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Abstract

This paper is an empirical study of Asian stock volatility using
stochastic volatility factor (SVF) model of Cipollini and Kapetanios
(2005). We adopt their approach to carry out factor analysis and
to forecast volatility. Our results show some Asian factors exhibit
long memory that is in line with existing empirical findings in finan-
cial volatility. However, their local-factor SVF model is not powerful
enough in forecasting Asian volatility. This has led us to propose an
extension to a multi-factor SVF model. We also discuss how to produce
forecast using this multi-factor model.
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1 Introduction

Studies of underlying forces that cause variation in stock returns have long
been under the interest of empirical researchers. Empirical studies in this
literature tend to take two different approaches. Some literatures study a
set of pre-defined global and local macroeconomic variables as a proxy of
common factors. These variables are believed to have made contribution to
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the fluctuation in a particular stock market. For example, Bilson, Brailford
and Hooper (2001) employ a multi-factor model to select common explana-
tory factors for emerging markets from a set of global risk variables and local
economic variables. This approach relies on observable significance of the
“proxy common factors” in accounting stock return variation. However, this
may be quite restrictive in the sense that if stock returns are actually driven
by some unobserved common forces, then these forces will be neglected in the
analysis. Another approach employs state-space representation. Common
factors are defined as some unobserved components in state-space model.
Stock and Watson (1998, 2002a) call these common factors “diffusion in-
dexes”. These unbserved common factors summarize the information from
a large group of driving forces that account for variation in a dataset. These
driving forces may be generated by both macroeconomic variables and some
other unknown forces. No pre-definition of the common factors is made.
Thus, state-space factor analysis is relatively more flexible.

However, there are two types of deficiencies in simple state-space factor
analysis. First of all, basic state-space representation may not be sufficient
for the analysis of stock returns due to the existence of heteroskedasticity.
A simple state-space representation does not capture time varying volatility
in financial time series. The famous ARCH and GARCH family models by
Engle (1982) and Bollerslev (1986) have been used extensively in financial
econometric analysis. However, Harvey, Ruiz and Sheperd (1994) argue that
the multivariate version of GARCH family models are inconvenient for esti-
mation and interpretation due to large number of parameters and the need
to impose constraints. They therefore, propose a multivariate stochastic
volatility (SV) model and most importantly, suggest incorporation of com-
mon factor into the model. Although their model is a better alternative
than multivariate GARCH models, common factor embedded in the model
is assumed to follow a random walk. This will become insufficient if the fac-
tor actually have more complex temporal features. The SV model is further
generalized into a multivariate stochastic volatility factor (SVF) model and
to overcome this constraint by Cipollni and Kapetanios (2005). No prior
assumptions to the form of the underlying process of common factor is re-
quired in the SVF model. More complex dynamics can thus be captured.
Apart from this, their model is very flexible since stochastic volatility con-
sists of a common component and a idiosyncratic component, and these two
components are allowed to have different underlying processes. Thorough
study of common fluctuaion in a market and fluctuation in return that is
unique for individual stocks can then be carried out via analysis of the two
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components. This model setting is highly applicable to empirical analysis
of financial volatility.

Second type of deficiencies in simple state-space factor analysis comes
from its conventional estimation method. Maximum likelihood estimation
has been widely used to estimate common factors in the state-space factor
analysis. However, application of maximum likelihood is not feasible if we
are dealing with a large dataset that includes a lot of cross-section series as
this involves a large number of parameters being estimated. The suggestion
of using principal components estimation for extracting common factors in
an approximate dynamic factor model by Stock and Watson (2002) is a
breakthrough in factor analysis with large dataset. Both of them, and Bai
(2003) show this method provides consistent estimates in large datasets.
Bai also study the asymptotic properties of this estimator. In particular,
Cipollini and Kapetanios (2004) recommend the use of principal components
method to estimate common factors in their SVF model. All these are
remarkable developement in dynamic factor analysis.

It can be seen from existing studies of financial volatility forecast that
ARCH and GARCH family models and their further developments such as
EGARCH of Nelson (1991), IGARCH of Engle and Bollerslev (1986) and
FIGARCH of Baillie, Bollerslev, and Mikkelsen (1996); as well as the SV
model, have been extensively used. However, due to the limitations of both
types of models we have discussed above, they are not preferable in our
study. Our forecasting exercise is carried out by using the SVF model and
the procedure used in the Cipollini and Kapetanios (2005) paper.

We regard the SVF model they proposed and use in forecasting volatil-
ity as a local-factor specification since it only include the dominant factor of
US stocks. When using it to forecast US stock volatility, it is not surprising
to find out that a local-factor model performs better than other volatility
models concerned. However, whether a local-factor model remains sufficient
when we are dealing with Asian stock markets and, especially emerging mar-
kets, remains unknown. We believe there is a need to further extend their
model into a multi-factor SVF model. This belief arises from the fact that
volatility transmission from one market to another is actually happening
in financial world. A discussion regarding this proposal is included in this
paper.

If one has chosen to use a multi-factor model instead of a local-factor
model, then the next question one may ask is how to decide on an appro-
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priate specification of a multi-factor model? In particular, how to check
out if a common factor is useful in explaining volatility in a local market?
In the past few year, an increasing number of literatures on factor anal-
ysis has been focusing on analysing the characteristics of common factors
estimated by the mean of principal components method, and the empirical
applications of factor models. For example, in a study on inferential theory
for factor models of large dataset, Bai (2003) derives convergence rate and
limiting distribution of factor estimates, factor loadings and common com-
ponents. Literatures that concern the practical use of factor models centred
on producing macroeconomic forecasts and financial forecasts with models
that include factor estimates extracted by principal components method.
See for example, Stock and Watson (2001, 2002a, 2002b) and Cipollini and
Kapetanios (2005).

Although there have been increasing concerns about statistical inferences
on parameters in factor models, not a lot of the existing literatures seem to
have provided a thorough enough study on this issue. Thus, how to carry
out inference on those factor models or factor-augmented models are not
well known. Establishing statistical inference of factor models is important
because common factors are estimated rather than observed. Therefore, they
should be treated with extra care. Until recently, Bai and Ng (2006) have
made a significant contribution to the issue by carrying out a detailed study
on statistical inferences of prinicipal components factor estimates via the
use of factor-augmented regression (FAR). In their study, they derive rate
of convergence and limiting distribution of least square parameter estimates
in FAR that includes prinicipal components factor estimates as regressors.
As a result, confidence intervals of least square estimates, conditional mean
and forecast can be constructed. It also allow hypothesis tests to be carried
out. Based on their results, we believe significance test on factor estimates
can be carried out and the test results will be useful indication for deciding
which common factors should go into our multi-factor SVF model.

This paper is an empirical study of Asian stock volatility using the SVF
model of Cipollini and Kapetanios (2005). Our empirical analysis consists of
two parts. In the first part, we carry out an analysis of the common factors
that underlie Asian stock volatility and we study the dynamics of these fac-
tor estimates. Whereas the second part concerns a forecasting exercise using
the SVF model. Organization of this paper is as follow. Section 2 explains
the model and methodology used in this paper. We elaborate how the SV
model of Harvey, Ruiz and Sheperd (1994) is extended into the SVF model
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of Cipollini and Kapetanios (2004). Preliminary statistical analysis is in sec-
tion 3. Section 4 is a demonstration of our empirical analysis. First of all, we
carry out an analysis of the common factors of the constituents of five Asian
stock indices extracted by prinicipal component method using data from the
entire sample. In particular, we investigate the explanatory power and dy-
namics of those factor estimates. We then move on to perform a forecasting
exercise. We first present some in-sample results, then follow by results of
stock volatility forecast using the SVF model. We compare forecasting per-
formance of single local-factor SVF model and univariate State-space model.
Having observed the forecasting performance, we believe there is a need to
extend the single local-factor SVF model into a multi-factor SVF model. In
section 5, we discuss the reason for such an extension and propose several
specifications of the multi-factor model. We also explain what procedure we
take to determine an appropriate specifications of a multi-factor model and
how forecast is produced.

2 Model and methodology

2.1 Stochastic volatility factor model (local-factor specifica-
tion)

In the paper by Harvey, Ruiz and Sheperd (1994), they propose a multi-
variate stochastic volatility model (SV). The multivariate SV model is a
better alternative to the multivariate version of the GARCH family mod-
els for financial time series featured with time-varying volatility and serial
correlation, due to the constraints in terms of estimation and interpretation
that the latter have. Consider there are N stocks in a dataset. Multivariate
SVmodel of daily stock returns takes the following form

yi,t = ui,t(exp(hi,t))
1/2 (1)

yi,t denotes the daily return of stock i at time t, and i = 1, · · ·,N
and t = 1, · · ·, T . So, yt is a N-dimensional vector of stock return, i.e.
yt = (y1,t, · · ·, yN,T )0. ut = (u1,t, · · ·, uN,T )0 is a multivariate normal vector
of disturbance with zero mean and covariance matrix Σ. Σ has diagonal
elements of ones and off-diagonal elements ρi,t. Appying logarithmic trans-
formation to equation (1), it becomes
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∼
yi,t = ai + hi,t + ζi,t (2)

where
∼
yi,t denotes ln(y

2
i,t), ai denotes E(ln(u

2
i,t)), ζi,t denotes ln(u

2
i,t) −

E(ln(u2i,t)). Harvey et. al. make two suggestions to model the logarithm
of unobserved variance, hi,t. They suggest that it can either be modelled
by a multivariate random walk, or to incorporate common factors into the
SV model, i.e. the N × 1 vector unobserved variance, ht = θft, where ft is
a K-dimensional vector of common factor, ft = (f1,t, · · · , fK,t)0. Following
the latter suggestion, one can model the tranformed squared returns and
the common factor using a State-Space representation. However, both sug-
gestions have limitations on the nature of the underlying processes of the
unobserved variance and the common factors. Thus, if common factors have
more complex temporal features, their model will become insufficient.

Cipollini and Kapetanios (2005) propose a generalization to the SV
model, the Stochastic Volatility Factor (SVF) Model, that improves the
shortcomings of the state-space version of SV model mentioned above. In
their SVF model, unobserved variance ht features a common component and
a disturbance that is unique to each individual stock. That is,

hi,t = θ
0
ift + ηi,t (3)

substitute equation (3) into (2) gives us the SVF model

∼
yi,t = ai + θ

0
ift + ωi,t (4)

where ωi,t = ηi,t+ζi,t is the idiosyncratic volatility of stock i. One thing
we can see from equation (4) is that stochastic volatility is determined by a
common component θ

0
ift, and a idiosyncratic component, ωi,t.

Common component constitues the part of stock volatility that is caused
by variations in returns on all stocks in the dataset. In other words, it is
the contribution to the variation in individual stock return made by market
fluctuation. Idiosyncratic component, on the other hand, summarises the
part of variation in return that is mainly due to individual stock and so,
this is the fluctuation which is unique to the stock. Comparing SV and SVF
model, we can see the latter is far more flexible than the former as it al-
lows both the factor estimates and the idiosyncratic shocks to be driven by
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more general underlying processes that best describe their empirical tempo-
ral properties. Thus, dynamics of financial volatility can be best captured.
Moreover, no extra assumptions, in addition to those required by principal
component estimation, is required for SVF model to provide consistent fac-
tor estimates. All these advantages make the SVF model easy to use, more
apply to empirical situation and very tractable.

It is worth mentioning that in their study of S&P 500 constituent stock,
Cipollini and Kapetanios (2005) use their multivariate SVF model, which
involves only the S&P 500 dominant factor, to forecast US stock volatility.
Therefore, their model in the form of equation (4) is actually a local-factor
specification (namely local-factor SVF model hereafter). Their finding shows
local-factor SVF model outperforms other a selection of volatility models in
forecasting volatility. Since the US market is the world leading market,
its local fluctuation have a lot more significant impact on other markets
in the world than fluctuation of those markets have on it. Therefore, it
is sensible to regard the US local dominant factor as the global barometer
of stock volatility and thus to believe its local factor is enough to explain
stock volatility of its own market. However, whether local dominant factors
of other stock markets in the world, especially those of emerging markets,
have contained enough information to produce an accurate volatility forecast
for those markets remains a question. From the result of our forecasting
exercise, we can see there is a need to further extend the local-factor SVF
model into a multi-factor setting. Discussion and proposal of a multi-factor
SVF model can be found in section 5. We now move on to the discussion
of the estimation method used for SVF model, the principal component
method of Stock and Watson (2002), in the next subsection.

2.2 Estimation of common factors using Principal Compo-
nents

Conventional factor analysis focuses on small datasets. The analysis requires
some restrictive assumptions to hold, and the use of maximum likelihood es-
timation. Bai (2003) discusses some limitations of classical factor analysis
due to those restrictive assumptions. He points out that the assumption of
fixed number of cross-section dimension (N), which is required to be smaller
than the time dimension (T ), is unrealistic. It is because the number of se-
ries included in the dataset is much larger than the number of time series
observations in economic datasets. The assumption of idiosyncratic innova-
tions being i.i.d. across time and across section is too strong for economic
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time series. Moreover, maximum likelihood estimation is not feasible for
estimating factor model with a very large number of series in the dataset.

Stock and Watson (2002a) suggest the method of principal components
for estimating common factors in an approximate dynamic factor model
with large dataset. Principal components method involves eigenvalue de-
composition of sample variance-covariance matrix. It is simple to use and
assymptotically equivalent to maximum likelihood estimation. In their pa-
per, Stock andWatson (2002b) study the finite sample properties of principal
component estimator. They show that the factor estimates of an approx-
imate factor model obtained by using this method are consistent, even if
idiosyncratic innovations are serially and cross-sectionally correlated, un-
der rather general assumptions. Bai (2003) also shows that the necessary
conditions for ensuring consistency are asymptotic orthogonality and asymp-
totic homoskedasticity in idiosyncratic innovations.1 Consistency in factor
estimates can be obtained even in the presence of serial correlations and
heteroskedasticity.

It can be seen easily from the SVF model in equation (4) that stock
volatility contains two components: the common component that involves
the common factor and the idiosyncratic component that summarises vari-
ation in returns that is unique to individual stock. For the common factor,
Cipollini and Kapetanios (2005) propose that it should be extracted from
the dataset of stocks, using principal component estimation. Extending the
results of Bai (2003), they point out that principal components estimation
can still provide consistent factor estimates if factor process is stationary
long memory ARFIMA(p, d, q) with shocks that have finite fourth moment.
Their Monte Carlo analysis shows this factor estimation method performs
well in estimating the SVF model. We therefore, follow their approach by
using the same method for factor estimation. Estimation of factors and
factor loadings by this method require minimising the objective function

1Bai (2003) calls the restrictions

N−1
NP
i=1

ξi,tξi,s → 0, for t 6= s

and N−1
NP
i=1

ξi,t → σ2, for all t as N tends to ∞
asymptotic orthogonality and asymptotic homoskedasticity, respectively.
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V (f,Θ) = (NT )−1
NX
i=1

TX
t=1

(
∼
yi,t − θ

0
ift)

2 (5)

This is analogous to minimising the variance of idiosyncratic volatility
ωi,t in (4). Minimising objective function (5) with respect to the factor
is equivalent to maximising matrix trace of f 0(XX 0)f , subject to the re-
striction on T−1(f 0f) being orthogonal, i.e. T−1(f 0f) = Ik, where f =
(f1, ..., fT ). Estimating theK largest factors requires extracting the 10 largest

eigenvectors from the matrix
∼
Y
∼
Y
0

, where
∼
Y is the T×N matrix of demeaned

transformed constituent stock returns.
∼
yi,t is the element in the tth row and

ith column of matrix
∼
Y . The eigenvectors we have extracted are the first K

estimated factor series. Several mild assumptions on the factors, factor load-
ings and innovations are required for consistent estimates being produced.
A thorough discussion can be found in Stock and Watson (2002b) (see also
Cipollini and Kapetanios (2005)). A summary of these assumptions is shown
in appendix 7.1.

2.3 About the common factors

Once common factors are estimated using principal components method, an
appropriate specification for factor estimates can be obtained by carefully
examining the temporal feature of the factor estimates. This is evident
by a lot of existing empirical literatures that financial returns have long
memory. If variations in stock returns are underdriven by the common
factor, it is logical to think that the common factor should also have long
memory nature. This claim is first proved by the analysis of S&P 500 factor
in the Cipollini and Kapetanios (2005) paper. They suggest factor estimates
follows a ARFIMA(p, d, q) process which takes the following form

Φ(L)(1− L)d(ft − μ) = Ψ(L)²t (6)

where Φ(L) and Ψ(L) are lag polynomials and the roots of Φ(L) lie
outside the unit circle. ²t is a white noise process with variance σ

2. The
fractional difference is defined as

(1− L)d =
∞X
j=0

πj(d)L
j (7)
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and

πj(d) = (−1)k
Γ(d+ 1)

Γ(j + 1)Γ(d− j + 1) (8)

where Γ(·) denotes the gamma function. The ARFIMA(p, d, q) pro-
cess is covariance stationary for the fractional differencing operator d lies
between -0.5 and 0.5. For 0 < d < 0.5, ft exhibit long memory and its
autocorrelations show persistence. For simplicity, we drop out the moving
average terms in (6) in our empirical analysis, and thus assume the common
factor follow only an ARFI(p, d) process. We adopt Approximate Maxi-
mum Likelihood estimation (AMLE) of Beran (1995) (see also Conditional
SUM of Square estimator (CSS) by Chung and Baillie (1993)) to estimate
ARFI(p, d) process of the factor.

2.4 About the idiosyncratic volatility

After removing the common component of the stochastic volatility of a par-
ticular stock i, what we are left with in equation (4) is its idiosyncratic
stochastic volatility. A univariate State-Space model (SSM) is suggested
to be the underlying process of this idiosyncratic component. It means id-
iosyncratic volatility of stock i is assumed to be driven by some unobservable
forces that are summarised by the state vector. That is,

ωi,t = γiηi,t + ζi,t (9)

ηi,t = λiηi,t−1 + κi,t (10)

where ζi,t ∼ N(0, qi), κi,t ∼ N(0, 1), and ηi,0 ∼ N(α0, p0). ηi,0 is the
initial state of stock i and it has a mean of α0 and variance of p0.

Equation (9) is known as the measurement equation. ωi,t is the id-
iosyncratic volatility of stock i at time t. ηi,t is known as the state. ζi,t
is serially uncorrelated disturbances with mean zero and variance qi,t. ηi,t
is unobservable in general. It is generated by a first-order Markov pro-
cess as in Equation (10) which is known as the transition equation. κi,t
is the serially uncorrelated disturbance with zero mean and we assume it
has unit variance, i.e. E(κ2i,t) = 1. We also assume that α0 = E(ηi,0) = 0

and p0 = E(η2i,0) =
1

1+λ2i
. γi, λi, and qi are the hyperparameters of the

above univariate SSM, which are estimated via prediction error decompo-
sition by Gaussian maximum likeihood using Kalman filter. Harvey, Ruiz
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and Sheperd (1994) show in their paper that Gaussian maximum likelihood
can provide consistent estimates.2

2.5 Forecasting volatility using SVFmodel (local-factor spec-
ification)

In this section, we elaborate how volatility forecast is produced using SVF
model. We adopt the method prosposed by Cipollini and Kapetanios (2005)
to produce our forecasts for Asian stock volatility using their local-factor
SVF model. Recursively forecasting scheme is used to produced one-step
ahead volatility forecast for each constituent stocks in a dataset. This means
when each point forecast is made, the common factor, the factor loadings
as well as the idiosyncratic shocks are reestimated. Forecast produced using
the SVF model in equation (4) is

d∼
yi,t+1|t = ai + θ0i

dfLt+1|t + dωi,t+1|t (11)

where t = T, · · · , S and T is the last period of the estimation sample
and S is the last period of the whole sample (i.e. last period of the forecast

sample).
d∼
yi,t+1|tdenotes the one-step ahead forecast for the volatility of

stock i, dωi,t+1|t denotes the one-step ahead forecast of idiosyncratic volatility,
and dfLt+1|t denotes the one-step ahead forecast for the local dominant factor
estimate. Equation (11) is forecast produced by local-factor model since
only the dominant factor that is extract from the dataset of a local market
is considered. We can see that the forecasting method for SVF model is
very different from the conventional forecasting exercise. The final volatility
forecast consists of a forecast using estimated data rather than empirical or
observed data. Argument on whether this can provide us with an accurate
forecast may arise. It is because error occurred due to factor estimation may
deteriorate the fitness of SVF model and thus contributes to the disparity
between the actual volatility and forecasted volatility. However, the findings
by Bai (2003) shows, although there is error in modelling due to the fact
that factor is estimated series rather than observed, this error is tiny and
can thus be neglected if

√
T/N → 0. Cipollini and Kapetanios (2005) point

2Further discussion on normality assumption in state-space model can be found in,
chapter 3 of Harvey (1990).
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out a factor model that involved estimated series as an explanatory varible
can provide forecast for the factor estimates and idiosyncratic component.

Equation (16) shows that final forecast of volatility is produced by com-
bining a forecast for the local dominant factor and a forecast of the idiosyn-
cratic shocks. We now explain how the final forecast is constructed using
the following five-step approach. Let t = 1, · · · , T be the estimation sam-
ple, and t = T + 1, · · · , S be the forecast evaluation sample. So, number of
periods in the forecast evaluation sample is thus S − T . In the last period
of the estimation sample, period T ,

1. Estimate the dominant local factor from the constituents of an stock
index using principal component method. New estimates of the factor,
factor loadings and idiosyncratic shocks are then obtained.

2. Estimate the ARFI(p, d) process of the local dominant factor using
AMLE. The estimated parameters of this ARFI(p, d) is then used to
form a one-step ahead forecast of the local dominant factor for the

next period, i.e. dfLT+1|T
3. Then for each stock i in the dataset, we fit a univariate State-Space
model into its idiosyncratic shock ωi,T and estimate it via prediction er-
ror decomposition by maximum likelihood using Kalman filter. Next,
we form a one-step ahead forecast for the idiosyncratic shock for the

next period, i.e.
∧
ωi,T+1|T .

4. Finally, combine the forecasts form in step 2 and 3, together with the
factor loadings estimated for period T , to form the overall forecast of
volatility.

d∼
yi,T+1|T = ai + θi

dfLT+1|T + dωi,T+1|T (12)

5. Repeat steps 1 to 4 for the remaining dates t = T + 1 to S until a
S−T dimensional vector of volatiltiy forecasts for stock i is obtained.

Our forecasting exercise in section 4.2.2 is carried out for local-factor
SVF model. Forecasting volatility using a local factor model clearly ignores
the fact that fluctuation in other international financial markets impacts on
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the fluctuation of a local market. It assumes variation in the local market
is explained solely by the local factor and thus it can provide sufficient
information in predicting future volatility. However, existing studies on
transmission of shocks, causality and financial contagion provide us with
lots of empirical evidence of how variation in one market can impact on
another one. Therefore, one may argue that using a local factor model to
forecast volatility is not general enough. Further discussion on multi-factor
model and forecasting with this model can be found in section 5.

3 Data and preliminary statistical analysis

Daily data of constituent stocks of five Asian indices are obtained from
Datastream. The five indices are NIKKEI 225 (NIK225) and NIKKEI 500
(NIK500) of Japan; Heng Seng Composite Index (HSCI) of Hong Kong;
Korean Stock Exchange Composite Index 200 (KOSPI) of South Korea;
and Stock Exchange of Singapore All Share Index (SING) of Singapore.
The reason for investigating both the NIK225and NIK500 of Japan is for
us to look at how size of dataset impacts on the explanatory power of a
dominant factor. The sample ranges from 3 January 2000 to 30 July 2004,
for a total of 1194 daily observations of stock returns. This is the period
after the most difficult time in Asia due to the Japanese banking crisis in the
90’s and the 1997 Asian financial turmoil. Daily returns on each constituent
stocks i is calculated as

yi,t = ln(pi,t)− ln(pi,t−1)

where yi,t denotes the return on constituent stock i at time t, pi,t and
pi,t−1 denote price of the constituent stock at time t and time t− 1, respec-
tively. For each index, only the constituent stocks that have data available
throughout the whole sample period are considered. This leads us to have
217 stocks for NIK225, 481 stocks for NIK500, 176 stocks for KOSPI, 227
stocks for SING and 161 stocks for HSCI. We exclude the periods when the
markets are closed from the dataset, the number of observations then be-
comes 1128 for both NIK225 and NIK500, 1121 for KOSPI, 1185 for SING
and 1128 for HSCI.

Figure 1 displays the time plot of mean returns of the constituent stocks
for the five indices. We can see from these plots that the mean return series
appear stationary as what one would expect. Table 1 summarizes descrip-
tive statistics of the mean return series. Mean returns of SING constituents
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and KOSPI constituents are negative on average during the sample period.
Average Mean return on the constituents of HSCI is higher than that on the
constituents of the other four indices. Mean return on KOSPI constituents
has the highest volatility among the five, whereas mean return on SING
constituents has the lowest. It can be seen clearly from the skewness and
kurtosis coefficients that none of the mean return series are normally dis-
tributed and this is also confirmed by the Jarque-Bera test statistics as the
null hypothesis of normality is rejected at 5%.

4 Empirical applications

4.1 Analysis of factor estimates

4.1.1 Explanatory power of factor estimates

First ten factors are extracted from the transformed dataset of constituent
stock returns for each of the five indices using principal component method.
The first factor estimates for each dataset is plotted in Figure 2. As a first
step to understand the properties of factor estimates, the estimated first fac-
tor for each dataset is regressed on a constant term plus i.i.d. disturbances to
form a strict white noise process. We then test for heteroskedasticity and se-
rial correlation in the residuals. Table 2 shows the computed Breush-Godfrey
serial correlation LM test statistics and Engle’s ARCH LM test statistics,
and the probabilities corresponding to these statistics 3. Clear rejections of
no serial correlation and no ARCH effect are found for the residuals of the
first factor estimates for all five datasets at 5%. This indicates the estimated
factor series are heteroskedastic and serially correlated and their residuals
are clearly not i.i.d.. It also suggests the model underlying the factor should
incorporate these properties.

Table 3 shows cumulative R2 of these factors. We can see from the table
that for KOSPI, NIK225 and NIK500, the first factor explained most of the

35 lags are included in the auxiliary equations of both Breusch-Godfrey LM test and
Engle’s ARCH LM test. Auxiliary equation of Breusch-Godfrey LM test is
et = α0 + α1et−1 + α2et−2 + α3et−3 + α4et−4 + α5et−5
Auxiliary equation of Engle’s ARCH LM test is
e2t = β0 + β1e

2
t−1 + β2e

2
t−2 + β3e

2
t−3 + β4e

2
t−4 + β5e

2
t−5

Both LM statistics have asymptotic χ2 distribution under null hypothese of no serial
correlation and no ARCH effect, respectively.
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variation in the dataset. Additional factors only have marginal contributions
towards the explanatory power of the whole set of factors. The first factor
of KOSPI is the most powerful one among the five, which explains 10.1%
of variation for a total number of 176 stocks. The first factors for both
NIK225 and NIK500 explain about 8.1% and 6.1% of the variation in the
two datasets of 217 stocks and 481 stocks, respectively. Although they do
not seem as powerful as as the first factor of KOSPI, they are quite good in
general. We can then conclude the first factors for each of KOSPI, NIK225
and NIK500 are the dominant factors for these datasets.

However, the same story does not apply to the factors of SING and HSCI.
The first factor of SING can only explain 5.3% of the variation for a dataset
of 227 stocks. This amount is quite low. The first factor of HSCI explains
only 1.7% of the total variation. These are not really appealing results in
terms of factor analysis using principal components estimation. Existing
empirical results show that if a dataset has a factor structure, then the first
few factors are expected to have a good performance in accounting variation
in the dataset, with the first factor explains most of the variation. (See
results and discussion in Stock and Watson (2002), Cipollini and Kapetanios
(2005), and Kapetanios (2004)). Our findings suggest that factor model may
not be an appropriate specification for both SING and HSCI stock returns.
Therefore, follow-on analysis of factor dynamics will be centered on the
dominant factors of KOSPI, NIK225 and NIK500.

Moreover, attention should also be paid to the amount of explained vari-
ation for the first factors of NIK225 and NIK500 datasets. We can see that
having more stocks in the dataset does not strengthen, but weaken the ex-
planatory power of the dominant factor. Boivin and Ng (2003) explain why
using more series to estimate factors may not be desirable in factor analy-
sis. Their studies show the resulting factor estimates from a dataset with
more series added to it are only useful if the errors of factor estimates are
i.i.d. It is because factor estimates may appear to have innovations that are
heteroskedastic and cross-sectionally correlated. If more series are added to
the dataset, average size of their common component will become smaller.
Number of correlated innovations will increase as more series from the same
category are included. As a result, the correlations among innovations may
be too large for the factor estimates to remain consistent, making larger
dataset not advantageous to factor analysis.4 In our case, the dominant fac-
tors of NIK225 and NIK550 are highly correlated with correlation coefficient

4Principal component estimation method by Stock and Watson (2002) shows factors
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equals 0.9527 and we have also seen that the errors of our factor estimates
are serially correlated. Stocks in NIK225 are more representative than stocks
in NIK500 and they are believed to have captured a great deal of common
components that make large contributions to fluctuation in the Japanese
market. NIK500 dataset contains both stocks in NIK225 and other stocks
that are relatively less “important” in explaining the fluctuation. These
relative less “important” stocks generate noise and therefore, reduce the av-
erage size of common components, making the innovations more time and
cross-sectionally dependent, and thus lower the explanatory power of the
factor estimates. Our results here confirm the suggestion of Ng and Boivin
(2003) and consistent with the findings in Cipollini and Kapetanios (2004)
paper.

4.1.2 Dynamics of factor estimates

Autoregressive representation of factor estimates In the above sub-
section, we have already seen two important dynamic properties of the factor
estimates for all of our five datasets, i.e. heteroskedasticity and serial cor-
relation. Now, let’s take a step further to examine more deeply into their
dynamic characteristics. Based on the above findings, we center our anal-
ysis on the dominant factors of KOSPI, NIK225 and NIK500 dataset. The
first factors of SING and HSCI are also investigated for comparison pur-
pose. AR(p) representation of the following form is fitted into each of these
estimated factor series

fk,t = α1fk,t−1 + α2fk,t−2 + · · ·+ αpfk,t−p (13)

where fk,t denotes factor k at time t, and (α1, ...,αp) denote the AR
coefficients. Table 4 reports the estimated AR coefficients, t-statistics and
the corresponding probabilities for the factor estimates of the five datasets.
Number of lags included in the above AR representation of the first fac-
tor series for each of the five datasets are chosen according to the Akaike
Information Criterion (AIC) and the Schwartz Bayesian Criterion (SBC).
Besides, AR(p) processes with highly insignificant coefficients are avoided.
These selection criteria lead us to choose AR representations with 7 lags

estimates are asymptotically consistent if innovations are stationary, factor loadings are
trivial and idiosyncratic errors are weakly serial and cross-sectional correlated. See also
Bai and Ng (2002) and Boivin and Ng (2003)
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for the dominant factors of KOSPI, NIK225 and NIK500; but only 3 lags
and 5 lags for SING and HSCI, respectively. It can be seen clearly that
factor estimates that appear to have stronger explanatory power are found
to sustain an AR representation with longer lags. Empirical studies of fi-
nancial time series have shown that volatility in stock return has extremely
long memory. If a dominant factor is capable of explaining a reasonably
large amount of variation in stock returns, it should show persistence, and
thus sustain a higher order AR process. The first factor of HSCI apparently
does not persist. However, the dominant factors of KOSPI, NIK225 and
NIK500 seem to have obtained this characteristic. In the next section, we
move on to examine the long memory nature of our factor estimates. We
focus our analysis on the dominant factors of KOSPI, NIK225 and NIK500
datasets. We concentrate out the first factors of SING and HSCI due to
the fact that they have low explanatory power, which evidents factor model
being an inappropriate specification that underlies them.

Long memory nature of factor estimates Long memory nature of the
dominant factors of these three datasets is further confirmed by the persis-
tence found in their autocorrelations. Figure 3 graphs the autocorrelations
of the factor estimates up to 200 lags. Time series with long memory should
have autocorrelations that are persistently significant at long lags. When
they are differenced, they appear to have the characteristics of alternating
positive and negative autocorrelations out to long lags, which indicates the
series has been over-differenced. Autocorrelations of the dominant factors
of KOSPI, NIK225 and NIK500 shows persistence even up to 200 lags and
they also exhibit hyperbolic decay. This is apparently an evidence of long
memory. Autocorrelations of the first factor of HSCI however, does not per-
sist. Figure 4 plots the autocorrelations of the first differenced dominant
factors of KOSPI, NIK225 and NIK500 datasets. Their autocorrelations
are alternating postively and negatively even up to 200 lags, meaning the
estimated factor series are over-differenced.

Having observed this nature, we then move on to fit an ARFI(p, d)
process to the series of the dominant factors of KOSPI, NIK225 and NIK500
only. We estimate the process by AMLE of the dominant factors of KOSPI,
NIK225 and NIK500. Number of lags included in the ARFI process are
once again determined by the AIC and SBC, which tell us that ARFI(1, d)
should be chosen for all three dominant factors. Table 6 reports the order
of autoregressive chosen for the ARFI specification for each of these three
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dominant factor series, the estimated parameters, the standard errors and
the computed 95% confidence interval of d̂. We can see from the result that
the estimated d̂’s lie between 0 and 0.5 for all three dominant factors. This is
an indication of hyperbolic decay in their autocorrelations. Computed 95%
confidence intervals of our estimated d̂ also lies within this range, showing
evidence that the true d also lie between 0 and 0.5. Moreover, these values
also lies between -0.5 and 0.5, meaning the ARFI(1, d) processes of these
factor estimates are covariance stationary.

4.2 Forecasting volatility

In this section, we carry out a forecasting exercise on stock volatility using
the SVF model. From the findings in section 4.1.1, we can see that only
the Korean and Japanese datasets appear to have a factor structure. We
therefore carry out our forecasting exercise only on the daily volatility of
NIK225 and KOSPI constituent stocks. We split the entire sample period
into an estimation sample that covers the period 3 January 2000 to 15 March
2004, and the last 100 days in the entrie sampling period are taken as the
forecast evaluation sample and this is corresponding to the period 16 March
2004 to 30 July 2004. Some in-sample results is displayed in the following
part of this subsection, then follow by out-of-sample forecasting results using
a single-factor SVF model, and univariate SSM as a benchmark forecast.

4.2.1 In-sample analysis

Using data for the period 3 January 2000 to 15 March 2004 of the two indices,
we present some in-sample results here. We first apply principal component
method to equation (4) to extract common factors from estimation sample.
Table 8 shows the cummulated explained variation for the first 10 in-sample
factor extracted from each dataset. First in-sample factors still explain
most of the variation during the estimation period. This lead us to conclude
that the first factor estimates from each of the markets can be regarded as
their local dominant factors during the estimation sample. Figures 5 and 6
plots the in-sample first factor estimates from the two datasets. Figure 7
and 8 display the in-sample autocorrelations of the local dominant factors
of Korean and the Japanese markets up to 200 lags. Table 6 shows the
estimated parameters of the ARFI(1, d) by AMLE. Information criteria
suggest ARFI(1, d) is still the most suitable model for the dominant in-
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sample factors. Results shown in those figures and table for in-sample factors
agree with the findings in section 4.1.

From the computed cummulative explained variation of the first 10 in-
sample factor estimates, we have seen that the majority of the common
fluctuation in the datasets are summarised by their dominant factor and
adding further factors can make only tiny contribution. This implies a local
dominant factor is enough to explain fluctuation in stock returns of a local
market in our case. Following this implication, we move on to examine the
idiosyncratic stochastic volatility in the SVF model that contain only one
local dominant factor of a market. Idiosyncratic volatility for each stock,
ωi,t in a dataset is obtained by removing the common component, θ

0
ift from

its stochastic volatility
∼
yi,t .

We fit a univariate SSM as in equation (9) and (10) into ωi,t for every
stock i. Hyperparameters, γi, λi, and qi are estimated via prediction er-
ror decomposition by maximum likelihood using Kalman filter. Since our
datasets have large number of constituents, our analysis involves estima-
tion and reporting results for more than a hundred univariate SSMs. We
report our findings using histograms. Figures 9 and 10 are the histograms
of estimated γi, λi of idiosyncratic volatility for the two datasets. We can
see from the histograms , the majority of the stocks for both markets have
estimated λi between 0.8 and 1. This large values of estimated cofficient in
the transition equation indicate persistence in the remaining idiosyncratic
volatility of the constituents of the two indices.

We also check for remaining serial correlations in measurement errors of
idiosyncratic volatility. This is done by first obtaining smoothed estimates of
the states, ηi,t in equation (10), that is denoted as bηi,t. Then we subtract bηi,t
from ωi,t to obtain measurement errors bζi,t. We perform Lagrange Multipiler
(LM) test to test for serial correlation up to 5 lags in measurement errors
at 1 % significance level for every constituent stock in KOSPI and NIK225
indices. Null hypothesis of no serial correlations up to 5 lags is rejected
if the probability value corresponding to the computed LM test statistic
is less than the size of the test that equals 0.01. Our results show the
majority of the stocks have measurement errors that show no remaining
serial correlations in our three datasets. For KOSPI, 137 out of 176 stocks
are found to have no serial correlations. For NIK225, 169 out of 217 stocks
show no signs of serial correlations.
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4.2.2 Out-of-sample forecasting: single-factor SVFM v.s. uni-
variate SSM

We carry out our forecasting exercise for last 100 periods of the whole sam-
ple to produce 1-step ahead point forecasts using local-factor SVF model.
Recursive forecasting procedure is adopted for which our local-factor SVF
model is estimated with more data as forecasting move forward in time. Fol-
lowing the five-step approach illustrated in section 2.5, we construct volatil-

ity forecast
d∼
yi,t+1|t for every period in the forecast evaluation sample. This

overall 1-step ahead volatility forecast is formed by combining dfLt+1|t anddωi,t+1|t as in equation (11). However, attention should be paid to the com-
putation of the final forecasts. Since the data we use for estimation and
forecasting are demeaned, we therefore, need to add up the removed mean
to the demeaned volatility forecast to obtain the final volatility forecast,d∼
yi,t+1|t . So,

d∼
yi,t+1|t in equation (11) is forecasted volatility with the re-

moved mean added back to it. The forecasting exercise is performed for
every period in the forecast sample until a vector of volatility forecasts is
achieved for our datasets.

Since we have large datasets that contains more than a hundred stocks
with more than a thousand observations. Thus the number of univariate
SSM for idiosyncratic volatility need to be re-estimated along the forecast
evaluation period is huge. There are 17600 individual state-space models for
KOSPI dataset, and 21700 for NIK225 dataset. We aware there may be a
possibility that maximum likelihood estimation does not converge for some
of the idiosyncratic models. And if this happens, the relevant periods will
be excluded from the final results. However, we do not find such case in our
analysis.5

In order to evaluate the forecasting power of the local-factor SVF model,
we use volatility forecast produced by a univariate state-space model that
has no factor structure (denote as SSM in Table 7) as a benchmark forecast.
We compute two statistics for forecast performance comparison, the aver-
age mean absolute prediction error (average MAPE) and the average mean
squared prediction error (average MSPE). Our result is reported in Table 7.

5It is not surprising to find all idiosyncratic models converge in our analysis for all
three datasets. The analysis of Cipolini and Kapetanios (2005) involves estimation of
43800 individual state-space models and they find only 8 models that do not converge.
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We can see from the table that forecasting performance of local-factor
SVF model seems slightly worse than univariate state-space model. Al-
though in-sample results show the local-factor SVF model is a favourable
specification for our data, it is still a little weaker in forecasting Asian stock
volatility than univariate state-space model without factor structure. Both
forecast evaluation statistics are smaller for SSM forecasts than for local-
factor SVF model. However, the difference is quite small. We understand
that there are two possibilities that may lower the overall forecasting perfor-
mance of local-factor SVF model: 1. some of the stocks are badly forecasted
by the factor model or 2. the factor model may not be forecasting very well
in some subsampling periods. Therefore, we carry out cross-sectional exam-
ination and subsampling period investigation to detect for such possibilities.
Unfortunately, our examination outcomes show none of these two cases has
happened.

Having observed this findings and from what we understood in exist-
ing empirical studies of Asian stock volatility, we believe this unfavourable
results towards forecasting power of SVF model may actually caused by
missing factors (other than the local dominant factor) that are essential in
determining stock volatility in a local market . If those missimg factors
are proved significant in determining stock volatility of local market, then
adding those missing factors to the factor model can improve the in-sample
results and forecasting performance. In other words, there is a need for
extending a local-factor model into a multi-factor specification. In the fol-
lowing section, we further discuss the need for such an extension and we also
propose several specifications of a multi-factor SVF model. How to perform
forecasting exercise by using multi-factor model will also be elaborated.

5 Proposal for multi-factor SVF model

A lot of empirical studies provide evidence of volatility tranmission and in-
terdependence among financial markets. Some studies show significant stock
volatility spillovers from US and Japanese markets to some Asian markets,
(see e.g. Ng (2000), and Miyakoshi (2003)). Other studies show volatility
transmission and causality among some Asian markets (see e.g. In, Kim,
Yooh and Viney (2001), and So, Lam and Li (1997)). From these studies and
all other relating literatures, we believe if there exists volatility spillovers,
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then dominant factor in a foreign market that summarises the common mar-
ket fluctuation in its stock returns should impact on the fluctuation in stock
returns of a local market. Therefore, by introducing this dominant factor
of the foreign market into the volatility model for stock returns in the local
market should increase the goodness of fit and thus, strengthen the forecast-
ing power of the model. This brings about an idea of extending a one-factor
(local-factor) model into a multi-factor model. The remaining question we
are facing now is what factors, other than the local factor, should be included
in the volatility model of a local market?

According to existing empirical evidence, we believe apart from the local
dominant factor, three other factors should also play essential roles in ex-
plaining stock return volatility. These factors are, first of all, a global factor
that summarizes the common driving force of stock volatility in US market.
Secondly, a regional leading factor that describes the common fluctuation
in stock returns of a leading market of the region. Finally, a regional factor
that is extracted using data of constituent stocks of all representative in-
dices of the markets in the same region, except the regional leading factor.
When these three factors are concerned in the construction of multi-factor
model for our study, the global factor is to be extracted from the data of
S&P 500 constituents. Regional leading factor is represented by the domi-
nant factor of Japanese market and this factor is extracted from the data of
NIK225 constituents. So far, our forecasting exercise in this paper has been
carried out for only the Korean and Japanese markets. When our analysis
will be further extended to cover the entire Asian region, then the regional
factor is to be extracted from constituents of all representative indices of the
markets in the Asian region, except the Japanese index constituents. This
regional factor describes the common cause of variation in stock returns in
Asia except Japan. Japanese stock returns are not included in the dataset
for extracting the regional factor because we want to see how much com-
mon fluctuation in Asian markets stock returns as a whole can contribute
to volatility forecast for a local market, without the impact of variation in
Japanese stock returns.6 Moreover, since we are introducing the Japanese
dominant factor as a regional leading factor, we have already singled out
and emphasized the importance of Japanese stock returns fluctuation in
determining local market volatility.

6This can of course be verified to include Japanese stock returns in the dataset if one
is more interested in examining the contribution of common variations in stock returns in
all markets of the region.
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5.1 Multi-factor specifications of SVF model

Following the above argument, we propose an extension to the original local
factor SVF model, that is, the multi-factor models. Consider the follow-
ing multi-factor stochastic volatility factor model (namely multi-factor SVF
model hereafter)

∼
y
L

t = a+ θfMt + ωt (14)

where
∼
y
L

t = (
∼
y1,t, · · · ,

∼
yN,t)

0 is a N × 1 vector of local market stock
volatility. N denotes the number of constituent stocks of a particular index.
θ is a N ×R matrix of factor loadings. ωt is a T ×N matrix of idiosyncratic
volatility and this is obtained after the common component is removed from
the stochastic volatility. fMt is a R-dimensional vector of factors. Notice
that the dimension of vector fMt (and also, θ) depends on the number of
factors we include in our multi-factor SVF model.

Let
∼
y
L

i,t denotes volatility of stock i in a local market, f
L
t , f

G
t , f

R
t , and

fRLt denote local dominant factor, global factor, regional factor, and regional
leading factor, respectively. θLi , θ

G, θRi and θRLi are their corresponding
factor loadings. We consider the following 5 specifications of a multi-factor
model in equation (14).

Modification 1: Local - Regional Leading factor model (L-RL)
Stock volatility of local market depends on its dominant factor, and the

dominant factor from a leading market of the region. fMt = (fLt , f
RL
t )0

and θ = (θLi , θ
RL
i )0 are 2-dimensional vector of common factors and factor

loadings. i.e.

∼
y
L

i,t = ai + θLi f
L
t + θRLi fRLt + ωi,t (15)

Modification 2: Local - Global factor model (L-G)
Dominant factors from local market and US market are used to explain

local stock market volatility. fMt = (fLt , f
G
t )

0 and θ = (θLi , θ
G
i )
0 are again

2-dimensional. So,

∼
y
L

i,t = ai + θLi f
L
t + θGi f

G
t + ωi,t (16)

Modification 3: Local - Regional Leading - Global factor model (L-RL-G)
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This model assumes the local dominant factor, together with the dom-
inant regional leading factor and the global factor, are all crucial deter-
minants of the variation in local stock returns. fMt = (fLt , f

RL
t , fGt )

0 and
θ = (θLi , θ

RL
i , θGi )

0 are 3-dimensional in this case. The model becomes

∼
y
L

i,t = ai + θLi f
L
t + θRLi fRLt + θGi f

G
t + ωi,t (17)

Modification 4: Local-Regional-Global factor model (L-R-G)
This model concerns local dominant factor, regional factor that sum-

marises the underlying driving force of the the variation of all stock returns
in the region, and the global factor being significant in explaining local mar-
ket volatility. The impact of regional leading market is ruled out. In this
case, fMt = (fLt , f

R
t , f

G
t )

0 and θ = (θLi , θ
R
i , θ

G
i )
0.

∼
y
L

i,t = ai + θLi f
L
t + θRi f

R
t + θGi f

G
t + ωi,t (18)

Modification 5: Local-Regional Leading-Regional-Global factor model
(L-RL-R-G)

In this specification, all common factors are concerned. So, ft = (f
L
t , f

RL
t , fRt f

G
t )

0

and θ = (θLi , θ
RL
i , θRi , θ

G
i )
0.

∼
y
L

i,t = ai + θLi f
L
t + θRLi fRLt + θRi f

R
t + θGi f

G
t + ωi,t (19)

There is a reason for not simply to take a model that includes all world,
regional, regional leading factors, but to concern different specifications of
the multi-factor SVF model. Although some studies of financial contagion
have shown intra-regional contagion effects in Asian stock markets fluctu-
ation e.g. Masih and Masih (1999), some other studies show no support
for contagion among some markets for some period e.g. Khalid and Kawai
(2003). Therefore, we do not want to rule out the possibility that a factor is
an important determinant of stock returns volatility for some markets, but
not for some others. Notice that these specifications can be further extended
by including lagged factors. By doing so, it will allow us to study for causal
relationships among international stock markets.

Estimation of multi-factor SVF model is straight forward and this is
the same as what we do for local-factor SVF model. We estimate each
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of the common factor included in the multi-factor model using principal
components estimation. Once we obatain the factor estimates, we remove
them from the stochastic volatility of each stock return series in the dataset
and what we are left with is the idiosyncratic stochastic volatility.

Similar to the local-factor SVF model, all common factors in the multi-
factor SVF model have a long memory underlying process. We model all
the factors in a multi-factor SVF model with an ARFIMA(p, d, q). Idiosyn-
cratic component is the part of stochastic volatility that is unique to each
individual stock. Analogous to the local-factor SVF model, this is caused
by some driving force with unknown form. And thus, should be modelled
by a state-space representation.

5.2 Determining an appropriate specification and testing sig-
nificance of factor estimates

Once we believe a multi-factor model should be used, the next task is to
decide on a correct specification. The questions we need to answer here,
are (1) are the chosen common factors significant in explaining local market
volatility? (2) whether the model which includes the selected factors is
strong enough to explain local market volatility and thus to be used for
forecasting?

It is important to know how significant those factors are because this
will give us an idea of whether our dataset of stock volatility support a
local-factor SVF model or a multi-factor SVF model. If it is the latter that
is needed, then how many of the local factors, regional leading factors and
global factors should be included. If lagged factors are concerned, then how
many lags of those factors should be considered. Answer to the first question
can be easily drawn by carrying out test for significance on common factors.
However, no exisiting literatures about factor models seem to have carried
out a significance test on common factor. The reason behind is that factors
are estimated rather than observed, statistical test for significance on factors
cannot be carried out without some well-developed statistical inference on
factor estimates and the parameters in those models. Until recently, Bai and
Ng (2006) have made a remarkable contribution to this issue by carrying
out a detailed study on statistical inference of principal components factor
estimates via the use of factor-augmented regression (FAR). We apply the
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inferences developed by Bai and Ng (2006) and use Least Square parameter
estimates of FAR for computing test statistics.

Suppose there are N stocks in a dataset, consider the following FAR

∼
yi,t = c+ α0ft + β0Mt + ei,t (1)

where i = 1, · · ·, N and t = 1, · · ·, T . ∼yi,tdenotes stock volatility of stock i
at time t that is computed by applying standard logarithmic transformation
to daily return of stock i. ft is a K-dimensional vector of common factors,
ft = (f1,t, · · ·, fK,t). Common factors contained in matrix ft is estimated
from the (T ×N) dataset of stochastic volatility, ∼yi,t, using prinicipal com-
ponents. c is a constant. α and β are vectors of least square estimated
coefficients of common factors ft and a set of other observable variables Mt.
ei,t is the disturbance. In our case, matrix Mt is not considered.

Bai and Ng (2006) show that under some general assumptions, least
square estimates of the above FAR are asymptotically normal and

√
T con-

sistent if
√
T
N tends to 0. They also show that in the setting of FAR for a given

T , a large N (the number of series that are used for factor estimation) en-
ables precise factor estimation. Thus, estimation errors can be ignored and
the cost of having to estimate the factor is negligible. Morever, consistency
of parameter estimates is not affected by the fact that factor is estimated
rather than observed as both T and N tend to infinity (see also Bai and
Ng (2002)). These results still apply under the conditions of heteroskedas-
ticity and cross-section dependence in the idiosyncratic shocks. Given these
results, we can carry out significance tests on our factor estimates using
FAR.

In the Monte Carlo study by Bai and Ng (2006), confidence intervals of
estimated conditional mean is computed using their covariance matrix es-
timator, CS-HAC (Cross-section and heterokedastic autocorrelation consis-
tent) using FAR as a forecasting model with different chosen combinations
of N and T . Their results show that when idiosyncratic errors are het-
eroskedastic and cross-sectionally correlated , coverage rate for conditional
mean is the highest when N = 100 and T = 400. While coverage rate for
forecasting variable is found highest when N = 100 and T = 400, and when
N = 100 and T = 200. High coverage rate suggests more robust C.I. in gen-
eral. When computing C.I., error variance in predicting conditional mean
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is needed. This variance has two parts — asymptotic variance of factor es-
timates and asymptotic variance of parameter estimates. Factor estimation
error will be small due to precise factor estimation if N is sufficiently large.
Variance of factor and error variance in prediction of conditional mean will
then be small. As a results, narrower C.I. will be found and high coverage
rate is resulted over repeated sample. To sum up, when the conditions (1)√
T
N tends to 0, and (2) large N are met, robustness of confidence interval is
ensured. This allows high coverage rate which in turn, indicates consistent
parameter and precise factor estimates.

When we are to further our empirical analysis, their results will be

adopted. The
√
T
N ratios of our Korean and Japanese datasets are quite close

to the one they have chosen and we have a larger N . Consistency in param-
eter estimates and precise estimation of factor should also be obtained in our
study. And thus, the asymptotic results they develop should be applicable
to our case and allow us to perform test for significance on factor estimates.
The following procedure will be taken when carry out significance test. We
fit a FAR into stochastic volatility of every stocks in each dataset, i.e. there
will be N FAR in total. Parameters will then be estimated by least square
method. By applying asymptotic theory, we compute t-statistics for testing
factors significance in every one of the N regressions. We then move on to
check how many times a common factor is found significant out of N model.
This will give us an idea of how powerful this factor is in general.

In answering the second question stated at the beginning of this subsec-
tion, statistics that provide us with the ideas of goodness of fit will be good
indicators. In order to determine which specification is appropriate for a lo-
cal market, we estimate all five specifications using data of this market in the
estimation sample. Then for each specification, we compute the adjusted R2

for each stock in the dataset of a local market. We then move on to compare
the average adjusted R2 over all stocks between the five specifications and
the one of the local-factor model. The model that gives us highest average
adjusted R2 is preferable. Comparing adjusted R2allows us to pick the spec-
ification that is most appropriate to the local market of interest. Another
advantage of doing this is less time consumption for a forecasting exercise.
Instead of forecasting volatility by everyone of the above specifications for
every local market we consider, we use only the one which best describes
stocks volatility of that market, and then compare it with the forecasting
performance of a local factor model and that of other volatility models. In
the case when lagged factors are included in our model, then information
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criteria is to be used to decide on the number of lags chosen.

5.3 Forecasting with multi-factor SVF model

If additional factors other than local-factor are proved to be essential de-
terminants of stock volatility in local market, volatility forecasts can then
be constructed by using an appropriate specification of multi-factor SVF
model. Forecasting exercise is done in a similar manner as for the local-
factor SVF model. The only difference is that for every period in forecast
evaluation sample, we forecast not only the local dominant factorin the first
step, but also additional dominant factors included in the chosen specifi-
cation of multi-factor model using ARFI(p, d). Then, we forecast idiosyn-
cratic stochastic volatility of every stock using univariate state-space model.
Overall volatility forecast is formed by combining these forecasts. Forecasts
constructed by the five specifications of multi-factor SVF model as in equa-
tion (15) to (19) are computed as follow

L-RL factor model:

d∼
y
L

i,t+1|t = ai + θLi

∧
fLt+1|t + θRLi

∧
fRLt+1|t +

∧
ωi,t+1|t (18)

L-G factor model:d∼
y
L

i,t+1|t = ai + θLi

∧
fLt+1|t + θGi

∧
fGt+1|t +

∧
ωi,t+1|t (19)

L-RL-G factor model:

d∼
y
L

i,t+1|t = ai + θLi

∧
fLt+1|t + θRLi

∧
fRLt+1|t + θGi

∧
fGt+1|t +

∧
ωi,t+1|t (20)

L-R-G factor model:

d∼
y
L

i,t+1|t = ai + θLi

∧
fLt+1|t + θRi

∧
fRt+1|t + θGi

∧
fGt+1|t +

∧
ωi,t+1|t (21)

L-RL-R-G factor model:

d∼
y
L

i,t+1|t = ai + θLi

∧
fLt+1|t + θRLi

∧
fRLt+1|t + θRi

∧
fRt+1|t + θGi

∧
fGt+1|t +

∧
ωi,t+1|t

(22)
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Empirical applications using multi-factor SVF model is currently being
carried out. We expect the multi-factor model will perform better in fore-
casting volatility than a local-factor model due to the fact that it is more
applicable to the real world situation that international stock markets are
facing.

6 Conclusion

In this paper, we estimate common factors of Asian stock volatility using
principal components method. Analysis of factor estimates and a forecasting
exercise using local-factor SVF model is carried out. Results on our factor
analysis show approximate factor structure is detected in constituent stock
returns of KOSPI 200, NIKKEI 225 and NIKKEI 500; but not in Heng Seng
Composite Index and Singapore All Share Index. More importantly, dom-
inant factors of KOSPI 200, NIKKEI 225 and NIKKEI 500 perform quite
well in explaining variation in their stock returns. Long memory is also
detected in these factors. These findings provide an insight into empirical
studies of common factors that contribute to Asian stock volatility with the
use of principal components estimation and in the framework other than
conventional state-space analysis. However, results on our forecasting exer-
cise show that a local-factor SVF model is slightly weaker than a univariate
state-space model in forecasting volatility. We believe this deficiency may
be due to missing factor and this has prompted a proposal on a multi-factor
SVF model.

Empirical applications using multi-factor SVF model is currently being
carried out. We expect the multi-factor model will perform better in fore-
casting volatility than a local-factor model due to the fact that it is more
applicable to the real world situation that international stock markets are
facing. Further empirical research concerns boardening the analysis to cover
markets in the entire Asian region, especially focusing on emerging markets,
in order to get a better understanding on the issue of volatility transmission
and financial contagion within the area in the context of factor analysis.

29



7 Appendix

7.1 Summary of assumptions for principal component esti-
mation

As suggested by Cipollini and Kapetanios (2005), principal components es-
timation is used for factor estimation of SVF model. This method is a re-
markable development in analyzing dynamic approximate factor model with
large dataset. It is simple to use and asymptotically equivalent to maximum
likelihood estimation. Stock and Watson (2002b) shows that it provides
consistent estimates even if idiosyncratic innovations are serially and cross-
sectionally correlated under rather general assumptions. Bai (2003) also
shows the neccessary conditions for ensuring consistency are asymptotic or-
thgonality and asymptotic homoskedasticity. We summarize here the use
of the estimation method in analyzing dynamic approximate factor model
and the assumptions required to ensure consistency.

Consider the following approximate dynamic factor model. xt = (x1,t, ..., xN,t)
is a N -dimensional vector of multivariate time series. At time t for series i

xi,t = λ0ift + ξi,t

ft is a K-dimensional vector of common factors with t = 1, ..., T . λ
0
i is

the ith row of matrix Λ, which is a matrix of factor loadings. xi,t is the ele-
ment in the tth row and ith column of a T ×N data matrix X. ξi,t is the ith
element of ξt = (ξ1,t, ..., ξN,t), which is a vector of idiosyncratic innovations.
In constrast to a strict factor model which assumes idiosyncratic innovations
to be i.i.d., these ξt here are allowed to be weakly time and cross-sectionally
dependent. Estimation of factors and factor loadings by principal compo-
nents method requires us to minimise the following objective function with
respect to f and Λ.

V (f,Λ) = (NT )−1
NX
i=1

TX
t=1

(xi,t − λ0ift)
2

This is analogous to minimising the variance of the idiosyncratic inno-
vations ξi,t. Estimating ft requires the eigenvectors of the matrix XX

0.
Minimising the above objective function with respect to the factor is equiv-
alent to maximising the matrix trace of f 0(XX 0)f , subject to the restriction
on T−1(f 0f) being orthogonal, i.e. T−1(f 0f) = Ik, where f = (f1, ..., fT ).
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In order words, consistent estimate of f is given by the K largest eigenvec-
tors of matrix XX 0. Several mild assumptions on the factors ft, the factor
loadings Λ and the innovations ξt, are required for the estimation to provide
consistent estimates. Those assumptions are outlined as follows.

1. For the factor loadings, (Λ0Λ/N)→ Ik and k λi k≤
−
λ <∞

2. For the factors, f 0f has finite unconditional second moment, i.e. E(f 0f)2 <
∞. The factors are also allowed to be serially correlated, so E(f 0f) =
Σf , where Σf is a diagonal matrix with diagonal elements ρi,i > ρj,j >

0, for i < j. Moreover, Σf is the probability limit of T
−1(

TP
t=1
f 0f)

3. The innovations, ξi,t are uncorrelated with the factors ft. Moreover,
ξi,t has zero unconditional mean, and they are assumed to be serially

correlated, so E(ξ0tξt+s/N) = γN,t(s) and supN
∞P

s=−∞

¯̄
γN,t(s)

¯̄
has fi-

nite limit as N → ∞. Cross-sectional correlations in innovations are
also allowed, so E(ξi,tξj,t) = τ ij,t and suptN

−1
NP
i=1

NP
j=1

|τ ij,t| has finite

limit as N → ∞. The size of fourth moment is limited as well, so

supt,sN
−1

NP
i=1

NP
j=1

¯̄
cov(ξi,sξi,t, ξj,sξj,t)

¯̄
has finite limit as N →∞.
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Table1:Descriptive statistics of the mean return series
SING HSCI KOSPI NIK225 NIK500

No. of periods 1185 1120 1121 1128 1128

No. of stocks 227 161 176 217 481

Mean -0.00037 0.00027 -0.00012 0.00005 0.00006

Median -0.00081 0.00078 0.00063 0.00035 0.0006

Maximum 0.0397 0.0537 0.0808 0.0662 0.0544

Minimum -0.0526 -0.1028 -0.1357 -0.0764 -0.0729

Std. Dev. 0.00915 0.01432 0.01935 0.01435 0.01274

Skewness -0.1321 -0.8678 -0.8486 -0.1858 -0.4005

Kurtosis 6.1624 7.7122 7.6298 4.8508 5.1817

J-B test 497.24 1176.8 1135.7 167.49 253.89
[0.000] [0.000] [0.000] [0.000] [0.000]

Note: probabilities are reported in brackets.

Table 2: Breuch-Godfrey LM test statistics and Engle’s ARCH
LM test statistics

SING HSCI KOSPI NIK225 NIK500

B-G LM test 483.08 32.74 305.06 210.14 284.21
[0.000] [0.000] [0.000] [0.000] [0.000]

ARCH LM test 81.78 21.52 82.99 77.74 88.18
[0.000] [0.001] [0.000] [0.000] [0.000]

Note: Both LM statistics are asymptotically χ2 distributed with 5 degree of
freedom. Probabilities are reported in brackets.
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Table 3: Cummulative explained variation for the first 10 factor
estimates

No. of factors SING HSCI KOSPI NIK225 NIK500

1 0.053 0.017 0.101 0.081 0.061

2 0.109 0.032 0.115 0.096 0.071

3 0.124 0.092 0.122 0.111 0.083

4 0.135 0.101 0.131 0.121 0.088

5 0.141 0.112 0.143 0.133 0.094

6 0.152 0.123 0.152 0.141 0.101

7 0.159 0.134 0.162 0.149 0.105

8 0.165 0.143 0.171 0.156 0.111

9 0.171 0.152 0.181 0.163 0.115

10 0.177 0.162 0.189 0.170 0.120

Table 4: AR representations of the first factor estimates
AR coeff. SING HSCI KOSPI NIK225 NIK500

α1 0.334 0.113 0.149 0.076 0.119
{11.59} {3.786} {4.970} {2.561} {3.991}

α2 0.119 -0.05 0.235 0.161 0.187
{3.914} {-1.683} {7.779} {5.369} {6.238}

α3 0.126 0.119 0.118 0.150 0.176
{4.164} {4.001} {3.804} {4.981} {5.798}

α4 0.072 0.061 0.044 0.025
{2.382} {1.959} {1.452} {0.840}

α5 0.151 0.044 0.131 0.106
{5.264} {1.446} {4.360} {3.478}

α6 0.088 0.050 0.039
{2.926} {1.677} {1.288}

α7 0.062 0.079 0.087
{2.071} {2.653} {2.926}

Max. abs. eigenvalue 0.918 0.50 0.920 0.908 0.918

Note: t-statistics are reported in curly paretheses.

Table 5: Estimation outputs of ARFI(1,d) for dominant factors
of KOSPI, NIK225 and NIK500
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KOSPI NIK225 NIK550

φ̂1 0.5177 0.3181 0.4181

d̂ 0.2677 0.1492 0.1831

Standard error of φ̂1 0.0370 0.0499 0.0452

Standard error of d̂ 0.0411 0.0493 0.0489

95% C.I. of d̂ [0.1871, 0.3493] [0.0514, 0.2470] [0.0873, 0.2789]

Standard error of residuals 0.0256 0.0295 0.0287

Stock Index KOSPI NIKKEI
p 1 1

phi 0.507 0.275469
d 0.24 0.13402188

Std error of d 0.042 0.051410969
95% CI of d (0.157, 0.322) (0.033,0.235)

Table 6: ARFI(p,d) estimates of in-sample dominant factors

Local-factor SVF SSM Local-factor SVF SSM
Average MAPE 2.02 2.00 1.77 1.76
Average MSPE 5.98 5.90 6.24 6.23

Table 7: Forecasting performance comparison
KOSPI NIK225

No. of factors KOSPI NIK225
1 0.100 0.075
2 0.114 0.092
3 0.122 0.101
4 0.134 0.113
5 0.144 0.123
6 0.156 0.131
7 0.165 0.139
8 0.174 0.147
9 0.183 0.155

10 0.192 0.162

Table 8: Cummulative R2 of the first 10 
factors for the estimation sample

36



-.12

-.08

-.04

.00

.04

.08

.12

2000 2001 2002 2003 2004

Mean returns on ALLSING constituent stocks

-.12

-.08

-.04

.00

.04

.08

2000 2001 2002 2003 2004

Mean returns on HSCI constituent stocks

-.16

-.12

-.08

-.04

.00

.04

.08

.12

2000 2001 2002 2003 2004

Mean returns on KOSPI 200 constituent stocks

-.08

-.06

-.04

-.02

.00

.02

.04

.06

.08

2000 2001 2002 2003 2004

Mean returns on NIKKEI 225 constituent stocks

-.08

-.06

-.04

-.02

.00

.02

.04

.06

2000 2001 2002 2003 2004

Mean returns on NIKKEI 500 constituent stocks

Figure 1: Time plots of mean returns
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Figure 2: Plots of the first factors
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Figure 3: Autocorrelations of the first factors
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Figure 4: Autocorrelations of the first-differenced dominant factors
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Figure 5: In-sample dominant factor of KOSPI 
(Period 3 Jan 2000 to 15 March 2004)
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Figure 6: In-sample dominant factor of NIKKEI 
(Period: 3 Jan 2000 to 15 Mar 2004)
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Figure 7: Autocorrelations of  KOSPI in-sample first 
factor (estimation sample: 3 Jan 2000 to 15 March 

2004)
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Figure 8: Autocorrelations of NIKKEI in-sample first 
factor (Period: 3 Jan 2000 to 15 Mar 2004)
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Figure 9: Estimated hyperparameters in SSM of KOSPI idiosyncratic volatility (in-sample data)
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Figure 10: Estimated hyperparameters in SSM of NIK225 idiosyncratic volatility (in-sample data)
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