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1 Introduction

A striking fact of economic growth is the apparent constancy of the growth
rate of US GDP over the last 150 years. This is remarkable as technology,
defined in a broad sense, has gone through deep changes during this period
of time. The reason for the existence of a linear long-run trend despite the
radical changes has to be found outside the realm of standard “technolo-
gies”. As the human brain has not evolved one may expect some regularity
in the production of ideas. Having this in mind, our aim is to provide micro-
foundations to a production function exhibiting technological progress and
compatible with the stylized facts. In fact we impose that when imbedded
in an optimal growth model the technology produces a constant growth rate
of output. Even though the model we propose does not completely escape
the linearity critique3 we believe this is introduced in a natural way.

We assume that new ideas are produced from existing ideas. As ideas
are produced by the human brain we assume that there is a natural con-
straints on the process of creation: only a bounded number of existing ideas
can be processed to produce an idea. Of course, the ideas themselves can
become more and more complex and their productivity may grow without
bounds. Importantly, successful ideas are more likely to be chosen again in
the creative process than forgotten ones but the choice is stochastic. Con-
sequently, clusters of visible ideas are expected to occur. The production of
ideas needs ideas. The stock of ideas plays a role because the larger is the
pool of ideas the lower is the “cost” of producing them. However, when ideas
are abundant this constraint becomes less compelling. In this case the num-
ber of ideas produced is expected to depend on the amount of labor used in
the research sector and to a lesser extent capital. Finally, ideas are realized
into innovations according to some stochastic process. The probability that
an idea becomes an innovation depends on the resources dedicated to this
process but may also depend on the visibility of the idea itself.

To model the properties outlined in the previous paragraph, ideas are
assumed to be the nodes of a random growing network. New nodes are linked
to a given number of older nodes. The choice depends on their weighted
connectivity, or strength , where the weights capture the importance and age
of the nodes. Under some plausible assumptions the strength of the nodes
follows asymptotically a generalized power law distribution. Innovations are

3This critique asserts that the constant growth in output produced by a model is a
direct consequence of a linearity implicitly contained in the assumptions (see Jones (2004)).
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extracted either by a blind draw or by one that takes into account the success
of the idea. Given the way new nodes are preferentially attached, it is natural
to define productivity as the strength of the parent idea. Furthermore, in
this way productivity also reflects the existence externalities across ideas.
We then show how to modify the Houthakker’s approach, as formalized by
Jones (2005), in order to show that average output is produced by a Cobb-
Douglas production technology. Finally, imbedded in a neoclassical model
this allows to obtain a balanced growth path. In this way the model is able
to reproduce the observed regularity in the long run growth rate of output.

The model implicitly assumes that the interconnection between knowl-
edge accumulation and the production of innovations is weak. This is in line
with the Shumpeterian view of technological progress. A consequence is that
variations in the growth rate of ideas have little immediate impact on the
growth rate of innovations and reciprocally. The properties of the business
cycle are dictated by this feature. The model predicts that in most cases
temporary and permanent shocks have no permanent effect on the growth
rate of output. On the other hand, the duration of the effects of a shock
on the level of output depends on the properties of the shock itself and on
the properties of innovations. In particular, temporary shocks have a tem-
porary effect which persist for some time, at least as long as the “cyclical”
innovations are in use. This fact agrees with the data as it implies that the
economy recovers its original trend even after large fluctuations as in the
30’s.

A detailed discussion of the assumptions is pursued in the next sections
of the paper. We believe these are not unrealistic although in some cases
other equally plausible assumptions could be proposed. There are mainly
two areas in which the model can be criticized. A first difficulty is that
data about the production of “ideas” are impossible to obtain. The most
closely related processes are the production of patents and the production
of scientific articles. The production of research has been investigate in a
large number of studies since Lotka (1926). For example, a recent analysis
of the distribution of citations of patents can be found in Leiva Bertran
(2003). The large majority of the studies are compatible with power law
distributions. The other weakness concern the innovative sector. The fact
that there is no strategic behavior from the part of the innovator is clearly
a weakness.
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2 Production of ideas

Ideas are produced one at a time but the number of ideas produced between
t and t + 1 grows. We first focus on the constraints on the production of
each idea, letting the determination of the number of ideas produced for
later. New ideas are produced using existing ideas. The machine producing
ideas is the human brain. The process of creation is bounded in the sense
that only a bounded number of existing ideas are processed at once. This
bound is mainly due to the physiological capacity of the human brain. We
may assume that the bound is tight or simply that the average number
of links established by the new idea is a constant. Let this number be
m. An important issue is what guides the scientist in his choice of old
ideas. Ideas that have been often used in the past in the combinations
(for example the Dixit-Stiglitz model) are more visible and have a higher
chance of being used again. Clearly, being successful in this sense is not
the whole story. Feedbacks between the “world of ideas” and the “physical
world” of innovations probably exists. Ideas that where realized as successful
innovations are in the spotlight and have a higher chance of being used again
in combinations. Furthermore, it may be expected that clusters of good
ideas develop as the brightness of an idea shines on its neighbors, i.e. on the
combinations that use this successful idea. Finally, ideas loose their appeal
as time goes by.

To integrate these properties, the set of ideas is modelled as a graph.
Ideas are the vertices (or nodes) of a random growing network. New ideas
are added sequentially. The edges (or links) of the network represent the
fact that two ideas are linked. Intuitively a new idea embodies completely a
linked older one. Producing orange juice with an electric device includes the
older idea of squeezing the oranges manually. However, some investigation
shows that this is not as obvious as it may seem. We simply assume that
the existence of a link between two ideas represents the fact that these
have something in common, without any time orientation. We also include
weights so that both the strength of the link and the age of the idea can be
taken into account.

Two remarks. The construction implies that the set of ideas doesn’t
posses any spatial characteristic. In the adopted topology the distance be-
tween two ideas is represented by the minimal number of edges separating
the two associated nodes. Finally, at this level it is not possible to give a
“value” to an idea, as it is impossible to define the “productivity” of an idea
before this is realized as an innovation.
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The next issue is to define the factors determining the level of idea pro-
duction, i.e. how many ideas are produced in a unit interval. Producing
ideas needs ideas. Clearly, the larger is the pool of ideas the lower is the
“cost” of producing them. Furthermore, as we separate ideas from innova-
tions we may disregard the role of physical inputs at this level. Let ∆Nt be
the number of ideas produced at time t and Nt be the stock of ideas. We
assume that

∆Nt = σNNt−1

where σN is a strictly positive constant. We then obtain

Nt = (1 + σN )tN0.

We may criticize this formulation by pointing out that when ideas are
abundant it is not obvious that for very large stocks of ideas a further
increase would significantly reduce the cost of producing a new idea. In
other words, the cost of producing ideas may be bounded from below when
N →∞4. In this case physical inputs would matter, and more appropriate
specification would be to assume that the production of ideas is an homo-
geneous function of degree one in capital and labor as

∆Nt = ANKξ
t L1−ξ

t Nγ
t−1

with 0 ≤ ξ ≤ 1, 0 ≤ γ ≤ 1 and AN strictly positive constant. Pushing
further this line of taught we set γ = 0 and assume that in the production
of fundamental ideas physical capital is not a binding constraint. Finally we
obtain

∆Nt = ANLN
t

where LN
t designates the labor force in the research sector.

Historical data shows that even tough the population may be assumed
to grow at a constant rate µ the labor force employed in the production
of ideas grows at a higher rate, so σN > µ. This is compatible with the
observation that the employment in the research departments rose by an
average 5% since the 50’s in the US. Finally, Nt grows at a constant rate
σN because in this case ∆Nt = Nt − Nt−1 = (1 + σN )t−1N0σN (together
with the condition σNN0 = ANL0). Note that if ideas were produced with
a “creation-by-doing” process then the entire population would participate
to the creation of ideas and σN = µ. Clearly, assuming that σN > µ is not
sustainable in the very long run.

4a similar assumption is made by Weizmann (1997)
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To conclude this section let us point out that in many cases it is useless
to obtain the exact value of the growth rate of Nt as long as it is large
enough. Indeed, as we will see in Section 4 very often the constraints come
from the resources needed to transform ideas into innovations because ideas
are sufficiently abundant. The assumption Nt = (1 + σN )tN0 then does not
appear too restrictive.

3 The set of ideas as a growing network

Ideas are modelled as the nodes of a random growing network. Little can be
said about the topology in the early stages of the network growth. However,
when the stock of ideas becomes large, i.e. Nt → ∞, stationary patterns
may appear, as for example in the distribution of the connectivity of the
nodes. The main issue is to define the law used in the production of new
combinations. In our framework, new nodes are linked to existing ones ac-
cording to a non-uniform law. The early random graph theory developed
by Erdos and Renyi (1959) assumed a purely random assignment but re-
cent results have been obtained for networks with the so-called “preferential
attachment”.

The simplest way to formalize “preferential attachment” is to assume
that the probability that a given node is used depends on the connectivity
of the node. In this case the probability function π that a new node is
connected to a node i with ki links is, at least asymptotically in the number
of nodes, of the form

πi ∼ A + Bkη
i

with η a positive parameter, A a positive constant representing the “initial
attractiveness” of an isolated node and B a positive constant. The value of
η plays a major role in the type of behavior of the economy. When π is an
affine function, the distribution of connectivity k evolves toward a scale-free
power law.

The previous formalism has several limitations. In particular, only the
number of connected ideas matters, not the “quality” of the linked ideas or
the strength of the links. In this way, second order effects produced by the
rest of the network as the effect of the neighbors’s neighbors are excluded.
Furthermore, no new information as the productivity of a realized idea can
be taken into account.
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To cure these problems, a weighted network is constructed in which each
edge is given a weight (see for. e.g. Yook et al. (2001)). Let wij be
the weight of edge i ↔ j connecting nodes i and j. A node i is then also
characterized by its strength, defined by si =

∑

i′ wii′ where i′ designates
all nodes directly connected to i. Finally, preferential attachment can now
be stated in terms of the strength of the nodes, i.e. the sum of the weights
of the connected edges.

Assumption 1 The probability Πi that a new node is connected to a node
i of strength si =

∑

i′ wii′ is of the form

Πi =
si

∑

i′ si′

where i′ designate the direct neighbors of node i.

The crucial part is how the weights are determined. In a static weighted
model the weights are determined once the edge is added to the network and
do not evolve afterwards. We adopt a dynamic weighted networks (see for
ex. Barrat, Barthelemy and Vespignani (2004)) in which the weights may
change after the edge has been introduced in the network. In particular, the
weight associated to a link wij is updated whenever a new edge is attached
either to node i or j. In this way the neighbor’s of the nodes chosen by the
new idea also benefit from its success as their strengths are increased. The
effect of the new links on these nodes may however depend on the property
of the nodes. A node i is assumed to be affected with a coupling δi by
the addition of the new edge. Clearly, how the δi is then distributed across
the edges matters. It seems natural to assume that the effect of the shock
δi is distributed across the edges connected to i according to the present
values of the edges’s weights wij . The weights are updated according to
wij → wij + δi

wij
si

. Finally all the relevant nodes strength’s are updated.

The topology of the network depends on the underlying distribution
from which δi is drawn. There are three obvious candidates. The δi’s may
be independent of the chosen node i, they may be extracted from a uniform
distribution or depend on the strength of the node. More precisely.

Assumption 2 Let w0 > 0 be the common value of the edges weights when
they are added to the network. Let the weights be updated according to
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wij → wij + δi
wij
si

where δi is the coupling or shock. The following cases
are considered:

1. The coupling is independent of the node, δi = δ for all i.

2. The coupling depends on the strength of the node according to the ex-
pression

δi = δ
[

s0 tanh
(

si

s0

)]a

where δ, s0 and a are parameters.

3. The coupling δi is drawn from a uniform distribution on some closed
interval [a, b]

Finally, following Dorogovtsev and Mendes (2000) we introduce aging.

Assumption 3 Aging follows a power law of the type τ−ν where τi = t− ti
is the age of node i, ti the date of birth of node i and ν a tunable parameter
such that ν < 1.

Remark. If aging is exponential, i.e. of the type e−τν , then the power
law distribution is lost (see Zhu, Wang and Zhu (2003) and Xu, Wu and
Wang (2005))

We can now state the main result of this section.

Lemma 1 Suppose that Assumption 1 and Assumption 3 hold.

• If Assumption 2.1 or Assumption 2.2 hold then the resulting distribu-
tion of strength follows asymptotically a power law of the form

P (s) ∝ s−ξ

• If Assumption 2.3 holds then the resulting distribution of strength fol-
lows asymptotically a corrected power law of the form

arabas(s) ∝ s−ξ

log(s)

where ξ depends also on the support of the distribution of δi.
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Sketch of Proof: A dynamic weighted network is analyzed in Barrat,
Barthelemy and Vespignani (2004). Their results need to be extended in two
directions. Aging as formalized in Assumption 3 is analyzed in Dorogovtsev
and Mendes (2000) for a model without weights. They obtain a power law
with an exponent depending on ν. Inspection of the proofs allows to conclude
that the result still holds here. Second, in the present model the time interval
between two successive births is shrinking because of the strictly positive
growth rate of new ideas. Indeed, the number of vertices born in a unit
interval of time depends on the stock of vertices so that the length of the
time interval lt between the birth of two vertices is inversely proportional
to the number of vertices, i.e. lt ∼ 1/Nt. However, this does not affect
the proofs as the only relevant assumption is that the growth is linear in
the sense that both the number of nodes and the number of edges grow in
parallel (see Dorogovtsev and Mendes (2002)). Q.E.D.

Remark: An extension to affine attachment functions πi ∼ A + Bsi is
possible. Indeed, Dorogovtsev, Mendes and Samukhin (2000) and Albert
and Barabasi (2001) extended Barabasi and Albert (1999) to arbitrary A
and B.

Remark : The number of new links m affects P (k) in a separable mul-
tiplicative way while it does not affect the exponent ξ. Furthermore, it has
been shown that A affects continuously the power exponent ξ.

Finally when the attachment function is not an affine function of k the
network behaves completely differently. In this case the topology depends
on whether η is larger or smaller than one. If η < 1 the distribution is
a stretched exponential while if η > 1 the number of nodes with a given
(or larger) number of edges is finite even when the network grows without
bounds. The result is made precise in the following lemma.

Lemma 2 Let the attachment function be non-linear in the number of edges
π(k) ∼ A + Bkη, with η 6= 1. If η < 1 then the proportion P (k) of nodes
with k edges follows a stretched exponential, i.e. P (k) = C

kα

∏k
j=1(1 + C

jα )−1

with 0 < C ≤ 2. If η > 1 a gelation-like pattern in which a single node
links to nearly all other nodes is obtained. If η > l/(l − 1) a winner-takes-
all node appear in which all remaining ideas have only one edge while for
(l +1)/l < η < l/(l−1) the number of nodes with more than l edges is finite
and the number of nodes with k ≤ l edges follows Nk ∼ tk−(k−1)η.
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Proof : See Krapivisky, Redner and Leyvraz (2000). Q.E.D.

We will see in Section 5 that, within our framework, a strength distribu-
tion within the basin of attraction of the Frechet distribution is a necessary
condition to obtain an aggregate Cobb-Douglas production function. The
necessary and sufficient conditions for this to happen are not met by the
stretched exponential obtained with a sublinear attachment function, i.e.
η < 1. On the other hand, the gelation pattern obtained for η > 1 implies
that the economy stops to grow as the probability of finding ideas with
higher and higher productivity decreases with t. This is a situation in which
new ideas increase the productivity of a takes-all old idea, like the wheel
used over and over again.

4 From ideas to innovations

In the present model the stock of available ideas increases at least exponen-
tially and faster than the population growth rate. However, not all ideas
become innovations. By innovation we mean the realization of an idea.
There are two issues, one concerning the quantity of innovations and the
other the quality. The first issue is to individuate the determinants of the
level of production of innovations and the second issue is to characterize
the subset of ideas that are transformed into innovations. Clearly one ex-
pects that both the size of the pool of new ideas and the available resources
matter in determining the number of innovations produced. For example it
can be assumed that total resources increase the chances an idea has to be
successfully transformed into an innovation, similarly to the assumption in
Weitzman (1998) that the rate of transformation is a function of the per-idea
resource. On the other hand, the role of the stock of ideas is expected to be
small when the number of ideas is very large and the number of innovations
may rather be determined by resources alone, i.e. the number of innovations
is directly related to aggregated output and not to the stock or the flow of
ideas.

To be more specific, let ∆nt be the number of innovations produced at
time t. We assume a constant returns production function of the form

∆nt = H(Kn
t , Nt) = σKnθ

t N1−θ
t = σNt

(

Kn
t

Nt

)θ
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where Kn
t is the amount of capital used in the R & D sector, Nt the number

of ideas available in period t, σ is positive real constant and 0 ≤ θ ≤ 1.
In particular we will focus on the two polar cases θ = 0 and θ = 1, i.e.
∆nt = σ and ∆nt = σkt with kt being the per-idea resources. In the former
configuration, σ can be interpreted as the fact that the probability that an
idea decays into an innovation is constant. In a more general framework H
may change through time. However, these changes are of second order in
the determination of the growth rate of output. As noted before we could
also assume that only new ideas can be realized as an innovation. Finally,
we could assume that the production of innovations does not require any
specific investment and in which case Kn

t would represent the overall capital.
These alternative specifications would not change the results while making
the model less appealing.

Regarding the second issue, one simple approach is to assume that the
process is blind and that the intrinsic properties of the ideas do not affect
their probability of being transformed into innovations. The assumption
that the transformation of ideas into innovations depends on the aggregate
performance of the economy and not on some intrinsic property of the ideas
themselves is not unusual. For example, Jones (2005) assumes that ideas
are drawn from a Pareto distribution and that the productivity is related
to the value of the parameter that is realized by the drawn. The economic
rationale being that the innovator does not know the quality of the idea
before this is realized into an innovation.

In a more sophisticated model, the probability of decay may depend on
the connectivity or the strength of the idea. This would allow to take into
account that successful and young ideas have a higher success to be used by
the innovator5. Provided the distribution of the strengths of the nodes is
stationary the expression ∆nt = H(Kt, Nt) would remain unaffected. The
strength distributions of ideas and of innovations would still be generalized
power laws but would differ. If the probability follows a power function then
the distribution of innovations also follows a power law.

The productivity of an innovation is assumed to be given by the strength
of the parent idea. This quantity is obtained by summing the weighted edges
between the idea and its immediate neighbors. Considering how the weights
are constructed (see the previous section) the strength of the idea primarily

5Another way to model aging would be to assume that only new ideas can become
innovations.
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reflects the success of the parent idea as a generator of new ideas and these
links are weighted by their importance. However, the strength also reflects
the realizations of the shock δi and therefore reflects the productivity of the
innovation associated to the idea or to some of its neighbors. Finally it also
captures the existence of externalities across ideas: if two ideas are related
they both benefit from this it. Note that the connectivity of a given idea
grows with time as the number of links increases and this even when the
network is in scale-free configuration. However, aging affects the strength
of the nodes a reduces the appeal of an old node with a high connectivity.
This mimics the fact that innovations are most likely to be obtained from
slightly older ideas and these are also the most productive. In some sense,
there is a time lag between a smart idea is produced and its most productive
realization.

A production processes, or recipe, is a multidimensional object. A pro-
duction process uses q physical inputs. We assume that productivity enters a
standard production function as an input augmenting progress. Indeed, this
type of progress leads to a balanced growth path (see for ex. Jones (2005)).
In general a recipe is characterized by q innovations and its productivity
is given by a vector of q scalars. Without too much loss of generality we
assume that there are only two physical inputs, so q = 2.

5 From innovations to the production possibility
frontier

We adopt the strategy of Jones (2005) to find the PPF. The global frontier is
obtained by computing the maximal output obtainable from the given set of
inputs. Before performing this maximum, it is then necessary to define the
punctual production function associated to a given recipe i. We assume that
this production function is Leontief but any other function with a sufficiently
low degree of substitution would work. We assume the following.

Assumption 4 The output using a recipe i is produced by a Leontief pro-
duction function Yi = min[biK, aiL]. The parameters ai and bi are given by
the strengths of the two-dimensional idea i evaluated along the two indepen-
dent dimensions “capital” and “labor”.
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According to Lemma 1, Assumption 4 implies that the parameters ai
and bi are blindly extracted from two generalized power laws. As noted
before we could as well assume that they are extracted according to a draw
depending on the strength or visibility of the idea. Formally,

P [ai ≤ a] = 1− 1
log( a

γa
)
(

a
γa

)−α, a ≥ γa > 0

P [bi ≤ b] = 1− 1
log( b

γb
)
(

b
γb

)−β, b ≥ γb > 0

where α > 1 and β > 1. The value of the power exponent α and β depend on
the form of the attachment function and the other parameters of the model
(note however that the attachment function need to be linear or affine in
order to obtain a scale-free distribution). The value of γa and γb are related
to the number of links a new idea establishes (or uses). The fact that the
two laws are not identical is motivated by empirical evidence across sectors.
As we adopt Leontief production functions, the distribution over output is
obtained from the joint distribution over a and b

P [ai > a, bi > b] = (
a
γa

)−α(
b
γb

)−β 1
log( a

γa
)

1
log( b

γb
)

In other words,

P (Yi > y) = P [aiL > y, biK > y]

= (
y
L

)−α(
y
K

)−β 1
log( y

L)
1

log( y
K )

(γaγb)α+β 1
log(γa)

1
log(γb)

giving

P (Yi > y) = γKβLαy−(α+β) 1
log(y)− log(L)

1
log(y)− log(K)

with γ = γaγb.

Let nt be the stock of innovations available in period t. At this stage we
may consider that innovations are durable or that they last for one period
only. Indeed, since the network is assumed to be in a stationary configuration
extracting all the nt innovations in time t and supposing they live only
one period or extracting only a part of the nt in period t but assume that
innovations are durable makes no difference.
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The aggregated production function is obtained from the nt innovations:

F (Kt, Lt, nt) = max
i=1,...,nt

F (biKt, aiLt)

As the draws are independent, provided the distribution of ideas is sta-
tionary, i.e. the network has already reached its asymptotic configuration,
the distribution of the global production function satisfies

Pr(Y ≤ y) = Πi=1,...,ntP (Yi ≤ y) = (1− P (Yi > y))nt

Pr(Y ≤ y) = (1− γKβLαy−(α+β) 1
log(y)− log(L)

1
log(y)− log(K)

)nt

We are interested in the limit as nt → ∞. This is obtained from the
theory of extremal value. In fact the distribution F (y) = P (Yi ≤ y) is
in the domain of attraction of the Frechet distribution. The necessary and
sufficient conditions for this to be true are well known (see Galambos (1987))
In particular, there should be a φ such that for all c

lim
y→∞

1− F (y)
1− F (cy)

= cφ

In the present model the distribution is

1− F (y) = γKβLαy−γ 1
log(y)− log(L)

1
log(y)− log(K)

so that for given (K,L) we have

lim
y→∞

1− F (y)
1− F (cy)

= lim
y→∞

y−γ 1
log(y)−log(L)

1
log(y)−log(K)

(cy)−γ 1
log(cy)−log(L)

1
log(cy)−log(K)

= cγ lim
y→∞

log(cy)
log(y)

log(cy)
log(y)

= cγ lim
y→∞

(

log(c) + log(y)
log(y)

)2

= cγ

As F (y) = P (Yi ≤ y) is in the domain of attraction of the Frechet distribu-
tion we obtain the following result.
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Lemma 3 As the number of innovations becomes large, nt →∞,

Yt ≈ (γKβ
t Lα

t nt)
1

α+β εt

where εt follows a Frechet distribution of parameter α + β and unit mean.

Remark: Note that the number of draws ni is strictly speaking a ran-
dom variable because of its dependence on output. However, the results can
be extended (see Proposition 3.2 in Kortum (1997)).

According to Lemma 3 the technology is on average Cobb-Douglas with
a capital share of β

α+β . The parameter α and β depend explicitly on the
exponents of the distributions of ideas related to the use of capital and labor.
As noticed by Jones (2005) the easiest is to find ideas the smallest is the
exponent associated to capital in the aggregate production function.

6 The balanced growth path

We consider the standard one sector growth model with constant saving
rate s and depreciation δ. The saving rate s and the associated investment
rates includes several exogenously determined components, particularly the
investment in the R & D sector. The capital accumulation equation reads

Kt+1 = (1− δ)Kt + sYt

with δ, s ∈ (0, 1). According to the previous section, Yt ≈ (γKβ
t Lα

t nt)
1

α+β εt
where the number of available innovations nt is the result of present and
past innovative effort. Formally, nt = n0 +

∑t
s=1 ∆ns or alternatively nt =

nt−1 + ∆nt. This formulation implies that in general the stock of (durable)
innovations depend on the whole history. Such property is important when
considering the transition dynamics and the stability properties of the b.g.p.
However, it can be ignored when the focus is on the b.g.p. itself. Indeed,
the capital accumulation equation stated above shows that along a balanced
growth path, the growth rate of total output and of capital are equal and
set to be a constant σY .

As the number of ideas Nt grows exponentially at a rate σN the adopted
formulation

∆nt = σKθ
t N1−θ

t
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implies that ∆nt grows at a constant rate given by

∆nt+1

∆nt
=

Kθ
t+1

Kθ
t

N1−θ
t+1

N1−θ
t

= (1 + σY )θ(1 + σN )1−θ

In the two polar cases θ = 0 and θ = 1, ∆nt grows either at the rate of Nt
or at the rate of Kt, i.e. σN or σY . Independently of θ, the growth rate of
the stock of innovations nt is constant and noted σn. If nt = (1 + σn)tn0
then ∆nt = nt − nt−1 = (1 + σn)tn0− (1 + σn)t−1n0 = (1 + σn)t−1n0σn so
that ∆nt grows at the constant growth rate σn.

The nest result states that a balanced growth path exists and that this
is independent of the value of β.

Proposition 1 Assume that Assumption 1 to Assumption 4 hold. Then
a non-trivial balanced growth path exists and Exp[Yt+1

Yt
] = 1 + σY = (1 +

µ)
α

α−θ (1 + σN )
1−θ
α−θ . In particular for θ = 0 we obtain Exp[Yt+1

Yt
] = (1 +

µ)(1 + σN )
1
α while for θ = 1, Exp[Yt+1

Yt
] = (1 + µ)

α
α−1 . Furthermore along

the b.g.p. the average growth rate of innovations is constant and given by
1 + σn = (1 + µ)

αθ
α−θ (1 + σN )α 1−θ

α−θ

Proof: See Appendix. Q.E.D.

Remark: Note that the labor force that participate to the production of
output is assumed to be the entire population. Of course, this implies that
fluctuations in employment are disregarded and that the decomposition of
the labor force in the production of the physical good and in research is
not modelled. However, considering the size of the labor force which is
historically devoted to research and the fact that a significant part of creation
is a side product of the process of production of the physical good this
simplification is not too restrictive.

As noted before, Lemma 2 shows that the network is in a scale-free con-
figuration only if attachment is an affine function of the number of edges.
A corollary is that typically in this case a b.g.p. does not exist if the at-
tachment function has a higher term. How the economy behaves when the
attachment function is not an affine function is the scope of the next para-
graphs. To be done.
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7 Stability of the balanced growth path

In the previous section we have seen that a b.g.p. exists provided nt+1
nt

is constant along the b.g.p. According to the “Samuelson principle”, the
balanced growth path characterizes the long-run behavior of the economy
provided it is dynamically stable. In the present framework stability has to
be defined carefully. Indeed, in a given period output depends on capital,
labor and the stock of available innovations. However, as these are durable
the stock of innovations depends on the entire history of present and past
innovative effort. In such a contest, local stability of the b.g.p. is naturally
defined by considering the effect of deviations from the b.g.p. only in present
innovative effort. This means that the sequence (nt)

t−1
t=0 is given and only

deviations in
∆nt = σKθ

t N1−θ
t

are considered. We will then only consider the direct and indirect effects of
deviations in capital assuming that Nt is unaffected. First, assume that the
rate of transformation of ideas into innovations is independent of capital, i.e.
θ = 0. The growth rate of innovations is then σN even during the shock on
capital. The path of innovations is not affected by the status of the economy.
Then the sequence of innovations is given and the model has exactly the
usual properties of the Solow model with exogenous technological progress
and Cobb-Douglas production function. The b.g.p. is then asymptotically
stable.

In the general case θ 6= 0 the analysis is more difficult. The equation
governing capital accumulation is

Kt+1 = (1− δ)Kt + sYt

= (1− δ)Kt + s(γKβ
t Lα

t nt)
1

α+β

= (1− δ)Kt + s{γKβ
t Lα

t ((1 + σn)t−1n0 + σKθ
t N1−θ

t )}
1

α+β

where Lt = (1 + µ)tL0 and Nt = (1 + σN )tN0. In order to analyze the
dynamical system in a neighborhood of the b.g.p. capital Kt needs to be
normalized by [(1 + σn)tn0]

1
α Lt. The following result holds.

Proposition 2 In the case of Proposition 1, the b.g.p. is unique and dy-
namically stable

Proof: See Appendix. Q.E.D.
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8 Comparison with the data

The data on the research effort (as for example summarized by Kortum
(1997)) is characterized by a strong expansion of the research sector over
the past forty years. On the other hand, the number of patents is relatively
constant over this period. It seems then increasingly harder to come up
with relevant innovations while these are increasingly more productive. It
can be expected that patenting of an innovation occurs when there is some
indication that it brings a sufficiently large increase in productivity. In our
model patenting would occur after ideas are transformed into innovations.
The innovations that do not improve over past innovations would not be
patented. Consequently, the adopted framework does not contradicts the
evidence.

The model predicts that the distribution of “productivity parameters”
follows a stationary generalized power law when the networks has reached its
asymptotic configuration. Direct evidence is not available but several studies
suggests that productivity behaves roughly that way. For example, patent
citations follows a power law (Leiva Bertran (2003)). Similarly to Jones
(2005) the choice of the parameters value is however somewhat problematic.
Indeed, β

α+β need to match the empirical values of the income shares so that
β

α+β ∈ [0.3, 0.7] . On the other hand, most of the cited indirect evidence on
power laws indicates exponents in the range ξ ∈ [0.5, 1.5]. Does it means
that α, β need to be taken in the range implied by the previous two intervals?
Jones (2005) takes α and β in the interval [2.5, 5] because lower values would
produce excessive macroeconomic jumps when new technologies are adopted.
The issue of compatibility in the values of the exponents in the power laws
could probably be resolved if more sectors would be considered.

9 Relation with the literature

The philosophy of the present paper on how technological progress occurs is
related to Weitzman (1998), Auerswald, Kauffman, Lobo and Shell (2000)
and Olsson (2000) and Olso on (2005)6 . In Weiztman’s world, progress is due
to hybridizations of past innovations. In his terminology an innovation is

6See also Peretto and Smulders (2002)
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a “cultivar”. New cultivars arise from m-at-a-time combinations of unused
cultivars. However, not all combinations succeed in becoming a cultivar, the
rate of success π being typically a function of the amount of resources per
combination devoted to this activity. The stock of cultivars (innovations)
constitutes the available knowledge. Productivity is given by the number
of cultivars. Finally the production function for physical output is constant
returns in knowledge and physical capital.

The approach followed in this paper differs in a number of aspects. First,
in the model new ideas arise from combinations of past ideas even unused,
not of innovations, or cultivars, as in Weitzman. The evolution of knowledge
depends on how parent ideas are selected and not on how these are trans-
formed into innovations. A second difference is that in the present model
the productivity of an innovation is endogenous and evolves with the success
of the parent idea and the externalities across them. In Weitzman’s model
the productivity of a cultivar is a fixed quantity (that can be normalized
to unity) so that technological knowledge is only given by the number of
cultivars or innovations. Finally, in our model there are two standard fac-
tors of production, capital and labor. Nothing is assumed on the production
function at the aggregated level except that this function is obtained as the
result of a large number of individual production processes, each correspond-
ing to a given innovation. These innovations enter the individual production
functions as labor and capital enhancing factors. In Weitzman, the factors
are capital and knowledge and the function is assumed to be constant re-
turns to scale in these two factors. Finally, in Weitzman’s model a balanced
growth path is obtained provided the real cost of producing an innovation is
strictly positive, even in the limit when the pool of existing ideas is infinite.
In our model, the existence of a b.g.p. is, at least within the assumptions,
endogenously produced by the network.

Our model is also related to Auerswald, Kauffman, Lobo and Shell
(2000). Their model is not intended to explain economic growth as their
main application is a microeconomic model for shop-floor learning curves.
In their paper a production plan is described by an input-output specifica-
tion together with the recipe employed. The recipe is described by vector
of production operations. The model is given more structure by describing
how one recipe is related to another one. It is assumed that the distance
between two recipes is given by the number of operations that has to be
changed. Given this topology, the model tells which of the technologies are
likely to be uncovered by shop-floor operations. New recipes are discovered
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by trials. Finally there is a single input, the production function being with
constant returns. The efficiency of a recipe typically depends additively on
the efficiency of each operation and on the properties of the neighbors, re-
flecting the existence of externalities. On the other hand, in absence of prior
knowledge, the efficiency of an operation is a random variable with uniform
distribution. The model is able to explain the shape of the empirical learning
curves.

The similarities between Auerswald, Kauffman, Lobo and Shell (2000)
and the present paper are insightful. The most significant is the existence
of externalities across recipes. Furthermore, trials in Auerswald, Kauffman,
Lobo and Shell (2000) can be interpreted as draws on an existing distribu-
tion of uncovered recipes. In the present paper, the draws transform ideas
into innovations in a way which is somewhat similar to the uncovering by
trial occurring in Auerswald et al. (2000). However, here the network is
actually expanding so the underlying space is also expanding. Another im-
portant distinction is that in Auerswald, Kauffman, Lobo and Shell (2000)
the distance between two recipes matters in the sense that the closest ones
have more chances of being uncovered. Distances between ideas could also
be defined in the present framework by taking into account the minimum
number of edges separating two ideas. This is not what we do and such
a distance would not affect the “cost” of discovery. Instead, the “easiest”
ideas to find are those issued from successful parents.

The present paper is also related to Olsson (2000) and Olsson (2005).
In Olsson’s view, ideas are elements of the positive orthant of a Euclidean
space. The available knowledge is then a subset of the positive orthant which
defines a technological frontier. Incremental progress, or normal science,
consists in convexifying the set of available knowledge. Reformulated in our
framework, normal science would consist in adding new nodes in a way to
relate any two existing nodes. In our framework, the technological frontier is
stochastic and it is related to the strengths of the ideas in each fundamental
direction. The two models are then fairly different.

10 Conclusion

One of the most mysterious fact of economic development is the apparent
constancy of the growth rate of US GDP over a long period of time. We
propose a model of economic growth in which technological progress is mod-
elled as an expanding random network of ideas. New ideas are created by
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combining successful old ideas. Old ideas are chosen according to their visi-
bility as ideas, success as generators of innovations and age but the process
is stochastic. Within this framework, we isolate the conditions on the law
governing the growth of the network compatible with balanced growth.

The paper helps identifying the conditions on the law governing the
growth of the network compatible with balanced growth. Two features of
the model are critical to obtain the results. First, independently of the level
of complexity of the ideas, these are produced on average by a combinations
of m ideas, with m a constant. This assumption captures the physiological
limitations of the brain. Second, successful ideas are more likely to be used
in the combinations to produce new ideas and the relation is linear. These
assumptions reflect the psychological attitude to focus attention on more
visible objects. An idea can be visible both as a prolific generator of new
ideas or a generator of high productivity innovations. Although no direct
evidence is available, the assumptions seem not unreasonable at least as
a first approximation. These conditions shed some light on how economic
knowledge is acquired and on the constraints the human brain faces in the
production of new ideas.
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In order to explicitly find the balanced growth path it is useful to normalize

the variables at time t by n
1
α
t Lt. Then

yt =
Yt

Ltn
1
α
t

= (γKβ
t Lα

t nt
1

Lα+β
t n

α+β
α

t

)
1

α+β εt = (λKβ
t Lα

t
1

Lα+β
t n

β
α
t

)
1

α+β εt

= (γ
Kβ

t

Lβ
t n

β
α
t

)
1

α+β εt = (γkβ
t )

1
α+β εt = f(kt)εt

where
f(k) = (γkβ)

1
α+β

Taking averages, the capital accumulation equation in normalized variables
becomes

(1 + µ)(
nt+1

nt
)

1
α kt+1 = s(γkβ

t )
1

α+β + (1− δ)kt

Note that here nt is variable and implicitly depends on the whole past his-
tory. First, note that taking averages

Yt+1

Yt
=

(γKβ
t+1L

α
t+1nt+1)

1
α+β

(γKβ
t Lα

t nt)
1

α+β

=

(

(

Kt+1

Kt

)β (

Lt+1

Lt

)α nt+1

nt

) 1
α+β

On the other hand from Kt+1 = (1 − δ)Kt + sYt it follows that along the
b.g.p. 1 + σK = 1 + σY . Consequently,

1 + σY = [(1 + σK)β(1 + µ)α(1 + σn)]
1

α+β

giving
1 + σY = (1 + µ)(1 + σn)

1
α

Furthermore, we have seen that

∆nt = σKθ
t N1−θ

t

implies that

∆nt+1

∆nt
=

Kθ
t+1

Kθ
t

N1−θ
t+1

N1−θ
t

= (1 + σY )θ(1 + σN )1−θ

As ∆nt = nt − nt−1 = (1 + σn)tn0− (1 + σn)t−1n0 = (1 + σn)t−1n0σn we
obtain that
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1 + σn = (1 + σY )θ(1 + σN )1−θ

Then
1 + σY = (1 + µ)[(1 + σY )θ(1 + σN )1−θ]

1
α

Collecting the terms with σY we get the stated result. The value of the
growth rate of innovations is obtained from

(1 + µ)
α

α−θ (1 + σN )
1−θ
α−θ = 1 + σY = (1 + µ)(1 + σn)

1
α

which gives
(1 + µ)

θ
α−θ (1 + σN )

1−θ
α−θ = (1 + σn)

1
α

A b.g.p. exists. Indeed, the normalized capital accumulation equation ad-
mits as a solution

k = [
(1 + µ)(1 + σn)

1
α − (1− δ)

sγ
1

α+β

]−
α+β

α

or

k = [
(1 + µ)

α
α−θ (1 + σN )

1−θ
α−θ )− (1− δ)

sγ
1

α+β

]−
α+β

α

12.2 Proof of Proposition 2

The equation governing capital accumulation can be written as

Kt+1
1

[(1 + σn)t+1n0]
1
α Lt+1

[(1 + σn)t+1n0]
1
α Lt+1

(1 + σn)tn0]
1
α Lt

=
1

[(1 + σn)tn0]
1
α Lt

[(1− δ)Kt + s{γKβ
t Lα

t ((1 + σn)t−1n0 + σKθ
t N1−θ

t )}
1

α+β ]

=
(1− δ)Kt

[(1 + σn)tn0]
1
α Lt

+ s[
γKβ

t Lα
t ((1 + σn)t−1n0 + σKθ

t N1−θ
t )

[(1 + σn)tn0]1+ β
α Lα+β

t

]
1

α+β

In normalized variables we get

(1 + µ)(1 + σn)
1
α kt+1 = (1− δ)kt + s(γ

(1 + σn)t−1n0 + σKθ
t N1−θ

t

(1 + σn)tn0
kβ

t )
1

α+β
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The second term in r.h.s. can be written in terms of kt only. Indeed,

s(γ[
1

(1 + σn)n0
+ σ

Kθ
t N1−θ

t

((1 + σn)tn0)
1
α ((1 + σn)tn0)1−

1
α

]kβ
t )

1
α+β

= s(γ[
1

(1 + σn)n0
+ σ(

Kt

((1 + σn)tn0)
1
α

)θ(
Nt

((1 + σn)tn0)
1
α+ α−1

α(1−θ)

)1−θ]kβ
t )

1
α+β

= s(γ[
1

(1 + σn)n0
+ σkt

θLθ
t (

(1 + σN )tN0

(1 + σn)tn0)
1
α+ α−1

α(1−θ)

)1−θ]kβ
t )

1
α+β

= s(γ[
1

(1 + σn)n0
+ σkt

θ(L0(1 + µ)t)θ({ 1 + σN

(1 + σn)
1
α+ α−1

α(1−θ)

}t N0

n0
1
α+ α−1

α(1−θ)

)1−θ]kβ
t )

1
α+β

However,

(1 + σN )(1 + µ)

(1 + σn)
1
α+ α−1

α(1−θ)

=
(1 + σN )(1 + µ)

(1 + σn)
1−θ+α−1

α(1−θ)

=
(1 + σN )(1 + µ)

(1 + σn)
α−θ

α(1−θ)

= 1

Indeed, using the expression

((1 + µ)(1 + σn)
1
α )θ(1 + σN )1−θ ≡ 1 + σn

we get
(1 + µ)θ(1 + σN )1−θ = (1 + σn)1−

θ
α

giving

1 + σN = [(1 + σn)1−
θ
α (1 + µ)−θ]

1
1−θ = (1 + σn)

α−θ
α(1−θ) (1 + µ)

−θ
1−θ

Finally we get

(1 + µ)(1 + σn)
1
α kt+1 = (1− δ)kt + s(γ[

1
(1 + σn)n0

+ σkθ
t
N1−θ

0 Lθ
0

n0
1− θ

α

]kβ
t )

1
α+β

Along the b.g.p. this equation becomes

(1 + µ)(1 + σn)
1
α k = s(γkβ)

1
α+β + (1− δ)k

with
1 + σn = (1 + µ)

αθ
α−θ (1 + σN )α 1−θ

α−θ
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The solution is unique. Stability is then obtained because the slope of the
“dynamical curve” is larger than one at the origin. Indeed, computing the
derivative in respect to kt evaluated along the b.g.p. we get

(1− δ) + s
1

α + β
γ

1
α+β

(

[
1

(1 + σn)n0
+ σkθ N1−θ

0 Lθ
0

n0
1− θ

α

]kβ

) 1
α+β−1

×

(

β
(1 + σn)n0

kβ−1 + σ(β + θ)
N1−θ

0 Lθ
0

n0
1− θ

α

kβ+θ−1

)

Letting k → 0 this expression tend to +∞ showing that the slope is +∞.
The b.g.p. is then asymptotically stable.
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