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Abstract

The problem of structural change justifiably attracts considerable attention in
econometrics. A number of different paradigms have been adopted ranging from struc-
tural breaks which are sudden and rare to time-varying coefficient models which exhibit
structural change more frequently and continuously. This paper is concerned with para-
metric econometric models whose coefficients change deterministically and smoothly
over time. In particular we provide and discuss tests for the null hypothesis of no
structural change versus the alternative hypothesis of smooth deterministic structural
change. We provide asymptotic tests for this null hypothesis. However, the finite sam-
ple performance of these tests is not good as they overreject significantly. To address
this problem we propose and justify bootstrap based tests. These tests perform well
in an extensive Monte Carlo study.
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1 Introduction

The investigation of structural change in econometric models has been assuming increasing

importance in the literature over the past couple of decades. This focus is not surprising.

Assuming wrongly that the structure of a model remains fixed over time, has very significant

and adverse implications. The first obvious implication is inconsistency of the parameter es-

timates. A distinct, yet related, implication is the fact that structural change chance is likely

to be responsible for most major forecast failures of time series models.

As a result a huge literature on modelling structural change has emerged. Most of the

work assumes that structural changes in parametric models occur rarely and are abrupt.

Many tests for the presence of structural change of that form exist in the literature starting

with the pathbreaking work of Chow (1960) who assumed knowledge of the point in time

at which the change occured. Other tests that relax this assumption have been developed

by Brown, Durbin, and Evans (1974), Ploberger and Kramer (1992) and many others. In

this context it is worth noting that little is being said about the cause of structural breaks

in either statistical or economic terms. Recent work by Kapetanios and Tzavalis (2004)

provides a possible avenue for modelling structural breaks and, thus, addresses partially this

issue.

Another more recent strand of the literature takes a different approach. In this approach

the coefficients of parametric models are assumed to evolve over time. To achieve this the

parameters are assumed to be stochastic processes leading to stochastic time-varying co-

efficient (STVC) models. Such models bear resemblance to simple nonlinear econometric

models such as bilinear models (see Tong (1990)). STVC models have been used recently in

applied macroeconometric work by, e.g., Cogley and Sargent (2002), to model the evolution

of macroeconomic variables such as US inflation in the post WWII era. In this case coeffi-

cients have been assumed to evolve as random walks over time.

An important question arising out of the use of such models goes to the heart of what

structural change is. A relatively uncontroversial definition would be a change in the uncon-

ditional moments of the process under investigation. If one were to adopt this definition,

use of STVC models may be problematic. To see this we note that, as mentioned above,

these models can be viewed as nonlinear time series models. But processes following non-

linear models of that form can be strictly stationary under certain assumptions (see, e.g.,
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Pourahmadi (1988) and Liu and Brockwell (1988)). Alternatively, such processes may have

asymptotically infinite variance like random walk processes. Neither of these alternatives is

what is needed in the modelling of structural change. For example, a process such as US

inflation whose variance has been falling in the last decade cannot be theoretically consistent

with a model whose coefficients follow random walk processes.

These problems may be addressed by assuming that coefficients change but in a smooth

deterministic way. Such modelling attempts have a long pedigree in statistics starting with

the work of Priestley (1965). This paper suggested that processes may have time-varying

spectral densities which change slowly over time. The context of this work is nonparametric.

This work has more recently been followed up by Dahlhaus (1996) and others who refer

to such processes as semi-stationary processes. A parametric alternative to this approach

has been pursued by Robinson (1989) for linear regression models and Robinson (1991) for

nonlinear parametric models. Recently, Orbe, Ferreira, and Rodriguez-Poo (2005) extended

these results to include time-varying seasonal effects. We will refer to such parametric mod-

els as deterministic time-varying coefficient (DTVC) models. A disadvantage of such an

approach is that the coefficient change cannot be modelled or, for that matter, forecast.

Both of these are theoretically possible with STVC. However, an important assumption un-

derlying DTVC is that coefficients change slowly. As a result forecasting may be carried out

by assuming that the coefficients remain at their end-of-observed-sample value.

This paper will focus on testing for stationarity against the alternative of structural

change of the DTVC type. This problem is clearly of interest both for modelling and fore-

casting purposes. A number of asymptotic results available in the literature on the properties

of the estimates of time-varying coefficients can be used to provide such tests. We discuss

these in detail. We propose two types of tests. One looks at the difference between the

estimate of a coefficient under the null and under the alternative hypothesis to construct a

test. This has a number of similarities with work in the nonparametric literature such as

Ait-Sahalia, Bickel, and Stocker (2001).

We also take another approach. Under the null hypothesis the derivative of the coeffi-

cient with respect to time is zero. This hypothesis can be tested. We discuss this test. From

an asymptotic point of view this last test appears less useful. It is easy to show that the

latter test will be Th3 consistent whereas the former is Th consistent where T is the number

of observations and h is a window length which tends asymptotically to zero. However,
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asymptotics are often a poor guide to small sample performance especially in nonparametric

analysis. Our extensive Monte Carlo study will show that to be the case here. In particular

we will see that the tests overreject significantly. As a result we suggest use of the bootstrap.

Further we see that in small samples the derivative-based test is more powerful that the test

based on the coefficient difference under the two hypotheses.

The paper is structured as follows: Section 2 discusses the theoretical framework. Sec-

tion 3 proposes the new tests and discusses their asymptotic properties. Section 4 proposes

bootstrap versions of the asymptotic tests. Section 5 presents an extensive Monte Carlo

study. Finally, Section 6 concludes.

2 Preliminaries

Let the model of interest be given by

yt = β(t)′xt + ut (1)

where yt and xt are the scalar dependent and k-dimensional explanatory variables respec-

tively.

The following assumptions provide information on the detailed specification of the above

model:

Assumption 1 β(t) = βt/T where each element of βτ , βi,τ , i = 1, . . . , k, τ ∈ (0, 1), is

continuous and twice differentiable on (0, 1).

Assumption 2 xt is an α-mixing sequence with size −4/3 and finite 8-th moments. E(xisxjt) =

mij,s,t = mij(s/T, t/T ) + O(T−1) where mij(., .) is a twice differentiable function of both its

arguments.

Assumption 3 ut is a stationary martingale difference sequence with finite 4-th moments

which is independent of xt at all leads and lags.

Assumption 4 The function K(.) is a second order kernel with compact support [−1, 1] and

absolutely integrable Fourier transform.

Assumption 1 is a crucial assumption. It specifies that β(t) is a smooth deterministic

function of time. It is interesting to note that it depends not only on the point in time t

but also on the sample size T . This is necessary since in order to estimate consistently a
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particular parameter one needs the sample size that relates to that parameter to tend to

infinity. This is achieved in this context by allowing an increasing number of neighboring

observations to be informative about β at time t. In other words we have to assume that as

the sample size grows the function βτ stretches to cover the whole period of the sample. This

setup has precedents in the statistical literature. For example, the concept of slowly varying

processes of Priestley (1965) forms an early instance of similar ideas. Assumptions 2 and 3 are

standard mixing and moment conditions for the explanatory variables and the error term. It

is important to note that xt is allowed to be nonstationary. Note further that the martingale

difference assumption for the error term is not crucial and is adopted for simplicity. General

forms of stationary weak dependence for the error term can be accomodated with minimal

changes in the analysis.

Finally, assumption 4 relates to the kernel function that will be used for estimation.

Following Robinson (1989) and Orbe, Ferreira, and Rodriguez-Poo (2005), we propose

the following estimator for βτ .

β̂τ =

(
T∑

t=1

Kt,τxtx
′
t

)−1 (
T∑

t=1

Kt,τxtyt

)
(2)

where Kt,τ = (Th)−1K((τ − t)/Th). This estimator bears close resemblance to the standard

OLS estimator and it is easy to see that it is the closed form solution of the following

optimisation

min
β

T∑
t=1

Kt,τ (yt − β(t)′xt)
2

3 Asymptotic Tests

We wish to test the hypothesis that βt does not change over time.

H0 : βτ = β, ∀τ (3)

against the alternative hypothesis that βτ is non-constant and satisfies assumption 1. We

start our analysis by looking at pointwise tests, i.e. tests of the hypothesis

H0τ : βτ = β (4)

for a fixed τ . Let us denote the estimate of β under the null as β̃. Depending on the

assumptions made about ut, standard methods can be used to estimate β under the null.

For example, in the case where the disturbances are spherical and uncorrelated from xt OLS
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is an optimal estimator. We construct two such tests. The first looks at the difference

between the estimates of βt under the two hypotheses. The test statistic takes the form

T τ,l = (β̂τ − β̃τ )
′V̂ (β̂τ − β̃τ )

−1(β̂τ − β̃τ ) (5)

The second test statistic uses the fact that under the null hypothesis

∇τβτ ≡ ∂βτ

∂τ
= 0,∀τ (6)

This test statistic takes the form

T τ,d = ∇τ β̂
′
τ V̂ (∇τ β̂τ )

−1∇τ β̂τ (7)

Details on the asymptotic variances V (β̂τ − β̃τ ), V̂ (∇τ β̂τ ) and their estimators are given in

Theorems 1 and 2. Before introducing tests for H0 we examine the asymptotic properties of

these tests.

Theorem 1 Under assumptions 1-4 and h = o(T−1/5)

T τ,l d→ χ2
k (8)

Under the alternative hypothesis the test is consistent.

Theorem 2 Under assumptions 1-4, h = o(T−1/5) and h = O(T−1/υ), for some υ < 7

T τ,d d→ χ2
k (9)

Under the alternative hypothesis the test is consistent.

These tests can be used to test H0τ but not H0. For that we need to jointly consider many

points in the interval (0, 1) where τ is defined. To conduct this test we need to use summary

statistics for a set of pointwise test statistics. The problem has parallels with the problem of

testing when a nuisance parameter is unidentified under the null hypothesis. This problem

arises in may areas in econometrics such as linearity testing, tests for structural breaks and

others (for more details see Davies (1977) and Andrews and Ploberger (1994)). Let the set

of points for which test statistics are available be denoted by Tm = {τ1, τ2, . . . , τm}, where

τ1 < τ2 < . . . < τm. Three summary statistics are usually considered. These are given by

T i
AV E =

1

m

m∑
j=1

T τj ,i, i = l, d (10)

T i
SUP = supj T τj ,i, i = l, d (11)

T i
EXP =

1

m

m∑
j=1

e
T

τj,i

2 , i = l, d (12)

We make the following assumption about Tm.
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Assumption 5 (i) m → ∞ as T → ∞, (ii) mh → 0 as T → ∞, (iii) Tm is such that for

all j ≥ 2, τj − τj−1 = o(1) and τj − τj−1 = O
(

1
m

)
.

We have the following theorem on the asymptotic distribution of the above tests.

Theorem 3 Under H0, assumptions 1-5, h = o(T−1/5) and h = O(T−1/υ), for some υ < 7,

we have that (T i
SUP − am)/bm has a cumulative density function given by ee−x

where choices

for am and bm are given in the appendix. Further,

(√
m (T i

AV E − k)

2k

)2
d→ χ2

1 (13)

and (√
m (T i

EXP − µχk)

V χk

)2
d→ χ2

1 (14)

where µχk = E(e
z
χ2

k ) and V χk = E(e
2z

χ2
k ) and zχ2

k
denotes a χ2

k random variable. Under

the alternative hypothesis that βτ is non-constant and satisfies assumption 1, all tests are

consistent.

Remark 1 We note a few facts about the distribution with cdf ee−x
which is usually referred

to as the extreme value distribution. Its probability density function is given by e−x−e−x
. Its

cumulants are given by κr = (−1)rψ(r−1)(1), where ψ(r) is the r-th polygamma function, i.e.
dr ln Γ(x)

dxr . So, E(X) = 1+ γ where γ is Euler’s constant (γ ' 0.57722) and V ar(X) = 1/6π2.

4 Bootstrap Tests

Given the slow rate of convergence related to nonparametric asymptotics, it is not surprising

to note that asymptotic results may not provide good approximations to small sample be-

haviour. This is the case for the asymptotic tests we discussed in the previous section. More

details on the poor performance of these asymptotic tests will be provided in the Monte

Carlo study of Section 5. Note that the bad performance of tests based on nonparametric

asymptotic results is documented in the literature. In particular, Fan (1995, 1998) show

that asymptotic tests have rejection probabilities that deviate significantly from the nominal

significance level.

A possible solution for this is the bootstrap. The bootstrap distribution of a statistic

can be defined as the exact finite sample distribution function evaluated at an estimate of

the unknown parameters. As discussed by Singh (1981), Hall (1986), Hall (1992) and Brown

(2000), bootstrapping a studentized statistic that is asymptotically pivotal will provide a
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closer approximation to the true distribution than the standard limiting distribution, with

coverage differing from the nominal level by only Op(T
−1) instead of Op(T

−1/2), for indepen-

dent observations. Results for dependent observations have been provided by Horowitz and

Hall (1996) and Bose (1988) among others. A recent summary of the available asymptotic

results for dependent observations may be found in Lahiri (2003).

Hartigan (1986), Hall (1988) and Beran (1988) advocate the use of pivoting as a device

to reduce the error in rejection probability. Although much of the asymptotic theory for the

bootstrap has been developed for the construction of confidence intervals, the well known

duality between hypothesis testing and confidence intervals guarantees that any ranking of

bootstrap variants for confidence intervals will hold in the case of hypothesis testing.

The drawback of this method has been noted by a number of authors including Tibshirani

(1988) and more recently Horowitz (1995). The principal disadvantage is that studentizing

requires an estimate of the standard deviation of the test statistic which in some cases can

represent a poor approximation to the true value. Further, a pivoting procedure advocated

by Beran (1988) requires the use of an inner bootstrap loop and as such there is an obvious

trade-off between reduction in approximation error and the attendant computational bur-

den. In addition, we note that the asymptotic theory is not informative in the absence of

pivotalness. Since in most cases statistics are only asymptotically pivotal, then faced with

a finite sample there is no theory-based ranking for pivotal versus non-pivotal bootstrap

statistics. Given the above, small sample analysis maybe an appropriate guide on whether

or not to studentize.

These comments are relevant in our case because the variance estimator for the derivative-

based test appears to be badly behaved in small samples. All asymptotic tests are badly

behaved as evidenced by the Monte Carlo study but the derivative-based test more so. As a

result we, firstly, do not consider an asymptotic version of the derivative test, and secondly

choose not to studentise this test unlike the test based on coefficient differences.

Below we give the bootstrap algorithm we suggest.

Algorithm 1 1. Estimate β̂τ using (2) for all points in Tm. Estimate β̃ using OLS if

appropriate. Obtain OLS residuals. Denote the set of OLS residuals by {ût}T
t=1

2. Generate a bootstrap sample for ut, denoted u∗t , by resampling with replacement from

8



{ût}T
t=1 to obtain {u∗t}T

t=1

3. Generate a bootstrap sample for yt, denoted y∗t by

y∗t = β̃′xt + u∗t , t = 1, . . . , T (15)

4. Construct bootstrap version of T τ,i and T i
j , i = l, d, j = SUP,AV E, EXP , denoted

T τ,i∗ and T i
j
∗
, i = l, d, j = SUP, AV E, EXP .

5. Repeat steps 2-4, B times to obtain the empirical distribution of T τ,i and T i
j , i = l, d,

j = SUP,AV E, EXP .

We can show the following theorem for the bootstrap procedure defined by the above

algorithm.

Theorem 4 Under assumptions 1-4, h = o(T−1/5) and h = O(T−1/υ), for some υ < 7,

the bootstrap provides a consistent estimator of the asymptotic distributions of T τ,i and T i
j ,

i = l, d, j = SUP, AV E, EXP .

We denote the bootstrap tests by T τ,i∗ and T i
j
∗
, i = l, d, j = SUP, AV E, EXP .

5 Monte Carlo Study

5.1 Monte Carlo Setup

In this section we present a Monte Carlo study on the small sample properties of the new

testing procedures. We consider the following model under the null hypothesis.

yt = xt + ut (16)

where ut, xt ∼ N(0, 1). T = 100, 200, 400. For β̂ we set h = T−1/l where l = 4, 6, 8. The

truncated standard normal kernel is used throughout.1

Results, for T τ,i and T i
j , i = l, d, j = SUP,AV E,EXP are presented in Tables 1 and 2.

For the power properties of the test we consider two different models (P1 and P2). The

first model is

yt = βtxt + ut (17)

1It is obvious (and stated in Assumption 4) that the kernel must have bounded support and in particular
that it must be bounded between -1 and 1. For such cases, there exists work in the literature suggesting
that asymmetric kernels may be useful (see, e.g., Scaillet (2004)).
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where

βt = sin

(
4π

T

)(
1− t

T

)
(18)

and ut ∼ N(0, 1). For the second model the only difference is that ut ∼ N(0, σ2
t ) where

σ2
t = sin

(
2π

T

)
+ 2 (19)

This model is strictly speaking not covered by the estimation framework of Section 2, since

the error term is not stationary. However, recent work by Kapetanios (2005) suggests that

the properties of β̂t, in the case of a stationary error term, extend to this case. For both size

and power experiments we set Tm = (0.05, 0.10, . . . , 0.95, 1), Tm = (0.04, 0.08, . . . , 0.96, 1)

and Tm = (0.025, 0.05, . . . , 0.975, 1) for T = 100, 200, 400 respectively. Results are reported

in Tables 3 and 4.

5.2 Monte Carlo Results

Preliminary investigation has shown that the behaviour of the derivative-based asymptotic

tests is very bad under the null hypothesis. As a result we do not consider these tests in

this section. Results for the other tests make interesting reading. In Table 1, we report the

rejection probabilities under the null hypothesis for T τ,l for T = 200. Clearly, these tests

overreject extensively. As expected the overrejection occurs most intensively at the start and

end of the sample, where lack of data cause the tests to be less well behaved. It is unlikely

that useful inference can be provided in this context using the asymptotic properties of these

tests.

Moving to Table 2 which reports rejection probabilities for T l
j and T i

j
∗
, i = l, d, we see that

the same holds for the T l
j tests. Again, these tests appear of little use to applied researchers

faced with samples of sizes usually encountered in, e.g., macroeconometric analysis. On the

contrary, the T i
j
∗
, i = l, d, tests are correctly sized for all T and h considered. As a result we

choose not to consider the asymptotic tests for the power experiments.

Moving on to the power properties we see that the derivative-based tests are more power-

ful than the tests based on the differences between the coefficients estimated under the null

and under the alternative hypothesis, in most cases. The superiority of the derivative-based

tests is quite pronounced. For example, in the case of model P1, T = 100 and l = 4, the

derivative based supremum test rejects 38% whereas the coefficient-based test reject only
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22% of the time. Similar gaps arise in many other cases. This result is in stark contrast

with the fact that the asymptotic rates of convergence imply that the derivative-based tests

should be less powerful.

We conclude that the substantial advantage enjoyed by the derivative tests is related

to the fact that the mean normalisation is different for the derivative and coefficient-based

tests. In particular, the derivative-based tests require no normalisation as under the null

hypothesis the derivative is known to be equal to zero. For the coefficient-based tests, the

normalisation under the null hypothesis is not known and needs to be estimated via an OLS

estimation of the null model. This is exacerbated through the bootstrap algorithm which

requires a separate estimation of the null model for every bootstrap replication. No such

estimation is needed for the derivative tests.

Other interesting patterns emerge from the power results. The supremum-based test

seems to perform better than either the average or the exponential test. All tests get more

powerful as T increases. The pattern of behaviour related to the choice of h is more complex.

For the coefficient-based tests the power performance is not monotonic with respect to h.

The tests are least powerful for h = T 1/6. The derivative-based tests are most powerful for

h = T 1/4 with the power declining for higher h. Finally, it is worth pointing out that the

biggest performance gap between the derivative-based and coefficient tests appears for the

supremum tests. The difference exists for the other summary statistics but is less pronounced.

6 Conclusion

Structural change is justifiably a major concern in econometric modelling. A number of

different paradigms have been adopted ranging from structural breaks which are sudden and

rare to time-varying coefficient models which exhibit structural change more frequently and

continuously. This paper is concerned with parametric econometric models whose coefficients

change deterministically and smoothly over time.

In particular, we provide and discuss tests for the null hypothesis of no structural change

versus the alternative hypothesis of smooth deterministic structural change. We provide

asymptotic tests for this null hypothesis. However, the finite sample performance of these

tests is not good as they overreject significantly. To address this problem we propose and

justify bootstrap based tests. These tests perform well in an extensive Monte Carlo study.
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Appendix

We first prove a preliminary lemma.

Lemma 1 Under assumptions 1-4 and under the null hypothesis, H0

√
T (β̃ − β)

d→ N(0,M−1CM−1) (20)

where M = limT→∞
∑T

t=1 E(xtx
′
t) and

C = lim
T→∞

{
T∑

t=1

E(u2
t xtx

′
t) +

T∑
t=1

t−1∑
i=1

E(utut−ixtx
′
t−i)

}
(21)

Proof. This lemma simply proves asymptotic normality for the OLS estimator in the

case where xt is not stationary. The only ingredients needed for the proof of the lemma is a

law of large numbers for 1
T

∑T
t=1 xtx

′
t and a central limit theorem for 1√

T

∑T
t=1 xtut. Starting

with the law of large numbers we note that xt is mixing by assumption 2. Then, by Theorem

19.11 of Davidson (1994) it follows that

1

T

T∑
t=1

xtx
′
t

p→ M (22)

Finally, assumptions 2 and 3 are then sufficient for

1√
T

T∑
t=1

xtut
d→ N(0, C) (23)

via theorem 24.6 of Davidson (1994). This completes the proof of the lemma.

Proof of Theorem 1

By Theorem 2 of Orbe, Ferreira, and Rodriguez-Poo (2005) it follows that

√
Th(β̂τ − βτ )

d→ N(0, cKM−1
τ ) (24)

where Mτ = E(xTτx
′
Tτ ) and cK =

∫
K2(u)du. By Lemma 1 it also follows that, under the

null hypothesis √
Th(β̃τ − βτ ) = op(1) (25)

Thus √
Th(β̂τ − β̃τ )

d→ N(0, cKM−1
τ ) (26)

The null distribution stated in the Theorem then easily follows. Consistency of the test,

easily follows by consistency of β̂τ
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Proof of Theorem 2

For this Theorem we need to derive the asymptotic distribution of ∇τ β̂τ −∇τβτ . We have

that

β̂τ =

(
T∑

t=1

Kt,τxtx
′
t

)−1 (
T∑

t=1

Kt,τxtyt

)
= V̂ −1

τ,xxV̂τ,xy (27)

We also note that we can write

βτ =
(
E(x[Tτ ]x[Tτ ])

′)−1
E(x[Tτ ]y[Tτ ] = V −1

τ,xxVτ,xy (28)

It then follows that

∇τ β̂τ = V̂ −1
τ,xx

(
∇τ V̂τ,xy −∇τ V̂τ,xxβ̂τ

)
(29)

and similarly for ∇τβτ . Preempting a rate of convergence equal to Th3, we write

√
Th3(∇τ β̂τ −∇τβτ ) ≈

√
Th3

(
V̂ −1

τ,xx − V −1
τ,xx

)(
∇τ V̂τ,xy −∇τ V̂τ,xxβ̂τ

)
+ (30)

V̂ −1
τ,xx

(√
Th3

(
∇τ V̂τ,xy −∇τVτ,xy

)
−∇τ V̂τ,xx

√
Th3

(
β̂τ − βτ

))
(31)

where A ≈ B implies that A−B = op(1). But we have that

√
Th3

(
V̂ −1

τ,xx − V −1
τ,xx

) (
∇τ V̂τ,xy −∇τ V̂τ,xxβ̂τ

)
= op(1) (32)

and

V̂ −1
τ,xx∇τ V̂τ,xx

√
Th3

(
β̂τ − βτ

)
= op(1) (33)

Hence, we concentrate on
√

Th3
(
∇τ V̂τ,xy −∇τVτ,xy

)
. But, under the assumptions of the

theorem including those on h,

√
Th3

(
∇τ V̂τ,xy −∇τVτ,xy

)
=
√

Th

T∑
t=1

∇τKt,τxtut
d→ N

(
0,

(∫
(∇τK(τ))2

)
Mτ

)
(34)

Overall, √
Th3(∇τ β̂τ −∇τβτ )

d→ N

(
0,

(∫
(∇τK(τ))2

)
M−1

τ

)
(35)

The null distribution of the theorem follows immediately. Consistency of the test easily

follows by consistency of ∇τ β̂τ .
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Proof of Theorem 3

The first step of the proof of this theorem relates to proving independence of the test statis-

tics T τj ,i, j = 1, . . . , m, i = l, d. Under assumption 5 (iii), it is the case for the set Tm that

for all but a finite number of points in Tm, τi − τi−1 = O( 1
m

). Given assumptions 5 (ii), 2

and 3 it follows that the data used in the construction of T τj ,i are independent of the data

used in the construction of T τj−1,i and T τj+1,i. Hence, as T →∞ and m →∞ the summary

statistics are constructed using independent χ2 random variables. This is sufficient for (13)

and (14).

We need to prove the result for T i
SUP , i = l, d. To obtain this we use results from the

asymptotic theory of extreme order statistics. Following Arnold, Balakrishnan, and Nagaraja

(1992) or Galambos (1978), there exist only three forms for the asymptotic cumulative

distribution function of an appropriate normalisation of this statistic, given by (T i
SUP −

aN)/bN . It is not always the case that such an asymptotic representation exists. These

cumulative distributions are given by

G1(x, α) =

{
0 ifx ≤ 0

e−x−α
x > 0; α > 0

(36)

G2(x, α) =

{
e−(−x)α

x < 0; α > 0
1 x ≥ 0

(37)

and

G3(x) = e−e−x

(38)

According to Theorem 8.3.2 of Arnold, Balakrishnan, and Nagaraja (1992) the distribution

can be of the form G2 only if F−1
k (1) is finite where Fk(.) is the cdf of a χ2

k random variable.

Since F−1
k (1) = ∞, G2 is not the form of the asymptotic distribution.

The distribution is G1 iff the following condition applies

lim
t→∞

1− Fk(tx)

1− Fk(t)
= x−α (39)

But by applying L’Hopital’s rule we can easily see that this limit is infinity for x > 1 using

Fk(x) = Γx/2(k/2)/Γ(k/2) and fk(x) = 1
2k/2Γ(k/2)

e−x/2x(k/2)−1 where Γa(b) ≡
∫ a

0
e−tta−1dt is

the incomplete Gamma function. Thus, we need to either verify that G3 is the appropriate

distribution or conclude that no such distribution exists.

To check whether G3 is the appropriate distribution we use the third von Mises condition

given in Theorem 8.3.3 of Arnold, Balakrishnan, and Nagaraja (1992). This condition states
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that the asymptotic distribution is G3 iff

lim
x→F−1(1)

d

dx

{
1− Fk(x)

fk(x)

}
= 0 (40)

where fk(x) is the pdf of a χ2
k random variable.

The above condition is equivalent to

lim
x→∞

−f
′′
k (x)(1− Fk(x)) + f ′k(x)f(x)

2fk(x)f ′k(x)
= 1 (41)

where f ′k(x) and f
′′
k (x) are the first and second derivatives of f(x). Then, it is easy to see

that we need to prove

lim
x→∞

−f
′′
k (x)(1− Fk(x))

fk(x)f ′k(x)
= 1 (42)

Simple algebra indicates that for the χ2
k pdf

lim
x→∞

−f
′′
k (x)

f ′k(x)
= 1/2 (43)

Further, by a double application of L’Hopital’s rule, it follows that

lim
x→∞

1− Fk(x)

fk(x)
= 2 (44)

proving that the required distribution is indeed G3. Then, by part (iii) of theorem 8.3.4 of

Arnold, Balakrishnan, and Nagaraja (1992) we have that possible (but not unique) expres-

sions for aN and bN are given by:

aN = F−1(1−N−1), bN = F−1(1− (Ne)−1)− F−1(1−N−1) or bN = [Nf(aN)]−1 (45)

Finally, example 8.3.4 of Arnold, Balakrishnan, and Nagaraja (1992) implies that bN ∼ log N

and that T i
SUP = Op(log N).

Consistency of the tests follows from assumption 5 (iii), continuity of βτ , consistency of

T τ,i and the rate of convergence of m.
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Proof of Theorem 4

In order to prove the theorem it is sufficient to show that the resampled residuals have finite

fourth moments in the bootstrap probability space, i.e. E∗(u∗t
4) < ∞. If that is the case

then assumptions 1-4 are satisfied for every bootstrap sample implying via Theorems 1-3 that

the bootstrap can be used to estimate the asymptotic distributions of T τ,i and T i
j , i = l, d,

j = SUP, AV E, EXP .

We wish to show that

1

T

T∑
t=1

(
ût − 1

T

∑
ût

)4

= Op(1) (46)

Write

1

T

T∑
t=1

(
ût − 1

T

∑
ût

)4

< c(AT + 2CT + CT ) (47)

where

AT =
1

T

T∑
t=1

u4
t (48)

BT =
1

T

T∑
t=1

(ût − ut)
4 (49)

cT =

(
1

T

T∑
t=1

ût

)4

(50)

We need to show that BT is op(1) and AT , CT are Op(1). The result for AT follows by

assumption 3. For BT we have

1

T

T∑
t=1

(ût − ut)
4 =

1

T

T∑
t=1

((
β̃ − β

)
xt

)4

(51)

The result follows by Lemma 1 and a law of large numbers for the fourth moments of xt

which follows by assumption 3 and Theorem 19.11 of Davidson (1994). Finally, the result

for CT follows by a combinations of the results for AT and BT .
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Table 1: Rejection Probabilities under the null hypothesis for T τ,l tests at T = 200

τ h=4 h=6 h=8
0.04 0.688 0.610 0.557
0.08 0.686 0.596 0.549
0.12 0.655 0.574 0.533
0.16 0.629 0.548 0.496
0.20 0.605 0.523 0.462
0.24 0.584 0.493 0.425
0.28 0.556 0.460 0.374
0.32 0.516 0.419 0.324
0.36 0.494 0.367 0.259
0.40 0.486 0.316 0.197
0.44 0.472 0.257 0.144
0.48 0.461 0.223 0.114
0.52 0.469 0.230 0.115
0.56 0.493 0.254 0.143
0.60 0.515 0.302 0.187
0.64 0.538 0.345 0.245
0.68 0.564 0.395 0.303
0.72 0.577 0.448 0.355
0.76 0.599 0.486 0.405
0.80 0.614 0.528 0.444
0.84 0.635 0.551 0.474
0.88 0.647 0.573 0.501
0.92 0.662 0.598 0.524
0.96 0.679 0.617 0.556
1.00 0.665 0.617 0.569
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Table 2: Rejection Probabilities under the null hypothesis for T l
j and T i

j
∗
, i = l, d tests

SUP AVE EXP
h/T 100 200 400 100 200 400 100 200 400

T l
j

4 0.096 0.268 0.431 0.699 0.882 0.968 0.547 0.792 0.933
6 0.052 0.165 0.251 0.564 0.765 0.906 0.376 0.637 0.822
8 0.015 0.111 0.184 0.465 0.725 0.879 0.296 0.536 0.760

T l
j
∗

4 0.048 0.063 0.052 0.047 0.058 0.055 0.048 0.063 0.053
6 0.045 0.059 0.048 0.048 0.061 0.045 0.046 0.058 0.048
8 0.039 0.054 0.061 0.037 0.054 0.064 0.036 0.055 0.060

T d
j
∗

4 0.039 0.066 0.053 0.044 0.062 0.054 0.044 0.062 0.054
6 0.052 0.055 0.042 0.045 0.063 0.049 0.045 0.063 0.049
8 0.037 0.058 0.057 0.038 0.056 0.061 0.038 0.056 0.061

Table 3: Rejection Probabilities under the Alternative hypothesis (P1) for T l
j
∗

tests

SUP AVE EXP
h/T 100 200 400 100 200 400 100 200 400

T l
j
∗

4 0.221 0.519 0.919 0.194 0.339 0.712 0.218 0.520 0.918
6 0.201 0.344 0.632 0.211 0.365 0.615 0.204 0.345 0.632
8 0.239 0.391 0.638 0.245 0.421 0.692 0.244 0.394 0.645

T d
j
∗

4 0.380 0.798 0.994 0.264 0.635 0.988 0.264 0.635 0.988
6 0.278 0.612 0.936 0.204 0.384 0.730 0.204 0.384 0.730
8 0.269 0.554 0.904 0.222 0.392 0.677 0.222 0.392 0.677

Table 4: Rejection Probabilities under the Alternative hypothesis (P2) for T l
j
∗

tests

SUP AVE EXP
h/T 100 200 400 100 200 400 100 200 400

T l
j
∗

4 0.121 0.301 0.655 0.113 0.213 0.394 0.120 0.301 0.652
6 0.129 0.207 0.392 0.138 0.229 0.371 0.132 0.211 0.391
8 0.130 0.233 0.378 0.131 0.252 0.411 0.131 0.237 0.383

T l
j
∗

4 0.181 0.467 0.851 0.140 0.361 0.791 0.140 0.361 0.791
6 0.166 0.358 0.681 0.139 0.240 0.449 0.139 0.240 0.449
8 0.147 0.338 0.598 0.129 0.233 0.398 0.129 0.233 0.398
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