation of

the algorithm when the domain of the function (information criterion) is the set of binary

strings i.e. {J = (J 1, . . . , J N)′|J i ∈ {0, 1}}.

Each step of the algorithm works as follows starting from an initial string J 0.

1. Using J i choose a neighboring string at random, denoted J ∗
i+1. We discuss the defi-

nition of a neighborhood below.

2. If Ŝ(J i) > Ŝ(J ∗
i+1), set J i+1 = J ∗

i+1. Else, set J i+1 = J ∗
i+1 with probability

e−(Ŝ(J ∗
i+1)−Ŝ(J i))/Ti or set J i+1 = J i with probability 1− e−(Ŝ(J ∗

i+1)−Ŝ(J i))/Ti .

Heuristically, the term Ti gets smaller making it more difficult, as the algorithm proceeds,

to choose a point that does not decrease Ŝ(.). The issue of the neighborhood is extremely

relevant. What is the neighborhood? Intuitively, the neighborhood could be the set of strings

that differ from the current string by one element of the string. But this may be too restric-

tive. We can allow the algorithm to choose at random, up to some maximum integer (say

h), the number of string elements at which the string at steps i and i + 1 will differ. So the

neighborhood is all strings with up to h different bits from the current string. Another issue

is when to stop the algorithm. There are a number of alternatives in the literature. We have

chosen to stop the algorithm if it has not visited a string with lower Ŝ(.) than the current

minimum for a prespecified number of steps (Bv) (Steps which stay at the same string do

not count) or if the number of overall steps exceeds some other prespecified number (Bs).

All strings visited by the algorithm are stored and the best chosen at the end rather than

the final one.

The simulated annealing algorithm has been proven by Hajek (1988) (see also Del Moral

and Miclo (1999)) to converge asymptotically, i.e. as i →∞, to the minimum of the function
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almost surely as long as Ti = T0/ln(i) for some T0 for sufficiently large T0. In particular,

for almost sure convergence to the minimum it is required that T0 > d∗. d∗ denotes the

maximum depth of all local minima of the function Ŝ(.). Heuristically, the depth of a local

minimum, J 1, is defined as the smallest number E > 0, over all trajectories, such that the

function never exceeds Ŝ(J 1)+E during a trajectory from1 this minimum to any other local

minimum, J 2, for which Ŝ(J 1) > Ŝ(J 2).

3.2 The genetic algorithm (GA)

Once again, we describe the operation of the algorithm when the domain of the function

is the set of binary strings. The motivating idea of genetic algorithms is to start with a

population of binary strings which then evolve and recombine to produce new populations

with ‘better’ characteristics, i.e. lower values for the MSE function. We start with an initial

population represented by a N×m matrix made up of 0’s and 1’s. Columns represent strings.

m is the chosen size of the population. Denote this population (matrix) by P0. The genetic

algorithm involves defining a transition from Pi to Pi+1. The algorithm has the following

steps:

1. For Pi create a m × 1 ‘fitness’ vector, pi, by calculating for each column of Pi its

‘fitness’. The choice of the ‘fitness’ function is completely open and depends on the

problem. For our purposes it is the opposite of the MSE function. Normalise pi, such

that its elements lie in (0, 1) and add up to 1. Denote this vector by p∗i . Treat p∗i as

a vector of probabilities and resample m times out of Pi with replacement, using the

vector p∗i as the probabilities with which each string with be sampled. So ‘fit’ strings

are more likely to be chosen. Denote the resampled population matrix by P1
i+1.

2. Perform cross over on P1
i+1. For cross over we do the following: Arrange all strings

in P1
i+1, in pairs (assume that m is even). Denote a generic pair by (aα

1 , aα
2 , . . . , aα

n),

(aβ
1 , a

β
2 , . . . , a

β
n). Choose a random integer between 2 and n− 1. Denote this by j. Re-

place the pair by the following pair: (aα
1 , aα

2 , . . . , aα
j , aβ

j+1, . . . , a
β
n), (aβ

1 , a
β
2 , . . . , a

β
j , aα

j+1, . . . , a
α
n).

Perform cross over on each pair with probability pc. Denote the new population by

P2
i+1. Usually pc is set to some number around 0.5-0.6.

3. Perform mutation on P2
i+1. This amounts to flipping the bits (0 or 1) of P2

i+1 with

1A trajectory from J 1 to J 2 is a set of strings, J 11,J 12, . . . , J 1p, such that (i) J 11 ∈ N(J 1), (ii)
J 1p ∈ N(J 2) and (iii) J 1i+1 ∈ N(J 1i) for all i = 1, . . . , p, where N(J ) denotes the set of strings that
make up the neighborhood of J .
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probability pm. pm is usually set to a small number, say 0.01. After mutation the

resulting population is Pi+1.

These steps are repeated a prespecified number of times (Bg). Each set of steps is referred

to as generation in the genetic literature. If a string is to be chosen this is the one with

maximum fitness. For every generation we store the identity of the string with maximum

‘fitness’. At the end of the algorithm the string with the lowest MSE value over all members

of the populations and all generations is chosen. One can think of the transition from

one string of maximum fitness to another as a Markov Chain. So this is a Markov Chain

algorithm. In fact, the Markov chain defined over all possible strings is time invariant but

not irreducible as at least the m − 1 least fit strings will never be picked. To see this note

that in any population there will be a string with more fitness than that of the m− 1 worst

strings. There has been considerable work on the theoretical properties of genetic algorithms.

Hartl and Belew (1990) and Del Moral and Miclo (1999) have shown that with probability

approaching one, the population at the n-th generation will contain the global maximum as

n →∞. For more details see also Del Moral, Kallel, and Rowe (2001).

4 Monte Carlo Study

In order to evaluate the performance of the suggested methods we carry out an Monte Carlo

study. Rather than concentrate on simulated data and an inevitably arbitrary data genera-

tion process, we carry out our Monte Carlo study on a well known dataset. We utilise the

dataset put together by Stock and Watson (2002). This comprises of 147 US macroeconomic

variables spanning from 1959M1 to 1998M12. Each series is normalised to have mean zero

and variance one.

In the experiments we want to control for a number of parameters such as N , T and k.

Rather than fix k we fix the probability, pk, that a given series out of the N series in xt will

be in x0
t . We define an experiment as a set of replications for a triplet (pk, N, T ). For every

experiment we carry out 500 replications. For every replication we do the following. We

take the first T + 36 observations of a random, without replacement, selection of N series in

the dataset. We apply the stationary block bootstrap on that set with block length equal

to [T 1/4]. This forms the set of xt for this replication. From this we construct x0
t . Each

variable in xt has probability pk of being in x0
t . We then construct yt where each element of

β is equal to one. To get yt we also add i.i.d. N(0, σ2) noise where σ2 is fixed to be a given

multiple, q, of the variance of β0′x0
t . In our current experiments we set q = 1 giving an R2
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of 50%. We apply our variable selection algorithms to the first T observations of the sample

keeping the last 36 for an out-of-sample forecasting exercise.

We use the simulated annealing and genetic algorithms discussed in the previous section.

In particular, for simulated annealing we set h = 1, T0 = 10, Bv = 500, Bs = 5000. For the

genetic algorithm we set m = 200, Bg = 200, pc = 0.6,pm = 0.01. All of these parameter

values are standard in the literature and we have not experimented with their effects on

the performance of the algorithms. Given the adequate performance of the algorithms, as

documented below, we believe that these choices are reasonable.

We also use two alternative algorithms currently available in the literature. The first is

based on a Bayesian approach. For this we borrow heavily from the work of Fernandez, Ley,

and Steel (2001). In that paper model uncertainty is tackled by averaging over a subset of

the available models in the spirit of Bayesian model averaging. Nevertheless, the ideas in

the paper can be easily adapted to the context of model selection. A vehicle for doing this

is the MC3 algorithm. This algorithm is similar to simulated annealing for the construction

of its steps. In particular it defines a search path in the model space just like the simulated

annealing algorithm we considered in the previous section. As a result we refer to the setup

of the previous section to minimise duplication for the exposition. The difference between

SA and MC3 is the criterion used to move from one string to the other at step i. Here,

the Bayes factor for string (model) i + 1 versus string (model) i is used. This is denoted by

Bi+1,i. The chain moves to the i + 1 string with probability min(1, Bi+1,i). This is again a

Metropolis-Hastings type algorithm. The Bayes factor we use following Fernandez, Ley, and

Steel (2001) is given by

Bi+1,i =

(
g0i+1

g0i+1 + 1

)ki+1/2 (
g0i + 1

g0i

)ki/2
(

1
g0i+1

RSSi + g0i

g0i+1
RSS

1
g0i+1+1

RSSi+1 + g0i+1

g0i+1+1
RSS

)
(3)

where RSSi is the sum of squared residuals of the i-th model, RSS is the sum of the squared

deviations from the mean for the dependent variable, ki is the number of variables in model

i and g0i is a model specific constant relating to the prior relative precision. The results of

Fernandez, Ley, and Steel (2001) suggest that for consistent model selection g0i should be

set to 1/T . More details may be found in Fernandez, Ley, and Steel (2001).

The second extant algorithm is the one used in Hoover and Perez (1999). The only

modifications to the algorithm, as described in pages 175-176 of the paper are as follows: (i)

All possible paths, rather than only 10, are considered. (ii) In B(d) we use CUSUM2 instead
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of Chow as stability test. (iii) No out-of-sample evaluation is undertaken, since this would

change the information set for the other algorithms. We try two versions of this algorithm

for two different significance levels for all the tests involved (5% and 1%). We consider 2

information criteria based methods, i.e. AIC, and BIC denoted by (A) and (B) in the Tables.

We report results in Tables 1-3. Denoting a generic estimated string by Ĵ , Table 1

reports (Ĵ − J 0)′(Ĵ − J 0) for all algorithms. In words, the average number of variables

which should be included but are not and which should not be included but are, is reported.

Clearly, the lower this is the better the algorithm performs.

Looking at the results several interesting features emerge. Firstly, we see that algorithms

using BIC perform better than algorithms using AIC in most cases. The differences in many

cases are dramatic. For example, for N = 25, T = 100 and pk = 0.1 we see that whereas sim-

ulated annealing with BIC deviates from the true model by an average of 1.4 variables, this

number is increased to about 5 when AIC is used. The second finding relates to the relative

performance of simulated annealing and the genetic algorithm. It appears that simulated

annealing works better in most cases as well. However, the difference in performance is not

very large. The third finding relates to the relative performance of simulated annealing and

the MC3 algorithm. It appears that MC3 works very well but is narrowly beaten in most

of the cases by simulated annealing. Finally, we compare the performance of the sequential

testing algorithm and the information criteria methods. Once again the information criteria

methods and especially simulated annealing work better. Overall, the conclusion is pretty

clear. Combining simulated annealing with BIC works very well.

When using AIC we note that MC3 significantly outperforms simulated annealing with

AIC in a number of cases. This is slightly puzzling since the result is reversed for BIC. For

this reason we examine the average value of the information criterion for AIC in Table 2.

We see that both the simulated annealing and the genetic algorithm manage to obtain a

smaller average value for the criterion than MC3. However, this does not translate to better

performance when variable selection is considered. We conclude that AIC does not seem to

be performing very well in this respect in that models that have low value for AIC are not

necessarily close to the true model.

Table 3 presents the results of the forecasting exercise. We estimate the parameters

using data available in the estimation period. Then, we use the parameter estimates and

the selected variables, according to each algorithm, to forecast the dependent variable over
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36 periods. We average the relative RMSFE compared to the case where the true model is

used, over all replications and report results in Table 3. As we see results are pretty similar

across algorithms but the conclusions reached from the results of Table 1 still hold.

5 Forecasting Inflation using a Large Dataset

Up to this point we have proposed methods for model selection that rely on in sample eval-

uation of the models concerned. However, the litmus test for any model is its forecasting

ability. It is also well known that, in many cases, models which fit well during the estima-

tion period will not necessarily produce good forecasts. As a result we consider explicitly

adapting our methods to a forecasting context in this section.

Given that in-sample fit is a poor guide to out-of-sample performance, an attractive alter-

native is to consider the out-of-sample performance of a model in the recent past in order to

decide whether it is a good forecasting model. A formalisation of this idea is to consider a set

of models and choose as the preferred forecasting model the one that minimises the root mean

square forecast error (RMSFE) over the recent past. Once again if the set of models con-

tains a large number of models, evaluation of all of them may be computationally impossible.

We apply this methodology to forecast quarterly UK CPI inflation, denoted by πt. Our

baseline model used for comparative purposes is an AR(4) model constructed using πt. The

set of models over which the optimal forecasting model is obtained is made up of models of

the form

πt+h̃ = α0 +
4∑

i=1

αiπt−i+1 +
k∑

j=1

βjxj,t + et (4)

where h̃ is the forecast horizon. We select both k and the identity of the variables, xj,t by

minimising the RMSFE during a window of s periods, over the model space. Clearly we

choose a different model for every horizon, h̃. We need to set the size of the window s. We

suggest that the details relating to the empirical application under consideration, form the

basis of this choice. For example, in the case of UK CPI inflation, we note that an important

determinant of the behaviour of this series is the fact that the Bank of England has an

inflation targetting monetary policy. This monetary regime dates from 1997Q2. The target

horizon is currently 2 years. It is reasonable to suggest that the window be longer than that

but not much longer given the frequency of the data. We therefore set s to 12 (three years).
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Our data span 1980Q2-2004Q1. The dataset we use to select xj,t is made up of 58 vari-

ables and contains a wide variety of macroeconomic variables. Details are given in the data

appendix. We evaluate this forecasting strategy over the period that the current monetary

regime has been fully in operation. Given the 2 year horizon we drop the first year of data

for the current regime and start our evaluation period in 1998Q3. We use simulated an-

nealing to minimise the RMSFE over the window. We set Bv = 2000 and Bs = 10000,

h = 1 and T0 = 10. We experimented initially with values for the first two parameters. It

appears that the values used in the previous section are too low for this application. Thus,

we suggest that one errs on the side of caution and uses these higher values instead. The cost

of these choices is only an expected moderate rise in the computational time of the algorithm.

The relative RMSFEs of the optimal models as selected by simulated annealing for h̃ =

4, 8, 12, i.e. for one, two and three year ahead forecasts are 0.96, 0.93 and 0.92 respectively

compared to the AR(4) model. Given the widespread inability in the literature to beat the

forecasts of simple autoregressive models this result is extremely encouraging for our method.

6 Conclusion

The question of variable selection in a regression model is a major open research topic in

econometrics. Traditionally two broad classes of methods have been used. One is sequential

testing and the other is information criteria. The advent of large datasets used by insti-

tutions such as central banks has exacerbated this model selection problem. This paper

provides a new solution in the context of information criteria.

The main idea is to note that information criteria optimisation is a nonstandard opti-

misation problem because the domain of the objective function is discrete. However, it is

possible to define a neighborhood in this space as we do and then optimisation algorithms

for discrete domains may be applied.

We consider two of the most popular classes of algorithms: simulated annealing and

genetic algorithms. Our Monte Carlo study indicates that optimising information criteria

using these algorithms provides very promising results. A further application of the basic

idea to forecasting, where the RMSFE of a model is minimised, over an out-of-sample forecast

evaluation period, indicates a wider potential for these methods in model selection.
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Table 1: Average number of false positives and negatives
pk T N MC3(B) SA(B) PC(5%) GA(B)

25 1.418(1.530) 1.428(1.514) 5.652(5.725) 1.430(1.504)

100 50 5.082(3.209) 4.586(3.199) 18.766(12.891) 5.154(2.943)

0.1 75 11.914(4.471) 10.206(4.730) 61.282(14.537) 11.852(4.194)

25 0.766(1.153) 0.756(1.131) 5.658(6.608) 0.778(1.113)

200 50 3.050(2.596) 2.836(2.649) 12.346(10.701) 4.036(2.581)

75 7.228(3.572) 5.966(3.842) 23.004(15.523) 9.294(3.245)

25 6.812(3.010) 6.820(3.032) 7.990(3.702) 6.824(3.013)

100 50 18.452(3.760) 18.382(3.823) 22.420(5.217) 18.404(3.806)

0.4 75 29.906(4.308) 29.458(4.498) 43.506(5.589) 29.562(4.559)

25 4.944(3.050) 4.944(3.025) 6.310(3.973) 4.912(3.011)

200 50 16.394(3.995) 16.236(4.076) 19.344(5.742) 16.514(3.914)

75 28.052(4.737) 27.578(4.877) 33.300(6.478) 28.162(4.721)

Table 1 (cont.): Average number of false positives and negatives
pk T N PC(1%) MC3(A) SA(A) GA(A)

25 2.576(4.673) 4.200(2.201) 5.048(2.564) 5.048(2.469)

100 50 9.644(12.050) 9.772(3.980) 16.074(5.039) 14.932(4.828)

0.1 75 52.048(25.099) 18.148(5.367) 33.396(7.661) 30.078(7.615)

25 3.140(6.195) 3.310(1.859) 4.272(2.359) 4.466(2.232)

200 50 6.412(10.056) 6.942(3.200) 12.422(3.753) 12.442(3.631)

75 11.916(13.726) 12.112(4.426) 23.002(5.338) 22.748(5.348)

25 7.564(3.482) 7.224(2.832) 7.436(2.851) 7.540(2.881)

100 50 20.154(5.026) 19.634(3.902) 21.508(3.891) 20.782(3.845)

0.4 75 41.848(7.310) 31.540(4.400) 36.004(4.514) 34.882(4.569)

25 5.844(3.937) 5.232(2.718) 5.546(2.735) 5.590(2.769)

200 50 17.742(5.340) 16.906(4.177) 18.464(3.917) 18.264(3.934)

75 30.258(6.422) 28.664(4.718) 31.878(4.737) 31.410(4.777)

Table 2: Average Value of Akaike Information Criterion
pk T N MC3(A) SA(A) GA(A)

25 57.14 56.79 56.97
100 50 131.18 129.11 130.39

0.1 75 192.22 178.75 187.56
25 174.37 174.00 174.63

200 50 343.22 343.56 345.22
75 441.54 440.16 443.68
25 247.44 247.04 247.01

100 50 351.56 348.37 348.51
0.4 75 412.36 399.03 406.44

25 560.00 559.59 559.73
200 50 767.90 766.68 766.35

75 908.98 906.26 907.17
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Table 3: Relative Forecast RMSE
pk T N MC3(B) SA(B) PC(5%) GA(B) PC(1%) MC3(A) SA(A) GA(A) MC3(P ) SA(P) GA(P)

25 1.05 1.05 1.10 1.05 1.06 1.08 1.10 1.09 1.07 1.09 1.09
100 50 1.12 1.12 1.32 1.12 1.20 1.17 1.25 1.22 1.19 1.26 1.27

75 1.18 1.18 5.39 1.17 4.78 1.26 1.58 1.42 1.28 1.45 1.49
0.1 25 1.01 1.01 1.05 1.01 1.04 1.03 1.04 1.04 1.02 1.03 1.02

200 50 1.04 1.04 1.10 1.04 1.06 1.07 1.09 1.09 1.06 1.09 1.09
75 1.06 1.06 1.17 1.07 1.10 1.09 1.15 1.14 1.09 1.16 1.17
25 1.09 1.09 1.09 1.09 1.10 1.08 1.09 1.09 1.09 1.10 1.10

100 50 1.09 1.10 1.23 1.09 1.15 1.12 1.19 1.17 1.15 1.21 1.24
0.4 75 1.06 1.06 5.37 1.04 5.00 1.10 1.38 1.24 1.12 1.27 1.31

25 1.05 1.05 1.05 1.05 1.05 1.04 1.04 1.04 1.04 1.05 1.05
200 50 1.07 1.07 1.09 1.07 1.09 1.07 1.08 1.08 1.07 1.08 1.09

75 1.05 1.05 1.13 1.04 1.08 1.05 1.11 1.09 1.07 1.12 1.12
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Data Appendix

In this appendix, we provide a list of the series used in section 5 to forecast U.K. inflation. These series come
from a data set which has been constructed to match the set used by Stock and Watson (2002). In total,
this data set has 131 series, comprising 20 output series, 25 labour market series, 9 retail and trade series, 6
consumption series, 6 series on housing starts, 12 series on inventories and sales, 8 series on orders, 7 stock
price series, 5 exchange rate series, 7 interest rate series and 6 monetary aggregates, 19 price indices and an
economic sentiment index. We retained the 58 series with at least 90 observations. For each series used in
section 5 the list gives the FAME alias, a brief description, seasonal adjustment (SA), the transformation
applied to the series to ensure stationarity and the first available observation. The transformations applied
to the series are: 1 = no transformation; 2 = first difference; 3 = second difference; 4 = logarithm; 5 =
first difference of logarithm; 6 = second difference of logarithm. Series 3, 4, 5, 10, 11, 12, 13, 21 and 32 are
derived series, described below. The series are grouped under 10 categories.

Series 1 to 8: Real output and income.

• S1: ABMI: Gross Domestic Product: chained volume measures: SA 5 Q1:1955

• S2: CKYY IOP: Manufacturing SA 5 Q1:1948

• S3: IOP: Durable Manufacturing SA 5 Q1:1948

• S4: IOP: Semi-durable Manufacturing SA 5 Q1:1948; constructed as CKZB (IOP: Industry DB: Manuf
of textile & textile products) plus CKZC (IOP: Industry DC: Manuf of leather & leather products)
plus CKZG (IOP: Industry DG: Manuf of chemicals & man-made fibres) plus CKZH (IOP: Industry
DH: Manuf of rubber & plastic products)

• S5: IOP: Non-durable Manufacturing SA 5 Q1:1948; constructed as CKZA (IOP: Industry DA: Manuf of
food, drink & tobacco) plus CKZE (IOP: Industry DE: Pulp/paper/printing/publishing industries)
plus CKZF (IOP: Industry DF: Manuf coke/petroleum prod/nuclear fuels)

• S6: CKYX IOP: Mining & quarrying SA 5 Q1:1948

• S7: CKYZ IOP: Electricity, gas and water supply SA 5 Q1:1948

• S8: NRJR Real households disposable income SA 5 Q1:1955

Series 9 to 21: Employment and hours.

• S9: DYDC UK Workforce jobs: Total SA 5 Q2:1959

• S10: Employed, Nonagric. Industries SA 5 Q2:1978; constructed as DYDC (UK Workforce jobs (SA) :
Total) minus LOLI (UK Workforce jobs (SA): Total - A,B Agriculture & fishing) minus LOMJ (UK
Workforce jobs (SA): Total - G-Q Total services)

• S11: Employment Rate: All NSA 1 Q1:1971; concatenate MGRZ and MGRZ EXP (LFS: In employment:
UK: All: Aged 16), concatenate MGSL and MGSL EXP (LFS: Population aged 16+: UK: All), then
compute 1-MGRZ/MGSL

• S12: Employees on nonag. Payrolls: Total SA 5 Q2:1978; constructed as BCAJ (UK Employee jobs: Total
(SA)) minus YEHU (UK Employee jobs (SA): All jobs Agriculture,hunting,forestry & fishing)

• S13: Employees nonag. Payrolls: Total: private SA 5 Q2:1978; constructed as S12 minus LOKS (UK
Employee jobs (SA): Public admin. & defence)

• S14: YEJF Employee jobs: All jobs: Production Inds. SA 5 Q2:1978

• S15: YEHX Employee jobs: All jobs - Construction SA 5 Q2:1978

• S16: YEHW Employee jobs: All jobs – Manufacturing SA 5 Q2:1978

• S17: LOKL Employee jobs: Wholesale & retail trade SA 5 Q2:1978

• S18: YEIA Employee jobs: Banking, finance & ins. SA 5 Q2:1978

• S19: YEID Employee jobs: Total services SA 5 Q2:1978

• S20: LOKS Employee jobs Public admin. & defence SA 5 Q2:1978
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• S21: Avg. weekly hrs. prod. wkrs.: manuf. SA 1 Q1:1971; constructed from YBUS and YBUS EXP
(LFS: Total actual weekly hours worked (millions): UK: All), MGRZ and MGRZ EXP (LFS: In
employment: UK: All: Aged 16+ SA), as YBUS/MGRZ

Series 22 to 23: Trades.

• S22: BOKI BOP: Balance: Total Trade in Goods SA 5 Q1:1955

• S23: ELBJ BOP: Balance: Manufactures SA 5 Q1:1970

Series 24 to 29: Consumption.

• S24: ABJR Household final consumption expenditure SA 5 Q1:1955

• S25: UTID Durable goods: Total SA 5 Q1:1964

• S26: UTIT Semi-durable goods: Total SA 5 Q1:1964

• S27: UTIL Non-durable goods: Total SA 5 Q1:1964

• S28: UTIP Services: Total SA 5 Q1:1964

• S29: TMMI Purchase of vehicles SA 5 Q1:1964

Series 30 to 35: Real inventories and inventories sales.

• S30: CDQN Change in Inventories: Manufacturing SA 5 Q4:1954

• S31: CDQZ Change in Inv: Manuf: Textiles & Leather SA 5 Q4:1954

• S32: Manuf & Trade Invent: Nondurable Goods SA 5 Q4:1954; constructed as CDQP (Change in Inven-
tories: Manufacturing: Fuels) plus CDQX (Change in Inventories: Manufacturing: Food, Drink &
Tobacco) plus CDQT (Change in Inventories: Manufacturing: Chemicals)

• S33: FAJX Change in Inventories: Wholesale SA 5 Q1:1959

• S34: FBYN Change in Inventories: Retail SA 5 Q1:1955

• S35: FAPF Ratio for Mfg & Trade: Inventory/Output SA 2 Q1:1955

Series 36 to 38: Stock prices.

• S36: FTALLSH PI FTSE All Share Price Index 5 Q1:1980

• S37: FTSE100 PI FTSE 100 5 Q1:1980

• S38: FTALLSH DY FTSE All Share Dividend Yield 1 Q1:1980

Series 39 to 43: Exchange rates.

• S39: A GBG Sterling - Effective SA 5 Q1:1979

• S40: A ERS EURO / £ SA 5 Q1:1979; constructed from A DMS (MTH AVE - DEUTSCHEMARK /£)
and fixed conversion rate of 1.95583

• S41: A SFS SWISS FRANC /£ SA 5 Q1:1979

• S42: A JYS JAPANESE YEN /£ SA 5 Q1:1979

• S43: A USS UNITED STATES DOLLAR /£ SA 5 Q1:1979

Series 44 to 47: Interest rates.

• S44: Spread 6-months 1

• S45: Spread 1-year 1

• S46: Spread 5-years 1

• S47: Spread 10-years 1

Series 48 to 50: Monetary and quantity credit aggregates.

• S48: AUYN Money stock: M4 SA 6 Q2:1963
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• S49: AVAE M0 wide monetary base SA 6 Q2:1969

• S50: AEFI BOE: reserves & other accounts outstanding NSA 6 Q1:1975

Series 51 to 57: Price indices.

• S51: PLLU PPI: Output of manufactured products NSA 6 Q1:1974

• S52: LCPI Long Run CPI NSA 6 Q1:1975

• S53: ABJS Implicit Price Deflator: H’old final cons exp SA 6 Q1:1955

• S54: UTKT Durable goods: Total IDEF SA 6 Q1:1964

• S55: UTLB Semi-durable goods: Total IDEF SA 6 Q1:1964

• S56: UTKX Non-durable goods: Total IDEF SA 6 Q1:1964

• S57: UTKZ Services: Total IDEF SA 6 Q1:1964

Series 58: Surveys.

• S58: MORI MORI General Economic Optimism index SA 1 Q3:1979
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