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Abstract
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Panel data sets have been increasingly used in economics to analyze complex economic

phenomena. One of their attractions is the ability to use an extended data set to obtain

information about parameters of interest which are assumed to have common values across

panel units. Most of the work carried out on panel data has usually assumed some form of

cross sectional independence to derive the theoretical properties of various inferential proce-

dures. However, such assumptions are often suspect and as a result recent advances in the

literature have focused on estimation of panel data models subject to error cross sectional

dependence.

A number of different approaches have been advanced for this purpose. In the case of

spatial data sets where a natural immutable distance measure is available the dependence

is often captured through “spatial lags” using techniques familiar from the time series lit-

erature. In economic applications, spatial techniques are often adapted using alternative

measures of “economic distance”. This approach is exemplified in work by Lee and Pesaran

(1993) , Conley and Dupor (2003) , Conley and Topa (2002) and Pesaran, Schuermann, and

Weiner (2004) , as well as the literature on spatial econometrics recently surveyed by Anselin

(2001) . In the case of panel data models where the cross section dimension (N) is small

(typically N < 10) and the time series dimension (T ) is large the standard approach is to

treat the equations from the different cross section units as a system of seemingly unrelated

regression equations (SURE) and then estimate the system by the Generalized Least Squares

(GLS) techniques.

In the case of panels with large cross section dimension, SURE approach is not practical

and has led a number of investigators to consider unobserved factor models, where the cross

section error correlations are defined in terms of the factor loadings. Use of factor models

is not new in economics and dates back to the pioneering work of Stone (1947) who applied

the principal components (PC) analysis of Hotelling to US macroeconomic time series over

the period 1922-1938 and was able to demonstrate that three factors (namely total income,

its rate of change and a time trend) explained over 97 per cent of the total variations of

all the 17 macro variables that he had considered. Until recently, subsequent applications

of the PC approach to economic times series has been primarily in finance. See, for ex-

ample, Chamberlain and Rothschild (1983) , Conor and Korajzcyk (1986) and Conor and

Korajzcyk (1988) . But more recently the unobserved factor models have gained popularity

for forecasting with a large number of variables as advocated by Stock and Watson (2002)

. The factor model is used very much in the spirit of the original work by Stone, in or-

der to summarize the empirical content of a large number of macroeconomics variables by
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a small set of factors which, when estimated using principal components, is then used for

further modelling and/or forecasting. A related literature on dynamic factor models has also

been put forward by Forni and Reichlin (1998) and Forni, Hallin, Lippi, and Reichlin (2000) .

Recent uses of factor models in forecasting focuses on consistent estimation of unobserved

factors and their loadings. Related theoretical advances by Bai and Ng (2002) and Bai (2003)

are also concerned with estimation and selection of unobserved factors and do not consider

the estimation and inference problems in standard panel data models where the objects of

interest are slope coefficients of the conditioning variables (regressors). In such panels the

unobserved factors are viewed as nuisance variables, introduced primarily to model the cross

section dependencies of the error terms in a parsimonious manner relative to the SURE for-

mulation.

Despite these differences knowledge of factor models could still be useful for the analysis

of panel data models if it is believed that the errors might be cross sectionally correlated.

Disregarding the possible factor structure of the errors in panel data models can lead to in-

consistent parameter estimates and incorrect inference. Coakley, Fuertes, and Smith (2002)

suggest a possible solution to the problem using the method of Stock and Watson (2002) .

But, as Pesaran (2004) shows, the PC approach proposed by Coakley, Fuertes, and Smith

(2002) can still yield inconsistent estimates. Pesaran (2004) suggests a new approach by

noting that linear combinations of the unobserved factors can be well approximated by cross

section averages of the dependent variable and the observed regressors. This leads to a new

set of estimators, referred to as the Common Correlated Effects estimators, that can be com-

puted by running standard panel regressions augmented with the cross section averages of

the dependent and independent variables. The CCE procedure is applicable to panels with

a single or multiple unobserved factors so long as the number of unobserved factors is fixed.

In this paper we consider an alternative two-stage estimation method where in the first

stage principal components of all the economic variables in the panel data model are ob-

tained as in Stock and Watson (2002) , and in the second stage the model is estimated

augmenting the observed regressors with the estimated PCs. Unlike the CCE method the

implementation of the PC augmented procedure requires the determination of the number

of factors to be included in the second stage. This can be done using the criteria advanced

in Bai and Ng (2002) .

The small sample properties of the CCE and the PC augmented estimators will be inves-
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tigated by means of Monte Carlo experiments, allowing for up to four factors and regressors.

We find that augmenting the panel data model with cross sectional averages of the depen-

dent and explanatory variable works well in the multiple factor case. This is line with the

results of Monte Carlo experiments reported by Pesaran (2004) and Coakley, Fuertes, and

Smith (2004). On the other hand the PC augmented method does not perform as well, and

can lead to substantial size distortions. This could be partly due to the small sample errors

in the number of factors selected by the Bai and Ng procedure. To shed light on such a

possibility we also conducted a number of Monte Carlo experiments where the factors were

taken as observed, but it is not known which of the factors should actually be included in

the PC augmented procedure. Using alternative regressor selection procedures it is shown

that even in this setting the PC augmented method could be subject to substantial bias in

small samples. We also provide an empirical application to a large panel of company returns

with a wide geographical coverage where we estimate asset return regressions that include

observed as well as unobserved regressors. The standard asset return equations routinely

estimated in the finance literature either allow for unobserved factors or observed factors,

but not both. We extend this literature by including both types of regressors in the analysis.

The plan of the paper is as follows: Section 1 sets out the multi-factor residual model,

its assumptions and the CCE estimators. Section 2 sets out the PC augmented estimators.

Section 3 describes the Monte Carlo design and discusses the results. Section 4 presents the

empirical application. Finally, Section 5 concludes.

1 Panel Data Models with Observed and Unobserved

Common Effects

In this section we review the methodology introduced in Pesaran (2004) . Let yit be the

observation on the ith cross section unit at time t for i = 1, 2, ..., N ; t = 1, 2, ..., T, and

suppose that it is generated according to the following linear heterogeneous panel data

model

yit = α′
idt + β′ixit + γ ′ift + εit, (1)

where dt is a n× 1 vector of observed common effects (including deterministic components

such as intercepts or seasonal dummies), xit is a k × 1 vector of observed individual-specific

regressors on the ith cross section unit at time t, ft is the m×1 vector of unobserved common

effects, and εit are the individual-specific (idiosyncratic) errors assumed to be independently

distributed of (dt,xit). The unobserved factors, ft, could be correlated with (dt,xit), and to

allow for such a possibility the following specification for the individual specific regressors
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will be considered

xit = A′
idt + Γ′ift + vit, (2)

where Ai and Γi are n×k and m×k, factor loading matrices with fixed components, vit are

the specific components of xit distributed independently of the common effects and across i,

but assumed to follow general covariance stationary processes. In this paper we assume that

the common factors, dt and ft, are covariance stationary, although the results obtained here

can be readily extended to cases where one or more elements of the common factors could

have unit roots and/or deterministic trends.

Combining (1) and (2) we now have

zit
(k+1)×1

=

(
yit

xit

)
= B′

i
(k+1)×n

dt
n×1

+ C′
i

(k+1)×m

ft
m×1

+ uit
(k+1)×1

, (3)

where

uit =

(
εit + β′ivit

vit

)
, (4)

Bi =
(

αi Ai

) (
1 0
βi Ik

)
, Ci =

(
γi Γi

) (
1 0
βi Ik

)
, (5)

Ik is an identity matrix of order k, and the rank of Ci is determined by the rank of the

m× (k + 1) matrix of the unobserved factor loadings

Γ̃i =
(

γi Γi

)
. (6)

As discussed in Pesaran (2004) , the above set up is sufficiently general and renders a variety

of panel data models as special cases. In the panel literature with T small and N large, the

primary parameters of interest are the means of the individual specific slope coefficients, βi,

i = 1, 2, ..., N . The common factor loadings, αi and γi, are generally treated as nuisance

parameters. In cases where both N and T are large, it is also possible to consider consistent

estimation of the factor loadings. The presence of the unobserved factor in (1) implies that

estimation of βi and its cross sectional mean cannot be undertaken using standard methods.

Pesaran (2004) has suggested using cross section averages of yit and xit as proxies for the

unobserved factors in (1). To see why such an approach could work, consider simple cross

section averages of the equations in (3)1

z̄t = B̄′dt + C̄′ft + ūt, (7)

where

z̄t =
1

N

N∑
i=1

zit, ūt =
1

N

N∑
i=1

uit,

1Pesaran (2004) considers cross section weighted averages that are more general. But to simplify the
exposition we confine our discussion to simple averages throughout.
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and

B̄ =
1

N

N∑
i=1

Bi, C̄ =
1

N

N∑
i=1

Ci (8)

Suppose that

Rank(C̄) = m ≤ k + 1, for all N. (9)

Then, we have

ft =
(
C̄C̄

′)−1

C̄
(
z̄t − B̄′dt − ūt

)
. (10)

But since

ūt
q.m.→ 0, as N →∞, for each t, (11)

and

C̄
p→ C = Γ̃

(
1 0
β Ik

)
, as N →∞, (12)

where

Γ̃ = (E (γi) , E (Γi)) = (γ,Γ) . (13)

it follows, assuming that Rank(Γ̃) = m, that

ft − (CC′)−1
C

(
z̄t − B̄′dt

) p→ 0, as N →∞.

This suggests using h̄t = (d′t, z̄
′
t)
′ as observable proxies for ft, and is the basic insight that

lies behind the Common Correlated Effects estimators developed in Pesaran (2004) . It is

further shown that the CCE estimation procedure in fact holds even if Γ̃ turns out to be

rank deficient.

We now discuss the two estimators for the means of the individual specific slope coeffi-

cients proposed by Pesaran (2004) . One is the Mean Group (MG) estimator proposed in

Pesaran and Smith (1995) and the other is a generalization of the fixed effects estimator that

allows for the possibility of cross section dependence. The former is referred to as the “Com-

mon Correlated Effects Mean Group” (CCEMG) estimator, and the latter as the “Common

Correlated Effects Pooled” (CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE estimators, b̂i of βi,

b̂MG = N−1

N∑
i=1

b̂i. (14)

where

b̂i = (X′
iM̄Xi)

−1X′
iM̄yi, (15)
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Xi = (xi1,xi2, ...,xiT )′, yi = (yi1, yi2, ..., yiT )′, M̄ is defined by

M̄ = IT − H̄
(
H̄′H̄

)−1
H̄′, (16)

H̄ = (D, Z̄), D and Z̄ being, respectively, the T ×n and T × (k +1) matrices of observations

on dt and z̄t.

Under certain conditions, Pesaran (2004) has shown that

√
N

(
b̂MG − β

)
d→ N(0,ΣMG), as (N, T )

j→∞. (17)

where ΣMG can be consistently estimated non-parametrically by

Σ̂MG =
1

N − 1

N∑
i=1

(
b̂i − b̂MG

) (
b̂i − b̂MG

)′
. (18)

Efficiency gains from pooling of observations over the cross section units can be achieved

when the individual slope coefficients, βi, are the same. Such a pooled estimator of β,

denoted by CCEP, has been developed by Pesaran (2004) and is given by

b̂P =

(
N∑

i=1

X′
iM̄Xi

)−1 N∑
i=1

X′
iM̄yi. (19)

Again, Pesaran (2004) has shown that

N−1/2
(
b̂P − β

)
d→ N(0,Σ∗

P ),

where Σ∗
P can be consistently estimated by

ÂV ar
(
N−1/2

(
b̂P − β

))
= Ψ̂∗−1R̂∗Ψ̂∗−1. (20)

where

R̂∗ =
1

N − 1

N∑
i=1

(
X′

iM̄Xi

T

) (
b̂i − b̂MG

)(
b̂i − b̂MG

)′ (X′
iM̄Xi

T

)
. (21)

and

Ψ̂∗ =
1

N

N∑
i=1

(
X′

iM̄Xi

T

)
. (22)

2 A Principal Components Augmentation Approach

In this section we explore an alternative method of estimating the model given by (1) and

(2) based on principal component analysis as discussed in the work of Stock and Watson

(2002) . Our approach is first to apply the Bai and Ng (2002) procedure to zit = (yit,x
′
it )′ to
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obtain consistent estimates of the unobserved factors, and then use these factor estimates to

augment the regression (1), and thus produce consistent estimates of β. A formal justification

for such an approach is as follows. Recall from (3) that

zit =

(
yit

xit

)
= Θ′gt + uit,

where Θ′
i= (B′

i,C
′
i) , gt = (d′t, f

′
t)
′. The errors uit, can be serially correlated but do not

have common factors and are cross sectionally independent by assumption. Therefore, un-

der Assumptions 1-5 of Pesaran (2004) , this model satisfies assumptions of Bai (2003) and

the common factors gt, can be consistently estimated (up to a non-singular transformation)

from the principal components of zit for i = 1, 2, ..., N , and t = 1, 2, ..., T .

The estimated factors at time t, denoted by f̂t will be linear combinations of the (m+n)×1

vector gt. It is important to note that m + n, rather than just m factors, must be extracted

from zit. In practice, m is not known and must be replaced by an estimate using the selection

procedure in Bai and Ng (2002), for example. This in turn can introduce a certain degree

of sampling uncertainty into the analysis.

Once these factors are extracted we can use the results of Bai (2003) and in particular

Comment 2 (pp. 146) to justify augmenting (1) by the estimated factors. In particular, Bai

(2003) shows that as long as
√

T/N → 0 the error in the estimated factor is negligible for

estimating the regression

yit = α′
idt + β′ixit + γ ′if̂t + ηit (23)

Again we consider both mean group and pooled estimators. The mean group and pooled

estimators are given respectively by

b̂MGPC = N−1

N∑
i=1

b̂MGPC,i, (24)

and

b̂PPC=

(
N∑

i=1

X′
iMĝXi

)−1 N∑
i=1

X′
iMĝyi (25)

where

Mĝ = IT − Ĝ
(
Ĝ′Ĝ

)−1

Ĝ′, (26)

Ĝ = (D, F̂), F̂ is the T × (m+n) matrix of observations on f̂t, and b̂MGPC,i is the estimator

of βi in (23). The variance for the mean group estimator is given by

∧
AV ar(b̂MGPC) =

1

N − 1

N∑
i=1

(
b̂MGPC,i − b̂MGPC

)(
b̂MGPC,i − b̂MGPC

)′
(27)
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and for the pooled estimator, in the case where βi = β, by

∧
AV ar(b̂PPC) =

1

N

(
N∑

i=1

X′
iMĝXi

)−1 (
N∑

i=1

σ̂2
i X

′
iMĝXi

)(
N∑

i=1

X′
iMĝXi

)−1

(28)

where σ̂2
i is the estimated error variance of (23).

The principal components are computed based on standardized observations, namely

(yit − ȳi) /si and (xit`− x̄i`)/sil where ȳi and x̄i` are sample means of yit and the `th element

of xit, and si and si` are the associated sample standard deviations.

3 Small Sample Properties of the Various Estimators

3.1 Monte Carlo Design

The data generating processes used in the Monte Carlo experiments are different parame-

terizations of (1) and (2) which we reproduce here for convenience:

yit = α′
idt + β′ixit + γ ′ift + εit, (29)

and

xit = A′
idt + Γ′ift + vit, (30)

where Ai = [αisl] and Γi = [γisl] are n × k and m × k, factor loading matrices with fixed

components, vit are the specific components of xit distributed independently of the common

effects and across i, but assumed to follow general covariance stationary processes.

In the calibration of the Monte Carlo design, it is important that the population value

of R2 for (29) is controlled across the different experiments. Otherwise, comparisons of the

power properties of the different estimators can be misleading in the case of models with

different numbers of observed and unobserved factors. In what follows we show how the

average population R2 of the yit equation varies with the model parameter and hence find

values of the error variances, σ2
i , that ensure the population R2 is around 60% irrespective

of the number of regressors included in the model. We shall assume that unconditionally

ft ∼ (0,Σf ), dt ∼ (0,Σd)

εit ∼ IID(0, σ2
i ),vit ∼ IID(0,Σvi).

The variables, ft,dt, εit,vit are also assumed to be distributed independently of the parame-

ters, αi, βi, Γi,Ai, and γi. Using (30) in (29) we have

yit = α′
idt + β′i (A

′
idt + Γ′ift + vit) + γ ′ift + εit,

yit = ϕ′
igt + eit,
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where

ϕi =

(
αi + Aiβi

γi + Γiβi

)
, gt =

(
dt

ft

)
,

and

eit = εit + β′ivit.

The population R2 of (29), conditional on ϕi and βi, is given by

R2
i = 1− σ2

i

V ar(yit |ϕi,βi )
,

where

V ar(yit |ϕi,βi ) = ϕ′
iΣgϕi + β′iΣviβi + σ2

i ,

and

Σg =

(
Σd Σdf

Σfd Σf

)
.

Since, E(yit |ϕi,βi ) = 0, then on average (integrating out the individual effects)

V ar(yit) = E
(
ϕ′

iΣgϕi + β′iΣviβi + σ2
i

)
,

V ar(εit) = E
(
σ2

i

)
,

and the average population R2 value will be given by

R2 = 1− E (σ2
i )

E (ϕ′
iΣgϕi + β′iΣviβi + σ2

i )
.

Suppose that the individual-specific parameters, σ2
i , ϕi and βi, are distributed indepen-

dently of Σg, and βi is distributed independently of Σvi with constant means and variances,

σ2 = E (σ2
i ) , ϕ = E (ϕi) , β = E(βi), V ar (ϕi) = Σϕ, V ar(βi) = Σβ, and Σv = E (Σvi).

Then it is easily seen that

R2 = 1− σ2

ϕ′Σg ϕ+ Tr (ΣgΣϕ) + β′Σv β+ Tr (ΣvΣβ) + σ2
,

where Σϕ = E (ϕiϕ
′
i)−ϕϕ′. To derive E (ϕiϕ

′
i), let A′

i = (ai1, ai2, ..., ain), γ ′i = (γi1,γi2, ..., γim)

and note that

ϕiϕ
′
i =

(
(αi + Aiβi) (αi + Aiβi)

′ (αi + Aiβi) (γi + Γiβi)
′

(γi + Γiβi) (αi + Aiβi)
′ (γi + Γiβi) (γi + Γiβi)

′

)
,

E (Aiβiβ
′
iA

′
i) =

=




E (β′iai1a
′
i1βi) E (β′iai1a

′
i2βi) E (β′iai1a

′
inβi)

E (β′iai1a
′
i2βi) E (β′iai2a

′
i2βi) E (β′iai2a

′
inβi)

...
...

...
...

E (β′iaina
′
i1βi) · · · E (β′iaina

′
inβi)


 .
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Assuming βi is distributed independently of air for r = 1, 2, .., n, we have

E (β′iaira
′
isβi) = β′E (aira

′
is) β + Tr [E (aira

′
is)Σβ] ,

for r, s = 1, 2, ..., n. Similarly, assuming βi is distributed independently of γir

E (β′iγirγ
′
isβi) = β′E (γirγ

′
is) β + Tr [E (γirγ

′
is)Σβ] ,

for r, s = 1, 2, ...,m. The remaining elements of E (ϕiϕ
′
i) can also be obtained in a similar

fashion.

For the Monte Carlo experiments we used the following parameterizations

Σβ = 0, Σg =

(
In 0
0 Σf

)
, Σv = Ik

Σf =




1 θ · · · θ
θ 1 · · · θ
...

...
...

...
θ θ · · · 1


 ,

θ is the pair-wise correlation coefficient of the unobserved factors and

ϕ =

(
α + Aβ
γ + Γβ

)
.

Also since the parameters are generated independently we have

E (αiβ
′
iA

′
i) = αβ′A′,

E (αiβ
′
iΓ
′
i) = αβ′Γ′,

and

E (αiα
′
i) = Σα + αα′

E (γiγ
′
i) = Σγ + γγ ′.

E (aira
′
is) = ara

′
s if r 6= s

= Σar + ara
′
r,

assuming that air are identically distributed. Similarly,

E (γirγ
′
is) = γrγ

′
s if r 6= s

= Σγr + γrγ
′
r.

Using the above framework we carried out two different sets of experiments. In the first

set, which we denote by A, we consider the small sample properties of the CCE and PC
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augmented estimators. In a second set, denoted as experiments B, we also investigate the

small sample properties of estimators obtained from regressing yit on dt, xit and a sub-set of

ft obtained using two different information criteria, namely the Akaike type criterion where

the objective function to be minimized is given by

IC1(f) =
T

2

N∑
i=1

ln(ε̂′iε̂i/T ) + NK (31)

where ε̂i are the residuals of (29) for cross sectional unit i, and K denotes the total number

of regressors in(29). The second criterion is a Theil type criterion defined by

IC2(f) =
T
2

∑N
i=1 ln(ε̂′iε̂i/T )

N(T −my)− k
(32)

where my < m denotes the number of factors entering (29). The criteria are minimized over

all possible factor combinations. These experiments are intended to highlight the dependence

of the PC augmented procedure on the choice of the factors, even if satisfactory estimates

of ft can be obtained using the PC procedure.

For all experiments T,N = 30, 50, 100, 200, n = 3, β = (1, 1, ..., 1)′. For experiments A,

k = 1, 3. For experiments B, k = 1. Partition dt as follows: dt = (d1t, d2t, d3t)
′ and partition

conformably αi and Ai. d1t = 1. For experiments A, m = 1, 2, 3, 4. For experiments B,

m = 5. Further, we set

αi = (αi1, αi2, ..., αik+1, 0, ..., 0)′, αij ∼ IIDU(0.5, 1.5), j = 1, ..., k + 1

αisl = 0; s = 1, ..., n; l = 1, k + 1

αisl ∼ U(0.5, 1.5); s = 1, ..., n; l = k + 2, ..., n

djt is given by

djt = ρdj
djt−1 + εdjt, j = 2, ..., n

where ρdj
= 0.4, j = 2, ..., n and εdjt ∼ IIDN(0, 1 − ρ2

dj
). γi = (γ1i, ..., γmi)

′ where γji ∼
IIDN(1, 0.04) for experiment A. For experiment B γji ∼ IIDN(1, 0.04), j = 1, 2, 3 and

γji = 0 for j = 4, 5.

γisl ∼ IIDU(0.5, 1.5)

vit is given by

vit = Φivit−1 + εivt
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where Φi = diag(ρv1i, ..., ρvki), εivt ∼ N(0,Σiv), ρvji ∼ U(0.2, 0.9), Σiv = diag(1−ρ2
v1i, ..., 1−

ρ2
vki). Finally, ft = (f1t, ..., fmt)

′

fjt = ρfj
fjt−1 + εfjt, j = 2, ..., m

where ρdj
∼ IIDU(0.2, 0.9), j = 2, ..., m, εfjt =

√
1− ρ2

fj
ωjt, ωjt =

√
θωt + (1 − θ)$jt and

ωt, $jt ∼ N(0, 1). Hence, V ar(fit) = 1, and Corr(fit, fjt) = θ, as required.

To ensure a constant average R2 of around 0.6 for all experiments we generated the

equation-specific errors according to

εit ∼ IIDN(0, σ2
i ), σ2

i ∼ IID
h (k, m)

2
χ2

2,

where the scaler h (k, m) is set in terms of m and k as

m k h (k, m)
1 1 8
1 2 16
1 3 26
2 1 11
2 2 32
2 3 53
3 1 22
3 2 48
3 3 74
4 1 29
4 2 70
4 3 155
5 1 40
5 2 100
5 3 190

Finally, all parameters are set at the beginning of each experiment and 2000 replications

are run. The only exception to that is γi for which new parameter draws occur for every

replication.

3.2 Alternative Estimators Considered

In the case of experiments A, we considered four different types of estimators. First, a mis-

specified procedure that ignores the common unobserved effects and for efficiency purposes

considers a pooled estimator under the slope homogeneity assumption, β = βi. We denote

this as the ‘Naive’ estimator. Second, we consider the CCEMG and CCEP estimators de-

fined by (14) and (19). Third, we consider the PC augmented estimators defined by (24) and

(25), which we denote by MGPC and PPC, respectively. Finally, we consider the principal
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component estimator proposed by Coakley, Fuertes, and Smith (2002). For this estimator

the following steps are taken. We estimate (1), using a standard pooled estimator for βi,

without proxying for the factors. Then, we obtain the residuals from (1) normalise them

and extract m + n factors from them. We use these factors in (23) and obtain the relevant

Mean Group and Pooled estimators. These are denoted MGCFS and PCFS.

As noted earlier, the estimators under experiments B, assume that all the factors are

observed. In one case, there is uncertainty as to which factors enter (29) as opposed to (30).

The criteria described earlier are used to select the set of factors to be included in (29). All

possible combinations are considered. These are infeasible estimators since the factors are

not actually observed. However, they serve the purposes of showing that using principal

components does not only introduce a factor estimation problem but a model selection prob-

lem as well, which is not present with the CCE estimators. These estimators are denoted

by MG(IC) and P (IC) where IC stands for either Theil or AIC type criteria. Finally, we

consider the infeasible estimators where both the factors, and the identities of the factors

entering (29), are known. These estimators are denoted by MGT and PT , respectively. We

present results on the Bias (×10000) and RMSE(×100) for all these estimators. We also

provide size and power estimates of the different estimators for testing the hypothesis that

β = 1. The power of the tests are computed under the alternative β = 1.05.

Compared to the Monte Carlo study reported in Coakley, Fuertes, and Smith (2004) , our

design allows for the failure of the rank condition, (9), and provides a comparative analysis

of the CCEMG and CCEP estimators. Coakley, Fuertes, and Smith (2004) find that the

CCEMG performs best across a number of alternative estimators. However, they do not

consider the CCEP estimator, although their Monte Carlo design imposes the homogeneity

restrictions βi = β. We also consider a more extensive analysis of multifactor and multi-

regressor models since we consider models of up to fours factors in conjunction with up to

3 individual specific regressors. Further, we control for the R2 of the models which as ex-

plained earlier is of great importance for the validity of the Monte Carlo analysis. Fourthly,

we consider new principal component based estimators. These estimators take into account

the possibility that (30) contains unobserved common components not contained in (29) by

extracting the number of factors in both (30) and (29) rather than just (29) as discussed

in the previous section. More generally, via experiments B, we explore the important issue

of factor selection when principal components are used for the estimation of the common

effects.
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3.3 Monte Carlo Results

The results for experiment A are summarized in Tables 1-7, and for experiments B are given

in Tables 8 and 9. It is clear from Table 1 that the ‘Naive’ estimator that ignores the unob-

served common effects is substantially biased and over-rejects the null hypothesis often by

80-95% margin! Considering the estimators that attempt to account for the presence of the

unobserved common effects, we first note that cross section averages work as expected for

the case of a single unobserved common factor. Tests using both the MG and PC estimators

are correctly sized reflecting the fact that the estimated variance is a consistent estimate

of the true variance. Further, the CCEMG estimator has marginally worse RMSEs than

the CCEP estimator as expected given the efficiency gains of pooling. The improvement

when CCEP is used is of the order of 10%-15%. When we move to experiments with

more than one unobserved common factors similar conclusions are reached concerning the

CCEMG and CCEP estimators. The most obvious difference relates to the size of the test

that β = 1 under the null hypothesis. For both estimators there are cases where the test

over-rejects slightly under the null. Most of these cases, however, relate to small N experi-

ments and the over-rejection disappears as N is increased. Also, both the bias and RMSE

of the estimators increase as more factors are introduced. For comparable population R2,

the power of the tests based on CCEMG and CCEP estimators also tend to decline as the

number of unobserved factors are increased. This is due to the fact that the cross section

averages, ȳt and x̄t, capture smaller proportion of the time variations of the unobserved

factors as the number of unobserved factors is increased. This feature could not have been

observed if the population R2 had not been kept fixed across the different experiments.

Moving on to the PC augmented estimators we note that they perform considerably

worse than the CCE type estimators. The biases are dramatically larger. Although the

bias is reduced with increased sample sizes (both N and T ) they still remain much larger

than the bias observed for the cross sectional average estimators. The RMSEs also tell the

same story. Both MGPC and PPC perform badly, and substantially over-reject the null

hypothesis. The MGCFS and PCFS estimators perform considerably worse that the other

PC augmented estimators.

Moving on to Experiments B we note several striking features. The cross sectional av-

erage estimators work as expected. They have relatively small biases and RMSE. The size

performance is reasonable even for 5 factors. But the estimators where the true factors are

known but the identity of the factors entering (29) is not and needs to be determined via a se-

lection criterion, are performing rather poorly. Further, they do not seem to improve when N
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grows, but only when T grows. Of course, for large T , they outperform the CCE estimators

since the factors get selected perfectly. This can be seen if one compares the result for the

MGT and PT estimators that include the true factors. This feature is shared by both pooled

and mean group estimators. We also note that the Akaike-type criterion performs better in

selecting the appropriate factors compared to the Theil-type criterion. This is the case both

for the CCEP and CCEMG estimators. Overall, it appears that even if one knows the fac-

tors, the small sample bias in the model selection aspect of the PC augmented procedure is

important enough to adversely affect the performance of the estimators for moderate values

of T , even if one abstracts from the small sample bias in estimation of the unobserved factors.

4 An Empirical Application

In this section we present the results of an empirical application to a panel data set of

company returns to the following stock return equations

yit = αi1 + αi2πot + x′itβ + f ′tγi + εit, (33)

where here yit denotes the individual company stock returns, πot is the rate of change of

oil prices in US Dollars (representing the observed common factor of the model), xit is a

vector of observed macroeconomic factors xit = (∆qit, ∆πit, ∆rit, ∆mit, ∆eit)
′, where qit is

(log of) real output of the country of company i at time t, πit is the inflation rate of the

country of company i at time t, rit is the real interest rate of the country of company i at

time t, mit is the real money supply of the country of company i at time t, and eit is the real

exchange rate of the country of company i at time t with respect to the U.S. dollar. The

model is also assumed to contain m unobserved common effects, ft that could be correlated

with xit and/or πot. We also assume that m is fixed but unknown. This model is clearly a

generalization of a standard APT model. It allows individual stock returns to be affected

both by observed macroeconomic variables and by unobserved common factors. We report

results for subsets of the above macroeconomic explanatory variables as well.

The data set contains 243 companies from France, Germany, Italy, Japan, the UK, the

US, South East Asia, the Middle East and Latin America. The sample periods differ across

companies and cover the period 1979Q1-1999Q1. Table A below gives details of the geo-

graphical coverage of the companies included in the panel and the associated sample periods.
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Table A: Number of Companies and the Sample Periods
Region # Companies Sample Periods

US 63 79Q1-99Q1
UK 24 79Q1-99Q1
Germany 21 79Q1-99Q1
France 14 79Q1-99Q1
Italy 10 79Q1-99Q1
W. Europe 24 79Q1-99Q1
Middle East 4 90Q3-99Q1
S. E. Asia 34 89Q3-99Q1
Japan 35 79Q1-99Q1
L. America 14 89Q3-99Q1
Total 243

Notes: Western Europe is made up of Spain, The Netherlands, Belgium and Switzerland.

The Middle East contains firms from Turkey. South East Asia contains firms from Indone-

sia, Korea, Malaysia, Philippines, Singapore and Thailand. Finally, Latin America contains

firms from Argentina, Brazil, Chile, Mexico and Peru.

The source of the company data is Datastream, with more details provided in Pesaran,

Schuermann, and Treutler (2004) . The macroeconomic data are the same as those in Pe-

saran, Schuermann, and Weiner (2004) and we refer the reader to that paper for details.

Note that the structure of the panel data set is very rich. 10 different regions of the world

are considered where each region is represented by at least 10 companies each (with the

exception of Middle East). The macroeconomic variables for each company in a given re-

gion are the same. Therefore, the model in (33), can be viewed as a mixture of an APT

model with observed regional macroeconomic factors and an APT model with global un-

observed common effects represented by the unobserved factors and proxied by the global

cross-sectional averages used by the CCEMG and CCEP estimators.

There is reduced coverage over time for some countries and companies. As a result this is

an unbalanced panel and so our estimation methods must be modified to address this. The

CCEMG estimator is readily modified. The CCEP estimator is in this case still given by

(19) but the matrices X′
i yi and M̄ are defined so as to include only available observations

for the i-th unit. In the unbalanced panel case the dimension of the M̄ now depends on i.

We report the coefficient estimates, and the test results for the null hypothesis that the

coefficients are equal to zero, in Tables 10-13. Tables 10-11 report results for the pooled

(CCEP ) estimators. Tables 12-13 report the results for the MG estimators (CCEMG). We

consider a number of specifications whereby subsets of the explanatory variables are dropped
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from the regression to investigate the effect of such omissions on the remaining coefficients.

The coefficients of the xit variables have the expected signs and are for the most part

significantly different from zero. One exception is the coefficient of the inflation variable

which is generally found to be insignificant. The oil price variable does not seem to be

statistically significant either. This could be due to the highly heterogeneous nature of the

effect of oil prices on different company returns, being positive for companies with large oil

interests such as oil or petrochemical companies, and being negative on those with significant

dependence on oil, such as airlines or automobile industries. Overall, the CCEP and the

CCEMG estimators yield very similar results, the exception being the coefficient of the

interest rate variable which is much larger (in absolute value) when estimated by CCEMG

as compared to CCEP . Deletion of some of the macro variables from return equation does

not change the remaining estimated coefficients significantly, and the results seem to be

quite robust. The coefficients of the cross sectional averages of the explanatory variables

are generally less significant than the region specific variables. In contrast, the cross section

average of the dependant variable is highly significant and its coefficient is very close to one.

Its inclusion is clearly critical in dealing with the unobserved common factors and can be

viewed as proxing for the market index as in Capital Asset Pricing Models (CAPM).

5 Conclusions

Much of the empirical research carried out on panels assume some form of cross section error

independence. However, such assumptions are usually suspect, in practice, and as a result

recent advances in the theoretical literature have focused on the analysis of cross sectional

dependence.

In this paper we explore further some aspects of the work by Pesaran (2004) who has

develop methods for estimation and inference in panel data models with multifactor er-

ror structures. The method is based on proxying unobserved factors with cross sectional

averages. We compare this method with alternative methods that aim to augment panel re-

gressions with factor estimates using principal components. We reach two major conclusions.

Firstly, methods based on principal components do not seem to work as well as the methods

based on cross sectional averages. The estimation error for the factor estimates seems to be

one, but not the only, reason for this inferior performance. Using Monte Carlo experiments

we show that the PC augmented estimators could still be subject to substantial small sample

bias due to the need to selecting a sub-set of factors for inclusion in the model to be estimated.
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The relevance of CCE type estimators is illustrated by an empirical application to a rich

panel of company returns with a wide geographical coverage. The CCE approach allows

us to estimate asset return equations with observed as well as unobserved common factors;

thus going beyond CAPM and asset pricing models that focus exclusively on observed or

unobserved factors. The empirical results clearly show the importance of country-specific

macro variables for the analysis of company returns beyond the market indices.
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Table 1. Naive Estimator

One Factor Two Factors
# x N/T 30 50 100 200 30 50 100 200

30 2731.1 2535.7 2648.3 2781.2 5516.9 5250.6 5163.0 5124.6
B 1 50 2675.2 2722.7 2874.8 2660.2 5270.2 5084.6 5187.1 5387.0
i 100 2729.7 2732.6 2688.7 2660.6 4874.1 5491.7 5363.7 5904.4
a 200 2814.9 2738.9 2602.4 2743.4 5941.5 4977.3 5749.6 5615.7
s 30 1195.2 1133.3 1198.2 1160.4 2261.5 2302.0 2100.7 2032.9

3 50 1210.6 1190.5 1146.1 1153.1 2056.7 2100.8 2152.4 2076.8
100 1154.9 1280.3 1191.2 1200.7 2046.2 2097.5 2139.9 2089.8
200 1244.8 1160.3 1153.9 1158.4 2019.4 2063.2 2113.6 2161.1

30 29.2 26.5 27.0 28.1 56.3 53.2 52.0 51.4
R 1 50 28.2 28.2 29.2 26.8 53.7 51.5 52.2 54.0
M 100 28.5 28.1 27.3 26.8 49.8 55.4 53.9 59.2
S 200 29.3 28.1 26.4 27.6 60.1 50.3 57.7 56.3
E 30 19.6 17.5 14.4 12.9 32.7 28.8 23.7 21.6

3 50 17.9 14.7 13.1 12.5 26.9 24.2 23.2 21.6
100 14.7 14.8 12.8 12.4 23.6 22.8 22.2 21.4
200 14.2 12.6 12.1 11.8 22.0 21.6 21.6 21.8

30 91.0 97.7 100.0 100.0 100.0 100.0 100.0 100.0
S 1 50 97.1 99.2 100.0 100.0 100.0 100.0 100.0 100.0
i 100 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
z 200 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 70.7 76.2 99.4 100.0 95.3 99.9 100.0 100.0

3 50 79.0 96.8 100.0 100.0 97.8 100.0 100.0 100.0
100 92.5 99.2 100.0 100.0 99.7 100.0 100.0 100.0
200 98.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0

30 82.0 92.1 100.0 100.0 100.0 100.0 100.0 100.0
P 1 50 92.7 97.2 100.0 100.0 100.0 100.0 100.0 100.0
o 100 97.0 99.5 100.0 100.0 99.9 100.0 100.0 100.0
w 200 98.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
e 30 40.4 38.8 77.0 93.8 84.3 98.2 99.9 100.0
r 3 50 48.7 71.1 84.0 96.7 90.0 99.2 100.0 100.0

100 65.2 83.9 96.9 99.9 97.9 100.0 100.0 100.0
200 84.1 91.8 98.6 100.0 99.3 100.0 100.0 100.0
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Table 1 (continued). Naive Estimator
Three Factors Four Factors

# x N/T 30 50 100 200 30 50 100 200
30 7030.9 7007.8 6742.8 7187.6 7776.8 7975.1 7721.5 7839.8

B 1 50 6919.5 7141.9 6585.5 7151.4 8143.6 7462.9 7740.1 7879.7
i 100 6247.5 6858.1 6785.6 6704.2 7515.4 7433.3 8082.8 7913.0
a 200 7034.4 6590.4 7326.2 7223.1 7983.9 8055.9 8039.8 8373.7
s 30 2558.5 2532.6 2729.7 2669.0 2818.1 2849.3 2838.3 2758.1

3 50 2568.3 2618.9 2706.2 2640.4 2839.9 2725.2 2854.4 2864.6
100 2517.6 2747.9 2525.3 2428.1 2846.2 2874.4 2893.2 2870.4
200 2584.7 2680.1 2618.7 2603.4 2822.2 2773.3 2884.4 2886.9

30 71.0 70.6 67.7 72.0 78.4 80.1 77.4 78.5
R 1 50 69.9 71.8 66.1 71.6 81.9 75.0 77.5 78.9
M 100 63.2 69.0 68.1 67.1 75.7 74.6 80.9 79.2
S 200 70.9 66.3 73.4 72.3 80.2 80.7 80.5 83.8
E 30 36.9 29.7 30.0 28.1 47.5 37.0 32.6 29.2

3 50 33.0 30.0 28.9 27.4 40.3 31.9 31.9 30.2
100 28.7 29.4 26.2 24.7 33.9 31.4 30.3 29.5
200 27.6 27.8 26.6 26.2 31.2 29.5 29.6 29.3

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S 1 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
i 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
z 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 98.9 100.0 100.0 100.0 97.8 100.0 100.0 100.0

3 50 99.6 100.0 100.0 100.0 99.9 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
P 1 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
o 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 94.6 100.0 100.0 100.0 93.3 99.8 100.0 100.0
r 3 50 98.5 100.0 100.0 100.0 98.9 100.0 100.0 100.0

100 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The naive estimator is given by β =
(∑N

i=1 X′
iMXi

)−1 ∑N
i=1 X′

iMyi where M =

IT −D (D′D)−1 D′. Bias and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 2. Mean Group Estimator

One Factor Two Factors
# x N/T 30 50 100 200 30 50 100 200

30 -1.1 202.4 155.8 155.5 160.8 -64.2 -24.7 -62.0
B 1 50 -5.6 112.1 115.0 19.2 -6.6 70.6 30.7 8.3
i 100 27.0 15.9 14.3 38.7 45.9 -19.3 25.9 -31.0
a 200 -31.6 10.6 -24.6 10.0 41.4 10.5 17.5 -5.9
s 30 87.1 117.0 -106.3 36.7 166.8 160.0 -52.2 -184.8

3 50 72.4 -48.1 -5.9 -0.6 -117.9 -21.2 74.8 138.3
100 20.6 -3.3 -9.4 27.0 -68.1 -7.1 42.4 -95.9
200 -57.4 -32.9 -8.1 -0.1 4.9 0.0 2.4 26.2

30 13.7 8.8 4.8 4.4 13.3 9.9 6.9 3.9
R 1 50 9.0 7.1 5.0 2.9 11.4 8.2 4.9 3.5
M 100 6.4 5.0 3.0 2.0 8.3 5.4 3.7 2.3
S 200 4.7 3.3 2.2 1.5 6.2 3.8 2.5 1.8
E 30 23.8 18.7 10.3 6.9 40.9 25.1 14.6 9.4

3 50 21.0 11.9 8.1 5.9 28.7 17.1 11.7 7.6
100 14.1 9.8 5.7 3.7 19.3 13.0 7.4 5.6
200 10.0 6.2 4.3 2.7 14.0 9.2 5.5 3.8

30 6.8 6.0 6.2 7.3 6.6 6.6 6.2 6.7
S 1 50 6.3 5.7 6.2 5.0 6.1 6.2 6.4 5.1
i 100 5.6 5.8 5.2 5.9 5.6 5.3 6.0 5.0
z 200 5.1 4.8 5.8 5.5 5.5 5.7 5.5 5.2
e 30 9.3 8.5 10.1 9.4 7.5 10.5 10.4 9.5

3 50 7.8 7.9 7.2 6.9 7.4 6.3 6.6 7.3
100 7.0 5.5 6.1 6.3 5.5 7.0 5.7 5.3
200 5.1 5.8 5.1 4.5 5.9 5.1 6.0 5.5

30 8.1 8.1 14.7 16.9 6.9 11.1 15.3 35.4
P 1 50 11.1 9.4 15.4 38.9 8.5 9.3 18.2 30.1
o 100 12.5 18.5 36.5 65.1 9.6 16.1 26.4 62.3
w 200 20.0 31.9 69.0 91.3 12.6 26.5 50.8 81.7
e 30 10.2 10.0 19.0 23.2 8.2 11.1 14.6 25.2
r 3 50 8.3 12.8 17.5 25.7 8.2 8.8 9.8 13.8

100 9.8 10.8 27.6 48.1 7.4 10.0 13.5 34.4
200 11.8 22.1 38.9 78.2 8.8 12.2 25.7 42.6
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Table 2 (continued). Mean Group Estimator

Three Factors Four Factors
# x N/T 30 50 100 200 30 50 100 200

30 -186.2 -216.5 78.7 -8.1 42.6 -122.5 92.9 304.8
B 1 50 -35.5 148.4 81.2 -287.1 36.5 -66.2 191.8 99.5
i 100 -78.0 75.3 -80.6 35.4 -56.5 -137.1 -7.9 21.5
a 200 -19.1 -17.9 20.3 -10.0 -48.6 -29.7 23.5 21.8
s 30 -100.5 47.4 -238.8 4.8 -87.9 157.1 132.8 -88.6

3 50 407.0 -17.0 -60.7 -19.4 -158.6 72.5 -171.6 185.7
100 187.5 -17.5 0.6 46.0 23.4 -89.5 -118.0 24.5
200 11.3 -57.9 -25.9 -1.0 -113.5 -0.4 81.2 -72.6

30 19.1 14.4 8.1 6.6 22.8 14.5 10.0 8.2
R 1 50 15.3 9.5 7.6 6.0 16.6 13.0 8.0 5.6
M 100 10.0 7.3 4.9 3.6 12.5 8.7 6.5 3.7
S 200 7.4 5.1 3.7 2.5 9.0 6.3 3.9 2.8
E 30 44.7 23.5 17.5 11.8 63.8 35.6 22.6 13.2

3 50 36.1 22.4 13.9 9.9 48.5 26.0 20.5 13.4
100 23.7 16.0 9.3 5.8 32.9 19.6 13.2 9.3
200 15.9 11.8 6.6 4.2 23.0 15.6 9.4 6.5

30 5.9 6.4 6.8 5.4 6.5 5.2 5.5 6.6
S 1 50 5.9 5.4 5.7 7.2 5.3 4.7 7.4 5.0
i 100 5.1 5.2 6.2 5.5 5.1 5.4 5.1 5.2
z 200 5.1 5.1 5.1 5.1 5.2 5.5 4.7 5.5
e 30 10.7 8.7 10.8 9.7 8.5 8.3 9.3 9.7

3 50 8.5 7.8 7.5 9.5 7.5 8.2 7.9 9.2
100 5.3 5.9 4.7 6.6 5.6 5.4 6.1 5.2
200 4.9 5.3 5.5 5.8 5.6 6.3 5.3 5.5

30 7.8 9.5 10.7 12.3 7.0 8.2 8.1 6.6
P 1 50 8.0 7.6 10.5 30.5 6.3 7.5 8.8 10.4
o 100 8.9 9.2 23.9 28.8 8.2 11.5 13.1 25.7
w 200 10.2 18.2 27.0 54.2 10.3 14.6 22.9 43.0
e 30 11.1 10.0 14.7 16.1 8.6 9.0 9.9 15.2
r 3 50 8.3 8.6 11.1 16.2 8.1 8.7 9.8 10.8

100 5.5 7.5 11.2 20.2 6.2 7.6 11.1 11.6
200 7.1 9.9 19.8 38.9 7.5 7.6 9.5 21.9

Notes: The Mean Group estimator is given by (14). Its estimated variance is given by (18).

Bias and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 3. Pooled Estimator

One Factor Two Factors
# x N/T 30 50 100 200 30 50 100 200

30 -51.4 206.8 141.2 160.7 101.6 -43.9 -26.8 -54.0
B 1 50 -17.4 117.6 107.7 18.9 -16.3 49.2 26.6 3.9
i 100 34.6 22.0 11.2 35.7 37.0 -19.6 22.1 -33.9
a 200 -28.7 13.8 -25.1 10.0 30.3 9.8 17.7 -5.4
s 30 84.0 130.0 -123.3 35.3 99.9 177.8 -50.0 -174.6

3 50 74.1 -31.7 6.7 3.1 -120.1 -29.0 85.6 146.7
100 18.4 6.8 -13.2 34.1 -44.4 -21.4 52.4 -103.2
200 -54.2 -34.1 -8.7 -0.5 -3.2 2.9 -0.7 26.0

30 12.0 8.3 4.5 4.4 12.5 9.6 6.6 3.8
R 1 50 8.2 6.7 4.8 2.9 9.9 7.8 4.8 3.4
M 100 6.0 4.6 2.9 2.0 7.7 5.1 3.6 2.3
S 200 4.2 3.1 2.1 1.4 5.4 3.7 2.4 1.8
E 30 20.7 17.2 10.0 6.7 33.5 23.3 14.0 9.2

3 50 17.9 11.1 7.7 5.8 23.5 15.4 11.0 7.3
100 11.9 9.2 5.5 3.6 15.9 11.9 7.2 5.5
200 8.4 5.7 4.1 2.7 11.6 8.1 5.2 3.7

30 5.2 6.2 6.1 7.0 5.8 6.1 5.7 6.7
S 1 50 6.1 5.9 5.4 4.5 5.7 6.2 5.9 4.9
i 100 5.2 5.5 5.7 6.4 5.5 4.7 5.9 5.1
z 200 4.2 5.0 5.4 5.5 5.4 5.3 5.4 5.3
e 30 8.9 7.8 9.7 9.0 7.0 9.3 9.5 8.7

3 50 7.0 7.3 6.0 6.5 7.1 5.9 5.9 7.0
100 6.9 5.8 6.0 6.4 6.1 6.3 5.5 5.5
200 5.3 5.1 5.2 4.5 6.1 5.2 5.1 5.7

30 8.1 7.2 15.2 16.2 7.6 10.1 15.3 34.0
P 1 50 11.9 9.9 15.3 39.2 9.1 9.8 18.6 31.1
o 100 13.0 18.8 38.3 66.6 10.5 16.7 27.2 64.4
w 200 22.4 35.5 71.0 92.2 14.9 28.5 53.0 82.0
e 30 9.8 9.0 20.3 21.6 7.5 9.7 14.6 24.4
r 3 50 8.5 12.8 17.3 25.6 9.2 8.2 9.4 12.3

100 10.6 11.6 30.6 46.9 8.3 10.6 15.6 36.0
200 14.1 26.0 41.4 79.0 10.4 13.4 26.9 43.8

24



Table 3 (continued). Pooled Estimator

Three Factors Four Factors
# x N/T 30 50 100 200 30 50 100 200

30 -206.9 -277.0 53.3 -5.3 13.1 -121.2 93.8 314.9
B 1 50 -3.9 139.5 77.2 -288.9 115.5 -140.6 203.0 110.4
i 100 -81.1 45.7 -75.4 32.6 -53.4 -131.1 0.2 19.9
a 200 -10.0 -15.0 17.7 -10.3 -36.6 -33.9 25.0 20.7
s 30 -101.6 55.2 -270.4 0.4 -28.2 160.3 146.7 -177.8

3 50 382.2 -18.3 -71.6 -23.7 -179.5 45.0 -219.9 220.3
100 146.4 -23.8 -9.1 39.7 27.3 -86.4 -144.0 33.9
200 20.7 -37.7 -21.7 0.5 -116.9 11.4 83.2 -76.4

30 17.4 13.5 7.8 6.6 22.2 13.8 9.8 8.0
R 1 50 13.6 9.1 7.4 5.9 15.8 12.6 7.7 5.6
M 100 9.3 6.9 4.9 3.5 11.6 8.1 6.3 3.6
S 200 6.8 4.9 3.5 2.4 8.2 5.9 3.8 2.8
E 30 38.1 21.2 17.0 11.6 55.0 32.3 21.3 13.0

3 50 30.9 19.9 13.2 9.9 41.7 23.6 19.4 13.4
100 19.4 14.5 8.9 5.6 27.5 17.9 12.6 9.0
200 13.4 10.5 6.3 4.1 19.6 14.0 9.0 6.4

30 6.5 5.9 6.2 5.5 6.0 4.7 4.8 6.0
S 1 50 5.5 5.5 5.3 7.1 5.3 3.8 7.4 4.7
i 100 4.9 4.9 5.9 5.3 5.1 5.1 5.0 5.1
z 200 4.3 5.1 5.0 5.7 5.0 5.0 4.2 5.2
e 30 9.2 8.5 9.8 8.3 7.6 7.6 8.1 8.3

3 50 7.5 6.9 7.4 8.8 7.3 7.3 7.1 9.0
100 6.2 4.9 4.5 5.5 6.6 5.3 6.8 5.7
200 5.1 4.9 5.3 5.6 5.5 5.8 5.5 5.1

30 7.5 9.6 10.5 12.7 6.4 7.6 6.9 5.9
P 1 50 6.9 7.5 10.6 29.8 6.3 7.7 9.2 9.8
o 100 9.3 9.7 24.1 29.4 8.8 12.2 13.0 26.0
w 200 10.7 19.2 28.1 55.5 11.2 15.2 23.8 43.5
e 30 10.2 9.0 15.8 15.5 8.6 7.2 8.8 14.5
r 3 50 7.4 7.5 11.4 16.1 7.3 8.2 10.0 10.7

100 6.8 8.3 11.3 21.0 6.8 7.8 12.2 11.7
200 7.4 10.8 20.3 40.6 7.5 8.6 9.4 22.6

Notes: The Pooled estimator is given by (19). Its estimated variance is given by (20). Bias

and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 4. MGPC Estimator

One Factor Two Factors
# x N/T 30 50 100 200 30 50 100 200

30 -1877.3 -1506.8 -864.4 -838.1 -2738.5 -2469.0 -2309.2 -1708.0
B 1 50 -965.3 -920.6 -710.7 -458.7 -1960.2 -1710.8 -1307.8 -1085.9
i 100 -519.3 -440.1 -250.8 -190.9 -1111.3 -950.8 -709.3 -543.9
a 200 -334.9 -240.0 -134.7 -99.9 -683.0 -441.2 -334.1 -274.7
s 30 -1316.3 -1172.1 -925.7 -840.8 -3103.8 -2581.6 -2327.2 -2055.3

3 50 -977.6 -629.1 -563.0 -569.7 -1794.1 -1346.7 -1257.1 -1141.8
100 -454.1 -382.7 -264.0 -223.4 -858.0 -730.2 -567.4 -507.4
200 -284.2 -186.9 -141.5 -117.5 -440.4 -378.7 -267.0 -245.8

30 23.8 17.6 10.0 9.5 30.9 26.7 24.2 17.6
R 1 50 13.8 11.9 8.9 5.5 23.3 19.3 14.0 11.4
M 100 8.7 6.9 4.0 2.8 14.4 11.3 8.1 5.9
S 200 6.2 4.3 2.6 1.8 10.0 6.1 4.2 3.3
E 30 28.8 22.9 14.1 11.0 54.0 36.5 28.0 22.9

3 50 24.2 13.9 10.1 8.3 36.7 23.2 17.9 14.0
100 15.2 10.7 6.4 4.3 23.4 16.0 9.7 7.7
200 10.9 6.7 4.6 3.0 16.3 10.7 6.3 4.7

30 28.2 38.9 40.2 50.7 51.5 66.1 87.4 91.6
S 1 50 19.8 24.4 30.6 33.9 37.0 47.7 71.9 81.0
i 100 12.9 15.3 12.3 16.4 23.8 36.4 44.4 60.2
z 200 10.3 10.3 9.5 10.9 16.9 19.4 26.0 32.8
e 30 16.6 16.1 27.7 41.4 21.8 33.8 58.5 75.8

3 50 11.5 13.7 17.0 26.6 14.3 19.9 30.8 51.8
100 8.1 7.4 10.2 13.2 8.9 13.2 16.0 23.4
200 6.7 7.8 6.6 8.2 7.4 7.3 9.0 14.1

30 39.6 62.3 77.5 85.7 65.3 81.2 97.2 99.5
P 1 50 36.9 48.5 66.0 88.8 50.7 69.5 94.2 99.2
o 100 34.1 45.9 67.5 92.7 43.9 67.1 87.9 99.5
w 200 36.3 56.6 82.0 97.8 39.8 61.6 91.0 98.8
e 30 23.8 27.4 55.8 79.8 26.8 44.7 77.7 93.1
r 3 50 17.6 29.4 46.4 74.2 19.4 32.6 53.9 84.5

100 16.2 24.1 51.0 82.7 14.2 24.4 49.5 75.4
200 17.2 32.0 55.9 91.7 13.9 22.6 49.7 79.5

26



Table 4 (continued). MGPC Estimator

Three Factors Four Factors
# x N/T 30 50 100 200 30 50 100 200

30 -4314.2 -3592.8 -2765.2 -2715.0 -4983.8 -4425.2 -3710.9 -3216.8
B 1 50 -3000.3 -2351.1 -2277.3 -1647.5 -3506.5 -3231.9 -2487.2 -2103.8
i 100 -1775.9 -1529.4 -1261.9 -1048.8 -2490.2 -1963.1 -1660.2 -1268.0
a 200 -1134.3 -877.5 -755.9 -606.6 -1626.8 -1311.2 -976.3 -733.2
s 30 -4279.5 -3433.0 -3279.3 -2924.4 -5472.5 -4863.3 -4106.5 -4141.1

3 50 -2690.1 -2549.2 -2179.6 -2031.2 -4207.6 -3260.3 -3375.8 -2675.5
100 -1366.1 -1452.1 -1064.6 -704.0 -2591.5 -2163.3 -1927.6 -1667.4
200 -757.1 -692.4 -479.5 -405.4 -1350.0 -1114.0 -981.3 -949.1

30 47.0 38.2 28.7 27.9 53.9 46.3 38.3 32.9
R 1 50 34.2 25.4 24.0 17.2 38.9 34.7 25.9 21.7
M 100 21.1 17.3 13.6 11.1 28.6 21.5 17.7 13.2
S 200 14.3 10.5 8.4 6.6 19.5 14.7 10.6 7.8
E 30 63.0 42.8 37.1 31.3 80.4 59.1 45.7 43.5

3 50 47.3 35.2 26.1 22.6 66.6 42.9 39.2 29.4
100 31.4 23.4 14.6 9.4 46.6 31.1 23.8 19.2
200 20.5 15.1 8.5 6.0 30.9 21.5 14.2 11.7

30 66.1 78.0 91.5 97.4 71.1 89.9 96.7 99.1
S 1 50 49.8 69.0 85.3 89.3 56.0 71.5 91.6 97.0
i 100 34.8 49.6 71.9 82.8 44.6 58.6 75.5 93.7
z 200 24.7 34.6 51.9 68.7 35.4 51.5 68.4 75.3
e 30 31.4 52.0 79.3 93.0 32.0 58.2 84.3 99.0

3 50 18.3 33.8 56.9 85.2 24.6 38.1 69.9 87.8
100 11.2 20.8 31.4 35.2 16.0 28.4 50.5 73.1
200 8.2 10.5 15.7 24.8 10.8 14.2 25.9 49.5

30 73.6 86.4 97.7 99.8 78.5 94.8 99.0 99.9
P 1 50 61.9 83.8 95.3 99.0 68.1 82.7 98.0 99.9
o 100 51.2 73.1 94.2 99.2 58.4 78.6 92.7 99.9
w 200 45.5 67.7 91.8 99.4 53.9 78.0 95.4 99.2
e 30 36.9 63.8 89.8 98.7 36.5 66.0 91.6 99.9
r 3 50 23.2 45.1 77.5 96.8 28.8 49.2 82.0 97.2

100 16.3 33.2 61.1 82.7 21.4 40.9 71.9 93.2
200 15.5 23.4 51.2 86.6 15.4 24.8 55.8 87.6

Notes: The MGPC estimator is given by (24). Its estimated variance is given by (27). Bias

and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 5. MGCFS Estimator
One Factor Two Factors

# x N/T 30 50 100 200 30 50 100 200
30 1978.2 1538.2 1599.3 1575.1 4630.8 3942.8 3965.2 3836.3

B 1 50 1801.9 1793.0 1730.4 1645.1 4018.8 3795.7 3906.6 4126.9
i 100 1614.9 1702.2 1619.7 1661.7 3685.1 4248.5 3860.1 4193.3
a 200 1845.4 1722.0 1516.4 1549.1 4578.0 3639.0 3710.2 3529.6
s 30 1007.6 991.5 1015.0 923.7 2170.4 2193.5 1898.8 1860.1

3 50 1092.8 1027.7 949.0 933.3 1917.8 1983.0 1941.0 1889.6
100 974.8 1081.6 960.9 930.9 1873.4 1962.2 1910.0 1830.3
200 1034.7 944.5 919.3 950.8 1838.3 1841.6 1885.1 1924.1
30 23.4 17.3 16.8 16.4 47.9 40.6 40.3 38.6

R 1 50 20.3 19.6 18.1 16.8 41.8 39.0 39.5 41.5
M 100 17.8 18.1 16.7 16.9 38.2 43.1 38.9 42.1
S 200 19.8 18.0 15.6 15.7 46.5 36.9 37.3 35.4
E 30 21.9 19.2 13.7 11.2 38.3 30.3 23.0 20.4

3 50 19.9 14.4 12.0 10.8 29.6 24.5 22.0 20.1
100 15.1 13.8 10.9 9.9 24.4 22.5 20.2 19.0
200 13.3 11.0 10.0 9.9 21.5 20.1 19.5 19.6
30 70.2 76.2 97.4 98.4 99.2 99.8 100.0 100.0

S 1 50 81.2 87.7 98.2 100.0 99.1 100.0 100.0 100.0
i 100 87.5 95.7 99.9 100.0 99.7 100.0 100.0 100.0
z 200 95.9 99.5 100.0 100.0 100.0 100.0 100.0 100.0
e 30 54.0 62.9 89.6 96.8 88.5 98.4 99.8 100.0

3 50 59.2 83.9 93.2 99.0 89.1 99.2 100.0 100.0
100 73.7 90.8 99.6 100.0 96.5 100.0 100.0 100.0
200 90.0 96.1 99.7 100.0 99.1 100.0 100.0 100.0

30 54.9 56.1 84.5 87.5 98.2 98.9 100.0 100.0
P 1 50 65.8 73.8 88.1 98.8 97.7 99.5 100.0 100.0
o 100 70.3 83.1 96.0 100.0 97.9 100.0 100.0 100.0
w 200 86.6 94.6 98.3 100.0 100.0 100.0 100.0 100.0
e 30 33.5 36.5 55.0 62.5 76.4 92.2 97.3 99.7
r 3 50 33.3 49.4 55.9 66.8 73.4 95.0 99.1 100.0

100 40.9 58.7 72.4 89.2 86.4 98.2 100.0 100.0
200 57.5 65.6 79.5 96.2 94.7 99.6 100.0 100.0

28



Table 5 (continued). MGCFS Estimator
Three Factors Four Factors

# x N/T 30 50 100 200 30 50 100 200
30 6296.5 5910.7 5636.6 6304.7 6843.9 7350.1 6940.5 7000.9

B 1 50 6136.7 5681.3 5462.4 6054.7 7450.9 6418.1 6900.7 6966.7
i 100 5084.7 5789.9 5617.7 5334.9 6518.3 6556.3 7084.1 6643.9
a 200 5681.8 5209.1 5660.9 5080.3 6781.6 6903.4 6454.9 5811.4
s 30 2478.7 2420.8 2594.4 2492.3 2763.9 2727.2 2713.3 2657.8

3 50 2436.1 2500.8 2563.8 2509.8 2759.7 2648.8 2721.6 2680.6
100 2407.7 2591.5 2336.2 2212.3 2759.4 2779.2 2709.6 2744.7
200 2429.9 2532.0 2432.0 2418.7 2711.9 2586.8 2731.4 2768.9

30 64.2 60.1 56.8 63.3 69.9 74.0 69.8 70.2
R 1 50 62.5 57.4 55.1 60.7 75.2 65.0 69.2 69.8
M 100 51.9 58.4 56.4 53.5 66.0 66.0 71.0 66.5
S 200 57.5 52.5 56.7 50.9 68.3 69.2 64.7 58.2
E 30 42.7 30.9 29.8 27.0 57.4 40.1 33.3 29.0

3 50 37.6 30.9 28.2 26.5 47.7 34.0 32.3 29.1
100 30.5 29.2 24.8 22.7 38.6 32.3 29.3 28.6
200 27.6 27.1 25.0 24.5 32.8 29.1 28.5 28.3

30 99.8 100.0 100.0 100.0 99.7 100.0 100.0 100.0
S 1 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
i 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
z 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 93.7 100.0 100.0 100.0 93.0 99.9 100.0 100.0

3 50 96.8 100.0 100.0 100.0 98.2 100.0 100.0 100.0
100 99.8 100.0 100.0 100.0 99.6 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0

30 99.6 99.9 100.0 100.0 99.4 100.0 100.0 100.0
P 1 50 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
o 100 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 85.4 99.1 100.0 100.0 85.9 98.7 100.0 100.0
r 3 50 91.6 99.7 100.0 100.0 94.9 99.7 100.0 100.0

100 97.9 100.0 100.0 100.0 98.2 100.0 100.0 100.0
200 99.7 100.0 100.0 100.0 99.9 100.0 100.0 100.0

Notes: The MGCFS estimator is given by (24), where the factor in (23) has been constructed

as described in Section 3.2. Its estimated variance is given by (27). Bias and RMSE estimates

are scaled up by 10000 and 100, respectively.
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Table 6. PPC Estimator
One Factor Two Factors

# x N/T 30 50 100 200 30 50 100 200
30 -1706.2 -1426.7 -816.2 -817.5 -2726.8 -2449.1 -2252.5 -1598.6

B 1 50 -901.4 -861.1 -683.1 -448.8 -1772.2 -1633.8 -1275.3 -1067.5
i 100 -485.9 -408.4 -243.9 -188.2 -1070.5 -871.5 -683.3 -533.9
a 200 -306.6 -215.2 -130.5 -97.5 -606.5 -406.2 -319.9 -269.2
s 30 -1194.2 -1064.5 -878.7 -808.3 -2769.1 -2469.3 -2204.4 -1962.2

3 50 -837.6 -558.6 -515.1 -544.3 -1544.2 -1203.1 -1161.1 -1098.1
100 -402.8 -356.7 -249.2 -211.1 -711.5 -648.8 -521.9 -488.7
200 -253.6 -173.4 -133.0 -113.5 -381.9 -331.1 -254.2 -236.6

30 21.4 16.6 9.4 9.3 30.4 26.5 23.5 16.5
R 1 50 12.6 11.1 8.5 5.4 20.8 18.3 13.7 11.2
M 100 8.1 6.4 3.9 2.8 13.7 10.4 7.8 5.8
S 200 5.5 3.9 2.5 1.7 8.7 5.7 4.1 3.2
E 30 25.0 21.2 13.5 10.7 44.9 34.3 26.6 21.9

3 50 20.6 12.8 9.5 8.0 29.9 20.5 16.5 13.4
100 12.8 10.1 6.1 4.2 19.0 14.4 9.1 7.4
200 9.1 6.1 4.4 2.9 13.3 9.2 6.0 4.5

30 26.7 42.0 43.0 51.1 58.0 69.4 92.2 98.6
S 1 50 19.1 23.5 29.9 33.6 38.5 50.0 75.7 88.4
i 100 12.4 13.9 13.5 16.2 25.1 34.2 43.5 62.8
z 200 9.8 10.2 9.4 10.7 17.8 19.1 25.0 33.0
e 30 11.6 11.9 21.8 35.3 19.4 30.7 60.0 89.1

3 50 9.2 10.5 14.1 23.4 11.7 15.8 29.3 57.0
100 7.4 6.8 9.2 11.6 8.1 10.9 14.4 21.8
200 6.9 5.5 6.2 7.6 6.9 7.2 8.8 13.2

30 41.5 65.0 82.3 87.2 71.6 83.3 98.5 100.0
P 1 50 39.2 48.9 68.3 89.4 56.5 74.3 95.5 99.6
o 100 34.5 47.4 70.4 94.3 45.2 68.7 88.2 99.5
w 200 41.7 58.5 83.2 98.4 44.9 62.6 91.1 99.1
e 30 18.6 20.5 48.3 77.5 24.8 41.9 77.3 97.7
r 3 50 16.0 24.0 41.8 72.2 17.8 29.6 53.8 87.5

100 17.7 22.8 49.1 82.7 14.4 22.8 48.4 73.7
200 19.7 35.5 57.8 92.7 16.2 23.5 49.9 79.7
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Table 6 (continued). PPC Estimator
Three Factors Four Factors

# x N/T 30 50 100 200 30 50 100 200
30 -4226.6 -3570.6 -2714.9 -2722.1 -5059.8 -4391.2 -3680.7 -3150.6

B 1 50 -2882.2 -2335.7 -2244.0 -1645.0 -3478.5 -3255.2 -2423.7 -2085.1
i 100 -1722.6 -1477.2 -1254.3 -1040.8 -2426.5 -1906.8 -1637.2 -1258.4
a 200 -1072.0 -834.6 -744.5 -599.1 -1526.6 -1278.4 -960.8 -731.9
s 30 -4073.5 -3173.2 -3211.5 -2903.4 -5342.3 -4699.9 -4029.9 -4174.5

3 50 -2475.2 -2318.8 -2095.2 -1983.0 -3934.3 -3149.9 -3280.7 -2706.3
100 -1191.2 -1285.7 -1005.0 -683.5 -2312.8 -1970.8 -1848.8 -1641.1
200 -663.1 -603.2 -436.9 -388.1 -1198.8 -1008.4 -925.4 -921.6

30 45.6 37.8 28.2 28.0 54.3 45.8 38.0 32.3
R 1 50 32.5 25.1 23.6 17.1 38.2 34.8 25.2 21.5
M 100 20.2 16.6 13.5 11.0 27.5 20.8 17.5 13.1
S 200 13.4 10.0 8.3 6.5 18.0 14.3 10.4 7.8
E 30 57.7 39.2 36.2 31.0 74.2 56.1 44.6 43.7

3 50 41.1 31.3 25.0 22.1 59.1 40.4 37.8 29.6
100 24.9 20.8 13.9 9.1 38.9 28.1 22.7 18.8
200 17.1 13.1 8.0 5.8 26.1 19.1 13.4 11.4

30 70.4 83.8 96.9 99.1 75.9 93.5 98.6 99.8
S 1 50 53.3 73.4 88.2 94.0 60.2 75.3 94.7 98.2
i 100 39.0 52.2 72.9 85.4 49.4 63.0 77.1 95.6
z 200 24.6 34.2 53.9 70.3 39.0 52.0 69.5 77.5
e 30 29.1 53.0 84.8 98.8 29.4 63.1 89.9 100.0

3 50 17.5 35.1 61.7 89.5 23.7 41.5 74.5 94.3
100 11.4 19.7 30.9 34.2 16.1 28.0 53.0 75.4
200 8.9 10.5 13.2 22.6 10.7 13.4 24.6 50.0

30 80.3 92.0 99.4 99.9 81.9 97.7 99.6 100.0
P 1 50 66.0 86.9 97.2 99.5 71.0 86.4 99.0 99.9
o 100 56.3 77.5 94.8 99.4 65.0 82.4 94.0 100.0
w 200 49.4 68.7 93.2 99.2 58.2 80.3 96.0 99.5
e 30 36.1 64.1 92.9 99.9 35.5 71.8 95.7 100.0
r 3 50 22.9 48.5 81.6 98.3 28.5 52.3 86.2 98.8

100 17.6 34.6 60.7 81.8 22.6 43.2 73.7 94.2
200 15.9 23.7 50.8 86.3 17.2 25.9 55.9 87.8

Notes: The PPC estimator is given by (25). Its estimated variance is given by (28). Bias and

RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 7. PCFS Estimator
One Factor Two Factors

# x N/T 30 50 100 200 30 50 100 200
30 1875.6 1491.1 1574.0 1554.9 4466.1 3822.6 3890.2 3758.7

B 1 50 1728.1 1738.4 1695.6 1625.9 3880.7 3676.8 3815.0 4067.3
i 100 1538.8 1638.8 1587.0 1632.3 3533.3 4109.9 3780.7 4166.3
a 200 1755.5 1658.1 1482.0 1526.5 4422.2 3534.4 3672.7 3520.8
s 30 986.2 970.8 1015.5 921.8 2158.9 2176.3 1900.8 1858.4

3 50 1064.6 1022.1 948.4 938.3 1889.2 1951.5 1940.0 1887.7
100 957.2 1071.5 961.6 935.4 1848.2 1958.9 1912.4 1827.2
200 1017.0 942.2 918.8 952.6 1817.1 1831.7 1878.5 1921.1

30 22.2 16.9 16.5 16.1 46.2 39.4 39.5 37.9
R 1 50 19.4 18.9 17.8 16.6 40.3 37.8 38.6 40.9
M 100 17.0 17.5 16.4 16.5 36.7 41.7 38.1 41.8
S 200 18.8 17.3 15.2 15.4 44.9 35.8 36.9 35.3
E 30 19.6 17.9 13.3 11.0 34.2 29.0 22.6 20.2

3 50 18.0 13.8 11.8 10.7 27.0 23.6 21.6 20.0
100 13.8 13.3 10.8 9.9 22.7 22.0 20.1 18.9
200 12.5 10.8 10.0 9.9 20.6 19.6 19.4 19.5

30 69.0 75.2 97.8 99.5 99.4 99.9 100.0 100.0
S 1 50 82.9 89.9 98.0 100.0 99.4 100.0 100.0 100.0
i 100 86.7 96.3 100.0 100.0 99.7 100.0 100.0 100.0
z 200 96.2 99.5 100.0 100.0 100.0 100.0 100.0 100.0
e 30 53.2 62.4 90.3 97.7 89.8 98.1 100.0 100.0

3 50 65.0 87.4 94.2 99.5 91.5 99.3 100.0 100.0
100 77.5 92.0 99.6 100.0 98.0 100.0 100.0 100.0
200 92.8 98.0 99.9 100.0 99.7 100.0 100.0 100.0

30 54.9 53.5 85.2 91.5 98.4 98.9 100.0 100.0
P 1 50 66.3 75.2 87.5 99.1 97.9 99.4 100.0 100.0
o 100 67.8 83.5 96.5 100.0 98.2 100.0 100.0 100.0
w 200 87.1 94.8 98.6 100.0 100.0 100.0 100.0 100.0
e 30 31.3 34.8 53.2 60.6 78.0 94.1 98.0 100.0
r 3 50 38.6 51.2 57.5 70.5 78.5 96.3 99.5 100.0

100 45.5 62.5 75.6 91.8 90.0 99.1 100.0 100.0
200 63.0 70.5 82.6 97.2 96.5 99.9 100.0 100.0
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Table 7 (continued). PCFS Estimator
Three Factors Four Factors

# x N/T 30 50 100 200 30 50 100 200
30 6074.4 5790.8 5532.9 6212.3 6657.4 7177.3 6869.6 6912.7

B 1 50 5952.6 5555.0 5348.9 5990.5 7300.6 6272.0 6799.5 6883.0
i 100 4905.1 5653.3 5516.6 5262.3 6330.6 6405.8 6974.2 6617.6
a 200 5485.0 5088.9 5589.3 5090.6 6596.4 6777.7 6404.3 5854.1
s 30 2477.9 2423.6 2611.9 2493.0 2771.2 2733.3 2764.8 2675.2

3 50 2433.4 2505.1 2553.5 2505.4 2777.4 2664.7 2740.7 2679.2
100 2392.1 2589.5 2337.2 2213.0 2764.3 2788.5 2710.6 2738.0
200 2417.4 2535.9 2431.3 2417.7 2706.2 2577.6 2730.3 2777.1

30 62.0 58.8 55.8 62.3 68.0 72.3 69.1 69.3
R 1 50 60.6 56.2 54.0 60.1 73.7 63.5 68.2 69.0
M 100 50.1 57.1 55.4 52.7 64.1 64.4 69.9 66.3
S 200 55.5 51.3 56.0 51.0 66.4 68.0 64.2 58.6
E 30 39.3 29.9 29.6 26.9 52.4 38.5 32.9 28.9

3 50 34.4 29.9 27.8 26.4 43.3 32.7 31.8 28.8
100 28.5 28.5 24.6 22.7 35.1 31.4 29.0 28.5
200 26.6 26.7 24.9 24.4 31.2 28.3 28.3 28.2

30 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0
S 1 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
i 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
z 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 96.5 99.9 100.0 100.0 95.0 99.9 100.0 100.0

3 50 97.2 100.0 100.0 100.0 99.1 100.0 100.0 100.0
100 99.7 100.0 100.0 100.0 99.8 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

30 99.7 100.0 100.0 100.0 99.7 100.0 100.0 100.0
P 1 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
o 100 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e 30 90.5 99.6 100.0 100.0 90.0 99.2 100.0 100.0
r 3 50 93.0 99.9 100.0 100.0 96.8 99.8 100.0 100.0

100 98.3 100.0 100.0 100.0 99.2 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0

Notes: The PCFS estimator is given by (25), where the factor in (23) has been constructed as

described in Section 3.2. Its estimated variance is given by (28). Bias and RMSE estimates are

scaled up by 10000 and 100, respectively.
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Table 8. Mean Group (MG) Estimators for Experiments B
CCEMG Estimator MG(Theil) Estimator

No. of x N/T 30 50 100 200 30 50 100 200
B 30 3.4 -27.8 106.1 -252.0 2071.7 1796.8 1880.7 -3.5
i 1 50 184.4 -35.9 -247.4 153.0 2862.7 1440.6 547.2 1.1
a 100 17.6 8.5 -143.4 -3.3 3203.4 2849.7 676.3 4.3
s 200 -3.5 3.1 7.7 -10.3 2877.8 2597.8 1604.2 -0.2

R 30 24.0 18.2 13.6 7.8 24.1 20.8 21.0 5.2
M 1 50 20.6 13.3 9.4 6.3 30.4 18.1 11.6 4.0
S 100 14.2 9.8 6.4 4.2 33.0 29.7 12.0 2.7
E 200 10.0 7.0 4.8 3.1 30.5 27.7 17.1 2.0

S 30 6.3 5.1 6.5 7.8 51.5 54.4 71.9 5.6
i 1 50 5.1 5.8 4.3 6.8 84.8 53.9 33.6 7.0
z 100 5.1 5.3 5.9 5.8 98.8 97.5 44.1 6.2
e 200 4.7 5.6 5.7 5.2 94.0 97.9 97.1 5.7

P 30 6.6 6.5 8.0 17.2 37.6 37.8 54.8 20.1
o 1 50 6.7 8.6 12.8 9.6 75.9 37.3 33.1 27.8
w 100 6.7 8.3 18.7 24.6 96.0 94.5 54.6 48.4
er 200 8.2 12.0 18.4 39.2 88.5 92.5 88.6 71.3

MG(AIC) Estimator MGT Estimator
B 30 1802.4 1367.2 731.8 -3.6 6.3 -58.3 -29.0 -3.8
i 1 50 1210.0 547.4 9.2 0.7 -34.5 -26.3 5.8 1.1
a 100 641.5 405.8 -26.0 4.3 24.5 -33.2 -26.0 4.3
s 200 1369.4 105.8 71.9 -0.2 -17.8 -1.6 2.3 -0.2

R 30 22.8 18.6 12.2 5.2 16.7 11.5 8.6 5.2
M 1 50 20.7 10.4 6.0 4.0 13.3 8.5 5.9 4.0
S 100 16.4 10.5 4.3 2.7 9.2 6.1 4.3 2.7
E 200 17.7 6.0 4.5 2.0 7.1 4.3 3.1 2.0

S 30 45.1 41.7 25.8 5.3 5.0 5.8 5.8 5.7
i 1 50 36.7 17.0 5.5 6.9 5.5 5.5 5.3 7.0
z 100 23.6 25.9 6.3 6.2 4.5 5.3 6.3 6.2
e 200 61.5 12.7 10.0 5.7 6.5 5.7 5.3 5.7

P 30 32.9 29.5 15.0 19.8 6.5 9.7 11.3 20.1
o 1 50 31.6 9.9 14.5 27.8 7.8 11.8 14.2 27.8
w 100 26.0 25.2 25.7 48.4 8.6 15.0 25.7 48.4
er 200 46.7 27.4 40.9 71.3 12.2 22.8 37.3 71.3

Notes: The CCEMG estimator is given by (14). Its estimated variance is given by (18). The

MG(Theil) estimator is given by (24). Its estimated variance is given by (27). The factors included

in (23) are chosen by the criterion in (32). The MG(AIC) estimator is given by (24). Its estimated

variance is given by (27). The factors included in (23) are chosen by the criterion in (31). The MGT

estimator is the MG estimator that uses the true unobserved factor and is therefore, infeasible in

practice.

34



Table 9. Pooled Estimators for Experiments B
CCEP Estimator P(Theil) Estimator

No. of x N/T 30 50 100 200 30 50 100 200
B 30 106.4 -18.1 138.3 -265.1 1994.7 1745.6 1839.0 -6.8
i 1 50 237.4 -23.7 -240.1 156.9 2781.7 1375.7 530.4 0.1
a 100 20.6 -4.0 -133.4 -2.9 3090.8 2757.4 660.1 3.2
s 200 2.8 -7.6 7.7 -11.0 2754.0 2510.5 1564.4 -1.4

R 30 22.9 17.1 13.1 7.7 23.3 20.2 20.5 4.7
M 1 50 20.0 12.5 9.5 6.2 29.6 17.4 11.2 4.0
S 100 13.0 9.5 6.2 4.1 31.8 28.8 11.7 2.6
E 200 9.0 6.5 4.5 3.0 29.2 26.8 16.7 1.9

S 30 5.6 5.7 6.2 7.1 47.0 53.8 71.5 4.8
i 1 50 5.5 5.3 4.8 6.2 83.5 51.2 33.1 5.8
z 100 4.9 5.3 5.5 5.2 98.5 97.5 44.0 5.3
e 200 5.1 6.0 5.5 5.1 94.5 97.8 97.2 5.0

P 30 6.2 6.6 7.1 17.5 32.9 35.6 53.0 18.2
o 1 50 6.0 8.1 11.5 9.3 73.6 35.2 33.0 24.6
w 100 6.9 9.3 18.9 25.1 96.0 94.2 56.4 50.0
er 200 8.5 13.5 19.6 39.7 88.4 91.8 88.3 74.8

P(AIC) Estimator PT Estimator
B 30 1734.6 1325.4 716.0 -6.6 -8.9 -52.8 -22.6 -7.2
i 1 50 1165.1 514.3 6.0 -0.3 -44.0 -34.3 2.6 0.1
a 100 609.3 388.1 -24.3 3.2 16.6 -37.9 -24.3 3.2
s 200 1301.2 106.9 70.8 -1.4 -18.1 3.6 3.3 -1.4

R 30 22.0 18.0 11.9 4.7 16.0 10.7 8.3 4.7
M 1 50 20.1 9.9 5.6 4.0 13.2 8.1 5.5 4.0
S 100 15.7 10.2 3.9 2.6 8.5 5.9 3.9 2.6
E 200 16.8 5.7 4.4 1.9 6.5 4.0 3.0 1.9

S 30 39.8 40.8 22.1 4.5 4.4 4.7 4.7 4.8
i 1 50 35.4 14.6 4.8 5.7 4.6 5.2 4.6 5.8
z 100 23.5 25.1 5.7 5.3 4.3 4.7 5.7 5.3
e 200 62.0 12.1 10.0 5.0 5.7 4.8 5.2 5.0

P 30 28.4 27.4 12.6 17.9 5.1 7.2 9.6 18.2
o 1 50 29.1 9.0 14.3 24.6 6.9 11.2 14.1 24.6
w 100 25.6 24.4 27.7 50.0 8.6 14.5 27.7 50.0
er 200 47.6 28.5 42.2 74.8 13.6 24.2 38.9 74.8

Notes: The CCEP estimator is given by (19). Its estimated variance is given by (20). The

P(Theil) estimator is given by (25). Its estimated variance is given by (28). The factors included

in (23) are chosen by the criterion in (32). The P(AIC) estimator is given by (25). Its estimated

variance is given by (28). The factors included in (23) are chosen by the criterion in (31). The PT

estimator is the pooled estimator that uses the true unobserved factor and is therefore, infeasible

in practice.
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Table 10. Empirical Application: Pooled Estimator

Spec. ∆q ∆π ∆r ∆m ∆e const ∆πo

1 1.251(4.45) 0.335(1.63) −1.594(−1.94) 0.185(2.21) −0.366(−5.12) −0.002(−0.45) 0.042(1.07)

2 - 0.277(1.35) −1.763(−2.02) 0.283(3.30) −0.411(−5.75) 0.003(0.83) 0.073(1.76)

3 1.254(4.43) - −1.464(−1.77) 0.164(2.03) −0.356(−4.95) −0.003(−0.67) 0.039(0.98)

4 1.243(4.30) 0.187(0.67) - 0.167(1.95) −0.395(−5.51) −0.002(−0.50) 0.040(0.98)

5 1.261(4.51) 0.265(1.35) −1.678(−1.89) - −0.336(−4.79) −0.004(−1.00) 0.039(1.01)

6 1.669(5.67) 0.087(0.41) −1.923(−2.43) 0.115(1.30) - −0.003(−0.70) 0.032(0.80)

7 1.252(4.49) - −1.583(−1.80) - −0.329(−4.64) −0.004(−0.99) 0.038(0.98)

Table 11. Empirical Application: Pooled Estimator (cont.)

Spec. ¯ret ∆q ∆̄π ∆̄r ∆̄m ∆̄e σ̄2
i

1 1.021(26.14) −0.482(−0.90) −0.654(−1.68) 2.022(3.35) −0.377(−1.43) 0.360(4.45) 0.0328(0.0440)

2 1.040(26.21) - −0.593(−1.61) 2.132(3.48) −0.552(−2.08) 0.362(4.35) 0.0334(0.0443)

3 1.016(25.67) −0.489(−0.95) - 1.689(3.70) −0.240(−0.91) 0.324(4.08) 0.0327(0.0429)

4 1.011(25.29) −0.598(−1.18) −0.167(−0.76) - −0.267(−0.99) 0.376(4.71) 0.0326(0.0421)

5 1.018(27.82) −0.446(−0.83) −0.515(−1.35) 2.070(3.33) - 0.319(3.96) 0.0327(0.0440)

6 1.005(28.47) −0.564(−1.04) −0.433(−1.18) 2.415(3.57) −0.337(−1.29) - 0.0335(0.0439)

7 1.015(27.43) −0.440(−0.85) - 1.808(3.72) - 0.295(3.71) 0.0327(0.0432)

Table 12. Empirical Application: Mean Group Estimator

Spec. ∆q ∆π ∆r ∆m ∆e const ∆πo

1 1.163(3.68) 0.303(0.98) −3.041(−5.62) 0.139(0.96) −0.268(−4.02) 0.001(0.19) 0.055(1.48)

2 - 0.308(1.04) −3.634(−6.62) 0.194(1.54) −0.354(−6.03) 0.007(1.76) 0.116(2.54)

3 1.048(3.40) - −2.789(−4.89) 0.119(0.89) −0.284(−4.70) −0.000(−0.06) 0.043(1.18)

4 1.053(3.39) 0.041(0.14) - 0.042(0.27) −0.348(−4.84) −0.000(−0.07) 0.040(1.07)

5 1.366(4.33) 0.388(1.32) −3.490(−6.35) - −0.198(−3.10) −0.005(−0.94) 0.015(0.38)

6 1.347(4.81) 0.100(0.36) −2.917(−5.37) 0.091(0.64) - −0.000(−0.08) 0.055(1.44)

7 1.253(4.20) - −3.174(−5.56) - −0.188(−3.23) −0.004(−0.90) 0.015(0.40)

Table 13. Empirical Application: Mean Group Estimator (cont.)

Spec. ¯ret ∆q ∆̄π ∆̄r ∆̄m ∆̄e χ2
k

1 1.018(24.23) −0.668(−1.21) −0.700(−1.36) −0.148(−0.24) −0.285(−1.01) 0.170(2.23) 0.00
2 1.058(24.97) - −0.965(−1.99) 0.178(0.29) −0.610(−2.15) 0.170(2.27) 0.00
3 1.013(23.32) −0.595(−1.05) - −0.272(−0.43) −0.131(−0.49) 0.146(2.00) 0.00
4 1.001(23.30) −0.440(−0.80) −0.655(−1.53) - −0.064(−0.23) 0.187(2.51) 0.00
5 0.995(26.19) −0.826(−1.60) −0.680(−1.44) −0.243(−0.40) - 0.143(1.89) 0.00
6 0.993(27.57) −0.542(−1.00) −0.162(−0.34) −0.484(−0.76) −0.159(−0.61) - 0.00
7 0.991(25.37) −0.691(−1.29) - −0.390(−0.69) - 0.136(1.91) 0.00
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