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Abstract

We investigate the influence of residual serial correlation and of the time dimension on

statistical inference for a unit root in dynamic longitudinal data, known as panel data in

econometrics. To this end, we introduce two test statistics based on method of moments

estimators. The first is based on the generalised method of moments estimators, while

the second is based on the instrumental variables estimator. Analytical results for the IV

based test in a simplified setting show that (i) large time dimension panel unit root tests

will suffer from serious size distortions in finite samples, even for samples that would

normally be considered large in practice, and (ii) negative serial correlation in the error

terms of the panel reduces the power of the unit root tests, possibly up to a point where

the test becomes biased. However, near the unit root the test is shown to have power

against a wide range of alternatives. These findings are confirmed in a more general

set-up through a series of Monte Carlo experiments.

Keywords: Dynamic longitudinal (panel) data; Generalized method of moments; Instru-

mental variables; Unit roots; Moving average errors.

JEL: C22, C23.

1 Introduction

There has been much recent interest — both theoretical and applied — in testing for unit

roots in longitudinal data, known in econometrics as panel data. Existing panel data unit

root tests can be classified into two categories: the first treats the time dimension of the

panel, T , as large (see Levin, Lin, and Chu (2002), Im, Pesaran, and Shin (1995) and Hadri

(2000), inter alia) while the second treats T as fixed (short) (see Harris and Tzavalis (1999)).

Asymptotic theories for both categories of tests assume that the cross-section dimension of
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the panel, N , goes to infinity; for large-T tests, also T is assumed to increase without bound,

either jointly withN or sequentially. The fixed-T tests can be thought of as more appropriate

for panels where the time dimension is small, while the large T tests are naturally suited

to those panels where the time dimension can be considered large (see Chamberlain (1984),

inter alia). From the point of view of statistical inference, however, there is no rule that

allows one to classify the time dimension of a panel as small or large.

In this paper, we assess the influence of the time dimension of a panel on statistical

inference for a unit root in the presence of serially correlated errors, a set-up which has

proven to be challenging for single time series tests (see Schwert (1989) and Wu and Yin

(1999)). Our aims are twofold. Firstly, the paper intends to characterize the specific problems

for unit root testing that are introduced by allowing for serial correlation in the errors. We

will show that tests lose power as serial correlation grows large and negative, up to a point

where they may become biased. Near the unit root, however, the tests are powerful against a

wide range of alternatives. Secondly, our study will help to investigate the minimum number

of time series observations that are appropriate in order for short or large panel data unit

root tests to be applicable. This will shed light on existing evidence that, for both single

time series and panel data, unit root test statistics that assume that T is large seem to be

critically oversized in small samples, especially when the panel disturbance (error) terms are

negatively serially correlated.

We start our study by introducing a Generalized Method of Moments (GMM) based unit

root test statistic. This is primarily designed for short T panels, as it is based on cross-

sectional averaging only and allows the nuisance parameters to be heterogeneous across both

the N and T dimensions of the panel. The paper then introduces an Instrumental Variables

(IV) based test statistic under the additional assumption that the nuisance parameters of

the panel are homogeneous across both dimensions of the panel. This test can be applied

to panels where the T dimension is short, or large. The IV based test statistic will help

us to analytically examine the influence of the time dimension of the panel and the serial

correlation nuisance parameters on panel data unit root tests for the class of the method of

moments based test statistics to which the IV based test belongs. Moreover, it allows us to

examine power properties in a tractable setting.

To address these issues in a simple framework, consider the first order autoregressive

panel data model,

zi,t = ηi(1− ρ) + ρzi,t−1 + ui,t i = 1, ..., N ; t = 1, ..., T (1)

where the error terms ui,t are zero mean p-dependent processes1 which are independent

across i, with E|ui,t|4+δ uniformly bounded over i and t, for some δ > 0 and p < T . ηi are

individual-specific long-run means2 of the processes when ρ < 1 - in the limit as ρ → 1 the

processes become driftless random walks; in this way individual-specific trends are ruled out

1That is ui,t and ui,t−p−1 are independent random variables, but ui,t and ui,τ , t ≥ τ ≥ t − p may be
dependent. Note that the dependence structure is allowed to be heterogeneous across i.

2ηi(1− ρ) are often referred to as “fixed effects” in the econometrics literature.
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for all values of ρ. The assumption that p < T means that the order of serial correlation is

smaller than the T dimension of the panel. It is required to derive unit root test statistics

where T is fixed. The above assumption on the disturbance terms ui,t is quite general yet

enables us to apply standard asymptotic results across the N dimension of the panel. When

discussing the IV statistic, we will focus on the case where ui,t follows a homogeneous MA(1)

process. More specifically

ui,t = vi,t + θvi,t−1 (2)

where the error terms vi,t are independent zero mean random variables with E|vi,t|4+δ <∞.
At this point we do not make any assumption on the initial conditions of the panel zi,0.

The test statistics we derive are invariant to zi,0 under the null hypothesis ρ = 1. This is

achieved by subtracting zi,0 from each observation zi,t as in Breitung and Meyer (1994): we

define the new series

yi,t = zi,t − zi,0 i = 1, ..., N ; t = 1, ..., T (3)

and employ yi,t rather than zi,t in deriving the limiting distributions of the test-statistic of

the hypothesis ρ = 1 in model (1). Model (1) is written in terms of y as

yi,t = (ηi − zi,0)(1− ρ) + ρyi,t−1 + ui,t i = 1, ..., N ; t = 2, ..., T (4)

The paper is organized as follows. Section 2 introduces the test statistics and derives their

limiting distribution. Section 3 conducts a Monte Carlo study to appraise the small sample

performance of our test statistics and to confirm some of the theoretical results derived in

Section 2. Section 4 concludes the paper. All proofs are relegated to the Appendix.

2 The Test Statistic and its Limiting Distribution

Under the assumptions made in Section 1, ρ can be consistently estimated under H0 : ρ = 1

by a GMM estimator based on orthogonality moment conditions of the form

E(yi,sui,t(ρ)) = E(yi,s(yi,t − ρyi,t−1)) = 0 t = p+ 2, ..., T ; s = 1, ..., t− p− 1 (5)

A GMM estimator based on the above moment conditions takes the general form

bρGMM =

"Ã
NX
i=1

y0i,−1Wi

! bΩ−1Ã NX
i=1

W 0
iyi,−1

!#−1 "Ã NX
i=1

y0i,−1Wi

! bΩ−1Ã NX
i=1

W 0
iyi

!#
(6)

where

Wi =


yi,1 0 0 · · · 0 · · · 0

0 yi,1 yi,2 0 0
...

. . .

0 0 0 · · · yi,1 · · · yi,T−p−1
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is the (T−p−1)×((T − p− 1)(T − p)/2) matrix of instruments, yi = (yi,p+2, ..., yi,T )
0 is a (T−

p−1)-vector of observations, yi,−1 is its one-period lagged value and bΩ = 1
N

PN
i=1W

0
i∆yi∆y

0
iWi

is a consistent (asN →∞) estimator of the optimal GMMweight matrixΩ = E( 1N
PN

i=1W
0
iuiu

0
iWi)

under the null hypothesis that ρ = 1 (since then ui,t = ∆yi,t).

Under the conditions given below expression (1), it can be shown that bρGMM is a con-

sistent estimator of ρ under the hypothesis that ρ = 1. Appropriately normalized, this

estimator can be used to construct a test-statistic for the null that ρ = 1:

Theorem 1 Let E|ui,t|4+δ be uniformly bounded over i and t, for some δ > 0. Then, for

fixed T , under the null hypothesis that ρ = 1,

τ1 = bV −1/20

√
N (bρGMM − 1) L→ N(0, 1) (7)

as N → ∞, where bV0 = h³ 1N PN
i=1 y

0
i,−1Wi

´ bΩ−1 ³ 1N PN
i=1W

0
iyi,−1

´i−1
is a consistent esti-

mator of the variance of bρGMM under the null.

The test statistic given by Theorem 1 enables us to test for the null hypothesis of a

unit root using the tables of the normal distribution under quite general assumptions on the

distribution of the error terms ui,t. It allows for ui,t to be non-normally distributed with

non-constant variance across both dimensions of the panel data and serially correlated across

the time dimension with a cross-sectionally heterogeneous time-dependence structure.

Under the alternative hypothesis, bρGMM is not a consistent estimator3 of ρ. As a conse-

quence, the test may lack power or even be biased against some specific alternatives. It is

difficult to characterize these cases within the general set-up used here, but below we show

in the Monte Carlo experiments as well as in a simplified formal set-up (see Theorem 3) that

problems will likely occur when residual serial correlation is strongly negative. As mentioned

in the introduction, negative residual serial correlation is known to be a difficult scenario for

unit root tests in a pure time-series set-up. Our finding indicates that this remains true in

a fixed-T panel data setting.

A possible reaction to this problem is to try and base the test-statistic on an estimator

that is consistent under both the null and the alternative. It is easy to construct a consistent

GMM estimator for ρ when ρ < 1 based on moment conditions of the form E(yi,s(∆yi,t −
ρ∆yi,t−1)), s < t−p−2 instead of those in (5) (see e.g. Arellano and Bond (1991)). However,
this estimator cannot identify ρ when ρ = 1: the instrument yi,t−s will not be correlated with
∆yi,t−1. If one is, on the other hand, willing to sacrifice generality by imposing additional
assumptions on the process under the alternative, it is possible to construct GMM estimators

that are consistent under both the null and the alternative4 (see e.g. Arellano and Bover

(1995), Ahn and Schmidt (1995) and Blundell and Bond (1998)). Unit root tests based on

3This is an instance of the Neyman and Scott (1948) incidental parameters problem: the individual-specific
parameters ηi − zi,0 are not consistently estimable as N →∞.

4Examples of such assumptions are mean or covariance stationarity. Note that the estimators of this kind
in the literature are based on untransformed data, i.e. on equation (1) rather than (4). They would therefore
not directly apply to the set-up in this paper.
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such estimators have recently been examined in a set-up without serial dependence in ui,t

(see Bond, Nauges, and Windmeijer (2005)) and were found to perform poorly.

When choosing the instrument matrix Wi as diag(yi,1, ..., yi,T−p−1) and summing up the
resulting moment conditions over t into the single condition E

hPT−p−1
t=1 yi,tui,t+p+1(ρ)

i
= 0,

the GMM estimator reduces to the IV estimator, defined as

bρIV =
Ã

NX
i=1

T−p−1X
t=1

yi,tyi,t+p

!−1Ã NX
i=1

T−p−1X
t=1

yi,tyi,t+p+1

!
. (8)

Although the IV estimator bρIV is asymptotically less efficient than the GMM estimatorbρGMM , it is well-defined and consistent independently of whether T or N or both tend to

infinity (see Arellano (2003))5. This makes the IV estimator a convenient vehicle for studying

the influence of the time dimension on panel unit root tests under serial correlation in the

error terms ui,t more rigorously. To this end, in the next theorem we give the limiting

distribution of the test statistic based on the IV estimator. In order to obtain interpretable

analytic results, we assume that the error processes are homogeneous MA(1) processes, i.e.

ui,t = vi,t + θvi,t−1 for all i and t, where the MA innovations vi,t are IID with zero mean

and constant variance6. The extension to higher-order residual dependence is conceptually

similar but less tractable.

Theorem 2 Let ui,t = vi,t + θvi,t−1 with7 θ 6= −1 and vi,t ∼ IID(0, σ2v), ∀i and t. Then,

under the null hypothesis that ρ = 1,

τ2 = [C(θ, T )]
−1
2

√
N (bρIV − 1) L→ N(0, 1) (9)

as N →∞, where C(θ, T ) = R(θ,T )
D(θ,T )2

and R(θ, T ) and D(θ, T ) are polynomial functions of T

and θ defined in the Appendix.

Since the variance of the limiting distribution of
√
N (bρIV − 1), given by C(θ, T ), depends

on the moving average nuisance parameter θ, implementation of the test statistic τ2 in

Theorem 2 requires an estimator of θ that is consistent under the null hypothesis that

ρ = 1. A convenient estimator of θ can be obtained in two stages, following MacDonald and

MacKinnon (1985). First, the correlation coefficient γ between ui,t and ui,t−1 is estimated
using the fact that ui,t = ∆yi,t is observed under the null hypothesis. The implied estimate

5In contrast, for the GMM estimator an increase in T implies a proliferation of the number of moment
conditions as well as the need to estimate O(T 2) nuisance parameters (the weighting matrix); one may expect
that this will result in inferior behaviour if T is large relative to N .

6One may instead construct a unit root test based on the estimator in (8) and a scaling factor estimated
by the square root of

bVIV = Ã NX
i=1

T−p−1X
t=1

yi,tyi,t+p

!−2Ã NX
i=1

y0iui,+pu
0
i,+py

0
i

!
.

This test will be valid under the original general assumptions, but more difficult to analyze analytically.
7When θ 6= −1, yi,t = vi,t − vi,0 and the process is indistinguishable from a pure white noise process, that

is, the case ρ = 1, θ = −1 is observationally equivalent to ρ = 0, θ = 0. Otherwise stated, at these values the
parameters are not identified.
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of θ can then be retrieved by inverting the correlation coefficient function of the MA(1)

process, given by γ = θ/(1 + θ2).

[Figure 1]

The dependence of the test statistic τ2 on θ and T , through the variance function C(θ, T ),

enables us to investigate the behaviour of large T panel unit root tests in finite T samples.

Note that, for sufficiently large T , C(θ, T ) approaches C(T ) = 2
T2
if θ 6= −1. This no longer

depends on the MA parameter θ. Analogously to Hahn and Kuersteiner (2002, Theorem 4)

and Harris and Tzavalis (1999), when both N and T →∞, one can scale the statistic τ2 by
T and replace C(θ, T ) by C(T ), leading to the panel data unit root test statistic τ 02

τ 02 =
T
√
N√
2
(bρIV − 1) L→ N(0, 1) (10)

which is suitable for use in large T and N panels. Comparing the variance function C(θ, T )

with C(T ), for large T , one sees that the two variances differ by a factor of T 2C(θ,T )
2 , which

approaches unity as T becomes large. Plotting T 2C(θ,T )
2 against T , for various values of θ

(see Figure 1) can help explain the serious size distortions of the large T panel unit root

tests mentioned in the literature (see Wu and Yin (1999), inter alia).

Inspection of Figure 1 leads to the following conclusions. First, the large T test statistic

τ 02 will be oversized in small T panels, compared to τ2. This happens because
T 2C(θ,T )

2 > 1

for all θ, which implies that τ 02 is scaled with smaller variance than τ2 in finite T panels.

Hence, the tails of the distribution of the statistic τ 02 are drawn out. Moreover, Figure 1
shows that, when θ is negative, T

2C(θ,T )
2 converges slower to its asymptote than when θ > 0.

Hence, in the presence of negative residual autocorrelation the statistic τ 02 is oversized even
when T is relatively large. Finally note that, if θ takes the large negative value −0.8, the
pattern of convergence of T 2C(θ,T )

2 to its asymptote is non-monotonic.

As for the GMM based test, a potential problem with the IV tests comes from the fact

that bρIV is an inconsistent estimator of ρ when ρ < 1. In particular, it is not in general true

that plim(bρIV ) < 1 when ρ < 1. This may lead to a biased test. We now characterize the

region of values of θ for which the test is consistent. To do so, we assume that the distribution

of the initial conditions zi,0 under the alternative hypothesis has mean and variance equal to

that of the stationary distribution of z. Some investigations of the case T = 3 under more

general initial conditions assumptions confirmed the finding that negative residual serial

correlation renders incorrect acceptance of the unit root hypothesis more likely (calculations

not included).

Theorem 3 Under a covariance stationary alternative with ρ > 0 one has that

plim(bρIV ) < 1 if and only if θ > −ρ or θ < −1/ρ

Moreover, the bias is independent of V ar(η).

6



This result has the somewhat counterintuitive implication that negative residual auto-

correlation is more likely to lead to misleading test results the further one moves away from

the unit root. For example, when ρ = 0.5 even mild residual correlation of θ = −0.6 will
in large samples lead to the conclusion that there is a unit root. On the other hand, near

the unit root there will only be a small θ-region in which the test is biased. While purely

“mechanical” application of our tests may therefore lead to rather odd conclusions, most

empirical researchers will resort to unit root tests only when there is a strong ex-ante sus-

picion of a high value of ρ. Theorem 3 suggests that our tests will be a useful tool in such

situations.

To further investigate the test’s behaviour near the unit root, Theorem 4 establishes the

asymptotic distribution of the IV estimator based on a sequence of mean-stationary local

alternatives. Because full covariance stationarity would imply that the variance of the initial

conditions is O(
√
N) under this sequence, we find it more natural to keep the variance of

the initial conditions fixed when computing the limiting distribution.

Theorem 4 Under a sequence of mean-stationary local alternatives with fixed variance of

the initial conditions where ρN = 1− c/
√
N and T is kept fixed one has that

√
N
¡bρN,IV − 1

¢ L→ N

·
−c
µ
1 +

2θ

T (1 + θ)2 − (1 + 4θ + θ2)

¶
,
R(θ, T )

D2(θ, T )

¸
This result shows that while the IV estimator is locally asymptotically unbiased when

θ = 0 (note that
√
N (ρN − 1) = −c), test power will disappear as θ approaches −1: in this

case 2θ
T (1+θ)2−(1+4θ+θ2) = −1. On the other hand, the test will gain power for positive values

of θ. However, since the denominator in the bias term increases with T if θ 6= −1, these
effects will be attenuated as T increases, except when θ = −1.

3 Simulation Experiments

In this section we present the results of Monte Carlo experiments to judge the finite sample

performance of the test statistics introduced in the previous section. In particular, our

analysis is focused on examining the behaviour of the tests in relation to the sign and

degree of serial correlation of the error terms ui,t, as T increases. For all experiments, we

report results on both the size and the size-adjusted power of the test statistics for different

combinations of N and T , using 5000 replications. In order to evaluate the power of the

tests, we consider the three alternative hypotheses that ρ = 0.8, ρ = 0.9 and ρ = 0.95.

The size-adjusted power of the tests is calculated by the empirical frequency with which

the null hypothesis is rejected using the actual one sided 5% critical value of the empirical

distribution of the test statistic under the null hypothesis.

The analysis of this section proceeds as follows. First, we evaluate the performance of

the test statistic τ1, given by Theorem 1, which allows for a general specification of the

autocovariance function of the error terms ui,t. Second, we assess the performance of the

test statistics τ2 and τ 02 based on the IV estimator of ρ. In all experiments, we assume that

7



the order of MA serial correlation is p = 1 and vi,t ∼ NIID(0, 1). For the statistic τ1, we

assume that ui,t = vi,t+ θi,tvi,t−1 where the MA parameter θi,t is assumed to be uniformly
(−12 , 12) distributed around its mean θ, which takes values in the set {−0.8,−0.6, ..., 0.8}. We
use only 1 instrument per moment time period: increasing the number of instruments led

to further performance deterioration. In the analysis of the statistics τ2 and τ 02, we use the
same set of values for θ, but choosing θi,t = θ for all i and t. Throughout, we set ηi = 0 ∀i.

[Table 1]

Table 1 reports the size (at the 5% nominal significance level) and power of the test

statistic τ1. The results indicate that this statistic has the correct size at the 5% nominal

level when the time dimension is small relative to the number of cross-sectional observa-

tions, e.g. (T,N) = {(5, 50), (5, 100), (10, 100)}. For this case, the power of the test is also
satisfactory. This is true even for values of θ ≤ −0.4, where single time series tests seem
to be substantially oversized and biased (see Stock (1994)). However, when θ = −0.8, one
observes that test power hardly responds to decreases in ρ: this can be attributed to the

phenomenon documented in Theorem 3.

When T increases relative to N , the GMM statistic becomes critically oversized. This

happens because this test statistic is designed for short T and large N panel data sets.

When T increases, the number of moment conditions becomes large relative to the number

of cross-sectional observations. This renders the asymptotics, which are designed for the

fixed-T case, less reliable8. Additionally, the number of nuisance parameters involved in the

GMM weighting matrix Ω increases considerably. As a consequence, the scaling factor bV −1/20

in Theorem 1 is less precisely estimated9.

[Table 2]

Tables 2 and 3 present the results for the test statistics τ2 and τ
0
2, respectively. The results

of Table 2 indicate that, when T is small relatively toN , both the size and power performance

of the statistic are similar to those of the statistic reported in Table 1. When T increases

relative to N , the statistic τ2 performs much better than τ1, and has power which increases

faster with T than with N . To put this finding into perspective one should keep in mind that,

in contrast to the statistic τ1, the number of nuisance parameters involved in the statistic τ2

remains the same as T increases, due to the homogeneity assumption on θi,t. These results

suggest that, although the GMM based statistic τ1 is asymptotically more efficient than the

IV based test statistic τ2, the latter has better finite sample performance regardless of the

time dimension of the panel when the nuisance parameters of the autocovariance function of

the error terms ui,t are homogeneous across i and t. Finally, the results of Table 3 confirm

our theoretical predictions made in Section 2. They clearly show that the statistic τ 02, which
is based on a large T approximation of the variance function C(θ, T ) in finite T samples, can

8For this reason, Newey and Windmeijer (2005) proposes a different kind of asymptotic approximation for
moment condition models with many moments.

9Inference in GMM panel models is more generally problematic in small samples - see Bond andWindmeijer
(2002).
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lead to a seriously oversized test, especially for large negative values of the moving average

parameter θ. These results suggest the need to use fixed T panel data tests in practice,

especially when the error terms ui,t are negatively correlated.

[Table 3]

4 Conclusions

This paper has introduced two panel unit root test statistics with the aim to study the

influence of the time dimension and the impact of serial correlation in the error terms. The

first statistic is based on the GMM estimator and is appropriate for short panel data sets

with large cross-section dimension and heterogeneous autocovariance function of the error

terms, across both dimensions of the panel. The second statistic is based on the IV estimator.

It is appropriate for panel data with homogenous autocovariance function of the error terms

and can be implemented to panel data sets regardless of the time dimension.

Our results show that both test statistics have the correct size if the time dimension of

the panel is short relative to the cross section dimension. However, when the time dimension

increases, the GMM based test can lead to critical size distortions. Using the IV based

test, the paper shows that strongly negative serial correlation in the error terms can lead

to substantial loss of power, especially - and somewhat counterintuitively - far from the

unit root. In these cases, using large time dimension approximations of the variance of the

limiting distributions of panel unit root tests can lead to serious size distortions in finite

samples.

Appendix

PROOF OF THEOREM 1

The reasoning is similar to that of Theorem 2 below. Therefore, we only provide the asymp-

totic normality part of the proof. From (6), one has that under H0:

√
N (bρGMM − 1) =

"Ã
1

N

NX
i=1

y0i,−1Wi

! bΩ−1Ã 1
N

NX
i=1

W 0
iyi,−1

!#−1
times"Ã

1

N

NX
i=1

y0i,−1Wi

! bΩ−1Ã√N
N

NX
i=1

W 0
iui

!#

Asymptotic normality is demonstrated by applying Liapounov’s CLT to
√
N 1

N

PN
i=1W

0
iui

and a LLN to all other factors. Starting with the former, one needs to show - applying the

Cramer-Wold device - that for any vector λ with kλk = 1 and ΩN = V ar(
√
N 1

N

PN
i=1W

0
iui)
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one has
√
N 1

N

PN
i=1 λ

0Ω−1/2N W 0
iui → N(0, I). To do so, one observes that a typical com-

ponent of the vector
√
N 1

N

PN
i=1W

0
iui is

√
N 1

N

PN
i=1 yi,t−p−sui,t, s ≥ 1. This is rewritten,

under H0, as
√
N 1

N

PN
i=1

Pt−p−s
τ=1 ui,τui,t. The above result will therefore follow if the se-

quence ui,τui,t satisfies the Lindeberg condition. Note here that the time dimension is kept

fixed when taking limits and hence that boundedness of the terms of a sum over t implies

boundedness of the sum. The Lindeberg condition is satisfied since by the Cauchy-Schwartz

inequality

E |ui,τui,t|2+δ ≤
µ
E
¯̄̄
u2+δi,τ

¯̄̄2¶1/2µ
E
¯̄̄
u2+δi,t

¯̄̄2¶1/2
< ∞ if E |ui,t|4+2δ <∞ for some δ > 0, ∀t.

The latter condition is satisfied by assumption. Boundedness of E |ui,τui,t|2+δ implies bound-
edness of E |yi,t−p−sui,t|2+ε by Minkowski’s inequality.
Defining mN = E

³
1
N

PN
i=1W

0
iyi,−1

´
, m = limmN , Ω = limΩN we now have

£
m0

NΩ
−1
N mN

¤−1
m0

NΩ
−1
N

√
N
1

N

NX
i=1

W 0
iui → N(0,

¡
m0Ω−1m

¢−1
)

Finally, apply Markov’s LLN to 1
N

PN
i=1W

0
iyi,−1 and bΩ. A typical component of the former

is 1
N

PN
i=1 yi,t−p−sui,t, s ≥ 0. Markov’s LLN will apply, by the same reasoning as above, if

E |ui,τui,t|1+δ is bounded for all τ , t. By the Cauchy-Schwartz inequality, this is the case
under the assumptions of the Theorem. Thus 1

N

PN
i=1W

0
iyi,−1 − mN → 0 a.s. and hence

in probability. Similarly, a typical component of bΩ is 1
N

PN
i=1 yi,t−p−sui,tui,τyi,τ−p−r with

r, s ≥ 0. Decomposing yi,t−p−s and yi,τ−p−r as above and using Minkowski’s inequality, one
sees that Markov’s LLN will apply to terms of this type if E |ui,kui,τui,tui,r|1+δ <∞ for some

δ > 0. Repeated application of the Cauchy-Schwartz inequality shows that this is the case

if E |ui,t|4+ε <∞ for some ε > 0. Hence we have bΩ− ΩN → 0, completing the proof.

PROOF OF THEOREM 2

The derivations of the results are based on the Lindeberg-Levy Central Limit Theorem

(CLT) for independent, identical innovation processes (see White (1984)) and the Law of

Large Numbers (LLN). We proceed in two stages. We first show that bρIV is a consistent

estimator of ρ under the hypothesis that ρ = 1. Then we derive the limiting distribution ofbρIV − 1.
The consistency (as N →∞) of bρIV can be shown by writing

bρIV − 1 = PN
i=1 Zi,TPN
i=1Di,T

(A1)
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where Zi,T =
PT

t=3 yi,t−2ui,t and Di,T =
PT

t=3 yi,t−1yi,t−2. Then

plimN→∞
1

N

NX
i=1

Zi,T =
T−2X
t=1

TX
s=t+2

Ã
plimN→∞

1

N

NX
i=1

ui,tui,s

!

=
T−2X
t=1

"
plimN→∞

1

N

NX
i=1

(vi,t + θvi,t−1) (vi,t+2 + θvi,t+1)

#
= 0(A2)

The limiting distribution of bρIV − 1 can be obtained by calculating the variance of Zi,T and

the probability limit of the denominator of (A1), and then applying standard large sample

theory. In particular:

E(Z2i,T ) =
T−2X
t=1

TX
s=t+2

E(u2i,tu
2
i,s) + 2

T−3X
t=1

T−1X
x=t+2

E(u2i,tui,sui,s+1)

+2
T−3X
t=1

T−1X
s=t+2

E(ui,tui,sui,t+1ui,s+1) + 2
T−3X
t=1

TX
s=t+3

E(ui,tui,t+1u
2
i,s)

+2
T−4X
t=1

T−1X
s=t+3

E(ui,tui,sui,t+1ui,s+1)

which, after substituting ui,t = vi,t + θvi,t−1 and simplifying, gives

E(Z2i,T ) = σ4vR(θ, T ) (A3)

where

R(θ, T ) = R4θ
4 +R3θ

3 +R2θ
2 +R1θ +R0

with

R4 = R0 =
1

2
T (T − 3) + 1

R3 = R1 = 2T (T − 5) + 12
R2 = 3T (T − 5) + 20.

By a standard Law of Large Numbers, plimN→∞ 1
N

PN
i=1Di,T = E(Di,T ) and

E(Di,T ) =
TX
t=3

E(yi,t−2yi,t−1)

=
T−2X
t=1

tX
s=1

E
¡
u2i,s
¢
+ 2

T−2X
t=1

tX
s=1

E (ui,sui,s+1)−
T−2X
t=1

E (ui,tui,t+1)

= σ2vD(θ, T )

with D(θ, T ) = 1
2(T − 2)

¡
T (1 + θ)2 − (1 + 4θ + θ2)

¢
.

Theorem 2 now follows by applying the CLT to the sums of Zi,T , implying
1√
N

PN
i=1 Zi,T →

N
¡
0, σ2vR(θ, T

¢
) as N →∞.
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PROOF OF THEOREM 3

For the analysis of the behaviour of the IV based test under the alternative, we restrict

ourselves for the sake of analytical tractability to the case where zi,t is mean and variance

stationary. This means that zi,0 = ηi+vi,0+ξi where E(ξi) = 0, V ar(ξi) = σ2v (ρ+ θ)2 /(1−
ρ2) and ξi independent of all other random elements. The following is only a sketch of the

reasoning - full details are available upon request from the authors.

By recursive substitution, yi,t can be written as

yi,t =
t−1X
j=0

ρjui,t−j + (ηi − zi,0)(1− ρt) (A4)

We now obtain the range of values of θ as a function of ρ for which plim(bρIV ) < 1.To do so,
first note that

plim(bρIV ) = ρ+ plim

PT
t=3

PN
i=1 yi,t−2(ηi − zi,0)(1− ρ)PT
t=3

PN
i=1 yi,t−2yi,t−1

+ plim

PT
t=3

PN
i=1 yi,t−2ui,tPT

t=3

PN
i=1 yi,t−2yi,t−1

= ρ+ (1− ρ)
Num(θ, T, σ2v, σ

2
ξ)

Denom(θ, T, σ2v, σ
2
ξ)
+ 0 (A5)

Using standard algebra based on expression (A4) one finds that

Num(θ, T, σ2v, σ
2
ξ) =

TX
t=3

£
(σ2v + σ2ξ)

¡
1− ρt−2

¢− θσ2vρ
t−3¤

= (T − 2− ρ
1− ρT−2

1− ρ
)(σ2v + σ2ξ)− θσ2v

1− ρT−2

1− ρ

A similar, but more cumbersome expression can be obtained in the same way for the factor

Denom(θ, T, σ2v, σ
2
ξ) in (11). Like Num(θ, T, σ2v, σ

2
ξ), this expression does not depend on

V ar(η). It turns out that the equation plim(bρIV ) = 1, rewritten as ρDenom+(1−ρ)Num =

Denom, is quadratic in θ. The roots of this equation are −ρ and −1/ρ. Note that this does
not depend on the value of T or σ2v.

PROOF OF THEOREM 4

Starting with the usual decomposition

√
N
¡bρN,IV − 1

¢
=
√
N (ρN − 1) +

√
N

1
N

PT
t=3

PN
i=1 yi,t−2(ηi − zi,0)

1
N

PT
t=3

PN
i=1 yi,t−2yi,t−1

(1− ρN )

+
√
N

1
N

PT
t=3

PN
i=1 yi,t−2ui,t

1
N

PT
t=3

PN
i=1 yi,t−2yi,t−1

= : I + II + III

we examine each term separately. Since ρN = 1− c/
√
N , we have that I equals −c. For II

12



and III, first examine the denominator:

1

N

TX
t=3

NX
i=1

yi,t−2yi,t−1 =
1

N

TX
t=3

NX
i=1

ρNy
2
i,t−2 +

1

N

TX
t=3

NX
i=1

yi,t−2(ηi − zi,0)(1− ρN)

+
1

N

TX
t=3

NX
i=1

yi,t−2ui,t−1

=

Ã
1

N

TX
t=3

NX
i=1

y2i,t−2 −Op(n
−1/2)

!
+
³
Op(n

−1/2)
´

+

Ã
1

N

TX
t=3

NX
i=1

yi,t−2ui,t−1

!

where use is made of the fact that 1 − ρN is O(n−1/2) and that the variance of ξi is now
kept fixed, hence 1

N

PT
t=3

PN
i=1 y

2
i,t−2 is Op(1). By expression (A4) and the fact that ρ

k
N =

1− k c√
N
+ o(n−1/2) we have

yi,t−2 =
t−3X
j=0

ρjNui,t−2−j + (ηi − zi,0)(1− ρt−2N )

=
t−3X
j=0

ui,t−2−j −
t−3X
j=0

k
c√
N
ui,t−2−j + (ηi − zi,0)k

c√
N
+ op(n

−1/2). (A.6)

Hence we have y2i,t−2 =
³Pt−2

j=1 ui,j

´2
+ op(1). Applying a similar reasoning to the term

1
N

PT
t=3

PN
i=1 yi,t−2ui,t−1 and using the calculations in the proof of Theorem 2 one obtains

that

1

N

TX
t=3

NX
i=1

yi,t−2yi,t−1
p→ σ2vD(θ, T )

under the sequence of local alternatives. Now turning to the numerator of II one has that

1

N

TX
t=3

NX
i=1

yi,t−2(ηi − zi,0) = −
TX
t=3

1

N

NX
i=1

t−3X
j=0

ρjNui,t−2−j + (ηi − zi,0)(1− ρt−2N )

 (vi,0 + ξi)

= −
TX
t=3

1

N

NX
i=1

t−3X
j=0

(1− j
c√
N
+ o(n−1/2))ui,t−2−j(vi,0 + ξi)

+Op(n
−1/2)

= −
TX
t=3

1

N

NX
i=1

ui,1(vi,0 + ξi) + op(1)

p→ −(T − 2)θσ2v.

and
√
N(1− ρN)→ c. Finally, for the numerator of III one has

1

N

TX
t=3

NX
i=1

yi,t−2ui,t =
TX
t=3

1√
N

NX
i=1

t−3X
j=0

ui,t−2−jui,t
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−
TX
t=3

1√
N

NX
i=1

t−3X
j=0

k
c√
N
ui,t−2−j + (ηi − zi,0)k

c√
N
+ op(n

−1/2)

ui,t

=
TX
t=3

1√
N

NX
i=1

t−3X
j=0

ui,t−2−jui,t

+ op(1)

Repeating the calculations of the proof of Theorem (2) (the section calculating the variance

of the term “Zi,T”) to this term and reassembling all terms completes the proof.
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Table 1: Empirical size and size adjusted power of τ1
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Table 2: Empirical size and size adjusted power of τ2
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Table 3: Empirical size and size adjusted power of τ 02
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Figure 1: Plot of T2C(θ,T )
2 against T .
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