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Abstract

This paper considers alternative approaches to the analysis of large panel data mod-
els in the presence of error cross section dependence. A popular method for modelling
such dependence uses a factor error structure. Such models raise new problems for
estimation and inference. This paper compares two alternative methods for carrying
out estimation and inference in panels with a multifactor error structure. One uses
the correlated common effects estimator that proxies the unobserved factors by cross
section averages of the observed variables as suggested by Pesaran (2004) , and the
other uses principal components following the work of Stock and Watson (2002) . The
paper develops the principal component method and provides small sample evidence
on the comparative properties of these estimators by means of extensive Monte Carlo
experiments. An empirical application to company returns provides an illustration of
the alternative estimation procedures.
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Panel data sets have been increasingly used in economics to analyze complex economic
phenomena. One of their attractions is the ability to use an extended data set to obtain
information about parameters of interest which are assumed to have common values across
panel units. Most of the work carried out on panel data has usually assumed some form of
cross sectional independence to derive the theoretical properties of various inferential proce-
dures. However, such assumptions are often suspect and as a result recent advances in the
literature have focused on estimation of panel data models subject to error cross sectional

dependence.

A number of different approaches have been advanced for this purpose. In the case of
spatial data sets where a natural immutable distance measure is available the dependence
is often captured through “spatial lags” using techniques familiar from the time series lit-
erature. In economic applications, spatial techniques are often adapted using alternative
measures of “economic distance”. This approach is exemplified in work by Lee and Pesaran
(1993) , Conley and Dupor (2003) , Conley and Topa (2002) and Pesaran, Schuermann, and
Weiner (2004) , as well as the literature on spatial econometrics recently surveyed by Anselin
(2001) . In the case of panel data models where the cross section dimension (V) is small
(typically N < 10) and the time series dimension (7°) is large the standard approach is to
treat the equations from the different cross section units as a system of seemingly unrelated
regression equations (SURE) and then estimate the system by the Generalized Least Squares
(GLS) techniques.

In the case of panels with large cross section dimension, SURE approach is not practical
and has led a number of investigators to consider unobserved factor models, where the cross
section error correlations are defined in terms of the factor loadings. Use of factor models
is not new in economics and dates back to the pioneering work of Stone (1947) who applied
the principal components (PC) analysis of Hotelling to US macroeconomic time series over
the period 1922-1938 and was able to demonstrate that three factors (namely total income,
its rate of change and a time trend) explained over 97 per cent of the total variations of
all the 17 macro variables that he had considered. Until recently, subsequent applications
of the PC approach to economic times series has been primarily in finance. See, for ex-
ample, Chamberlain and Rothschild (1983) , Conor and Korajzcyk (1986) and Conor and
Korajzcyk (1988) . But more recently the unobserved factor models have gained popularity
for forecasting with a large number of variables as advocated by Stock and Watson (2002)

The factor model is used very much in the spirit of the original work by Stone, in or-

der to summarize the empirical content of a large number of macroeconomics variables by



a small set of factors which, when estimated using principal components, is then used for
further modelling and/or forecasting. A related literature on dynamic factor models has also
been put forward by Forni and Reichlin (1998) and Forni, Hallin, Lippi, and Reichlin (2000) .

Recent uses of factor models in forecasting focuses on consistent estimation of unobserved
factors and their loadings. Related theoretical advances by Bai and Ng (2002) and Bai (2003)
are also concerned with estimation and selection of unobserved factors and do not consider
the estimation and inference problems in standard panel data models where the objects of
interest are slope coefficients of the conditioning variables (regressors). In such panels the
unobserved factors are viewed as nuisance variables, introduced primarily to model the cross
section dependencies of the error terms in a parsimonious manner relative to the SURE for-

mulation.

Despite these differences knowledge of factor models could still be useful for the analysis
of panel data models if it is believed that the errors might be cross sectionally correlated.
Disregarding the possible factor structure of the errors in panel data models can lead to in-
consistent parameter estimates and incorrect inference. Coakley, Fuertes, and Smith (2002)
suggest a possible solution to the problem using the method of Stock and Watson (2002) .
But, as Pesaran (2004) shows, the PC approach proposed by Coakley, Fuertes, and Smith
(2002) can still yield inconsistent estimates. Pesaran (2004) suggests a new approach by
noting that linear combinations of the unobserved factors can be well approximated by cross
section averages of the dependent variable and the observed regressors. This leads to a new
set of estimators, referred to as the Common Correlated Effects estimators, that can be com-
puted by running standard panel regressions augmented with the cross section averages of
the dependent and independent variables. The CCE procedure is applicable to panels with

a single or multiple unobserved factors so long as the number of unobserved factors is fixed.

In this paper we consider an alternative two-stage estimation method where in the first
stage principal components of all the economic variables in the panel data model are ob-
tained as in Stock and Watson (2002) , and in the second stage the model is estimated
augmenting the observed regressors with the estimated PCs. Unlike the CCE method the
implementation of the PC augmented procedure requires the determination of the number
of factors to be included in the second stage. This can be done using the criteria advanced
in Bai and Ng (2002) .

The small sample properties of the CCE and the PC augmented estimators will be inves-



tigated by means of Monte Carlo experiments, allowing for up to four factors and regressors.
We find that augmenting the panel data model with cross sectional averages of the depen-
dent and explanatory variable works well in the multiple factor case. This is line with the
results of Monte Carlo experiments reported by Pesaran (2004) and Coakley, Fuertes, and
Smith (2004). On the other hand the PC augmented method does not perform as well, and
can lead to substantial size distortions. This could be partly due to the small sample errors
in the number of factors selected by the Bai and Ng procedure. To shed light on such a
possibility we also conducted a number of Monte Carlo experiments where the factors were
taken as observed, but it is not known which of the factors should actually be included in
the PC augmented procedure. Using alternative regressor selection procedures it is shown
that even in this setting the PC augmented method could be subject to substantial bias in
small samples. We also provide an empirical application to a large panel of company returns
with a wide geographical coverage where we estimate asset return regressions that include
observed as well as unobserved regressors. The standard asset return equations routinely
estimated in the finance literature either allow for unobserved factors or observed factors,

but not both. We extend this literature by including both types of regressors in the analysis.

The plan of the paper is as follows: Section 1 sets out the multi-factor residual model,
its assumptions and the CCE estimators. Section 2 sets out the PC augmented estimators.
Section 3 describes the Monte Carlo design and discusses the results. Section 4 presents the

empirical application. Finally, Section 5 concludes.

1 Panel Data Models with Observed and Unobserved
Common Effects

In this section we review the methodology introduced in Pesaran (2004) . Let y;; be the
observation on the i*" cross section unit at time ¢ for i = 1,2,...,N; t = 1,2,....T, and
suppose that it is generated according to the following linear heterogeneous panel data
model

yir = o dy + Bixi + ik + eun, (1)

where d; is a n x 1 vector of observed common effects (including deterministic components
such as intercepts or seasonal dummies), x;; is a k x 1 vector of observed individual-specific
regressors on the i cross section unit at time ¢, f; is the m x 1 vector of unobserved common
effects, and e;; are the individual-specific (idiosyncratic) errors assumed to be independently
distributed of (dy, x;;). The unobserved factors, f;, could be correlated with (d;, x;), and to

allow for such a possibility the following specification for the individual specific regressors



will be considered
xy = Ald, + Tif, + vy, (2)

where A; and I'; are n X k and m x k, factor loading matrices with fixed components, v;; are
the specific components of x;; distributed independently of the common effects and across ¢,
but assumed to follow general covariance stationary processes. In this paper we assume that
the common factors, d; and f;, are covariance stationary, although the results obtained here
can be readily extended to cases where one or more elements of the common factors could

have unit roots and/or deterministic trends.

Combining (1) and (2) we now have

Zig = ( Ui ) = B, d+ C; fi + uy , (3)

(k+1)x1 Xt (k+1)xn mX1  (k+1)xm mx1  (k+1)x1

where /
[ Cu + Bivit

w = (). o

1 O 1 0
B, =(a; A , G = i I ) 5
( )(/Bz Ik) (~ >(/8z Ik) )

I, is an identity matrix of order k, and the rank of C; is determined by the rank of the

m x (k+ 1) matrix of the unobserved factor loadings

I‘Z-:('yi Fi). (6)

As discussed in Pesaran (2004) , the above set up is sufficiently general and renders a variety
of panel data models as special cases. In the panel literature with 7" small and N large, the
primary parameters of interest are the means of the individual specific slope coefficients, 3;,
1 =1,2,..., N. The common factor loadings, o, and =,, are generally treated as nuisance
parameters. In cases where both N and T are large, it is also possible to consider consistent
estimation of the factor loadings. The presence of the unobserved factor in (1) implies that
estimation of 3, and its cross sectional mean cannot be undertaken using standard methods.
Pesaran (2004) has suggested using cross section averages of y;; and x;; as proxies for the
unobserved factors in (1). To see why such an approach could work, consider simple cross

section averages of the equations in (3)!
Zt - B/dt + let + ﬁt, (7)
where

N N

_ 1 _ 1

zZy = N E Zit, Uy = N E U,
i=1 =1

!Pesaran (2004) considers cross section weighted averages that are more general. But to simplify the
exposition we confine our discussion to simple averages throughout.
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and

1 & 1 &
B:N;Bi,czﬁizlci (8)
Suppose that
Rank(C) =m <k + 1, for all N. 9)
Then, we have
—_ N1 _ _
f, = (Cc’) C(z-Bd —1). (10)
But since
g, 2 0, as N — oo, for each t, (11)
and
CiC—f‘(l 0) as N — oo (12)
B Ik ) )
where
['=(E(v,),E[)=(7T). (13)

it follows, assuming that Rank(I') = m, that
f, — (CC)"'C (7 —B'd) 20, as N — oc.

This suggests using h, = (d/, Z,)" as observable proxies for f;, and is the basic insight that
lies behind the Common Correlated Effects estimators developed in Pesaran (2004) . It is
further shown that the CCE estimation procedure in fact holds even if T turns out to be

rank deficient.

We now discuss the two estimators for the means of the individual specific slope coeffi-
cients proposed by Pesaran (2004) . One is the Mean Group (MG) estimator proposed in
Pesaran and Smith (1995) and the other is a generalization of the fixed effects estimator that
allows for the possibility of cross section dependence. The former is referred to as the “Com-
mon Correlated Effects Mean Group” (CCEMG) estimator, and the latter as the “Common
Correlated Effects Pooled” (CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE estimators, b; of B,

N
by =N"1> b (14)
=1
where
b; = (X'MX;) X/ My, (15)



X, = (Xz‘th'z, -‘-7XiT>/7 yi = (yilvyi% --->?J¢T)/, M is defined by

M = I — H (A'H)

g0 (16)

H = (D, Z), D and Z being, respectively, the T x n and T x (k + 1) matrices of observations

on dt and Zt'

Under certain conditions, Pesaran (2004) has shown that
VN (BMG - 5) 4 N(0,2,0), as (N, T) % oc. (17)

where X/ can be consistently estimated non-parametrically by
(R /
S = 3 (b ) (b B 1
MG = N ; MG MG (18)
Efficiency gains from pooling of observations over the cross section units can be achieved

when the individual slope coefficients, 8;, are the same. Such a pooled estimator of g3,

denoted by CCEP, has been developed by Pesaran (2004) and is given by

N -1 N
bp = <Z X’MX) > XMy, (19)
i=1 i=1

Again, Pesaran (2004) has shown that

N-V? (BP . [3) < N0, %),

where 37 can be consistently estimated by

R .
where N ) )
ae_ 1 XiMX;\ (» = - r XIMX;
R —mz( T )(bf—bMG) (B = Buc) < T ) (21)
and
& _ Ly (XIMX, .
N 2; ( T ) ' (22)

2 A Principal Components Augmentation Approach

In this section we explore an alternative method of estimating the model given by (1) and
(2) based on principal component analysis as discussed in the work of Stock and Watson

2002) . Our approach is first to apply the Bai and Ng (2002) procedure to z;; = (v, %%, )’ to
( y g Yits Xit
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obtain consistent estimates of the unobserved factors, and then use these factor estimates to
augment the regression (1), and thus produce consistent estimates of 3. A formal justification
for such an approach is as follows. Recall from (3) that
Zjp = ( iii ) = O'g, + uy,

where @)= (B},C}), g = (d},f;)’. The errors u;, can be serially correlated but do not
have common factors and are cross sectionally independent by assumption. Therefore, un-
der Assumptions 1-5 of Pesaran (2004) , this model satisfies assumptions of Bai (2003) and
the common factors g;, can be consistently estimated (up to a non-singular transformation)

from the principal components of z;; for i =1,2,...,. N,and t =1,2,...,T.

The estimated factors at time ¢, denoted by f; will be linear combinations of the (m+n)x1
vector g;. It is important to note that m + n, rather than just m factors, must be extracted
from z;;. In practice, m is not known and must be replaced by an estimate using the selection
procedure in Bai and Ng (2002), for example. This in turn can introduce a certain degree

of sampling uncertainty into the analysis.

Once these factors are extracted we can use the results of Bai (2003) and in particular
Comment 2 (pp. 146) to justify augmenting (1) by the estimated factors. In particular, Bai
(2003) shows that as long as /T /N — 0 the error in the estimated factor is negligible for

estimating the regression

Yir = aidy + Bixq + ’Yﬁt + it (23)
Again we consider both mean group and pooled estimators. The mean group and pooled

estimators are given respectively by

N
byepe = N7 Z bararo, (24)
=1
and
N I N
bppc= (Z X;ngi) > XMy, (25)
i=1 =1
where
SV NEENE B
M, =1, — G (G'G) el (26)

G = (D, F), F is the T x (m+n) matrix of observations on f,, and b MGpe, 1s the estimator

of B, in (23). The variance for the mean group estimator is given by

N
A ~ 1 ~ ~ ~ ~ /

AVar(byapc) = N1 (bMGPC,i — bMGPC) <bMGPC,i - bMGPC> (27)

=1



and for the pooled estimator, in the case where 8, = 3, by

N -1 /N N -1
/ n o 1 / ~2~N7! /
AVar(bppc) —N (;Zl XiMﬁXZ) (;Zl o; XngXZ) (;Zl XngXi (28)

where 67 is the estimated error variance of (23).

The principal components are computed based on standardized observations, namely
(vit — i) /ss and (w40 — Zi¢) /sy where 7; and Ty, are sample means of y;; and the /" element

of x;;, and s; and s;, are the associated sample standard deviations.

3 Small Sample Properties of the Various Estimators

3.1 Monte Carlo Design

The data generating processes used in the Monte Carlo experiments are different parame-

terizations of (1) and (2) which we reproduce here for convenience:
Yir = agd; + Bixi +vif + i, (29)
and
Xit = A;dt -+ F;ft -+ Vit, (30)

where A; = [a;g] and T'; = [v;4] are n x k and m x k, factor loading matrices with fixed
components, v;; are the specific components of x;; distributed independently of the common

effects and across 7, but assumed to follow general covariance stationary processes.

In the calibration of the Monte Carlo design, it is important that the population value
of R? for (29) is controlled across the different experiments. Otherwise, comparisons of the
power properties of the different estimators can be misleading in the case of models with
different numbers of observed and unobserved factors. In what follows we show how the
average population R? of the y; equation varies with the model parameter and hence find
values of the error variances, o2, that ensure the population R? is around 60% irrespective

of the number of regressors included in the model. We shall assume that unconditionally
ft ~ (0, Ef)’ dt ~ (07 Ed)
Eqit ™ IID(O, O'?), Vit ~ [[D(O, EUZ)

The variables, f;, d;, ;4,v;; are also assumed to be distributed independently of the parame-

ters, a;, B3;, I';, A;, and ~,. Using (30) in (29) we have
yir = od; + B; (Aid; + Tify 4+ vir) +vifi + car,

Yit = P8 + €it,



where
[ ai +AB; (4
Qoz_< '71+FZ,61 )7gt_< ft >7

/
€it = Ei + 6ivit-

and

The population R? of (29), conditional on ¢, and 3;, is given by

2 o}
T Vel en 8
where
Var(yis|¢:,8;) = @iZgp; + B Z0uiB; + af,
and

_( X g
= < Spa Xy ) '
Since, E(yi |;,8;) = 0, then on average (integrating out the individual effects)

VaT(yit) =F (90229901‘ + /6;2111:31 + U?) )
Var(eq) = E (07),

(2

and the average population R? value will be given by

E (02)

7

E (@30, + B:3,:8; + o)

Suppose that the individual-specific parameters, o2, ¢, and 3;, are distributed indepen-

R*=1-—

dently of 3, and 3, is distributed independently of 3,; with constant means and variances,
0t = B(0?), o = E(p), B = E(B)), Var(¢,) = Ty, Var(B,) = Tp, and B, = £ (5.
Then it is easily seen that

0.2

P'E, o+ Tr(X,2,) + 8%, B+ Tr (X,25) + 0%’

R*=1-

where X, = E (,0;)—p¢’. Toderive E (p,4]), let Aj = (a1, @iz, .-, Qin), Vi = (Vir, Yizs -+ Yim)
and note that

PP = ( (e + AiB) (i + AiB)" (i + AiBy) (v, + T.8,) )
L (vi +1iB;) (i + AiB;) (v +TiBy) (v, + Fi/gi)/ ’

E (A"L/Q’LIB’/LA;) =
E(Bana,B;) FE(Banal,B;) E(Bana;,B;)
E (ﬂ;az'la;2/8i) E (6;31‘2322:61‘) E (Bgaﬂa{mﬁ'i)

E(BanalB) - | E(Blana,8))



Assuming 3, is distributed independently of a;. for r = 1,2, ..,n, we have
E (Biaya;,B;) = B'E (ayay,) B+ Tr [E (aya;,) 3],
for r;s =1,2,...,n. Similarly, assuming 3, is distributed independently of ~,,
E (BiviisBi) = BE (viYis) B+ Tr [E (vi¥is) Bl
for r,s = 1,2,...,m. The remaining elements of E (¢,;¢}) can also be obtained in a similar

fashion.
For the Monte Carlo experiments we used the following parameterizations

Eﬁzoa Eg:(]g Zof)721)::[k

16 ... 8
0 1 0

Y= . . .
0 0 ... 1

0 is the pair-wise correlation coefficient of the unobserved factors and
[ a+Ap
T\ v+ )
Also since the parameters are generated independently we have
E(a;BA) = af' A,
E(a;B8T}) = aB'T,
and

E(a;af) =3, + ad
E(vivi) =2+ 97"

E (a,al,) = a,a, if r # s
=X, +a.a.,
assuming that a;,. are identically distributed. Similarly,

E(vaYis) =1, ifr#s
=X, +7,%-

Using the above framework we carried out two different sets of experiments. In the first

set, which we denote by A, we consider the small sample properties of the CCE and PC
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augmented estimators. In a second set, denoted as experiments B, we also investigate the
small sample properties of estimators obtained from regressing y;; on d;, x;; and a sub-set of
f, obtained using two different information criteria, namely the Akaike type criterion where

the objective function to be minimized is given by
A
— Al o
() =5 Z; In(¢}é;/T) + NK (31)

where &; are the residuals of (29) for cross sectional unit 7, and K denotes the total number

of regressors in(29). The second criterion is a Theil type criterion defined by

where m, < m denotes the number of factors entering (29). The criteria are minimized over
all possible factor combinations. These experiments are intended to highlight the dependence
of the PC augmented procedure on the choice of the factors, even if satisfactory estimates

of f, can be obtained using the PC procedure.

For all experiments 7', N = 30, 50,100,200, n = 3, 3 = (1,1, ...,1)". For experiments A,
k =1,3. For experiments B, k = 1. Partition d; as follows: d; = (dy, da, ds;)" and partition
conformably a; and A;. di; = 1. For experiments A, m = 1,2,3,4. For experiments B,

m = 5. Further, we set

o = (Oéil,CYiQ, ...7Olik+1,0, ...,0)/, Qi ~ IIDU(O5, 15),] = 1, ,k’ +1
Qg =0, s=1,...,n l=1k+1

aig ~U(05,15); s=1,.,n; l=k+2,..,n

d;; is given by
djt - dedjt—l + Edjta ] = 27 w0

where pg, = 0.4, j = 2,...,n and g4,y ~ IIDN(0,1 — pflj). Yi = (Mis-er Ymi)' Where 7y ; ~
IIDN(1,0.04) for experiment A. For experiment B v;, ~ IIDN(1,0.04), j = 1,2,3 and
v;i = 0 for j = 4,5.

~vist ~ TTDU(0.5,1.5)

v, is given by

Vit = Divi_1 + Eive
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where ®; = diag(puiis -, poki), Eivi ~ N (0, X)), puji ~ U(0.2,0.9), X, = diag(1—pZy,;, ..., 1—
pa). Finally, £ = (fu, ) fin)'

fit = ,ijfjt—1 +ept, J=2,.,m
where pg, ~ IIDU(0.2,0.9), j = 2,....,m, €4 = /1 — p?cjwjt, wji = VOuw; + (1 — 0)w;, and
wy, wjr ~ N(0,1). Hence, Var(fi;) =1, and Corr(fi, f;1) = 0, as required.
To ensure a constant average R? of around 0.6 for all experiments we generated the

equation-specific errors according to

h(k
gw ~ IIDN(0,0%), 02 ~ IID ( Q’m)xé,

where the scaler h (k,m) is set in terms of m and k as

h(k,m)
8
16
26
11
32
23
22
48
74
29
70
155
40
100
190

O‘(OTCH»&%»&OOOJCO[\D[\D[\D»—!H»—S
WNH WNFEF WNRFE WND RFE WND |3

Finally, all parameters are set at the beginning of each experiment and 2000 replications
are run. The only exception to that is 4, for which new parameter draws occur for every

replication.

3.2 Alternative Estimators Considered

In the case of experiments A, we considered four different types of estimators. First, a mis-
specified procedure that ignores the common unobserved effects and for efficiency purposes
considers a pooled estimator under the slope homogeneity assumption, 5 = 3,. We denote
this as the ‘Naive’ estimator. Second, we consider the CCEMG and CCEP estimators de-
fined by (14) and (19). Third, we consider the PC augmented estimators defined by (24) and
(25), which we denote by MG PC and PPC, respectively. Finally, we consider the principal

12



component estimator proposed by Coakley, Fuertes, and Smith (2002). For this estimator
the following steps are taken. We estimate (1), using a standard pooled estimator for 3;,
without proxying for the factors. Then, we obtain the residuals from (1) normalise them
and extract m + n factors from them. We use these factors in (23) and obtain the relevant
Mean Group and Pooled estimators. These are denoted MGCF'S and PCF'S.

As noted earlier, the estimators under experiments B, assume that all the factors are
observed. In one case, there is uncertainty as to which factors enter (29) as opposed to (30).
The criteria described earlier are used to select the set of factors to be included in (29). All
possible combinations are considered. These are infeasible estimators since the factors are
not actually observed. However, they serve the purposes of showing that using principal
components does not only introduce a factor estimation problem but a model selection prob-
lem as well, which is not present with the CCE estimators. These estimators are denoted
by MG(IC) and P(IC) where IC stands for either Theil or AIC type criteria. Finally, we
consider the infeasible estimators where both the factors, and the identities of the factors
entering (29), are known. These estimators are denoted by M GT and PT), respectively. We
present results on the Bias (x10000) and RMSE(x100) for all these estimators. We also
provide size and power estimates of the different estimators for testing the hypothesis that

B = 1. The power of the tests are computed under the alternative 8 = 1.05.

Compared to the Monte Carlo study reported in Coakley, Fuertes, and Smith (2004) , our
design allows for the failure of the rank condition, (9), and provides a comparative analysis
of the CCEMG and CCEP estimators. Coakley, Fuertes, and Smith (2004) find that the
CCEMG performs best across a number of alternative estimators. However, they do not
consider the CC'EP estimator, although their Monte Carlo design imposes the homogeneity
restrictions 3; = 3. We also consider a more extensive analysis of multifactor and multi-
regressor models since we consider models of up to fours factors in conjunction with up to
3 individual specific regressors. Further, we control for the R? of the models which as ex-
plained earlier is of great importance for the validity of the Monte Carlo analysis. Fourthly,
we consider new principal component based estimators. These estimators take into account
the possibility that (30) contains unobserved common components not contained in (29) by
extracting the number of factors in both (30) and (29) rather than just (29) as discussed
in the previous section. More generally, via experiments B, we explore the important issue
of factor selection when principal components are used for the estimation of the common

effects.
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3.3 Monte Carlo Results

The results for experiment A are summarized in Tables 1-7, and for experiments B are given
in Tables 8 and 9. It is clear from Table 1 that the ‘Naive’ estimator that ignores the unob-
served common effects is substantially biased and over-rejects the null hypothesis often by
80-95% margin! Considering the estimators that attempt to account for the presence of the
unobserved common effects, we first note that cross section averages work as expected for
the case of a single unobserved common factor. Tests using both the MG and PC estimators
are correctly sized reflecting the fact that the estimated variance is a consistent estimate
of the true variance. Further, the CCEMG estimator has marginally worse RMSEs than
the CCEP estimator as expected given the efficiency gains of pooling. The improvement
when CCEP is used is of the order of 10%-15%. When we move to experiments with
more than one unobserved common factors similar conclusions are reached concerning the
CCEMG and CCEP estimators. The most obvious difference relates to the size of the test
that B = 1 under the null hypothesis. For both estimators there are cases where the test
over-rejects slightly under the null. Most of these cases, however, relate to small N experi-
ments and the over-rejection disappears as N is increased. Also, both the bias and RMSE
of the estimators increase as more factors are introduced. For comparable population R?,
the power of the tests based on CCEMG and CCEP estimators also tend to decline as the
number of unobserved factors are increased. This is due to the fact that the cross section
averages, ¥; and Z;, capture smaller proportion of the time variations of the unobserved
factors as the number of unobserved factors is increased. This feature could not have been

observed if the population R? had not been kept fixed across the different experiments.

Moving on to the PC augmented estimators we note that they perform considerably
worse than the CCFE type estimators. The biases are dramatically larger. Although the
bias is reduced with increased sample sizes (both N and T') they still remain much larger
than the bias observed for the cross sectional average estimators. The RMSEs also tell the
same story. Both MGPC and PPC perform badly, and substantially over-reject the null
hypothesis. The MGCF'S and PCF'S estimators perform considerably worse that the other

PC augmented estimators.

Moving on to Experiments B we note several striking features. The cross sectional av-
erage estimators work as expected. They have relatively small biases and RMSE. The size
performance is reasonable even for 5 factors. But the estimators where the true factors are
known but the identity of the factors entering (29) is not and needs to be determined via a se-

lection criterion, are performing rather poorly. Further, they do not seem to improve when N
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grows, but only when T" grows. Of course, for large T, they outperform the CC'E estimators
since the factors get selected perfectly. This can be seen if one compares the result for the
MGT and PT estimators that include the true factors. This feature is shared by both pooled
and mean group estimators. We also note that the Akaike-type criterion performs better in
selecting the appropriate factors compared to the Theil-type criterion. This is the case both
for the CCEP and CCEMG estimators. Overall, it appears that even if one knows the fac-
tors, the small sample bias in the model selection aspect of the PC augmented procedure is
important enough to adversely affect the performance of the estimators for moderate values

of T', even if one abstracts from the small sample bias in estimation of the unobserved factors.

4 An Empirical Application

In this section we present the results of an empirical application to a panel data set of

company returns to the following stock return equations
Yir = i1 + QppTor + X8 + £y, + i, (33)

where here y;; denotes the individual company stock returns, m,; is the rate of change of
oil prices in US Dollars (representing the observed common factor of the model), x;; is a
vector of observed macroeconomic factors x;; = (Agqy, Amiy, Ary, Amy, Aey)’, where gy is
(log of) real output of the country of company i at time ¢, 7; is the inflation rate of the
country of company ¢ at time ¢, r; is the real interest rate of the country of company ¢ at
time t, my is the real money supply of the country of company ¢ at time ¢, and e;; is the real
exchange rate of the country of company ¢ at time ¢ with respect to the U.S. dollar. The
model is also assumed to contain m unobserved common effects, f; that could be correlated
with x;; and/or m,. We also assume that m is fixed but unknown. This model is clearly a
generalization of a standard APT model. It allows individual stock returns to be affected
both by observed macroeconomic variables and by unobserved common factors. We report

results for subsets of the above macroeconomic explanatory variables as well.

The data set contains 243 companies from France, Germany, Italy, Japan, the UK, the
US, South East Asia, the Middle East and Latin America. The sample periods differ across
companies and cover the period 1979Q1-1999Q1. Table A below gives details of the geo-

graphical coverage of the companies included in the panel and the associated sample periods.
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Table A: Number of Companies and the Sample Periods

Region # Companies Sample Periods
US 63 79Q1-99Q1
UK 24 79Q1-99Q1
Germany 21 79Q1-99Q1
France 14 79Q1-99Q1
Italy 10 79Q1-99Q1
W. Europe 24 79Q1-99Q1
Middle East 4 90Q3-99Q1
S. E. Asia 34 89Q3-99Q1
Japan 35 79Q1-99Q1
L. America 14 89Q3-99Q1
Total 243

Notes: Western Europe is made up of Spain, The Netherlands, Belgium and Switzerland.
The Middle East contains firms from Turkey. South East Asia contains firms from Indone-
sia, Korea, Malaysia, Philippines, Singapore and Thailand. Finally, Latin America contains

firms from Argentina, Brazil, Chile, Mexico and Peru.

The source of the company data is Datastream, with more details provided in Pesaran,
Schuermann, and Treutler (2004) . The macroeconomic data are the same as those in Pe-
saran, Schuermann, and Weiner (2004) and we refer the reader to that paper for details.
Note that the structure of the panel data set is very rich. 10 different regions of the world
are considered where each region is represented by at least 10 companies each (with the
exception of Middle East). The macroeconomic variables for each company in a given re-
gion are the same. Therefore, the model in (33), can be viewed as a mixture of an APT
model with observed regional macroeconomic factors and an APT model with global un-
observed common effects represented by the unobserved factors and proxied by the global

cross-sectional averages used by the CCEMG and CCEP estimators.

There is reduced coverage over time for some countries and companies. As a result this is
an unbalanced panel and so our estimation methods must be modified to address this. The
CCEMG estimator is readily modified. The CCEP estimator is in this case still given by
(19) but the matrices X/ y; and M are defined so as to include only available observations

for the i-th unit. In the unbalanced panel case the dimension of the M now depends on i.

We report the coefficient estimates, and the test results for the null hypothesis that the
coefficients are equal to zero, in Tables 10-13. Tables 10-11 report results for the pooled
(CCEP) estimators. Tables 12-13 report the results for the MG estimators (CCEMG). We

consider a number of specifications whereby subsets of the explanatory variables are dropped
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from the regression to investigate the effect of such omissions on the remaining coefficients.

The coefficients of the x;; variables have the expected signs and are for the most part
significantly different from zero. One exception is the coefficient of the inflation variable
which is generally found to be insignificant. The oil price variable does not seem to be
statistically significant either. This could be due to the highly heterogeneous nature of the
effect of oil prices on different company returns, being positive for companies with large oil
interests such as oil or petrochemical companies, and being negative on those with significant
dependence on oil, such as airlines or automobile industries. Overall, the CCEP and the
CCEMG estimators yield very similar results, the exception being the coefficient of the
interest rate variable which is much larger (in absolute value) when estimated by CCEMG
as compared to CCEP. Deletion of some of the macro variables from return equation does
not change the remaining estimated coefficients significantly, and the results seem to be
quite robust. The coefficients of the cross sectional averages of the explanatory variables
are generally less significant than the region specific variables. In contrast, the cross section
average of the dependant variable is highly significant and its coefficient is very close to one.
Its inclusion is clearly critical in dealing with the unobserved common factors and can be

viewed as proxing for the market index as in Capital Asset Pricing Models (CAPM).

5 Conclusions

Much of the empirical research carried out on panels assume some form of cross section error
independence. However, such assumptions are usually suspect, in practice, and as a result
recent advances in the theoretical literature have focused on the analysis of cross sectional

dependence.

In this paper we explore further some aspects of the work by Pesaran (2004) who has
develop methods for estimation and inference in panel data models with multifactor er-
ror structures. The method is based on proxying unobserved factors with cross sectional
averages. We compare this method with alternative methods that aim to augment panel re-
gressions with factor estimates using principal components. We reach two major conclusions.
Firstly, methods based on principal components do not seem to work as well as the methods
based on cross sectional averages. The estimation error for the factor estimates seems to be
one, but not the only, reason for this inferior performance. Using Monte Carlo experiments
we show that the PC augmented estimators could still be subject to substantial small sample

bias due to the need to selecting a sub-set of factors for inclusion in the model to be estimated.
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The relevance of CCE type estimators is illustrated by an empirical application to a rich
panel of company returns with a wide geographical coverage. The CCE approach allows
us to estimate asset return equations with observed as well as unobserved common factors;
thus going beyond CAPM and asset pricing models that focus exclusively on observed or
unobserved factors. The empirical results clearly show the importance of country-specific

macro variables for the analysis of company returns beyond the market indices.
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Table 1. Naive Estimator

\ One Factor Two Factors
#ax | N/T 30 50 100 200 30 50 100 200
30 | 2731.1 2535.7 2648.3 2781.2 | 5516.9 5250.6 5163.0 5124.6
B|1]| 50 |2675.2 27227 2874.8 2660.2 | 5270.2 5084.6 5187.1 5387.0
i 100 | 2729.7 2732.6 2688.7 2660.6 | 4874.1 5491.7 5363.7 5904.4
a 200 | 2814.9 2738.9 2602.4 2743.4 | 5941.5 4977.3 5749.6 5615.7
S 30 | 1195.2 1133.3 1198.2 1160.4 | 2261.5 2302.0 2100.7 2032.9
3 50 1210.6 1190.5 1146.1 1153.1 | 2056.7 2100.8 2152.4 2076.8
100 | 1154.9 1280.3 1191.2 1200.7 | 2046.2 2097.5 2139.9 2089.8
200 | 1244.8 1160.3 1153.9 1158.4 | 2019.4 2063.2 2113.6 2161.1
30 29.2 26.5 27.0 28.1 56.3 53.2 52.0 51.4
R|1] 50 28.2 28.2 29.2 26.8 53.7 51.5 52.2 54.0
M 100 28.5 28.1 27.3 26.8 49.8 55.4 53.9 59.2
S 200 29.3 28.1 26.4 27.6 60.1 50.3 57.7 56.3
E 30 19.6 17.5 14.4 12.9 32.7 28.8 23.7 21.6
3 50 17.9 14.7 13.1 12.5 26.9 24.2 23.2 21.6
100 14.7 14.8 12.8 12.4 23.6 22.8 22.2 214
200 14.2 12.6 12.1 11.8 22.0 21.6 21.6 21.8
30 91.0 97.7 100.0  100.0 | 100.0 100.0 100.0  100.0
S|1] 50 97.1 99.2 100.0  100.0 | 100.0 100.0 100.0  100.0
i 100 99.2 100.0 100.0 100.0 | 100.0 100.0 100.0  100.0
Z 200 99.8 100.0 100.0 100.0 | 100.0 100.0 100.0  100.0
e 30 70.7 76.2 99.4 100.0 95.3 99.9 100.0  100.0
31 50 79.0 96.8 100.0  100.0 97.8 100.0  100.0  100.0
100 92.5 99.2 100.0  100.0 99.7 100.0  100.0  100.0
200 98.8 99.9 100.0  100.0 | 100.0 100.0 100.0  100.0
30 82.0 92.1 100.0  100.0 | 100.0 100.0 100.0 100.0
Pl1] 50 92.7 97.2 100.0  100.0 | 100.0 100.0 100.0 100.0
0 100 97.0 99.5 100.0  100.0 99.9 100.0  100.0  100.0
w 200 98.0 99.9 100.0  100.0 | 100.0 100.0 100.0 100.0
e 30 40.4 38.8 77.0 93.8 84.3 98.2 99.9 100.0
r | 3| 50 48.7 71.1 84.0 96.7 90.0 99.2 100.0  100.0
100 65.2 83.9 96.9 99.9 97.9 100.0  100.0  100.0
200 84.1 91.8 98.6 100.0 99.3 100.0  100.0  100.0
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Table 1 (continued). Naive Estimator

‘ Three Factors Four Factors
# x| N/T 30 50 100 200 30 50 100 200
30 | 7030.9 7007.8 6742.8 T7187.6 | 7776.8 7975.1 7721.5 7839.8
B|1| 50 |6919.5 7141.9 6585.5 7151.4 | 8143.6 7462.9 7740.1 7879.7
i 100 | 6247.5 6858.1 6785.6 6704.2 | 7515.4 7433.3 8082.8 7913.0
a 200 | 7034.4 6590.4 7326.2 7223.1 | 7983.9 8055.9 8039.8 &8373.7
S 30 | 2558.5 2532.6 2729.7 2669.0 | 2818.1 2849.3 2838.3 2758.1
31 50 |2568.3 2618.9 2706.2 2640.4 | 2839.9 2725.2 2854.4 2864.6
100 | 2517.6 2747.9 2525.3 2428.1 | 2846.2 2874.4 2893.2 2870.4
200 | 2584.7 2680.1 2618.7 2603.4 | 2822.2 2773.3 2884.4 2886.9
30 71.0 70.6 67.7 72.0 78.4 80.1 77.4 78.5
R|1] 50 69.9 71.8 66.1 71.6 81.9 75.0 77.5 78.9
M 100 63.2 69.0 68.1 67.1 75.7 74.6 80.9 79.2
S 200 70.9 66.3 73.4 72.3 80.2 80.7 80.5 83.8
E 30 36.9 29.7 30.0 28.1 47.5 37.0 32.6 29.2
31 50 33.0 30.0 28.9 27.4 40.3 31.9 31.9 30.2
100 28.7 29.4 26.2 24.7 33.9 31.4 30.3 29.5
200 27.6 27.8 26.6 26.2 31.2 29.5 29.6 29.3
30 100.0  100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
S|1] 50 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
i 100 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Z 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 98.9 100.0 100.0  100.0 97.8 100.0  100.0  100.0
31 50 99.6 100.0  100.0  100.0 99.9 100.0  100.0  100.0
100 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Pl1| 50 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
o) 100 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
W 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 94.6 100.0  100.0  100.0 93.3 99.8 100.0  100.0
r | 3] 50 98.5 100.0  100.0  100.0 98.9 100.0  100.0  100.0
100 99.7 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0

-1
Notes: The naive estimator is given by 8 = <Zf\i 1 X;MXl) Zf\i 1 XIMy; where M =
I; — D (D'D) ' D’. Bias and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 2. Mean Group Estimator

\ One Factor Two Factors

#ax | N/T| 30 50 100 200 30 50 100 200
30 -1.1 2024 155.8 1555 | 160.8 -64.2 -24.7 -62.0

Bl 50 -5.6 112.1 115.0 19.2 -6.6 70.6  30.7 8.3
i 100 | 27.0 15.9 14.3 38.7 459 -19.3 259 -31.0
a 200 | -31.6 106 -246 10.0 | 414 105 175 -59
s 30 | 8&7.1 117.0 -106.3 36.7 | 166.8 160.0 -52.2 -184.8
3| 50 | 72.4 -481 -59 -0.6 |-117.9 -21.2 748 138.3

100 | 20.6 -3.3 -9.4 27.0 | -68.1 -7.1 424 -95.9

200 | -57.4 -32.9 -8.1 -0.1 4.9 0.0 2.4 26.2

30 13.7 88 4.8 4.4 13.3 9.9 6.9 3.9

RI|1 50 9.0 7.1 5.0 2.9 11.4 8.2 4.9 3.5

M 100 | 6.4 5.0 3.0 2.0 8.3 5.4 3.7 2.3

S 200 | 4.7 3.3 2.2 1.5 6.2 3.8 2.5 1.8

E 30 | 23.8° 187 10.3 6.9 40.9 25.1 146 9.4

31 50 21.0 11.9 8.1 5.9 28.7 171 11.7 7.6

100 | 14.1 9.8 5.7 3.7 19.3 13.0 74 5.6

200 | 10.0 6.2 4.3 2.7 14.0 9.2 5.5 3.8

30 6.8 6.0 6.2 7.3 6.6 6.6 6.2 6.7

S |1 50 6.3 5.7 6.2 5.0 6.1 6.2 6.4 5.1

i 100 | 5.6 5.8 5.2 5.9 5.6 5.3 6.0 5.0

Z 200 | 5.1 4.8 5.8 5.5 5.5 5.7 5.5 5.2

e 30 9.3 8.5 10.1 9.4 7.5 10.5 104 9.5

31 50 7.8 7.9 7.2 6.9 7.4 6.3 6.6 7.3

100 | 7.0 5.5 6.1 6.3 5.5 7.0 5.7 5.3

200 | 5.1 5.8 5.1 4.5 5.9 5.1 6.0 5.5

30 8.1 8.1 14.7 16.9 6.9 11.1  15.3 35.4

P|l1| 50 11.1 94 15.4  38.9 8.5 9.3 182 30.1
0 100 | 12.5 18.5 36.5 65.1 9.6 16.1 264 62.3
w 200 | 20,0 319 69.0 91.3 | 126 26.5 50.8 81.7
e 30 10.2  10.0 19.0 23.2 8.2 11.1  14.6 25.2
r | 3| 50 83 128 175 257 8.2 8.8 9.8 13.8
100 9.8 10.8 27.6 48.1 7.4 10.0 13.5 34.4

200 | 11.8 221 38.9 78.2 8.8 12.2  25.7 42.6
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Table 2 (continued). Mean Group Estimator

‘ Three Factors Four Factors

#ax | N/T 30 50 100 200 30 50 100 200
30 |-186.2 -216.5 78.7 -8.1 426 -1225 929 304.8

B|1]| 50 -35.5 1484 812 -287.1| 36.5 -66.2 191.8 99.5
i 100 | -78.0 75.3  -80.6 354 | -56.5 -137.1 -7.9 21.5
a 200 | -19.1  -17.9 20.3 -10.0 | -48.6 -29.7 235 21.8
S 30 | -100.5 474 -238.8 4.8 -87.9 157.1 132.8 -88.6
3| 50 407.0 -17.0 -60.7 -19.4 |-1586 725 -171.6 185.7

100 | 187.5 -17.5 0.6 46.0 23.4  -89.5 -118.0 245

200 11.3  -57.9 -25.9 -1.0 |-113.5 -04 81.2 -T72.6

30 19.1 14.4 8.1 6.6 22.8 14.5 10.0 8.2

R|{1| 50 15.3 9.5 7.6 6.0 16.6 13.0 8.0 5.6
M 100 10.0 7.3 4.9 3.6 12.5 8.7 6.5 3.7
S 200 7.4 5.1 3.7 2.5 9.0 6.3 3.9 2.8
E 30 44.7 23.5 17.5 11.8 63.8 35.6 22.6 13.2
3| 50 36.1 22.4 13.9 9.9 48.5 26.0 20.5 13.4

100 23.7 16.0 9.3 5.8 32.9 19.6 13.2 9.3

200 15.9 11.8 6.6 4.2 23.0 15.6 94 6.5

30 5.9 6.4 6.8 5.4 6.5 5.2 5.5 6.6

S |1| 50 5.9 5.4 5.7 7.2 5.3 4.7 7.4 5.0
i 100 5.1 5.2 6.2 5.5 5.1 5.4 5.1 5.2
Z 200 5.1 5.1 5.1 5.1 5.2 5.5 4.7 5.5
e 30 10.7 8.7 10.8 9.7 8.5 8.3 9.3 9.7
31 50 8.5 7.8 7.5 9.5 7.5 8.2 7.9 9.2

100 5.3 5.9 4.7 6.6 5.6 5.4 6.1 5.2

200 4.9 5.3 5.5 5.8 5.6 6.3 5.3 5.5

30 7.8 9.5 10.7 12.3 7.0 8.2 8.1 6.6

Pl1] 50 8.0 7.6 10.5 30.5 6.3 7.5 8.8 10.4
0 100 8.9 9.2 23.9 28.8 8.2 11.5 13.1 25.7
A 200 10.2 18.2 27.0 54.2 10.3 14.6 229  43.0
e 30 11.1 10.0 14.7 16.1 8.6 9.0 9.9 15.2
r | 3] 50 8.3 8.6 11.1 16.2 8.1 8.7 9.8 10.8
100 5.5 7.5 11.2 20.2 6.2 7.6 11.1 11.6

200 7.1 9.9 19.8 38.9 7.5 7.6 9.5 21.9

Notes: The Mean Group estimator is given by (14). Its estimated variance is given by (18).

Bias and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 3. Pooled Estimator

\ One Factor Two Factors

#ax | N/T| 30 50 100 200 30 50 100 200
30 |-51.4 206.8 141.2 160.7 | 101.6 -43.9 -26.8 -54.0

B |1 50 |-17.4 1176 107.7 189 | -16.3 49.2 26.6 3.9
i 100 | 346 220 11.2 357 | 370 -196 22.1 -33.9
a 200 | -28.7 13.8 -25.1 10.0 | 30.3 9.8 177 -54
s 30 | 84.0 130.0 -123.3 353 | 99.9 177.8 -50.0 -174.6
31 50 74.1  -31.7 6.7 3.1 ]-120.1 -29.0 8&85.6 146.7
100 | 184 6.8 -13.2 341 | 444 -21.4 524 -103.2

200 | -54.2 -34.1 -8.7 -0.5 -3.2 2.9 -0.7 26.0

30 12.0 8.3 4.5 4.4 12.5 9.6 6.6 3.8

R |1 50 8.2 6.7 4.8 2.9 9.9 7.8 4.8 3.4

M 100 6.0 4.6 2.9 2.0 7.7 5.1 3.6 2.3

S 200 4.2 3.1 2.1 1.4 5.4 3.7 2.4 1.8

E 30 20.7 172 10.0 6.7 33.5 23.3 14.0 9.2

3| 50 179 11.1 7.7 5.8 23.5 154 11.0 7.3

100 | 11.9 9.2 5.5 3.6 15.9 11.9 7.2 5.5

200 8.4 5.7 4.1 2.7 11.6 8.1 5.2 3.7

30 5.2 6.2 6.1 7.0 5.8 6.1 5.7 6.7

S|1]| 50 6.1 5.9 5.4 4.5 5.7 6.2 5.9 4.9

i 100 | 5.2 5.5 5.7 6.4 5.5 4.7 5.9 5.1
zZ 200 4.2 5.0 5.4 5.5 5.4 5.3 5.4 5.3
e 30 8.9 7.8 9.7 9.0 7.0 9.3 9.5 8.7
3| 50 7.0 7.3 6.0 6.5 7.1 5.9 5.9 7.0

100 | 6.9 5.8 6.0 6.4 6.1 6.3 5.5 5.5

200 5.3 5.1 5.2 4.5 6.1 5.2 5.1 5.7

30 8.1 7.2 15.2 16.2 7.6 10.1 15.3 34.0

P |1 50 11.9 9.9 15.3 39.2 9.1 9.8 18.6 31.1
0 100 | 13.0 188 383 66.6 | 10.5 16.7 272 644
W 200 | 22.4 35.5 71.0 92.2 14.9 28.5  53.0 82.0
e 30 9.8 9.0 20.3  21.6 7.5 9.7 146 244
r | 3] 50 8.5 12.8 17.3 25.6 9.2 8.2 9.4 12.3
100 | 10.6 11.6 30.6  46.9 8.3 10.6 156  36.0

200 | 141 26.0 41.4 79.0 104 134  26.9 43.8
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Table 3 (continued). Pooled Estimator

‘ Three Factors Four Factors

# x| N/T 30 50 100 200 30 50 100 200
30 |-206.9 -277.0 53.3 -5.3 13.1  -121.2 93.8 314.9
B|{1| 50 -3.9 139.5 772 -288.9 | 115.5 -140.6 203.0 110.4
i 100 | -81.1 457  -75.4 326 | -b3.4 -131.1 0.2 19.9
a 200 | -10.0 -15.0 177 -10.3 | -36.6 -33.9 25.0 20.7
S 30 |-101.6 552 -2704 04 -28.2  160.3 146.7 -177.8
3| 50 382.2 -183 -71.6 -23.7 | -179.5 45.0 -219.9 220.3

100 | 146.4 -23.8 9.1 39.7 273 -86.4 -144.0 33.9

200 20.7 377 -21.7 0.5 -116.9 114 83.2 -76.4

30 17.4 13.5 7.8 6.6 22.2 13.8 9.8 8.0

R|1] 50 13.6 9.1 7.4 5.9 15.8 12.6 7.7 5.6

M 100 9.3 6.9 4.9 3.5 11.6 8.1 6.3 3.6

S 200 6.8 4.9 3.5 2.4 8.2 5.9 3.8 2.8
E 30 38.1 21.2 17.0 11.6 55.0 32.3 21.3 13.0
3| 50 30.9 19.9 13.2 9.9 41.7 23.6 19.4 13.4

100 194 14.5 8.9 5.6 27.5 17.9 12.6 9.0

200 13.4 10.5 6.3 4.1 19.6 14.0 9.0 6.4

30 6.5 5.9 6.2 5.5 6.0 4.7 4.8 6.0

S|1] 50 5.5 5.5 5.3 7.1 5.3 3.8 7.4 4.7

i 100 4.9 4.9 5.9 5.3 5.1 5.1 5.0 5.1

z 200 4.3 5.1 5.0 5.7 5.0 5.0 4.2 5.2

e 30 9.2 8.5 9.8 8.3 7.6 7.6 8.1 8.3

31 50 7.5 6.9 7.4 8.8 7.3 7.3 7.1 9.0

100 6.2 4.9 4.5 5.5 6.6 5.3 6.8 5.7

200 5.1 4.9 5.3 5.6 5.5 5.8 5.5 5.1

30 7.5 9.6 10.5 12.7 6.4 7.6 6.9 5.9

Pl1] 50 6.9 7.5 10.6 29.8 6.3 7.7 9.2 9.8
o 100 9.3 9.7 24.1 29.4 8.8 12.2 13.0 26.0
A 200 10.7 19.2 28.1 55.5 11.2 15.2 23.8 43.5
e 30 10.2 9.0 15.8 15.5 8.6 7.2 8.8 14.5
r 3| 50 7.4 7.5 11.4 16.1 7.3 8.2 10.0 10.7
100 6.8 8.3 11.3 21.0 6.8 7.8 12.2 11.7

200 7.4 10.8 20.3 40.6 7.5 8.6 94 22.6

Notes: The Pooled estimator is given by (19). Its estimated variance is given by (20). Bias

and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 4. MGPC Estimator

\ One Factor Two Factors
# x| N/T 30 50 100 200 30 50 100 200
30 | -1877.3 -1506.8 -864.4 -838.1 |-2738.5 -2469.0 -2309.2 -1708.0
B|1]| 50 -965.3  -920.6 -710.7 -458.7 | -1960.2 -1710.8 -1307.8 -1085.9
i 100 | -519.3  -440.1 -250.8 -190.9 | -1111.3 -950.8 -709.3 -543.9
a 200 | -334.9 -240.0 -134.7 -99.9 | -683.0 -441.2 -334.1 -274.7
S 30 | -1316.3 -1172.1 -925.7 -840.8 | -3103.8 -2581.6 -2327.2 -2055.3
3| 50 977.6  -629.1 -563.0 -569.7 | -1794.1 -1346.7 -1257.1 -1141.8
100 | -454.1 -382.7 -264.0 -223.4| -88.0 -730.2 -567.4 -507.4
200 | -284.2 -186.9 -141.5 -117.5| -4404 -378.7 -267.0 -245.8
30 23.8 17.6 10.0 9.5 30.9 26.7 24.2 17.6
R |1 50 13.8 11.9 8.9 5.5 23.3 19.3 14.0 11.4
M 100 8.7 6.9 4.0 2.8 14.4 11.3 8.1 5.9
S 200 6.2 4.3 2.6 1.8 10.0 6.1 4.2 3.3
E 30 28.8 22.9 14.1 11.0 54.0 36.5 28.0 22.9
3 50 24.2 13.9 10.1 8.3 36.7 23.2 17.9 14.0
100 15.2 10.7 6.4 4.3 23.4 16.0 9.7 7.7
200 10.9 6.7 4.6 3.0 16.3 10.7 6.3 4.7
30 28.2 38.9 40.2 50.7 51.5 66.1 87.4 91.6
S|1]| 50 19.8 24.4 30.6 33.9 37.0 47.7 71.9 81.0
i 100 12.9 15.3 12.3 16.4 23.8 36.4 44 .4 60.2
Z 200 10.3 10.3 9.5 10.9 16.9 19.4 26.0 32.8
e 30 16.6 16.1 27.7 41.4 21.8 33.8 58.5 75.8
3| 50 11.5 13.7 17.0 26.6 14.3 19.9 30.8 51.8
100 8.1 7.4 10.2 13.2 8.9 13.2 16.0 23.4
200 6.7 7.8 6.6 8.2 7.4 7.3 9.0 14.1
30 39.6 62.3 77.5 85.7 65.3 81.2 97.2 99.5
P|1] 50 36.9 48.5 66.0 88.8 50.7 69.5 94.2 99.2
0 100 34.1 45.9 67.5 92.7 43.9 67.1 87.9 99.5
w 200 36.3 56.6 82.0 97.8 39.8 61.6 91.0 98.8
e 30 23.8 27.4 55.8 79.8 26.8 44.7 7.7 93.1
r |3 50 17.6 29.4 46.4 74.2 19.4 32.6 53.9 84.5
100 16.2 24.1 51.0 82.7 14.2 24.4 49.5 75.4
200 17.2 32.0 55.9 91.7 13.9 22.6 49.7 79.5
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Table 4 (continued). MGPC Estimator

‘ Three Factors Four Factors
# x| N/T 30 50 100 200 30 50 100 200
30 |-4314.2 -3592.8 -2765.2 -2715.0 | -4983.8 -4425.2 -3710.9 -3216.8
B|1| 50 |-3000.3 -2351.1 -2277.3 -1647.5|-3506.5 -3231.9 -2487.2 -2103.8
i 100 | -1775.9 -1529.4 -1261.9 -1048.8 | -2490.2 -1963.1 -1660.2 -1268.0
a 200 | -1134.3 -877.5 -755.9 -606.6 |-1626.8 -1311.2 -976.3 -733.2
S 30 | -4279.5 -3433.0 -3279.3 -2924.4 | -5472.5 -4863.3 -4106.5 -4141.1
31 50 ]-2690.1 -2549.2 -2179.6 -2031.2 | -4207.6 -3260.3 -3375.8 -2675.5
100 | -1366.1 -1452.1 -1064.6 -704.0 |-2591.5 -2163.3 -1927.6 -1667.4
200 | -757.1 -692.4 -479.5 -405.4 | -1350.0 -1114.0 -981.3 -949.1
30 47.0 38.2 28.7 27.9 53.9 46.3 38.3 32.9
R|1]| 50 34.2 25.4 24.0 17.2 38.9 34.7 25.9 21.7
M 100 21.1 17.3 13.6 11.1 28.6 21.5 17.7 13.2
S 200 14.3 10.5 8.4 6.6 19.5 14.7 10.6 7.8
E 30 63.0 42.8 37.1 31.3 80.4 59.1 45.7 43.5
31 50 47.3 35.2 26.1 22.6 66.6 42.9 39.2 29.4
100 31.4 23.4 14.6 94 46.6 31.1 23.8 19.2
200 20.5 15.1 8.5 6.0 30.9 21.5 14.2 11.7
30 66.1 78.0 91.5 97.4 71.1 89.9 96.7 99.1
S |[1] 50 49.8 69.0 85.3 89.3 56.0 71.5 91.6 97.0
i 100 34.8 49.6 71.9 82.8 44.6 58.6 75.5 93.7
7 200 24.7 34.6 51.9 68.7 35.4 51.5 68.4 75.3
e 30 31.4 52.0 79.3 93.0 32.0 58.2 84.3 99.0
31 50 18.3 33.8 56.9 85.2 24.6 38.1 69.9 87.8
100 11.2 20.8 31.4 35.2 16.0 28.4 50.5 73.1
200 8.2 10.5 15.7 24.8 10.8 14.2 25.9 49.5
30 73.6 86.4 97.7 99.8 78.5 94.8 99.0 99.9
Pl1| 50 61.9 83.8 95.3 99.0 68.1 82.7 98.0 99.9
0 100 51.2 73.1 94.2 99.2 58.4 78.6 92.7 99.9
W 200 45.5 67.7 91.8 99.4 53.9 78.0 95.4 99.2
e 30 36.9 63.8 89.8 98.7 36.5 66.0 91.6 99.9
r | 3] 50 23.2 45.1 77.5 96.8 28.8 49.2 82.0 97.2
100 16.3 33.2 61.1 82.7 21.4 40.9 71.9 93.2
200 15.5 23.4 51.2 86.6 15.4 24.8 55.8 87.6

Notes: The MGPC estimator is given by (24). Its estimated variance is given by (27). Bias

and RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 5. MGCFS Estimator

\ One Factor Two Factors
# x| N/T 30 50 100 200 30 50 100 200
30 | 1978.2 1538.2 1599.3 1575.1 | 4630.8 3942.8 3965.2 3836.3
B 1| 50 |1801.9 1793.0 1730.4 1645.1 | 4018.8 3795.7 3906.6 4126.9
i 100 | 1614.9 1702.2 1619.7 1661.7 | 3685.1 4248.5 3860.1 4193.3
a 200 | 18454 1722.0 1516.4 1549.1 | 4578.0 3639.0 3710.2 3529.6
s 30 | 1007.6 991.5 1015.0 923.7 | 2170.4 2193.5 1898.8 1860.1
31 50 |1092.8 1027.7 949.0 933.3 | 1917.8 1983.0 1941.0 1889.6
100 | 974.8 1081.6 960.9 930.9 | 1873.4 1962.2 1910.0 1830.3
200 | 1034.7 9445 919.3 950.8 | 1838.3 1841.6 1885.1 1924.1
30 23.4 17.3 16.8 16.4 47.9 40.6 40.3 38.6
R |1 50 20.3 19.6 18.1 16.8 41.8 39.0 39.5 41.5
M 100 17.8 18.1 16.7 16.9 38.2 43.1 38.9 42.1
S 200 19.8 18.0 15.6 15.7 46.5 36.9 37.3 35.4
E 30 21.9 19.2 13.7 11.2 38.3 30.3 23.0 20.4
3 50 19.9 14.4 12.0 10.8 29.6 24.5 22.0 20.1
100 15.1 13.8 10.9 9.9 24.4 22.5 20.2 19.0
200 13.3 11.0 10.0 9.9 21.5 20.1 19.5 19.6
30 70.2 76.2 97.4 98.4 99.2 99.8 100.0  100.0
S |1]| 50 81.2 87.7 98.2 100.0 99.1 100.0  100.0  100.0
i 100 87.5 95.7 99.9 100.0 99.7 100.0  100.0  100.0
Z 200 95.9 99.5 100.0  100.0 | 100.0 100.0 100.0 100.0
e 30 54.0 62.9 89.6 96.8 88.5 98.4 99.8 100.0
31 50 59.2 83.9 93.2 99.0 89.1 99.2 100.0  100.0
100 73.7 90.8 99.6 100.0 96.5 100.0  100.0  100.0
200 90.0 96.1 99.7 100.0 99.1 100.0  100.0  100.0
30 54.9 56.1 84.5 87.5 98.2 98.9 100.0  100.0
P 1] 50 65.8 73.8 88.1 98.8 97.7 99.5 100.0  100.0
0 100 70.3 83.1 96.0 100.0 97.9 100.0  100.0  100.0
w 200 86.6 94.6 98.3 100.0 | 100.0 100.0 100.0  100.0
e 30 33.5 36.5 55.0 62.5 76.4 92.2 97.3 99.7
r 3| 50 33.3 49.4 55.9 66.8 73.4 95.0 99.1 100.0
100 40.9 58.7 72.4 89.2 86.4 98.2 100.0  100.0
200 57.5 65.6 79.5 96.2 94.7 99.6 100.0  100.0
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Table 5 (continued). MGCF'S Estimator

‘ Three Factors Four Factors
# x| N/T 30 50 100 200 30 50 100 200
30 |6296.5 5910.7 5636.6 6304.7 | 6843.9 7350.1 6940.5 7000.9
B|1| 50 |6136.7 5681.3 5462.4 6054.7 | 7450.9 6418.1 6900.7 6966.7
i 100 | 5084.7 5789.9 5617.7 5334.9 | 6518.3 6556.3 7084.1 6643.9
a 200 | 5681.8 5209.1 5660.9 5080.3 | 6781.6 6903.4 6454.9 5811.4
S 30 | 2478.7 2420.8 2594.4 2492.3 | 2763.9 2727.2 2713.3 2657.8
31 50 |2436.1 2500.8 2563.8 2509.8 | 2759.7 2648.8 2721.6 2680.6
100 | 2407.7 2591.5 2336.2 2212.3 | 2759.4 2779.2 2709.6 2744.7
200 | 2429.9 2532.0 2432.0 2418.7 | 2711.9 2586.8 2731.4 2768.9
30 64.2 60.1 56.8 63.3 69.9 74.0 69.8 70.2
R|1] 50 62.5 57.4 55.1 60.7 75.2 65.0 69.2 69.8
M 100 51.9 58.4 56.4 53.5 66.0 66.0 71.0 66.5
S 200 57.5 52.5 56.7 50.9 68.3 69.2 64.7 58.2
E 30 42.7 30.9 29.8 27.0 57.4 40.1 33.3 29.0
31 50 37.6 30.9 28.2 26.5 47.7 34.0 32.3 29.1
100 30.5 29.2 24.8 22.7 38.6 32.3 29.3 28.6
200 27.6 27.1 25.0 24.5 32.8 29.1 28.5 28.3
30 99.8 100.0  100.0  100.0 99.7 100.0  100.0  100.0
S|1] 50 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
i 100 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Z 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 93.7 100.0 100.0  100.0 93.0 99.9 100.0  100.0
31 50 96.8 100.0  100.0  100.0 98.2 100.0  100.0  100.0
100 99.8 100.0  100.0  100.0 99.6 100.0  100.0  100.0
200 | 100.0 100.0 100.0 100.0 99.9 100.0  100.0  100.0
30 99.6 99.9 100.0  100.0 99.4 100.0  100.0  100.0
Pl1| 50 99.9 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
0 100 99.7 100.0  100.0 100.0 | 100.0 100.0 100.0 100.0
W 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 85.4 99.1 100.0  100.0 85.9 98.7 100.0  100.0
r | 3] 50 91.6 99.7 100.0  100.0 94.9 99.7 100.0  100.0
100 97.9 100.0  100.0  100.0 98.2 100.0  100.0  100.0
200 99.7 100.0 100.0  100.0 99.9 100.0  100.0  100.0

Notes: The MGCFS estimator is given by (24), where the factor in (23) has been constructed
as described in Section 3.2. Its estimated variance is given by (27). Bias and RMSE estimates

are scaled up by 10000 and 100, respectively.
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Table 6. PPC Estimator

\ One Factor Two Factors
# x| N/T 30 50 100 200 30 50 100 200
30 |-1706.2 -1426.7 -816.2 -817.5|-2726.8 -2449.1 -2252.5 -1598.6
B|1] 50 -901.4 -861.1 -683.1 -448.8|-1772.2 -1633.8 -1275.3 -1067.5
i 100 | -485.9 -408.4 -243.9 -188.2 | -1070.5 -871.5 -683.3 -533.9
a 200 | -306.6 -215.2 -130.5 -97.5 | -606.5 -406.2 -319.9 -269.2
S 30 |-1194.2 -1064.5 -878.7 -808.3 | -2769.1 -2469.3 -2204.4 -1962.2
3 50 -837.6 -558.6 -515.1 -b44.3 | -1544.2 -1203.1 -1161.1 -1098.1
100 | -402.8 -356.7 -249.2 -211.1 | -711.5 -648.8 -521.9 -488.7
200 | -253.6 -173.4 -133.0 -113.5| -381.9 -331.1 -254.2 -236.6
30 21.4 16.6 94 9.3 30.4 26.5 23.5 16.5
R |1 50 12.6 11.1 8.5 5.4 20.8 18.3 13.7 11.2
M 100 8.1 6.4 3.9 2.8 13.7 10.4 7.8 5.8
S 200 5.5 3.9 2.5 1.7 8.7 5.7 4.1 3.2
E 30 25.0 21.2 13.5 10.7 44.9 34.3 26.6 21.9
31 50 20.6 12.8 9.5 8.0 29.9 20.5 16.5 13.4
100 12.8 10.1 6.1 4.2 19.0 14.4 9.1 7.4
200 9.1 6.1 4.4 2.9 13.3 9.2 6.0 4.5
30 26.7 42.0 43.0 51.1 58.0 69.4 92.2 98.6
S|1]| 50 19.1 23.5 29.9 33.6 38.5 50.0 75.7 88.4
1 100 12.4 13.9 13.5 16.2 25.1 34.2 43.5 62.8
Z 200 9.8 10.2 94 10.7 17.8 19.1 25.0 33.0
e 30 11.6 11.9 21.8 35.3 19.4 30.7 60.0 89.1
3 50 9.2 10.5 14.1 23.4 11.7 15.8 29.3 57.0
100 7.4 6.8 9.2 11.6 8.1 10.9 14.4 21.8
200 6.9 5.5 6.2 7.6 6.9 7.2 8.8 13.2
30 41.5 65.0 82.3 87.2 71.6 83.3 98.5 100.0
Pl1| 50 39.2 48.9 68.3 89.4 56.5 74.3 95.5 99.6
0 100 34.5 474 70.4 94.3 45.2 68.7 88.2 99.5
w 200 41.7 58.5 83.2 98.4 44.9 62.6 91.1 99.1
e 30 18.6 20.5 48.3 77.5 24.8 41.9 77.3 97.7
r |3 50 16.0 24.0 41.8 72.2 17.8 29.6 53.8 87.5
100 17.7 22.8 49.1 82.7 14.4 22.8 48.4 73.7
200 19.7 35.5 57.8 92.7 16.2 23.5 49.9 79.7
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Table 6 (continued). PPC Estimator

‘ Three Factors Four Factors
# x| N/T 30 50 100 200 30 50 100 200
30 | -4226.6 -3570.6 -2714.9 -2722.1 | -5059.8 -4391.2 -3680.7 -3150.6
B |1]| 50 |-2882.2 -2335.7 -2244.0 -1645.0 | -3478.5 -3255.2 -2423.7 -2085.1
i 100 | -1722.6 -1477.2 -1254.3 -1040.8 | -2426.5 -1906.8 -1637.2 -1258.4
a 200 | -1072.0 -834.6 -T744.5 -599.1 | -1526.6 -1278.4 -960.8 -731.9
S 30 | -4073.5 -3173.2 -3211.5 -2903.4 | -5342.3 -4699.9 -4029.9 -4174.5
31| 50 |-2475.2 -2318.8 -2095.2 -1983.0 | -3934.3 -3149.9 -3280.7 -2706.3
100 |-1191.2 -1285.7 -1005.0 -683.5 |-2312.8 -1970.8 -1848.8 -1641.1
200 | -663.1 -603.2 -436.9 -388.1 |-1198.8 -1008.4 -925.4 -921.6
30 45.6 37.8 28.2 28.0 54.3 45.8 38.0 32.3
R|1] 50 32.5 25.1 23.6 17.1 38.2 34.8 25.2 21.5
M 100 20.2 16.6 13.5 11.0 27.5 20.8 17.5 13.1
S 200 13.4 10.0 8.3 6.5 18.0 14.3 10.4 7.8
E 30 57.7 39.2 36.2 31.0 74.2 56.1 44.6 43.7
31 50 41.1 31.3 25.0 22.1 59.1 40.4 37.8 29.6
100 24.9 20.8 13.9 9.1 38.9 28.1 22.7 18.8
200 17.1 13.1 8.0 5.8 26.1 19.1 13.4 114
30 70.4 83.8 96.9 99.1 75.9 93.5 98.6 99.8
S|1] 50 53.3 73.4 88.2 94.0 60.2 75.3 94.7 98.2
i 100 39.0 52.2 72.9 85.4 49.4 63.0 77.1 95.6
Z 200 24.6 34.2 53.9 70.3 39.0 52.0 69.5 77.5
e 30 29.1 53.0 84.8 98.8 29.4 63.1 89.9 100.0
31 50 17.5 35.1 61.7 89.5 23.7 41.5 74.5 94.3
100 114 19.7 30.9 34.2 16.1 28.0 53.0 75.4
200 8.9 10.5 13.2 22.6 10.7 13.4 24.6 50.0
30 80.3 92.0 99.4 99.9 81.9 97.7 99.6 100.0
Pl1| 50 66.0 86.9 97.2 99.5 71.0 86.4 99.0 99.9
0 100 56.3 77.5 94.8 99.4 65.0 82.4 94.0 100.0
W 200 49.4 68.7 93.2 99.2 58.2 80.3 96.0 99.5
e 30 36.1 64.1 92.9 99.9 35.5 71.8 95.7 100.0
r 3| 50 22.9 48.5 81.6 98.3 28.5 52.3 86.2 98.8
100 17.6 34.6 60.7 81.8 22.6 43.2 73.7 94.2
200 15.9 23.7 50.8 86.3 17.2 25.9 55.9 87.8

Notes: The PPC estimator is given by (25). Its estimated variance is given by (28). Bias and
RMSE estimates are scaled up by 10000 and 100, respectively.
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Table 7. PCFS Estimator

\ One Factor Two Factors
# x| N/T 30 50 100 200 30 50 100 200
30 | 1875.6 1491.1 1574.0 1554.9 | 4466.1 3822.6 3890.2 3758.7
B 1| 50 |1728.1 17384 1695.6 1625.9 | 3880.7 3676.8 3815.0 4067.3
i 100 | 1538.8 1638.8 1587.0 1632.3 | 3533.3 4109.9 3780.7 4166.3
a 200 | 1755.5 1658.1 1482.0 1526.5 | 4422.2 3534.4 3672.7 3520.8
S 30 986.2 970.8 1015.5 921.8 | 2158.9 2176.3 1900.8 1858.4
3| 50 | 1064.6 1022.1 9484 938.3 | 1889.2 1951.5 1940.0 1887.7
100 | 957.2 1071.5 961.6 9354 | 1848.2 19589 1912.4 1827.2
200 | 1017.0 942.2 918.8 952.6 | 1817.1 1831.7 18785 1921.1
30 22.2 16.9 16.5 16.1 46.2 39.4 39.5 37.9
R |1 50 19.4 18.9 17.8 16.6 40.3 37.8 38.6 40.9
M 100 17.0 17.5 16.4 16.5 36.7 41.7 38.1 41.8
S 200 18.8 17.3 15.2 15.4 44.9 35.8 36.9 35.3
E 30 19.6 17.9 13.3 11.0 34.2 29.0 22.6 20.2
31 50 18.0 13.8 11.8 10.7 27.0 23.6 21.6 20.0
100 13.8 13.3 10.8 9.9 22.7 22.0 20.1 18.9
200 12.5 10.8 10.0 9.9 20.6 19.6 19.4 19.5
30 69.0 75.2 97.8 99.5 99.4 99.9 100.0  100.0
S |1]| 50 82.9 89.9 98.0 100.0 99.4 100.0  100.0  100.0
i 100 86.7 96.3 100.0  100.0 99.7 100.0  100.0  100.0
Z 200 96.2 99.5 100.0  100.0 | 100.0 100.0 100.0 100.0
e 30 53.2 62.4 90.3 97.7 89.8 98.1 100.0  100.0
31 50 65.0 87.4 94.2 99.5 91.5 99.3 100.0  100.0
100 77.5 92.0 99.6 100.0 98.0 100.0  100.0  100.0
200 92.8 98.0 99.9 100.0 99.7 100.0  100.0  100.0
30 54.9 53.5 85.2 91.5 98.4 98.9 100.0  100.0
P 1] 50 66.3 75.2 87.5 99.1 97.9 99.4 100.0  100.0
0 100 67.8 83.5 96.5 100.0 98.2 100.0  100.0  100.0
w 200 87.1 94.8 98.6 100.0 | 100.0 100.0 100.0  100.0
e 30 31.3 34.8 53.2 60.6 78.0 94.1 98.0 100.0
r 3| 50 38.6 51.2 57.5 70.5 78.5 96.3 99.5 100.0
100 45.5 62.5 75.6 91.8 90.0 99.1 100.0  100.0
200 63.0 70.5 82.6 97.2 96.5 99.9 100.0  100.0
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Table 7 (continued). PCFS Estimator

‘ Three Factors Four Factors
# x| N/T 30 50 100 200 30 50 100 200
30 |6074.4 5790.8 5532.9 6212.3 | 6657.4 T177.3 6869.6 6912.7
B |1| 50 |5952.6 5555.0 5348.9 5990.5 | 7300.6 6272.0 6799.5 6883.0
i 100 | 4905.1 5653.3 5516.6 5262.3 | 6330.6 6405.8 6974.2 6617.6
a 200 | 5485.0 5088.9 5589.3 5090.6 | 6596.4 6777.7 6404.3 5854.1
S 30 | 24779 2423.6 2611.9 2493.0 | 2771.2 2733.3 2764.8 2675.2
3| 50 |2433.4 2505.1 2553.5 2505.4 | 2777.4 2664.7 2740.7 2679.2
100 | 2392.1 2589.5 2337.2 2213.0 | 2764.3 2788.5 2710.6 2738.0
200 | 24174 2535.9 2431.3 2417.7 | 2706.2 2577.6 2730.3 2777.1
30 62.0 58.8 55.8 62.3 68.0 72.3 69.1 69.3
R|1] 50 60.6 56.2 54.0 60.1 73.7 63.5 68.2 69.0
M 100 50.1 57.1 55.4 52.7 64.1 64.4 69.9 66.3
S 200 55.5 51.3 56.0 51.0 66.4 68.0 64.2 58.6
E 30 39.3 29.9 29.6 26.9 52.4 38.5 32.9 28.9
31 50 34.4 29.9 27.8 26.4 43.3 32.7 31.8 28.8
100 28.5 28.5 24.6 22.7 35.1 31.4 29.0 28.5
200 26.6 26.7 24.9 24.4 31.2 28.3 28.3 28.2
30 99.9 100.0  100.0  100.0 99.9 100.0  100.0  100.0
S|1] 50 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
i 100 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Z 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 96.5 99.9 100.0  100.0 95.0 99.9 100.0  100.0
31 50 97.2 100.0  100.0  100.0 99.1 100.0  100.0  100.0
100 99.7 100.0  100.0  100.0 99.8 100.0  100.0  100.0
200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
30 99.7 100.0  100.0  100.0 99.7 100.0  100.0  100.0
Pl1| 50 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
0 100 99.7 100.0  100.0 100.0 | 100.0 100.0 100.0 100.0
W 200 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
e 30 90.5 99.6 100.0  100.0 90.0 99.2 100.0  100.0
r | 3] 50 93.0 99.9 100.0  100.0 96.8 99.8 100.0  100.0
100 98.3 100.0  100.0  100.0 99.2 100.0  100.0  100.0
200 | 100.0 100.0 100.0 100.0 99.9 100.0  100.0  100.0

Notes: The PCFS estimator is given by (25), where the factor in (23) has been constructed as
described in Section 3.2. Its estimated variance is given by (28). Bias and RMSE estimates are

scaled up by 10000 and 100, respectively.
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Table 8. Mean Group (MG) Estimators for Experiments B

‘ CCEMG Estimator MG(Theil) Estimator
No. of z | N/T 30 50 100 200 30 20 100 200
B 30 3.4 -27.8  106.1  -252.0 | 2071.7 1796.8 1880.7 -3.5
1 1 50 184.4 -35.9 -2474 153.0 | 2862.7 1440.6 5472 1.1
a 100 17.6 85 -1434 -3.3 | 3203.4 2849.7 676.3 4.3
s 200 -3.5 3.1 7.7 -10.3 | 2877.8 2597.8 1604.2 -0.2
R 30 24.0 18.2 13.6 7.8 24.1 20.8 21.0 5.2
M| 1 50 20.6 13.3 9.4 6.3 30.4 18.1 116 4.0
S 100 14.2 9.8 6.4 4.2 33.0 29.7 12.0 2.7
B 200 10.0 7.0 4.8 3.1 30.5 27.7 17.1 2.0
S 30 6.3 5.1 6.5 7.8 51.5 04.4 719 56
1 1 50 5.1 5.8 4.3 6.8 84.8 23.9 33.6 7.0
z 100 5.1 5.3 5.9 5.8 98.8 97.5 44.1 6.2
e 200 4.7 5.6 5.7 0.2 94.0 97.9 97.1 5.7
P 30 6.6 6.5 8.0 17.2 37.6 37.8 04.8  20.1
0 1 20 6.7 8.6 12.8 9.6 75.9 37.3 33.1 278
w 100 6.7 8.3 18.7 24.6 96.0 94.5 54.6 484
er 200 8.2 12.0 18.4 39.2 88.5 92.5 88.6  71.3
MG(AIC) Estimator MGT Estimator
B 30 | 18024 13672 731.8 -3.6 6.3 -08.3 -29.0 -3.8
1 1 50 | 1210.0 5474 9.2 0.7 -34.5  -26.3 5.8 1.1
a 100 | 641.5 4058 -26.0 4.3 245  -332  -260 43
S 200 | 13694 105.8 719 -0.2 -17.8 -1.6 2.3 -0.2
R 30 22.8 18.6 12.2 5.2 16.7 11.5 8.6 5.2
M| 1 50 20.7 10.4 6.0 4.0 13.3 8.5 5.9 4.0
S 100 16.4 10.5 4.3 2.7 9.2 6.1 4.3 2.7
E 200 17.7 6.0 4.5 2.0 7.1 4.3 3.1 2.0
S 30 45.1 41.7 258 5.3 5.0 5.8 5.8 5.7
1 1 50 36.7 17.0 5.9 6.9 2.5 9.5 5.3 7.0
z 100 23.6 25.9 6.3 6.2 4.5 5.3 6.3 6.2
e 200 61.5 12.7 10.0 5.7 6.5 5.7 5.3 5.7
P 30 32.9 29.5 15.0 19.8 6.5 9.7 11.3  20.1
0 1 50 31.6 9.9 14.5 27.8 7.8 11.8 142 278
w 100 26.0 25.2 25.7 48.4 8.6 15.0 25.7 484
er 200 46.7 274 40.9 71.3 12.2 22.8 373  T1.3

Notes: The CCEMG estimator is given by (14). Its estimated variance is given by (18). The
MG(Theil) estimator is given by (24). Its estimated variance is given by (27). The factors included
in (23) are chosen by the criterion in (32). The MG(AIC) estimator is given by (24). Its estimated
variance is given by (27). The factors included in (23) are chosen by the criterion in (31). The M GT
estimator is the MG estimator that uses the true unobserved factor and is therefore, infeasible in

practice.
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Table 9. Pooled Estimators for Experiments B

‘ CCEP Estimator P(Theil) Estimator
No. of x | N/T 30 50 100 200 30 20 100 200
B 30 106.4  -181 138.3 -265.1 | 1994.7 1745.6 1839.0 -6.8
1 1 50 2374 -23.7 -240.1 156.9 | 2781.7 1375.7 5304 0.1
a 100 20.6 -4.0 -1334 -29 | 3090.8 27574 660.1 3.2
s 200 2.8 -7.6 7.7 -11.0 | 2754.0 2510.5 1564.4 -14
R 30 22.9 17.1 13.1 7.7 23.3 20.2 205 4.7
M| 1 50 20.0 12.5 9.5 6.2 29.6 174 11.2 4.0
S 100 13.0 9.5 6.2 4.1 31.8 28.8 11.7 2.6
E 200 9.0 6.5 4.5 3.0 29.2 26.8 16.7 1.9
S 30 2.6 5.7 6.2 7.1 47.0 23.8 71.5 4.8
1 1 50 2.5 5.3 4.8 6.2 83.5 51.2 33.1 5.8
z 100 4.9 9.3 5.9 5.2 98.5 97.5 440 5.3
e 200 5.1 6.0 5.9 5.1 94.5 97.8 972 5.0
P 30 6.2 6.6 7.1 17.5 32.9 35.6 593.0 18.2
0 1 50 6.0 8.1 11.5 9.3 73.6 35.2 33.0 246
W 100 6.9 9.3 189 251 | 96.0 942 564 50.0
er 200 8.5 13.5 19.6 39.7 88.4 91.8 88.3  T74.8
P(AIC) Estimator PT Estimator
B 30 | 17346 13254 716.0 -6.6 -8.9 -92.8  -226 -7.2
1 1 50 | 1165.1 514.3 6.0 -0.3 -44.0  -34.3 2.6 0.1
a 100 | 609.3 388.1 -24.3 3.2 16.6 -37.9 243 3.2
S 200 | 1301.2 106.9  70.8 -1.4 -18.1 3.6 3.3 -1.4
R 30 22.0 18.0 11.9 4.7 16.0 10.7 8.3 4.7
M| 1 50 20.1 9.9 5.6 4.0 13.2 8.1 5.5 4.0
S 100 15.7 10.2 3.9 2.6 8.5 5.9 3.9 2.6
E 200 16.8 5.7 4.4 1.9 6.5 4.0 3.0 1.9
S 30 39.8 40.8 22.1 4.5 4.4 4.7 4.7 4.8
1 1 50 35.4 14.6 4.8 5.7 4.6 5.2 4.6 5.8
z 100 23.5 25.1 5.7 5.3 4.3 4.7 5.7 5.3
e 200 62.0 12.1 10.0 5.0 5.7 4.8 5.2 5.0
P 30 28.4 274 12.6 17.9 5.1 7.2 9.6 18.2
0 1 50 29.1 9.0 14.3 24.6 6.9 11.2 141 246
w 100 25.6 24.4 27.7 50.0 8.6 14.5 27.7  50.0
er 200 47.6 28.5 42.2 74.8 13.6 24.2 38.9 T4.8

Notes: The CCEP estimator is given by (19). Its estimated variance is given by (20). The
P(Theil) estimator is given by (25). Its estimated variance is given by (28). The factors included
in (23) are chosen by the criterion in (32). The P(AIC) estimator is given by (25). Its estimated
variance is given by (28). The factors included in (23) are chosen by the criterion in (31). The PT

estimator is the pooled estimator that uses the true unobserved factor and is therefore, infeasible

in practice.
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Table 10. Empirical Application:

Pooled Estimator

Spec. Aq Ar Ar Am Ae const A,
1 1.251 445y 0.335(163) —1.5941.04y 0.1850221) —0.366(_512) —0.002_g45 0.042¢1.07)
2 - 0.277(1.35y —1.763(_202) 0.283(330) —0.411(_575  0.003(083  0.073(1.76)
3 1.254 4 43 - —1.464_177) 0.164203) —0.356(_s.95) —0.003_0.67) 0.0390.98)
4 1.243(430) 0.187(0.67) - 0.167(1.95y —0.395—551) —0.002_g50) 0.040(0.98)
5 1261451y 0.265(1.35) —1.678(_1.39) - —0.336(—479) —0.004(_1.00) 0.039¢1.01)
6 1.6695.67) 0.087(041) —1.923(_243) 0.115¢1.30) - —0.003(—0.70y  0.032(0.50)
7 1.2524 49) - —1.583(_1.80) - —0.329_464y —0.004(_g.99) 0.038(0.98)
Table 11. Empirical Application: Pooled Estimator (cont.)
Spec. ret Ag A7 Ar Am Ae o2
1 1.021(96.14y —0.482(_g90) —0.654_168) 2.022(335 —0.377(_1.43) 0.360445) 0.03280.0440)
2 1.040(26,21) - —0.593(_1 61) 2132(348) _0‘552(—2.08) 0.362(4_35 0.0334(0.0443
3 1.016(25.67y —0.489(—0.95) 1.6893.70) —0.240_0.91) 0.324(4.08) 0.0327(0.0429
4 1.011(25.29) —0.598(_1.18) —0.167(_¢.76) - —0.267(,0 99) 0.376(4.71)  0.0326(0.0421
5 1.018(27.82) —0.446(_¢s3 —O0. 515( 135)  2.070(3.33) 0.3193.96)  0.03270.0440
6 1-005(28.47) —0.564(_1_04) —0. 433 —1.18) 2.415(3_57) —0. 337 —1.29) - 0.0335(0_0439
7 1.015(27.43) —0.440(_0_85) - 1.808(3_72) - 0.295(3_71) 0.0327(0.0432)
Table 12. Empirical Application: Mean Group Estimator
Spec. Aq AT Ar Am Ae const A,
1 1.163(368) 0.303(0.98) —3.041(_562) 0.1390.96) —0.268(_4.02)  0.001(019)  0.055(14s)
2 - 0.308(1.04y —3.634(_662) 0.194(151y —0.354_603  0.007176)  0.116(2.54)
3 1.0483.40) - —2.789 489y 0.11900.89) —0.284(_470) —0.000(_g.06) 0.043(1.18)
4 1.053(3.39) 0.041(0.14) - 0.042(0,27) —0.348_4819y —0.000(—g.07) 0.040(1.07
5 1.366(4.33) 0.388(1.32) —3.490(_¢.35) —0.198(_3.10p —0.005(—g.94y 0.015¢ 3g)
6 1.347 481y 0.100¢0.36) —2.917_537) 0.091(0.64 - —0.000(—0.08y  0.055(1.44)
7 1.2534.20) - —3.174(_5 56) - —0.188(_393) —0.004(_g.90) 0.015(9.40)
Table 13. Empirical Application: Mean Group Estimator (cont.)
Spec. ret Ag Ar Ar Am Ae Xs
1 1.018(2423y —0.668_121) —0.700(—136) —0.148_g24y —0.285_101) 0.170(2.93) 0.00
2 1.05824.97) - —0.965(_1.99y  0.178(0.29) —0.610(—2.15y 0.170¢2.97y  0.00
3 1.013(23.32) —0.595(_1.05) - —0.272(_0.43) —0.131(_049) 0.146(200) 0.00
4 1.001(23.30) —0.440_080) —0.655(_1.53) - —0.064( 023y 0.187251) 0.00
5 0.995(26.19) —0.826(_1.60) —0.680(—1.44) —0.243(_0.40) 0.143(1.89) 0.00
6 0.993(27.57) —0.542(,1.00) —0.162(,0.34) —0.484(,0.76) —0.159(70.61) - 0.00
7 0.991(25.37)  —0.691(_1.99) - —0.390(—0.69) - 0.136(1.91) 0.00
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