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Abstract

This paper considers the issue of bootstrap resampling in panel datasets. The
availability of datasets with large temporal and cross sectional dimensions suggests
the possibility of new resampling schemes. We suggest one possibility which has not
been widely explored in the literature. It amounts to constructing bootstrap samples by
resampling whole cross sectional units with replacement. In cases where the data do not
exhibit cross sectional dependence but exhibit temporal dependence, such a resampling
scheme is of great interest as it allows the application of i.i.d. bootstrap resampling
rather than block bootstrap resampling. It is well known that the former enables
superior approximation to distributions of statistics compared to the latter. We prove
that the bootstrap based on cross sectional resampling provides asymptotic refinements.
A Monte Carlo study illustrates the superior properties of the new resampling scheme
compared to the block bootstrap.
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1 Introduction

Panel datasets have been increasingly used in economics to analyse complex economic phe-

nomena. One of the attractions of panel datasets is the ability to use an extended dataset to

obtain information about parameters of interest which are assumed to have common values

across panel units. The existing literature on panel data is huge and rapidly expanding.

Good but inevitably somewhat partial reviews may be found, among others, in Baltagi

(2001) and Hsiao (2003). Traditionally, panel analysis focussed on datasets with large cross

sectional dimension (N) and smaller time series dimension (T ). But more recently, and with

the emergence of rich datasets both in N and T , focus rests on the theoretical analysis of
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large N - T datasets.

Inference in panel datasets has mainly used asymptotic approximations for the construc-

tion of test statistics and estimation of variances of estimators. The use of the bootstrap

as an alternative to such asymptotic approximations has been considered but its properties

have not received the same amount of attention as in the time series literature. Here, we need

to note the well known fact that bootstrap methods can provide better approximations to

the exact distributions of various statistics compared to asymptotic approximations leading

to the conclusion that the analysis of the bootstrap for panel data merits further attention.

This property of the bootstrap is well documented in the literature (see, e.g., Hall (1992),

for independent data or Lahiri (2003), for weakly dependent data) The consideration of the

bootstrap for panel data has mainly focussed on resampling in the time dimension extending

the work on the bootstrap in time series. Resampling in the cross sectional dimension has

received less attention and, in particular no rigorous treatment of such resampling for large

N - T panel datasets seems to be currently available in the econometric literature.

This paper aims to provide an initial treatment of the bootstrap when resampling occurs

either in the cross sectional dimension or more generally in both cross sectional and time

series dimensions. In a nutshell, cross sectional resampling consists of resampling cross sec-

tional units as wholes rather than resampling within the units across the time dimension.

The motivation for such resampling is clear when N is large compared to T . In particular,

it is the only kind of resampling that will provide asymptotically valid bootstrap procedures

when N increases but T remains fixed. Nevertheless, this is not very interesting as treatment

of this case bears analogies to the treatment of the bootstrap for multivariate time series

with N and T transposed.

The analysis becomes more interesting when both N and T are large. There, cross sec-

tional resampling is an alternative to time series resampling. Both are asymptotically valid.

The paper will discuss the asymptotic validity of cross sectional resampling in this context.

The question of what sort of resampling to use becomes more interesting when dependence is

considered. Allowing for temporal dependence in panel data is of course essential in the large

N -T context. On the other hand, the analysis of cross sectional dependence is much less de-

veloped and assuming no such dependence is quite common in the literature. This is crucial

for the bootstrap. Dependent data cannot be resampled in the same way as independent

data and methods such as the block bootstrap need to be employed. Furthermore, the use of
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the block bootstrap or its variants has been shown to provide less accurate approximations

that the bootstrap in i.i.d. context as discussed in, e.g., Lahiri (2003) or Andrews (2002).

We show that if there exists temporal dependence but no cross sectional dependence then

cross sectional resampling can be more accurate than temporal resampling.

The structure of the paper is as follows: Section 2 provides a discussion of cross sectional

resampling. Section 3 provides theoretical results for the bootstrap based on cross sectional

resampling for a particular estimator. Section 4 presents a Monte Carlo analysis of the new

bootstrap procedure. Finally, Section 5 concludes.

2 The Bootstrap for Panel Datasets

In this section we discuss various possibilities for bootstrap resampling schemes that can

be applied in large N - T panel datasets. In order to do this we introduce a general panel

model. This is given by

yi,t = z′tai + x′i,tβ + εi,t, i = 1, . . . , N ; t = 1, . . . , T (1)

The focus of attention is inference on the vector β. zt is a vector of variables that enter all

cross sectional units. In many applications it will contain deterministic terms such as a con-

stant or a trend. xi,t = (x1,i,t, . . . , xk,i,t)
′ contains explanatory variables that are particular

to a given cross-sectional unit. We will regulate the behaviour of the explanatory variables,

the coefficients and the error term, εi,t via appropriate assumptions in the next section, but

keep the discussion heuristic at this stage to concentrate on the intuition.

We assume the existence of an estimator β̂ for β which is consistent and, suitably nor-

malised, asymptotically normal. The exact nature of the estimator will depend on the

assumptions made about (1). Define Y = (y1, . . . , yi, . . . , yN) = (y1, . . . , yt . . . , yT )′, Xj =

(xj,1, . . . , xj,i, . . . , xj,N) = (xj,1, . . . , xj,t . . . , xj,T )′, ε = (ε1, . . . , εi . . . , εN) = (ε1, . . . , εt . . . , εT )′

Z = (z1, . . . , zT )′, yi = (yi,1, . . . , yi,T )′, yt = (y1,t, . . . , yN,t)
′, xj,i = (xj,i,1, . . . , xj,i,T )′,

xj,t = (xj,1,t, . . . , xj,N,t)
′, εi = (εi,1, . . . , εi,T )′ and εt = (ε1,t, . . . , εN,t)

′. We first consider a

‘fixed effects’ interpretation of the model and assume the existence of consistent estimates

for each ai, denoted by âi. Define A = (a1, . . . , aN) and Â = (â1, . . . , âN)

We now consider the definition of a bootstrap sample. We distinguish between the para-

metric and the nonparametric bootstrap. There is the obvious tradeoff between the two
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depending on how realistic one considers the assumed model to be. We define the non-

parametric bootstrap sample to be given by the following set: {Y ∗, X∗
1, . . . , X

∗
k}. Likewise,

the parametric bootstrap sample is given by
{

ε∗, X∗
1, . . . , X

∗
k, Â

∗∣∣∣ β̂
}

where starred entries

have been obtained by some sort of resampling from their non-starred counterparts. We now

focus on possible resampling schemes.

Dealing first with the nonparametric bootstrap, the most common scheme for resampling

both yi,t and xi,t operates in the time dimension and consists of drawing with replacement

either individual rows, or, in the case where the data are assumed to be dependent, blocks

of contiguous rows from Y and Xj, where the block size is assumed to depend solely on and

grow with T . So, for example in the case of independent data, Y ∗ = (yt1 , . . . , ytt . . . , ytT
)′

where each element of the vector of indices (t1, . . . , tT )′ is obtained by drawing with replace-

ment from (1, . . . , T )′. The same vector of indices is used to obtain X∗
j , j = 1, . . . , k.

Cross-sectional resampling on the other hand resamples columns of Y with replace-

ment. Thus, in this case, Y ∗ = (yi1 , . . . , yii
. . . , yiN

) where each element of the vector of

indices (i1, . . . , iN)′ is obtained by drawing with replacement from (1, . . . , N)′. The same

vector of indices is used to obtain X∗
j , j = 1, . . . , k. In the case of cross sectional depen-

dence blocks of columns of Y can be randomly resampled with replacement. In this case,

Y ∗ = (yi1 , yi1+1, ..., yi1+b, . . . , yii
,yii+1, ..., yii+b, . . . , yi[N/b]

,yi[N/b]+b) where the vector of in-

dices (i1, . . . , i[N/b])
′ is obtained by drawing with replacement from (1, . . . , N − b)′ and b

denotes the block size.

Of course, a combination of the two resampling schemes is also possible. The combination

is obtained as follows: Let the temporally resampled bootstrap sample be denoted by Ỹ
∗

=

(yt1 , . . . , ytt . . . , ytT
)′ ≡ (ỹ∗1, . . . , ỹ

∗
i . . . , ỹ∗N). Then, the bootstrap sample from the combi-

nation of temporal and cross-sectional resampling is given by Y ∗ = (ỹ∗i1 , . . . , ỹ
∗
ii

. . . , ỹ∗iN )

In this case, temporal resampling occurs first followed by cross-sectional resampling. It is

equivalent to transpose the order of the two resampling operations. Block resampling is

straightforwardly defined.

In summary, formal definitions for the various resampling schemes suggested above, are

provided below.

Definition 1 (cross-sectional resampling) For a T ×N matrix of random variables Y ,

cross sectional resampling is defined as the operation of constructing a T × N∗ matrix Y ∗
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where the columns of Y ∗ are a random resample with replacement of blocks of the columns

of Y and N∗ is not necessarily equal to N .

Definition 2 (temporal resampling) For a T × N matrix of random variables Y , tem-

poral resampling is defined as the operation of constructing a T ∗ × N matrix Y ∗ where the

rows of Y ∗ are a random resample with replacement of blocks of the rows of Y and T ∗ is

not necessarily equal to T .

Definition 3 (cross-sectional/temporal resampling) For a T × N matrix of random

variables Y , cross sectional/temporal resampling is defined as the operation of constructing

a T ∗ × N∗ matrix Y ∗ where the columns and rows of Y ∗ are a random resample with

replacement of blocks of the columns and rows of Y and N∗, T ∗ are not necessarily equal to

N, T .

The parametric bootstrap can be implemented similarly with the residual matrix ε, rather

than Y being resampled together with the Xj in the manner discussed above. Then, the

estimates of the model parameters β̂ and Â are used to construct Y ∗.

Moving on to a ‘random effects’ interpretation of the panel model, we abstract from the

issue of estimating β but simply assume that some appropriate estimator has been used. Of

course, the dichotomy between the ‘random effects’ and ‘fixed effects’ interpretation is not

relevant for the nonparametric bootstrap. For the parametric bootstrap, we note that by as-

sumption ai is independent of aj, ∀j 6= i. Then, we define the residual term ε̂i,t = yi,t−x′i,tβ̂.

Note that, conditional on zt, ε̂i,t is independent of ε̂j,t ∀j 6= i. Similarly to ε, we construct

the matrix ε and simply resample from it either cross-sectionally, temporally or both.

3 Theoretical Results

In this section we provide some theoretical results for the bootstrap based on cross-sectional

resampling. We will deal with the nonparametric bootstrap. Similar treatments for the

parametric bootstrap can also be considered. The following assumptions are made:

Assumption 1 For each i the regressors, xi,t, are covariance stationary with absolutely

summable autocovariances, zero means and finite fourth-order moments and are distributed

independently of the individual-specific errors, εi,t′ , for all t and t′. The regressors are inde-

pendent across i.
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Assumption 2 The observed common effects, zt, are covariance stationary with absolute

summable autocovariances, distributed independently of the individual-specific errors, εi,t′,

for all t and t′.

Assumption 3 The slope coefficients of the individual-specific effects, βi are restricted to be

equal to a common value, β The coefficients of the observed common effects, αi, are bounded

(lie on a compact set).

Assumption 4 The individual specific error, εi,t, is distributed independently across i and

t with mean zero, variance, σ2
i , and a finite fourth-order moment, E(ε4

i,t) ≤ K.

The discussion needs for concreteness some given estimators for β. Of course, alternative

estimators could be analysed. We define the following two estimators for β which are common

in the literature (see, e.g., Pesaran (2002) and the references cited therein). First, we define

the pooled estimator given by

β̂P =

(
1

N

N∑
i=1

x′iMx

)−1 (
1

N

N∑
i=1

x′iMyi

)
(2)

where M = I −Z(Z ′Z)−1Z ′. Secondly, we define the mean group estimator

β̂MG =
1

N

N∑
i=1

βi (3)

Define

Tj = N1/2Σ̂
−1/2

jx (β̂j − β) (4)

where

Σ̂Px =

(
1

N

N∑
i=1

x′iMxi

)−1

1

N

N∑
i=1

σ̂ix
′
iMxi

(
1

N

N∑
i=1

x′iMxi

)−1

(5)

Σ̂MGx =
1

N2

N∑
i=1

(β̂MG − β)(β̂MG − β)′ (6)

and

T ∗
j = N1/2Σ̂

∗−1/2

jx (β̂
∗
j − β̂) (7)

where

Σ̂
∗
x =

(
1

N

N∑
i=1

x∗′i M ∗x∗i

)−1

1

N

N∑
i=1

σ̂∗i x
′
iMxi

(
1

N

N∑
i=1

x∗′i M ∗x∗i

)−1

(8)

Σ̂
∗
MGx =

1

N2

N∑
i=1

(β̂
∗
MG − β̂)(β̂

∗
MG − β̂)′ (9)

and j = P,MG.
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Theorem 1 Let assumptions 1-4 hold. Then, for fixed T, T ∗
j

d→ N(0, I). Further, as

T →∞ and N →∞ sequentially, T 1/2T ∗
j

d→ N(0, I).

Proof:

We deal with the pooled estimator first. Substituting the true model for y∗i,t in the

estimator gives

N1/2(β̂
∗
P − β̂) =

(
1

N

N∑
i=1

x∗′i M ∗x∗i

)−1 (
1

N1/2

N∑
i=1

x∗′i M ∗ε∗i

)
(10)

For fixed T, {x∗′i M ∗ε∗i }i is a sequence of i.i.d. random variables with expectation 0 and

variance σiE(x∗′i M ∗x∗i ) by assumptions 1, 2 and 4. Hence, by a standard central limit

theorem for i.d. random variables (see, e.g., theorem 25.2 of Davidson (1994)),
(

1

N

N∑
i=1

σ̂∗i x
∗′
i M ∗x∗i

)
1

N1/2

N∑
i=1

x∗′i M ∗ε∗i
d→ N(0, I) (11)

Hence, the result follows. If T →∞, then

(NT )1/2(β̂
∗
P − β̂) =

(
1

N

N∑
i=1

x∗′i M ∗x∗i
T

)−1 (
1

N1/2

N∑
i=1

x∗′i M ∗ε∗i
T 1/2

)
(12)

Then, by assumption 1
x∗′i M ∗x∗i

T
→ Qi (13)

where Qi is a positive definite matrix and

x∗′i M ∗ε∗i
T 1/2

d→ N(0, σ∗i Qi) (14)

again leading to the required result.

Moving on to the mean group estimator, we see that the result for fixed T is obvious. To

see this note that

β̂
∗
MG =

1

N

N∑
i=1

β∗i (15)

But β∗i is simply an i.i.d. resample from {β̂i}N
i=1. Since β̂i are i.d. random variables with

finite second moments and equal mean (by assumption 3) the result follows, noting that the

variance estimator given in (9) converges to the true variance following a standard law of

large numbers for i.d. random variables. For T → ∞,
√

T (β̂i − β) converges to a normal

distribution and hence the above argument for fixed T can be applied to a resample from

{√T (β̂i − β)}N
i=1 when T →∞ followed by N →∞. Q.E.D.
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Assumption 5 The joint distribution of {xi,t}T
t=1 and the distribution of εi,t is the same for

all i.

Assumption 6 Let uit = (x′i,t, εi,t)
′. E(||uit||)l < ∞, l < ∞

Assumption 7 Let χ(u) denote the characteristic function of uit. χ(u) satisfies Cramer’s

condition

lim sup
||u||→∞

|χ(u)| < 1 (16)

Theorem 2 Let the assumptions underlying theorem 1 hold. Assume further, assumptions

5-7. Then, the bootstrap estimate of the distribution of Tj is Op(N
−1) consistent.

Proof:

We will provide a proof for the simple case of only the constant belonging to zt and a single

x regressor. The general case of multiple z and x follows with appropriate modifications.

We first consider the fixed T case. The estimator β̂P is given by

β̂P =

(
1

N

N∑
i=1

T∑
t=1

(xi,t − x̄i)
2

)−1 (
1

N

N∑
i=1

T∑
t=1

(xi,t − x̄i)(yi,t − ȳi)

)
(17)

where x̄i = 1
T

∑T
t=1 xi,t. Substituting in the true model for yi,t gives

β̂P − β =

(
1

N

N∑
i=1

T∑
t=1

(xi,t − x̄i)
2

)−1 (
1

N

N∑
i=1

T∑
t=1

(xi,t − x̄i)εi,t

)
(18)

Denote

Xi =
T∑

t=1

(xi,t − x̄i)
2 (19)

and

Yi =
T∑

t=1

(xi,t − x̄i)εi,t (20)

and remember the definition of

Σ̂x = (
1

N

N∑
i=1

Xi)
−2(

1

N

N∑
i=1

σ2
x,i) (21)

where σ2
x,i =

∑T
t=1 σ̂2

i (xi,t − x̄i)
2. Then, the quantity whose distribution we are estimating

is easily seen to be a function of means of i.i.d. random variables, by assumption. These

random variable sequences are Xi, Yi and σ2
x,i. Their means over i are denoted by X̄i Ȳi and

σ̄2
x,i. They are i.i.d. by assumption 4. Denote the function of the means by N1/2A(Z̄), where
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Z̄ = (X̄i, Ȳi, σ̄
2
x,i). Further, denote the bootstrap equivalent of N1/2A(Z̄) by N1/2A∗(Z̄).

We then consider Edgeworth expansions for N1/2A(Z̄) and N1/2A∗(Z̄). By assumption 6,

we have that xi, t and εi,t possess moments of sufficiently high order, denoted l. It then

follows that, for fixed T, X̄i Ȳi and σ̄2
x,i possess moments of the same order. Then, under

assumptions 5-7, it follows from theorem 5.1 of Hall (1992) that

sup−∞<w<∞

∣∣∣∣∣P (N1/2A(Z̄) ≤ w)− Φ(w)−
ν∑

j=1

N−j/2qj(w)φ(w)

∣∣∣∣∣ = O(N−ν/2) (22)

and

sup−∞<w<∞

∣∣∣∣∣P
∗(N1/2A∗(Z̄) ≤ w)− Φ(w)−

ν∑
j=1

N−j/2q̂j(w)φ(w)

∣∣∣∣∣ = O(N−(ν+1)/2) (23)

where Φ(.), and φ(.) denote the standard normal distribution and density functions respec-

tively, qj(w) are polynomials of population cumulants of Xi, Yi and σ2
x,i and q̂j(w) are as

qj(w) but where the population quantities are replaced by sample ones. These are the Edge-

worth expansions corresponding to N1/2A(Z̄) and N1/2A∗(Z̄). Inverting these expansions

gives Cornish-Fisher expansions of the distribution quantiles given by

vα = zα +
ν∑

j=1

N−j/2qj1(zα) (24)

v̂α = zα +
ν∑

j=1

N−j/2q̂j1(zα) (25)

where vα and zα are the solutions of P (N1/2A(Z̄) ≤ vα) = α and Φ(zα) = α and qj1(.) and

q̂j1(.) are polynomials defined in terms of qj and q̂j(.). Since, sample moments and cumu-

lants are Op(N
−1/2) consistent estimators of population moments it follows that q̂j(w) =

qj(w) + Op(N
−1/2) and so v̂α − vα = Op(N

−1) completing the proof for fixed T .

For sequential (N, T ) asymptotics we consider a sequence where T → ∞ followed by

N → ∞. This case is much simplified since as T → ∞, 1
T
Xi and 1

T
σ2

x,i tend in probability

to constants. Further, 1√
T
Yi tends to a normal distribution which automatically satisfies

assumptions 4-6. Hence, the result follows via a similar treatment to the fixed T case.

Q.E.D.

4 Monte Carlo Study

In this section we carry out a Monte Carlo analysis of the various resampling schemes de-

scribed in Section 2. Two different models are considered. The first is given by (1). The
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Monte Carlo design for this model (Case I) is designed to satisfy the assumptions of Section

3. The second model (Case II) extends (1) by allowing εi,t to contain a common factor effect

along the lines of Pesaran (2002). In other words

εi,t = γ ′if t + εi,t

where f t is an m-dimensional weakly dependent process which satisfies the same assumption

as zt (i.e. assumption 2), εi,t has the same properties as εi,t did previously and γi can be

interpreted as either fixed bounded constants or i.i.d. random variables across i. Note that

although the factor introduces cross sectional dependence in the panel, this is not a problem

for i.i.d. cross sectional resampling. The reason for this is that the factor is basically another

zt variable which does not introduce any spatial structure to the panel. Hence, a random

i.i.d. cross sectional resample of the original sample will replicate its properties as long as

N → ∞. In order to estimate β for the model with the factors we follow Pesaran (2002)

and use the following estimators. Define

ȳt =
1

N

N∑
i=1

yi,t, x̄t =
1

N

N∑
i=1

xi,t. (26)

Let X̄ and ȳ be T×k and T×1 observation matrices on the aggregates x̄t and ȳt, respectively.

Then , β̂i for the mean group estimator is defined as

β̂i = (X ′
iM̄X i)

−1X ′
iM̄yi, (27)

where

M̄ = IT − H̄(H̄
′
H̄)−1H̄

′
, (28)

and H̄ = (Z, X̄, ȳ).The pooled estimator is defined as

β̂PC =

(
N∑

i=1

X ′
iM̄X i

)−1 N∑
i=1

X ′
iM̄yi. (29)

These estimators are proven to be consistent and asymptotically normal by Pesaran (2002).

We first provide specifications for the Monte Carlo experiments for Case I. We allow

m = 1, 3. zt and k are set to 1. We set

fs,t = ρs,ffs,t−1 + εf,s,t, s = 1, ...,m

and

xi,t = ρi,xxi,t−1 +
m∑

s=1

φi,sfs,t + +vi,t i = 1, ..., N ; s = 1, ..., m
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Let

ξit =




εi,t

vi,t

εf,i,t


 ,

ξit is generated as iid N(0, Σξi), where

Σξi = diag
(
σ2

iε, σ
2
iv, σ

2
iεf

)
.

where σ2
iεf

= 1− ρ2
if . We let ρsf = 0.5, ρix ∼ U [0.2, 0.9], φi,s ∼ U [0.5, 1.5], σ2

iε ∼ U [0.5, 1.5],

σ2
iv ∼ U [1.5, 2.5] and γi,s ∼ N(1, 0.04). The final set of parameters to be fixed is γis.

γis[k] ∼ N(1, 0.04). N, T = 50, 100, 150. 1000 replications are carried out. For Case II we

simply set φi,s = γi,s = 0. We carry out cross sectional resampling, temporal resampling

with a block structure where the block size is set to [T 1/4] as suggested by, e.g., Lahiri (2003)

or Andrews (2002), and combined cross sectional and temporal resampling. We focus on

the properties of the bootstrap variance estimator and report root mean squared errors as

performance measures of the estimators. The estimators are denoted by V N , V T and V N,T

for the cross sectional, temporal and combined cross sectional and temporal resampling, re-

spectively. Results are reported in Tables 1-4.

Results make interesting reading. Clearly, the cross sectional resampling does much better

than the temporal resampling for all cases considered apart from the case N = 50, T = 150.

This is expected as cross sectional resampling improves with N . But, the relative perfor-

mance of cross sectional resampling improves as both N and T increase together as we can

see from the diagonal elements of the panels of Tables 1 and 3. This implies that the i.i.d.

resampling nature of cross sectional resampling is superior to the block temporal resampling

scheme. This provides some evidence supporting the theoretical result in Theorem 2.

Results are similar for both Cases I and II and both pooled and mean groups estimators,

leading us to suggest that the performance of cross sectional resampling is good in a variety

of panel data models. In particular, the result obatined in Case II is of considerable interest

as it implies that strong forms of cross-sectional dependence that do not have a local cross-

sectional structure such as factor structures can still be dealt with i.i.d. resampling making

the applicabilty of the new procedures much wider. This is indeed of practical significance

given the recent work of, among others, Stock and Watson (1998), Bai and Ng (2002), Bai

(2003), Bai and Ng (2004) and Pesaran (2002).

Tables 2 and 4 report results on the combined cross sectional and temporal resampling.

We report absolute RMSE results there because the combined resampling scheme performs
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much worse that either of the other two resampling schemes. In particular the variance

estimator is considerably upwards biased. Neverthless, its performance improves when either

N and T increase.

5 Conclusions

This paper has considered the issue of bootstrap resampling in panel datasets. The availabil-

ity of datasets with large temporal and cross sectional dimensions suggests the possibility

of new resampling schemes. We suggest one possibility which has not been widely explored

in the literature. It amounts to constructing bootstrap samples by resampling whole cross

sectional units with replacement.

In cases where the data do not exhibit cross sectional dependence but exhibit tempo-

ral dependence, such a resampling scheme is of interest as it allows the application of i.i.d.

bootstrap resampling rather than block bootstrap resampling. It is well known that the

former enables superior approximation to distributions of statistics compared to the latter.

We prove that the bootstrap based on cross sectional resampling provides asymptotic re-

finements. A Monte Carlo study illustrates the superior properties of the new resampling

scheme compared to the block bootstrap.
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Table 1: Results for Model with Factors

Pooled estimator RMSE(V N )
RMSE(V T )

nf=1 nf=3
T/N 50 100 150 50 100 150
50 0.837 0.651 0.575 0.823 0.615 0.512
100 0.988 0.842 0.705 1.023 0.767 0.553
150 1.169 0.863 0.759 0.863 0.667 0.543

Mean Group estimator RMSE(V N )
RMSE(V T )

50 0.873 0.665 0.609 0.889 0.652 0.526
100 1.163 0.838 0.731 1.070 0.807 0.549
150 1.288 0.928 0.755 0.885 0.662 0.489

Table 2: Results for Model with Factors
Pooled estimator 103∗RMSE(V N,T )

nf=1 nf=3
T/N 50 100 150 50 100 150
50 1.161 0.560 0.371 1.077 0.527 0.345
100 0.515 0.255 0.167 0.509 0.247 0.157
150 0.334 0.160 0.106 0.324 0.158 0.102

Mean Group estimator 103∗RMSE(V N,T )
50 1.602 0.773 0.511 1.463 0.706 0.459
100 0.701 0.339 0.225 0.666 0.319 0.202
150 0.446 0.213 0.139 0.418 0.202 0.129
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Table 3: Results for Model without Factors

Pooled estimator RMSE(V N )
RMSE(V T )

T/N 50 100 150
50 0.822 0.638 0.590
100 0.949 0.813 0.701
150 1.107 0.845 0.738

Mean Group estimator RMSE(V N )
RMSE(V T )

50 0.842 0.678 0.610
100 1.112 0.809 0.735
150 1.177 0.903 0.732

Table 4: Results for Model without Factors
Pooled estimator 103∗RMSE(V N,T )

T/N 50 100 150
50 1.157 0.564 0.372
100 0.509 0.253 0.167
150 0.324 0.159 0.105
Mean Group estimator 103∗RMSE(V N,T )
50 1.611 0.781 0.513
100 0.698 0.339 0.225
150 0.434 0.213 0.138
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