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Abstract

The income cycles that have been experienced by six OECD countries
over the past 24 years are analysed. The amplitude of the cycles rel-
ative to the level of aggregate income varies amongst the countries,
as does the degree of the damping that affects the cycles. The study
aims to reveal both of these characteristics. It also seeks to deter-
mine whether there exists a clear relationship between the degree of
damping and the length of the cycles. In order to estimate the pa-
rameters of the cycles, the data have been subjected to the processes
of detrending, anti-alias filtering and subsampling.
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1 Introduction

This paper compares the economic cycles that have beset a group of six
OECD countries, which have experienced similar socio-economic conditions
over the past quarter century. The shocks and the disturbances that have
impinged on their economies have had differing intensities; and the effects
have been mitigated by a wide variety of fiscal and monetary policies. The
aim is to determine the extent to which the consequences of such differences
are perceptible in the aggregate indices of economic activity.

For the purposes of this assessment, we shall employ a stylised model of
the economic cycle, for which we shall attempt to estimate the parameters
from the data of each country. These parameters will provide the basis for
our comparisons. We shall employ some simple methods of estimation, but

1



we shall need to process the data in novel ways in order to isolate the features
that are of interest.

Within the framework of our analysis, there can be two explanations for
the strength of an economic cycle. The first explanation lies in the power
of the disturbances that are the driving force of the cycle. The second ex-
planation lies in the ability of the economy to dissipate the energy of these
disturbances. This would be reflected in the rate of convergence to the steady
state of an economy that was somehow relieved of disturbances, but it can
also be estimated from the behaviour of an economy experiencing distur-
bances, on the assumption that they constitute white noise.

The frictional effects of the tax system that are described as fiscal drag
will serve to dissipate the energy of the disturbances. An overreactive regime
of economic regulation, acting like a stiff spring in a mechanical system,
might have the opposite effect of maintaining this energy within the economic
system. For example, it was the contention of Dow (1964), in a monograph
that was highly influential at the time, that, in the early post-war years, such
a regime had increased the frequency and the severity of the fluctuations in
the British economy.

The countries that we shall examine have experienced high levels of eco-
nomic growth throughout the period in question. The economic recessions
that have occurred have been characterised more often by diminutions in the
rates of growth than by absolute reductions in the levels of output. In other
words, the economic cycles have been carried on the backs of rising trends.
The problem of separating the trends from the cycles is a difficult one that
has generated much debate, and we feel bound to offer our own opinions.

Some of the distinctions that have arisen in the course of this debate,
such as the distinction between deterministic and stochastic trends, may have
been drawn too firmly. (For discussions of these issues, see King et al. 1991,
Nelson and Plosser 1982, Pagan 1997 and Perron 1988, 1989.) In practice,
the data cannot be relied upon to distinguish unequivocally between such
stylised models as the polynomial trend and the unit-root stochastic trend,
when both are buried in noise. (The means of discriminating between the
two models have been discussed recently by Andreou and Spanos 2003 and
by Marriott, Naylor and Tremayne 2003.)

It may also be true that our own epigram concerning the determinants
of the economic cycle, which is based on a mechanical analogy, is drawn too
simply and that the underlying realities are far more complex than we shall
be proposing for the sake of argument. Nevertheless, our model does take us
into realms that have not been explored fully by economists.
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2 A Schematic Model of the Economic Cycle

2.1 The structual time-series model

In proposing simple macroeconomic models, we are liable to assume that
the relative proportions of the economic aggregates are maintained, approxi-
mately, despite variations in the levels. Examples are provided by the ratios
of consumption and investment to gross national product (GNP), of which
the underlying constancy is frequently postulated. It is reasonable to assume
that, making allowance for their stochastic nature, the relative amplitude of
the economic fluctuations is also maintained throughout the period spanned
by the data.

A schematic model of a macroeconomic index might, therefore, set

Y (t) = Ξ(t)B(t) with B(t) = 1 +
∑
j

σj cos(ωjt + θj), (1)

where Y (t) stands for an aggregate economic index, such as GNP, and where
Ξ(t) is its underlying trend. Modulating this trend is the factor B(t), which
comprises a sum of sinusoids. The jth sinusoid has an amplitude of σj, a
phase angle of θj radians and a period of τj = 2π/ωj, where ωj is an angular
velocity, or frequency, measured in radians per period.

For statistical purposes, we might amend this model by replacing B(t) by
the factor 1 + β(t), where β(t) is generated by a linear stochastic process of
an autoregressive (AR) or autoregressive moving-average (ARMA) variety.
Over a finite period, the output of such a process can also be expressed as a
sum of sinusoids, the parameters of which are assumed to have been drawn
from statistical distributions.

However, there are some problems with this formulation. First, as we
have defined it, there is no limit on the range of the stochastic process β(t),
whereas it is necessary, at least, that its negative deviations should be limited
in order to prevent Y (t) from becoming negative. Secondly, it is likely that
we should wish to include an additional stochastic factor that is unrelated to
the cycles.

The first difficulty is answered by setting

B(t) = eβ(t) =

(
1 + β(t) +

{β(t)}2

2!
+ · · ·

)
, (2)

where β(t) follows a linear stochastic process of variance σ2. Then, Ξ(t)B(t)
can be multiplied by the additional stochastic factor E(t), bounded in the
same manner as B(t), and the amended model becomes

Y (t) = Ξ(t)B(t)E(t) or y(t) = ξ(t) + β(t) + ε(t), (3)
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where y(t) = ln Y (t), ξ(t) = ln Ξ(t), β(t) = ln B(t) and ε(t) = ln E(t) are
the logarithms of the factors. The equation in logarithms corresponds to a
so-called structural time series model or unobserved components model of
the sort that has been treated extensively by Harvey (1989).

It transpires that the economic cycle can be represented, within the loga-
rithmic data, by a second-order autoregressive AR(2) process. The equation
of an AR(2) process can be compared with a second-order differential equa-
tion, which is associated with numerous physical processes that provide good
analogies for the cycle. Accessible accounts of linear differential equations
and of their application to physical systems have been provided by Gabel
and Roberts (1987), Mayne (1984) and Thompson (1983).

2.2 Differential and difference equations

Consider a damped harmonic oscillator driven by a sinusoidal forcing function
with a frequency of ωf . A spring-mass system with viscous damping is an
example. The equation of motion is

m
d2y(t)

dt2
+ c

dy(t)

dt
+ hy(t) = φ cos(ωf t), (4)

where m is the oscillating mass, c is the coefficient of viscous damping, and
h is the return force per unit of displacement, which can be described as
the stiffness of the spring. (In the terminology of economics, h is described
as the strength of the error-correction mechanism.) All of these coefficients
are positive. The variable y(t) is the displacement of the system about its
stationary point. The solution of this differential equation is

y(t) = A cos(ωf t − θ), (5)

where

A2 =
φ2

(h − mω2
f )

2 + (cωf )2
and tan θ =

cωf

h − mω2
f

(6)

are the expressions that provide the amplitude A and the phase displacement
θ. In giving these expressions an interpretation, we may observe that the

natural frequency of an undamped system is ωn =
√

h/m. This gives h =

mω2
n. Putting the latter into the expression for A2 shows that the amplitude

gain is greatest when the driving frequency ωf coincides with the natural
frequency ωn.

The system dissipates energy at an average rate that is equal to the input
of power from the driving force. It also stores a quantity of energy. At the
maximum amplitude, this consists of potential energy, stored in the form of
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the strain energy of the spring, whereas, at the point of maximum velocity,
where the spring is unstretched, it consists of kinetic energy, stored in the
mass by virtue of its velocity.

A measure that combines both the damping and the stiffness of the system
is provided by its loss ratio, which is defined as the energy W dissipated per
radian, averaged over the cycle, divided by the peak potential energy U of
the system. For a second-order system, there is

W =
cωfA

2

2
and U =

hA2

2
. (7)

Therefore, the loss ratio is

W

U
=

c

h
ωf = Λωf . (8)

The loss coefficient Λ = c/h is a characteristic of the system that is
independent of the frequency ωf at which it is driven. It can be expressed in
terms of the solution of the following auxiliary equation:

0 = ms2 + cs + h = m(s − κ)(s − κ∗) (9)

= m{s2 − (κ + κ∗)s + κκ∗} = m{s2 − 2γ + (γ2 + ω2)},

wherein κ = γ+ iω and κ∗ = γ− iω are conjugate complex roots. We observe
that c = −2γm and that h = m(γ2 + ω2). Therefore,

Λ =
−2γ

γ2 + ω2
. (10)

It is necessary to express the coefficients γ and ω in terms of the pa-
rameters of the second-order difference equation that will be fitted to the
data. This may be achieved by comparing the solution of the homogeneous
differential equation, derived from (4) by setting the driving force to zero,
via φ = 0, with the solution of the corresponding difference equation. The
solutions must agree at the points in discrete time over which the difference
equation is defined.

The solution of this differential equation is

y(t) = σeγt cos(ωt − θ), (11)

where σ relates to the initial amplitude at time t = 0, ω is the resonant
frequency of the system, which is the frequency of the oscillations of the
system when the driving force is removed, and γ = −c/2m is the negative
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exponential rate at which, in such circumstances, the system converges to its
point of rest.

The homogeneous second-order difference equation takes the form of

0 = (α0 + α1L + α2L
2)y(t) (12)

= α0{1 − 2ρ cos(ω)L + ρ2L2}y(t),

where L denotes the lag operator such that Ly(t) = y(t − 1), and where
ρ ∈ (0, 1) is the damping factor. The auxiliary equation is

0 = α0z
2 + α1z + α2 = α0(z − μ)(z − μ∗) (13)

= α0{z2 − (μ + μ∗)z + μμ∗} = α0{z2 − 2ρ cos(ω)z + ρ2},

wherein μ = β + iδ and μ∗ = β − iδ are conjugate complex roots such that
ρ2 = β2 + δ2 and ω = tan−1(δ/β). Then, the solution of the homogeneous
equation can be denoted by

y(t) = σρt cos(ωt − θ). (14)

The comparison of (11) and (14) indicates that they agree when

eγt = ρt, which is when γ = ln ρ. (15)

Therefore, if we know ρ from the difference equation, we know c/m = −2γ.
Also, the parameter ω is common to both equations so, knowing this, we can
proceed to find h/m = γ2 + ω2. Then, the loss parameter Λ = c/h can be
calculated.

The resonant frequency of an oscillating system, free from a driving force,
is related to the coefficients c and h via the following equation:

ω2 =
4mh − c2

4m2
= ω2

n − γ2, (16)

Here, ωn =
√

h/m is the natural frequency of the undamped system, whereas

γ = −c/2m. Increasing the coefficient of friction c has the effect of reducing
ω, thereby increasing the length of the cycles. Increasing the stiffness pa-
rameter h has the opposite effect of reducing the length of the cycles. It will
be interesting to discover which of these will be the dominant relationship in
the comparison of the national economies.

In comparing the economies, we shall deal with the relative amplitude of
the cycles. Therefore, the absolute size of the economy is not a factor in the
analysis. For the differential equation, this is tantamount to setting m = 1,
whereas, for the difference equation, the corresponding normalisation is to
set α0 = 1.
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2.3 The process that drives the cycles

The forcing function that drives the cycles is unobservable, and we can only
make the assumption that it is a species of white-noise process, which has
uniform power across a specified range of frequencies. Its strength will be
reflected in an estimate of its variance.

The exogenous disturbances that cross the boundary of the system that
represents the national economy might not follow a white-noise process. Nev-
ertheless, we can postulate that they have their origin in a primum mobile
that is white noise. We can also postulate that the transfer function that
links this primum mobile to the boundary-crossing disturbances is linear and
time invariant. In that case, it can be regarded as a property of the economy,
which will be subsumed in the autoregressive process with which we intend
to characterise the leading index of the economy.

For the successful analysis of a linear dynamic system, it is necessary that
its natural frequency ωn should not exceed the so-called Nyquist frequency
of π radians per period of observation, which corresponds to the highest
frequency that is detectable in regularly sampled data. However, the anal-
ysis would remain viable even if the frequencies within the forcing function
were to exceed this level. In that case, the data generated by a 2nd-order
stochastic differential equation should be represented in discrete time by an
ARMA(2, 1) model, in which the moving-average parameter is function of
the autoregressive parameters.

This result has been established in two separate but related contexts.
Telser (1967) has shown that, if the discrete data generated by an AR(p)
process are subsampled, or ‘skip sampled’ in his terminology, then it is ap-
propriate to describe them by an ARMA(p, p − 1) model. Here, we may
imagine that the original AR(p) process stands for a valid discrete-time rep-
resentation of a stochastic differential equation in which the forcing function
is a white-noise process bounded by the Nyquist frequency associated with
the original sampling rate.

The result has also emerged from the analysis of stochastic differential
equations powered by a stream of infinitesimal impulses that constitute the
increments of a Wiener process. Thus, by following the arguments of Bartlett
(1946), Phadke and Wu (1974) have demonstrated that a stochastic differ-
ential equation of order p, powered in this manner, can be represented in
discrete time by an ARMA(p, p − 1) process. Pandit and Wu (1975) have
considered, in the same manner, the discrete representation of a second-order
differential equation.

Our empirical analysis will suggest that the stochastic process driving the
business cycles is bounded by a frequency that is considerably less than the
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Nyquist frequency associated with the quarterly data at our disposal. The
business cycle is isolated by detrending the data and by purging it of its
seasonal fluctuations. The frequencies of the sinusoidal elements within the
resulting sequence are bounded by an upper limit of π/8 radians per sample
period.

The concept of a band-limited white-noise sequence is common in engi-
neering studies; and there are several commercially available computer pro-
grams for generating such sequences. Nevertheless, it appears that no clear
concept is available of a continuous-time band-limited white-noise process,
such as might be used to represent the forcing function of the model of the
business cycle.

Such a process could be constituted from a stream of sinc function wave
packets distributed along the time axis at intervals of 8 sample periods:

{ψ(t − 8k); k = 0,±1,±2, . . .} with ψ(t) =
sin(πt/8)

πt
. (17)

These wave packets provide an orthonormal basis for all continuous functions
bounded in frequency by π/8. To obtain the band-limited white noise, the
wave packets are multiplied by a corresponding sequence of independently
and identically distributed random variables and added together.

An ordinary white-noise sequence would be obtained by sampling the
resulting function at the rate of once in every 8 sample periods. An or-
dinary AR(2) process with a spectral density function extending over the
full frequency interval [−π, π] would be obtained, likewise, by sampling the
band-limited AR(2) process at the rate of one in eight.

3 The Trend Component

3.1 Polynomial detrending

We shall now explore two of the alternative methods that are available for
extracting the trend from the data. What remains will contain the economic
cycle as well some other motions that will need to be removed and discarded.

The first and the simplest method of extracting the trend is to fit a
polynomial function of time. A linear trend fitted to the logarithms of the
data corresponds to a constant exponential growth path, which some authors
would describe as a deterministic trend. We do not wish to invoke the concept
of a true underlying growth path. Nevertheless, such a trend does provide a
firm benchmark against which the cyclical activities of the economy can be
measured.

8



We begin by considering the matrix version of the difference operator
and its inverse, which is the cumulation operator. These will be useful in
portraying both the method of polynomial regression and the filtering method
of Hodrick and Prescott (1980, 1997). Indeed, our purpose is to depict the
linear trend as a limiting case of the Hodrick–Prescott trend.

Consider, therefore, the identity matrix of order T defined by

IT = [e0, e1, . . . , eT−1], (18)

where ej represents a column vector that contains a single unit preceded by
j zeros and followed by T − j − 1 zeros. Then, the finite-sample lag operator
is the matrix

LT = [e1, . . . , eT−1, 0], (19)

which has units on the first subdiagonal and zeros elsewhere. This is obtained
from the identity matrix by deleting the leading column and by appending a
column of zeros to the end of the array.

The matrix that takes the d-th difference of a vector of order T is given
by

∇d
T = (I − LT )d. (20)

The matrix may be partitioned such that ∇d
T = [Q∗, Q]′, where Q′

∗ has d
rows. The inverse matrix is partitioned conformably to give ∇−d

T = [S∗, S].
We may observe that

[
S∗ S

] [
Q′

∗
Q′

]
= S∗Q

′
∗ + SQ′ = IT , (21)

and that [
Q′

∗
Q′

] [
S∗ S

]
=

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Id 0
0 IT−d

]
. (22)

The matrix ∇−d
T = [S∗, S] is a lower-triangular Toeplitz matrix, which is

characterised completely by its leading column. The elements of that column
are the ordinates of a polynomial of degree d−1 of which the argument is the
row index t = 0, 1, . . . , T − 1. Moreover, the leading d columns of the matrix
∇−d

T , which constitute the submatrix S∗, provide a basis for all polynomials
of degree d − 1 that are defined on the integer points t = 0, 1, . . . , T − 1.

The ordinates of a polynomial of degree d − 1 defined over the integers
t = 0, 1, . . . , T − 1 are given by

p = S∗r∗, where r∗ = Q′
∗p. (23)
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Since the polynomial is fully determined by the elements of the starting-value
vector r∗, fitting it to the data in the vector y = [y0, . . . , yT−1]

′ according to
the least-squares criterion is a matter of minimising

(y − p)′(y − p) = (y − S∗r∗)
′(y − S∗r∗) (24)

with respect to r∗. The resulting values are

r∗ = (S ′
∗S∗)

−1S ′
∗y and p = S∗(S

′
∗S∗)

−1S ′
∗y. (25)

For an alternative expression, we may use the identity

S∗(S
′
∗S∗)

−1S ′
∗ = I − Q(Q′Q)−1Q′, (26)

which follows from the fact that Q and S∗ are complementary matrices such
that Q′S∗ = 0 and Rank[Q, S∗] = T .

Using (26) in (25) gives the following expression for the vector of polyno-
mial ordinates:

p = y − Q(Q′Q)−1Q′y. (27)

3.2 The spectral structure of the data

Figure 1 shows the quarterly sequence of the logarithms of aggregate income
in the U.K. for the period 1964 to 2003, through which a quadratic trend has
been interpolated. The quadratic trend is virtually a linear trend. Figure
2 shows the periodogram of the residuals, which are the deviations of the
sequence from this trend.

The spectral signature of the low-frequency cycles that surround the trend
is clearly represented in the periodogram. It occupies a range of frequencies
extending from zero to π/8 radians. Centred on the frequencies of π/2 and
π are the spikes that are the spectral signature of the seasonal variations
that affect the income sequence. The remainder of the periodogram may be
described as dead space punctuated by small elements of noise.

The periodogram of the original trended data is of little use in discerning
the low-frequency structure. The latter is concealed within the slew of spec-
tral power that is attributable to the disjunctions that occur in the periodic
extension of the data where the end of one replication of the sample is joined
to the start of another.

It is also the case that none of the low-frequency spectral structure will
be evident in the periodograms of either the first or the second differences
of the data. The gain factor of the second-differencing operator at π/10, for
example, is 0.00958, which means that the ordinates of the periodogram are
so severely attenuated by the differencing operation as to become invisible.
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It is evident from equation (27) that the residuals from fitting a polyno-
mial of degree d− 1, which are found in the vector y− p, contain exactly the
same information as the differences of order d within the vector Q′y. Nev-
ertheless, they serve to reveal the spectral structure over the entire range of
frequencies. It should be emphasised that the use of polynomial residuals as
a means of revealing the spectral structure does not imply any decision to
model the trend via a polynomial function.

3.3 The Hodrick–Prescott filter

The second method of trend extraction entails the notion of a stochastic
trend. This represents the cumulative effects of stochastic elements that
impart an upward drift to the economy. The usual statistical model of such a
trend is a first-order random walk with drift or a second-order, or integrated,
random walk that happens to be generating a rising path. A common device
for extracting such trends is the Hodrick–Prescott (1980, 1997) filter.

The Hodrick–Prescott (H–P) filter is derived in reference to an equation

y(t) = ξ(t) + η(t), (28)

in which the data sequence y(t) is expressed as the sum of a trend component
ξ(t), which follows a second-order random walk, and a residual component
η(t), which is white noise. (We shall use the corresponding roman letters
x(t) and h(t) to denote the estimates of ξ(t) and η(t), respectively.) The
random walk is described by the equation (1 − L)2ξ(t) = ζ(t), where ζ(t) is
a white-noise process that is independent of η(t). Therefore, the differenced
data sequence

(1 − L)2y(t) = (1 − L)2ξ(t) + (1 − L)2η(t) (29)

= ζ(t) + κ(t)

constitutes a stationary process; and the autocovariance generating functions
of the differenced components are

γζ(z) = σ2
ζ and γκ(z) = σ2

η(1 − z)2(1 − z−1)2. (30)

According to the Wiener–Kolmogorov principle, the detrending highpass
filter is derived by setting z = L in the following ratio of autocovariance
generating functions:

ψ(z) =
γκ(z)

γκ(z) + γζ(z)
=

σ2
η(1 − z)2(1 − z−1)2

σ2
η(1 − z)2(1 − z−1)2 + σ2

ζ

. (31)
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Figure 1: The quarterly sequence of the logarithms of income in the U.K.
for the years 1964 to 2003, together with a quadratic trend interpolated by
least-squares regression.
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Figure 2: The periodogram of the residuals obtained by fitting a quadratic
trend through the logarithmic sequence of U.K. income. A band, with a
lower bound of π/16 radians and an upper bound of π/3 radians, is masking
the periodogram.
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Figure 3: The effect of applying the Hodrick–Prescott filter to a random
walk. The smoothing parameter is λ = 100 and the variance of the white-
noise process driving the random walk is σ2

ε = 0.25
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The residual component is estimated by h(t) = ψ(L)y(t). The complemen-
tary lowpass filter, which estimates the trend, is derived by setting z = L
within the function 1 − ψ(z).

Setting z = e−iω in ψ(z) gives the frequency response of the filter which,
in this instance, is a real-valued function on account of the symmetry of the
filter in respect of z and z−1. The squared modulus of the frequency response
function, which, in this case, is just the square, constitutes its squared gain.
This is plotted in Figure 3, for a particular value of λ = σ2

η/σ
2
ζ , as the curve

that is labelled B. Also plotted on the diagram is the pseudo spectrum of a
first-order random walk labelled A.

The curve labelled C in the diagram, is the spectral density function of
a detrended series derived from the random walk by applying a filter with
a smoothing parameter of λ = 100. In place of this single curve, one can
imagine a family of curves generated by varying the value of λ. In that case,
one would discern that the functions associated with lower values of λ have
peaks of lesser height located at higher frequency values. The inference is
that the lower the value of the smoothing parameter λ the shorter are the
durations of the cycles in the detrended series and the less is their amplitude.

3.4 The finite-sample filter

In practice, the data are available as a finite sequence, which constitutes a
vector y = ξ + η, where ξ is the trend and η is the noise. Therefore, filters
must be derived that operate on finite sequences. Recall that Q′, defined
by (20)–(22), denotes the matrix version of the second-difference operator.
Then

Q′y = Q′ξ + Q′η (32)

= ζ + Q′η,

where

E(ζ) = 0, D(ζ) = σ2
ζIT−2, (33)

E(η) = 0, D(η) = σ2
ηIT ,

and C(ζ, Q′η) = 0.

The independence of ξ and η implies that D(Q′y) = σ2
ηQ

′Q + σ2
ζI.

On the assumption that the components have a normal distribution, there
is the following joint density function:

N(ζ, η) = (2π)1−T σ2−T
ζ σ−T

η exp{−1

2
(σ−2

ζ ξ′QQ′ξ + σ−2
η η′η)}. (34)
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The maximum-likelihood estimate x of the trend component ξ is found
by minimising the following criterion function, which is derived from the
quadratic exponent of the density function by setting η = y − ξ:

S(ξ) = σ−2
ζ ξ′QQ′ξ + σ−2

η (y − ξ)′(y − ξ). (35)

The minimising value of ξ is

x = σ−2
η (σ−2

ζ QQ′ + σ−2
η I)−1y. (36)

According to the matrix inversion lemma, there is

(σ−2
ζ QQ′ + σ−2

η I)−1 = σ2
η

{
I − Q(Q′Q + [σ2

ζ/σ
2
η]I)−1Q′

}
. (37)

Using this in (36) and writing σ2
ζ/σ

2
η = λ−1, we get

x = y − Q(Q′Q + λ−1I)−1Q′y. (38)

This is the appropriate finite-sample version of the H–P trend estimation
filter.

We should make two observations in respect of this equation. First, if y
were to follow a linear trend, then the equation would deliver x = y since,
in that case, Q′y = 0. Secondly, as λ → ∞, the equation will tend to that
of the least-squares estimator of a linear trend, which is represented by (27).
We note that λ is conventionally described as the smoothing parameter. It
is also a noise/signal variance ratio. When the noise is strong relative to
the signal, the Hodrick–Prescott filter is also liable to deliver a trend that is
approximately linear within wide neighbourhoods.

The H–P filter has been used as a lowpass smoothing filter in numerous
macroeconomic investigations (see, for example, Hartley et. al. 1998) where it
has been customary to set the smoothing parameter to certain conventional
values. Thus, for example, the econometric computer package Eviews 4.0
(2000) imposes the following default values:

λ =

⎧⎪⎪⎨
⎪⎪⎩

100 for annual data,

1, 600 for quarterly data,

14, 400 for monthly data.

(39)

An alternative to specifying the smoothing parameter λ is to specify a
frequency value ωc such that ψ(ωc) = 0.5. This frequency corresponds to the
midpoint in the transition of the gain of the lowpass H–P filter from the value
unity, which is attained when ω = 0 to the value of zero, which is attained
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when ω = π. The closer is ωc to 0, the higher is the value of λ. One might be
tempted to describe ωc as the nominal cut-off point of the filter, but, in view
of the gradual transition of the gain of the H–P filter from unity to zero, this
could be regarded as a misnomer.

The correspondence between ωc and λ is as follows:

λ = 1/4{1 − cos(ωc)}2 and ωc = cos−1(1 − 1/
√

4λ). (40)

Instead of specifying ωc directly, it may be easier to specify the duration
of the cycles of this frequency. For a duration of τ years, the frequency is
ωc = 2π/(τs), where s is the number of observations per year.

It has become customary to define the business cycle as a composite of
sinusoidal motions of durations not exceeding 8 years and not less than one-
and-a-half years. (For examples, see Baxter and King 1999 and Christiano
and Fitzgerald 2003.) When the nominal value of the limiting duration is set
at 8 years, the frequency response of the lowpass H–P filter has considerable
leakage across the boundary, with the effect that large proportions of some of
the business-cycle components are removed from the residue. Therefore, in
order to achieve a good representation of the business cycle, the smoothing
parameter of the H–P filter should greatly exceed the value that corresponds
to a duration of 8 years.

4 The Issue of Spurious Cycles

4.1 The gain of the Hodrick–Prescott filter

The H–P filter has been subject to an oft-repeated aspersion that it is liable
to induce spurious cycles in the detrended data. The argument has been
made, for example, by Cogley and Nason (1995) and it has been supported
by Harvey and Jaeger (1993), amongst others. Contrary opinions have been
offered by Pollock (1997, 2000) by Pedersen (2001) and by Valle e Azevedo,
(2002). There is a semantic issue at the root of these differences of opinion,
but there is also evidence of a widespread misunderstanding.

The highpass H–P filter ψ(L) has a frequency response function for which
the gain never exceeds unity. (An example of the squared gain of the filter
is given by the curve labelled B in Figure 3.) This means that its effect is
either to preserve or to attenuate the sinusoidal elements of which a data
sequence is composed. The filter never amplifies any sinusoidal elements and
it never introduces any. If a sinusoid is present in the processed data, then
it must also be present to no lesser extent in the original data. Therefore,
such cyclical components cannot be induced or accentuated by the filter.
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The proposal of Cogley and Nason that the H–P filter can generate busi-
ness cycle dynamics is based upon an analysis of the frequency response of a
filter that results from conflating the H–P filter with the unit-root summa-
tion operator belonging to the model of a random walk. The random walk
y(t) is modelled by the equation (1 − L)y(t) = ε(t), where ε(t) = {εt; t =
0,±1,±2, . . .} stands for a white-noise process. The filtered sequence is

h(t) = y(t) − x(t) = {ψ(L)/(1 − L)}ε(t). (41)

Cogley and Nason attribute to the H–P filter the gain of the filter ψ(L)/(1−
L), instead of the gain of ψ(L), which is the true gain of the H–P filter.

An example of the squared gain of the filter ψ(L)/(1 − L) is given by
the curve labelled C in Figure 3. This curve also represents the spectrum
of the filtered sequence h(t). It certainly manifests a strong spectral peak
which indicates the presence of cyclical motions within h(t). However, such
motions are attenuated versions of those that are present in the data process
y(t); and they are not induced by the filter.

Notwithstanding the nature of its Fourier decomposition, which comprises
sinusoidal motions at all frequencies, there is some justification for the as-
sertion that a true random walk contains no genuine cycles. The process is
the product of an accumulation of statistically independent increments; and
it has no inherent central tendency.

On the other hand, genuine cyclical motions are commonly regarded as
the products of centralising forces that increase in proportion to the distance
of an object from the point to which it is tethered. It is on this basis that
the cycles that are generated by filtering a random walk might be regarded
as illusory artefacts.

Economic trends are often modelled as random-walk processes. Never-
theless, such models need not be interpreted in a literal manner. Whereas a
random walk evolves in an unbridled manner, economic trends are subject to
evident constraints. They are driven by the buoyant forces of entrepreneurial
endeavour and consumer aspirations, and they are constrained by the more-
or-less pliable limits of productive capacity and resource availability. In a
thriving economy, they alternately press against the constraints and rebound
from them in a manner that is undeniably cyclical.

The econometric practice of modelling aggregate economic activity as a
cumulation of stochastic increments is in marked contrast to the emphasis
that has been given to centripetal mechanisms, such as the error-correction
mechanism that is at the heart of co-integration analysis.
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4.2 Finite and infinite random walks

There may be doubts about the applicability to economic circumstances of
an analysis, such as the one that underlies Figure 3, that postulates a random
walk defined over a doubly infinite sequence of integers. Such a process is
unbounded in mean, and it does not have a finite variance. It is expected, at
any point in time, to be infinitely remote from the origin. By contrast, the
random walks that are postulated in applied econometrics are defined over
a finite interval, and they have starting values at a finite distance from the
origin.

A measure of the difficulties in interpreting an infinite random walk is
provided by the limiting case of the infinite-sample Hodrick–Prescott filter,
where λ → ∞. This is when the finite-sample filter delivers a linear trend.
In the limit, the corresponding infinite-sample filter has a frequency response
function with a unit gain everywhere except at zero frequency. Therefore, it
is virtually an allpass filter; which suggests that the character of an infinite
random walk should be unaffected by a process of linear detrending.

This is in contrast to what we expect from the linear detrending of a finite
random-walk sequence. Fitting a straight line by least-squares regression to a
finite segment of a random walk will result in a residual sequence of mean zero
that will inevitably show a reversion to the mean. From a global perspective,
which views the sample as whole, this central tendency will not be affected
by a growing sample duration. There will be the same number of crossings
of the trend line on average, regardless of the length of the sample; and the
number of crossings will be few.

On the other hand, if we look myopically at the sampled sequence, then
the effect of increasing the sample size will be to reduce the rate of mean
reversion, as measured from one point to the next. Therefore, eventually,
the linearly detrended random walk will become a random walk itself. Thus,
we are able to reconcile the behaviour of the limiting case of the infinite-
sample H–P filter with the behaviour of the finite-sample filter.

We may consider the random walk to be the product of a regular process
of sampling applied to a continuous Wiener process. The Wiener process
is self-similar in the sense that short segments, viewed in detail, have the
same appearance as a longer segments, viewed more distantly. Therefore,
allowing for a change of scale, the effect of increasing the size of the sample
by allowing a growing number of points to accumulate with the passage of
time is no different from the effect of increasing their number by increasing
the rate at which a finite segment of the process is sampled. Indeed, it may
be easier to see these things in the small—such as when a Wiener process is
defined on a unit interval—than in the large.
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The effect of fitting a linear trend by least-squares to a finite segment of
a random walk has been analysed by Chan, Hayya and Ord (1971). They
have found a formula for the autocovariances of the residuals. They have also
provided a formula for the expected value of the estimated autocovariances of
the residuals. This has been corrected by Nelson and Kang (1981), who have
extended the analysis. The latter have revealed that the spectral density
function, derived from the expected values of the sample autocovariances,
has a peak at a frequency that corresponds to a cycle of a duration that is
0.83 times the number of sample periods.

Nelson and Kang have emphasised the risk of finding spurious dynamics in
the residuals from the inappropriate detrending of a random walk. A myopic
analysis that looks only at the values of the parameters of an estimated
autoregressive model is clearly at risk of drawing false conclusions. However,
an analysis that measures the rate of mean reversion relative to the length
of the sample can avoid the risk.

The frequencies of the fluctuations around their interpolated linear trends
of the sequences that we shall analyse are greater than the frequency that is
characteristic of a random walk. Therefore, the sequences appear to manifest
a genuine cyclicality. Figure 4 provides such evidence.

5 Alternative Methods of

Business-Cycle Estimation

We shall now consider briefly some of the other methods that have been used
by economists to extract the business cycle from the data. The business cycle
has been defined as the component of the data that is composed of cyclical
elements of durations no less of one-and-a-half years and no greater than
eight years.

This definition, which has been adopted by Baxter and King (1999), for
example, is derived from a definition given by Burns and Mitchell (1946) in
their early and influential study of the business cycle in the U.S. In fact, the
duration of eight years is that of the longest cycle that they observed; and it
does not seem to have been an immutable part of their definition.

The modern definition of Baxter and King is reflected in the band that has
been imposed on the periodogram of Figure 2 which runs from the frequency
of π/16 radians per period up to π/3 radians per period. There is nothing
in the spectral structure of macroeconomic cycles to suggest that this is
anything but an arbitrary definition. Indeed, Figure 2 and others like it,
indicate that much of the power of the low-frequency economic cycles lies
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outside the band.
Problems arise in the attempt to isolate the components that correspond

to the definition. Baxter and King have proposed to use a moving-average
filter that is obtained from the Fourier transform of the frequency response
of an ideal bandpass filter. This response is represented by a rectangle of
unit height based on the frequency interval [π/16, π/3], which constitutes its
pass band. The complementary stop band, where the gain of the filter is
zero, comprises the remainder of the frequency range.

The Fourier transform of the frequency response of the ideal bandpass
filter generates a doubly-infinite sequence of coefficients that needs to be
truncated to produce a practical moving-average filter. However, the trun-
cated filter is affected by a substantial spectral leakage, whereby a filtered
sequence is liable to contain elements whose frequencies lie well outside the
designated pass band.

The leakage can be mitigated, to some extent, by applying a cosine
window to the filter coefficients, such as the Blackman (1965) window or
the Hamming (1989) window. (See, for example, Pollock 1999.) However,
whereas one effect of windowing the coefficients is to limit the range of the
frequencies of the elements that enter the filtered sequence, another effect is
to replace the sharp cut-offs at the limits of the pass band by gentle transi-
tions that extend well into the stop band.

A gradual transition at the lower end of the designated pass band is
bound to admit to the filtered sequence some powerful low-frequency ele-
ments. Therefore, the implementation of the band pass filter via a short-span
moving average will lead to a doubtful realisation of the definition.

A more precise realisation of the bandpass definition of the business cycle
can be obtained via a Fourier-based method. This entails extracting the
Fourier ordinates that lie within the designated frequency band from a data
sequence that has been reduced to stationarity by first or second differencing.
From these ordinates, a sequence can be synthesised which can be re-inflated
by a process of summation that reverses the differencing

The summation process requires some initial conditions; and it is reason-
able to select the values that minimise the sum of squares of the deviations
from zero of elements of the re-inflated sequence. The method had been pur-
sued by Pollock (1997, 2000, 2001a, 2001b) in a series of papers devoted to
the filtering of nonstationary sequences.

We are discouraged from adopting the business cycle definition of Baxter
and King, both on account of its arbitrary nature and in view of the problems
in implementing it via a bandpass filter. Instead, we are inclined to adopt a
broader definition of the economic cycle that includes both the business cycle,
however it is defined, and those cycles of longer duration that are sometimes
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Figure 4: The logarithms of the aggregate incomes of six OECD countries
for the period 1980Q1–2003Q4 with interpolated quadratic trends.
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described as secular cycles.
In the empirical analysis of the following section, we shall detrend the

logarithmic data by interpolating a quadratic function, and we shall also
use the H–P filter. A quadratic function is used instead of a linear function
in order to accommodate cases where there is some indication of a gradual
increase or decrease, over the sample period, in the rate of the underlying
growth of GDP; but we have found that, in most cases, the quadratic function
is virtually a linear function. We shall pursue the method of estimating the
trend via the H–P filter, mainly for comparative purposes; and we shall be
interested to see the effect of varying the smoothing parameter.

It is an unusual circumstance when the data are amenable to a linear or
a quadratic detrending, as is the case for each of the six OECD countries
throughout our sample period. Figure 4 shows the evidence of this. In
different eras and over longer periods, we would expect to resort, instead,
to a flexible method of trend estimation that employs the H–P filter and
that accommodates structural breaks via local variations in the smoothing
parameter.

Some of the data sequences in Figure 4 contain seasonal fluctuations,
whereas others have been deseasonalised. These differences are of no account
in the analysis of business cycles, which comprise components that are of
much lower frequencies than the seasonal fluctuations. The later will be
removed automatically in the process of anti-alias filtering, which has the
effect of deseasonalising the data.

6 The Empirical Results

6.1 The method of estimation

The results from fitting an AR(2) to the data of each of the six OECD
countries, for the period 1980Q1–2003Q4, are displayed in Table 1. These
estimates are the outcome of a multistep procedure.

For a start, a quadratic trend—which serves as a benchmark against
which the cyclical activity of the national economies can be measured—has
been fitted to the logarithms of the data. The residuals from the extracted
trend, which are liable to be examined for their low-frequency content, con-
tain seasonal and irregular components at higher frequencies, which are not
directly attributable to the business cycle.

To remove these components, the data from each country is subjected
to a process of lowpass filtering and subsampling, which serves to discard
all except the information that lies in the frequency interval [0, π/4] in the
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spectrum of the original data. In effect, we apply to the data a filter that
has a pass band over the interval [0, π/8], a transition band over the interval
[π/8, 3π/16] and a stop band over the remainder of the frequency range,
which is limited by the maximum Nyquist frequency of π.

The filter is implemented by weighting the Fourier coefficients of the data.
The weights of the passband are unity. The weights in the transition band,
which have a cosine decrement, are governed by the function [1 + cos(x)]/2,
where x = 0 at the end of the passband and x = π at the beginning of the
stop band. The weights of the stop band are all zeros.

The filter is also effective in overcoming any aliasing that could arise
from the process of subsampling that selects every fourth data point. In the
absence of an anti-aliasing filter, subsampling by a factor of 4 would serve
to map the information content in the upper three quarters of the frequency
range into its lowest quarter, wherafter the latter would be expanded by a
factor of 4 to occupy the interval [0, π]. With proper anti aliasing, the effect of
the subsampling is to map the unimpaired contents of the original data in the
frequency interval [0, π/4] onto the wider interval [0, π], which corresponds
to the full range of frequencies within any sampled data sequence.

Pagan (1997) has remarked that AR(2) models that are fitted to de-
trended quarterly logarithmic output data typically possess real roots, whereas
they might be expected to possess complex roots reflecting the dynamics of
the business cycles. Within the context of quarterly data, the business cycle
is a low frequency phenomenon; and it is not surprising that the AR roots
do not reflect its cyclicality.

Within the context of annual data, the business cycle has a considerably
higher frequency; and an AR(2) model fitted to such data would almost
certainly capture its cyclicality. Compared with quarterly data, annual data
is liable to suffer from the effects of aliasing and phase distortion. By applying
the processes of anti aliasing and subsampling to the quarterly data, we are
ensuring that the information that is extracted is appropriate to the purpose
of estimating the business cycle.

The processes of filtering and subsampling the data are illustrated in
Figures 5, 6 and 7 which relate to the U.K. over an extended data period of 40
years running form 1964Q1 to 2003Q4. Figure 6 displays the periodogram of
the detrended data over the interval [0, π/4], and it corresponds to a segment
of Figure 2. The figure also superimposes the frequency response of the
lowpass anti-aliasing filter with a pass band over the range [0, π/8] and a
transition band over [π/8, 3π/16]. (The transition band is the highlighted
strip in the diagram.) Figure 7 is the periodogram of the data that has been
processed by the lowpass filter and thereafter subsampled by a factor 4.

Figure 7 also displays the parametric spectrum of an AR(2) model that
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Figure 5: The residual sequence from fitting a quadratic trend to the income
data of Figure 1. The interpolated line, which represents the business cycle,
has been obtained from the Fourier ordinates that generate the periodogram
of Figure 7.
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Figure 6: A segment of Figure 2, which is the periodogram of the residuals
sequence of Figure 5 that comes from fitting a quadratic trend to the log-
arithmic data of Figure 1. The gain of the lowpass filter with a transition
over the interval [π/8, 3π/16] is superimposed on the diagram.
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Figure 7: The periodogram of the sub sampled anti aliased data with the
parametric spectrum of an estimated AR(2) model superimposed.

23



Table 1: The business-cycle parameters obtained via quadratic detrending

α1 α2 ρ ω σx σε b
FRANCE −1.5174 0.8910 0.9439 36.51 0.0176 0.0048 0.0204
SPAIN −1.5090 0.8624 0.9286 35.66 0.0235 0.0070 0.0272
U.K. −1.4528 0.8404 0.9167 37.59 0.0221 0.0074 0.0252

NORWAY −1.3622 0.7561 0.8696 38.44 0.0230 0.0095 0.0272
ITALY −1.2676 0.7320 0.8556 42.20 0.0141 0.0066 0.0252
U.S.A. −1.0909 0.6662 0.8162 48.07 0.0192 0.0109 0.0328

has been fitted to the processed data. The estimates have been derived by
maximising the likelihood function of Whittle (1951), which entails the as-
sumption that the data are the product of a circular process. (It is equivalent
to propose that the sample represents one cycle of a periodic function.)

To sustain this assumption, some attention has to be paid to the problem
of the disjunction that can occur at the point where the end of the sample
is joined to its beginning. Whereas the problem can be ignored if the data
sequence is a lengthy one, such as the extended U.K. sequence, it needs to be
addressed in the case of the shorter sequences from the six OECD countries.

We believe that an appropriate way of dealing with this matter is to ex-
tend the sample at both the ends by forecasting and backcasting the data. In
particular, our procedure uses the preliminary estimates of an AR(2) model
to lengthen the sample by 25 per cent. Then, the extrapolated sample is
subjected to a tapering operation based on a split cosine bell. The latter is
nothing but a cosine bell with an inserted stretch of units.

6.2 The dynamics of the economies

Our first concern is to assess the degree of damping to which each economy
has been subject over the sample period. This is revealed by the estimated
value of the damping factor ρ, which, together with the angular velocity
ω, is entailed in the expression for the homogeneous second-order difference
equation under (12) and in its analytic solution under (14).

A question that was posed at the end of section 2 was how the frequency
value ω, or equivalently the length of the cycle, that is implied by the esti-
mated AR(2) equation is related to the degree of damping. Table 1 shows
a high degree of inverse correlation between the rankings of the values of ρ
and ω, which is the angular velocity or frequency measured in degrees per
annum—the lower the damping, i.e. the closer ρ is to unity, the lower is ω
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Table 2: The structural business-cycle parameters

c h Λ σx/σε

FRANCE 0.1154 0.4093 0.2819 3.6458
SPAIN 0.1480 0.3929 0.3768 3.3571
U.K. 0.1739 0.4380 0.3970 2.9865

NORWAY 0.2796 0.4696 0.5954 2.4210
ITALY 0.3120 0.5668 0.5504 2.1364
U.S.A. 0.4062 0.7450 0.5452 1.7615

and the longer is the cycle.
Table 1 also indicates, via the values of σx, the relative amplitude of the

economic cycles for each of the six countries. This is measured as the standard
deviation from the interpolated trend line of the logarithmic income series.
The values of σε represent estimates of the magnitudes of the disturbances
that drive the cycles.

The final column of the Table 1 gives the values of b which is the slope
parameter of a linear trend interpolated through the logarithmic series by
least-squares regression. These values represent the average rates of growth
of the countries for the period in question.

The parameters ρ and ω provide a complete characterisation of the dy-
namic properties of a second-order system. However, it is also insightful to
characterise the system in terms of the fundamental structural parameters
c and h, which are, respectively, the coefficients of friction and of stiffness,
and in terms of the loss parameter Λ = c/h, which is their ratio. These are
displayed in Table 2, which also gives the ratio σx/σε. The relationship of
the two sets of parameters is via the following equations

(i) γ = ln(ρ), (ii) c = −2mγ and (iii) h = m(γ2 + ω2), (42)

wherein m = 1 in consequence of a normalisation. To make matters more
intelligible, we display, in Table 3, the rankings of the various measures.

The coincidence of the ranking of ρ with the inverse ranking of c follows
necessarily from their analytic relationship, which is indicated by (i) and (ii)
of (42). The coincidence of the ranking of ω and h has no such necessity,
since γ is also present in (iii). Given the coincidence of the rankings of ρ and
c and of ω and h, it follows that c and h display the same high degree of rank
correlation as do ρ and ω, albeit in the direct rather than the inverse sense.

There is also a perfect rank correlation between the damping factor ρ and
the variance ratio σx/σε. Both of these are readily expressed in terms of the
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Table 3: The rankings of the parameters of Tables 1 and 2 in descending
order of magnitude and in ascending order—via the numbers in parenthesis

ρ c ω, h Λ σx σε σx/σε b
FRANCE 1(6) 6(1) 5(2) 6(1) 5(2) 6(1) 1(6) 6(1)
SPAIN 2(5) 5(2) 6(1) 5(2) 1(6) 4(3) 2(5) 2(4)
U.K. 3(4) 4(3) 4(3) 4(3) 3(4) 3(4) 3(4) 4(2)

NORWAY 4(3) 3(4) 3(4) 1(6) 2(5) 2(5) 4(3) 2(4)
ITALY 5(2) 2(5) 2(5) 2(5) 6(1) 5(2) 5(2) 4(2)
U.S.A. 6(1) 1(6) 1(6) 3(4) 4(3) 1(6) 6(1) 1(6)

parameters of the difference equation. Whereas ρ2 = α2, there is

σ2
x

σ2
ε

=
(1 + α2)

(1 − α2)(1 + α2 + α1)(1 + α2 − α1)
. (43)

(See, for example, Pollock 1999 p. 533.) This variance ratio increases as
α2 = ρ2 increases towards unity. Also, within the range of variation of α1,
in which 1 + α2 + α1 > 0, variance ratio increases as α1 declines. In Table 1,
there is a perfect inverse rank correlation between α1 andα2. This gives rise
to the perfect rank correlation between ρ and σx/σε.

To understand the implications of these various relationships, one should
make reference to equation (16) which expresses ω in terms of the structural
coefficients c and h. The equation indicates that, within a given system with
a fixed stiffness parameter h, increasing the damping coefficient c will lead
to a lengthening of the duration of the cycle. On the other hand, for fixed c,
increasing h will shorten the duration of the cycle.

Since c and h are free to vary independently across the economies, there
should be no firm expectation concerning the nature of their relationship.
It transpires that h and c tend to vary together with a positive correlation,
which means that their variations have offsetting effects. However, for the
sample of 6 OECD countries, the effects of the variations in h heavily out-
weigh the offsetting effects of the variations in c.

When these effects are discerned through the autoregressive parameters ρ
and ω, it is found that economies with greater damping tend to have shorter
cycles. This is the opposite of a relationship that would be observed in a
single system governed by second-order dynamics and subject to variable
damping. In that case, increasing the damping would lengthen the cycles.

There is a supposition that the lower the relative amplitude of the busi-
ness cycle the better are the prospects for the growth of the economy. This
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Table 4: Parameters for smoothing parameter equal to 8000

α1 α2 ρ ω Λ σx

FRANCE −1.38422 0.86706 0.93116 41.99 0.26 0.01304
SPAIN −1.40937 0.82478 0.90817 39.11 0.41 0.01703
U.K. −1.30833 0.81649 0.90360 43.62 0.34 0.01612

NORWAY −1.25688 0.76454 0.87438 44.05 0.44 0.01612
ITALY −1.09024 0.69650 0.83456 49.22 0.47 0.01049
U.S.A. −0.90703 0.68439 0.82728 56.76 0.37 0.01581

idea was famously propounded in a pamphlet published in the U.K. by the
National Economic Development Council (1963) under the title of Conditions
Favourable to Faster Growth. It was proposed that the economic stop-go poli-
cies of the United Kingdom in the preceding decade had created a series of
booms and slumps that had inhibited the growth of the economy.

Table 3 gives no clear indication of a negative relationship between the
rates of growth of the countries and the relative amplitude of their economic
cycles. However, the question remains of whether such a relationship could
be found by observing the same economy in different epochs.

6.3 The effects of the Hodrick–Prescott filter

We now proceed to examine the effect of using the lowpass Hodrick–Prescott
filter, instead of a quadratic function, to remove the trend from the data,
in the attempt to reveal the business cycle. We shall attribute a range of
alternative values to the smoothing parameter λ. The higher the value of the
smoothing parameter, the more rigid is the estimated trend. The analysis of
section 3 has shown that, as λ increases, the resulting trend tends to a linear
function that is interpolated through the data by a least-squares regression.

Intuition suggests that the more flexible is the interpolated trend the lower
will be the amplitudes of the fluctuations in the residual sequence and the
shorter will be the duration of its cycles. This intuition has been supported
by an analysis in the frequency domain of the effect of applying the H–P
filter to a random walk. Figure 3 is relevant to that analysis.

We begin by setting λ = 8000. This value corresponds nominally to the
frequency value of ω = π/30 radians per quarter and to a duration of 15
years. In fact, the resulting trends that are interpolated through the data
are virtually linear. When the AR(2) model is fitted to the detrended data,
we obtain the parameter values that are recorded in Table 4.
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Table 5: Parameters for smoothing parameter equal to 1600

α1 α2 ρ ω Λ σx

FRANCE −1.22796 0.85235 0.92323 48.31 0.22 0.008367
SPAIN −1.22190 0.74364 0.86235 44.89 0.47 0.009487
U.K. −1.13421 0.80470 0.89705 50.79 0.27 0.010488

NORWAY −1.07407 0.79689 0.89269 53.02 0.26 0.010488
ITALY −0.84551 0.71086 0.84312 59.91 0.30 0.007071
U.S.A. −0.67159 0.76647 0.87548 67.45 0.19 0.011402

Table 6: Parameters for smoothing parameter equal to 677.13

α1 α2 ρ ω Λ σx

FRANCE −1.10779 0.85086 0.92242 53.10 0.19 0.005477
SPAIN −1.00325 0.66526 0.81564 52.05 0.47 0.005477
U.K. −0.99001 0.82177 0.90651 56.90 0.20 0.007071

NORWAY −0.95635 0.81477 0.90265 58.01 0.20 0.007071
ITALY −0.65877 0.76005 0.87181 67.80 0.19 0.004472
U.S.A. −0.52275 0.83719 0.91498 73.40 0.11 0.008367

The next value to be assigned to the smoothing parameter is λ = 1600,
which is the value that is commonly used in extracting macroeconomic trends
from quarterly data, and it has been proposed by Hodrick and Prescott (1980,
1997). This value produces a trend that strongly reflects the cyclical pattern
of the original time series. For this reason, it provides an attenuated version
of the business cycle. It will be observed from the comparison of Tables 4
and 5 that the relative amplitudes of the business cycles measured by σx

are considerably reduced and the duration of the cycles, as reflected in the
angular velocity ω, is systematically reduced. This is in accordance with our
presuppositions.

The final value to be investigated is λ = 677.13, which corresponds nom-
inally to an angular velocity of π/16 radians per quarter and to a duration
of 8 years. These values correspond to the upper limit of the business cycles
duration according to the definition of Baxter and King (1999). These au-
thors have also attributed a minimum duration of 1.5 years to the business
cycles. Artis, Marcellino and Proietti (2004), have implemented the defini-
tion of Baxter and King via a bandpass filter that comprises a lowpass H–P
filter with λ = 0.52 followed by a highpass filter with λ = 677.13. The initial
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lowpass filter may have little effect upon deseasonalised data for the reasons
that there is liable to be very little spectral power within the corresponding
stop band.

The parameters derived by fitting an AR(2) to these data are given in
table 6. We are disinclined to give much credence to these results for the
reason that the 8-year limit on the duration of the cycles is an artificial one
that does not appear to correspond to any evident feature in the spectral
structure of the data.
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