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1 Introduction

Recently there has been a resurgence in the macroeconomic literature of the

investigation of random coefficient models. These models are used to in-

vestigate possible shifts in the dynamic evolution of various macroeconomic

variables such as inflation. Notable examples of such analyses are Cogley and

Sargent (2002) and Benati (2002). These studies start with the presumption

that inflation may be nonstationary (not necessarily trending or unit root

nonstationary) and model the series using dynamic random coefficient mod-

els.

In this note we look at sufficient conditions for stationarity of a very

simple random coefficient model and find that this model is guaranteed to be

stationary under strict conditions. Section 2 presents the model. Section 3

presents existing relevant work in the literature and section 4 presents the

derivation of the sufficient conditions for stationarity.

2 The Model

Let the general dynamic random coefficient model be given by

xt =
p∑

i=1

at,ixt−i + εt (1)

at = µ+
q∑

i=1

Γiat−i + ut

where at = (at,1, at,2, . . . , at,p)
′, ut = (ut,1, . . . , ut,p)

′ and µ = (µ1, . . . , µp).

The variance of εt is given by σ2 and the covariance matrix of ut is given

by Σu. We refer to this as the extended state space representation of the

random coefficient model. We will denote this model by DRC(p, q). We will
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discuss covariance stationarity for DRC(1, 1) and relate this discussion to

existing stationarity conditions for bilinear models.

3 Existing Work

A standard bilinear model is obtained from (1) by setting q = 0. It is easy

to see that the DRC(p, q) model may be written as

xt =
∞∑
i=1


i−1∏

j=0

A′
t−j Ĩ


 εt−i + εt (2)

where

A′
t =




at,1 at,2 . . . at,p at−1,1 . . . at−1,p . . . at−p+1,1 . . . at−p+1,p

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0




At = µ̃+ Γ̃At−1 + ũt (3)

Γ =



Γ1 Γ2 . . . Γp

I 0 . . . 0
. . . . . . . . . . . .
0 . . . I 0


 Γ̃ = [Γ 0]

Ĩ =




Ip 0 . . . 0
0 . . . . . . 0
. . . . . . . . . . . .
0 . . . 0 0




ũ′
t =




ut,1 ut,2 . . . ut,p 0 . . . 0
0 . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0


 µ̃′ =




µ1 µ2 . . . µp 0 . . . 0
0 . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0




and εt = (εt, 0 . . . , 0)
′. Then it follows that the model may be writen as

xt =
∞∑
i=1


i−1∏

j=0

(
µ̄′ +

∞∑
s=0

ũ′
t−s−jΓ̃

′s
)

Ĩ


 εt−i + εt (4)
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where µ̄ = [(I − Γ)−1(µ 0) 0].

This model then resembles the form of the general bilinear model dealt

with by Liu and Brockwell (1988), (see also Tong (1990)). However the

crucial difference is that the model considered in Liu and Brockwell (1988)

was of the form

xt =
∞∑
i=1


i−1∏

j=0

(
µ̄′ +

s1∑
s=0

ũ′
t−s−jΓ̃

′s
)

Ĩ


 εt−i + εt (5)

It can be seen from the analysis of Liu and Brockwell (1988) that the station-

arity of the model depends crucially on s1. Liu and Brockwell (1988) provide

an explicit condition for the case s1 = 2 and discuss how to generalise this to

s1 > 2. The condition they propose is in the spirit of the drift condition of

Tweedie (1975) which states that a Markov chain, xt, is strictly stationary if

the following two conditions hold for some B > 0 and r < 1

E(g(xt)|xt−1 = x) < rg(x), x /∈ C (6)

E(g(xt)|xt−1 = x) < B, x ∈ C (7)

where g(x) > 0 and C is a bounded set. In the multivariate case the drift

condition involves verifying that the spectral radius of a matrix is less than

one. For the bilinear model the dimension of the matrix whose spectral radius

needs to be confirmed depends on s1 as it contains the higher moments of the

process ut. As we will see later these moments are crucial for the stationarity

of the DRC(1, 1) model. Before concluding this section on existing work, we

mention the work of Pourahmadi (1988) who provides stationarity conditions

for a dynamic random coefficient model where the logarithm of the absolute

value of the random coefficient follows a general linear process. This work is

related to ours but, of course, deals with different dependence structure in

the random coefficient.
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4 Covariance Stationarity

Following the above the drift condition of Tweedie (1975) does not appear

as a promising avenue for our analysis. We therefore go to first principles for

deriving sufficient conditions for the covariance stationarity of the DRC(1, 1)

model given by:

xt = atxt−1 + εt (8)

at = µ+ γat−1 + ut (9)

We need to show that E(xt), V ar(xt) and Cov(xt, xt−s) are finite and do

not depend on t. From the representation of the model given in (4) we can

easily see that the mean of the process will be zero. We now investigate the

conditions under which V ar(xt) exists and does not depend on t.

For a DRC(1, 1) we have that

E(x2
t ) = E(εt +

∞∑
i=1

i−1∏
j=0

at−jεt−i)
2 (10)

Note that only terms involving squares of εi will contribute to this expecta-

tion. Therefore

E(x2
t ) = σ2(1 +

∞∑
i=1

E(
i−1∏
j=0

a2
t−j)) (11)

We therefore want to derive the behaviour of E(
∏n

j=0 a
2
t−j) as n goes to

infinity. Define µ̃ = µ/(1− γ2).

E(
n∏

j=0

a2
t−j) = E((µ̃+

∞∑
j=0

γjut−j)
2(µ̃+

∞∑
j=0

γjut−j−1)
2 . . . (µ̃+

∞∑
j=0

γjut−j−n)
2)

(12)

Schematically, this takes the form


µ̃2 2µ̃ut 2µ̃ut−1 . . .
u2

t 2γutut−1 2γ2utut−2 . . .
γ2u2

t−1 2γ2ut−1ut−2 . . .
γ4u2

t−2 . . .


×




µ̃2 2µ̃ut−1 2µ̃ut−2 . . .
u2

t−1 2γut−1ut−2 2γ2ut−1ut−3 . . .
γ2u2

t−2 2γ2ut−2ut−3 . . .
γ4u2

t−3 . . .


×. . .
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multiplying the non diagonal terms in the above schematic will, on taking

the expectation, give zeros for any given term for high enough values of n. So

only the products involving just diagonal terms from the above array matter

for the asymptotic (with respect to n) behaviour of E(
∏n

j=1 a
2
t−j). In other

words we have simplified the problem down to the following expectation

E(
∞∏

j=0

a2
t−j) = E((µ̃2 +

∑
i=0

γ2iu2
t−i)(µ̃

2 +
∑
i=0

γ2iu2
t−i−1) . . .) (13)

We now work inductively. Let us determine

E((µ̃2 +
∞∑
i=0

γ2iu2
t−i)(µ̃

2 +
∞∑
i=0

γ2iu2
t−i−1))

multiplying the first summand of the second term with the whole first term,

taking expectations and adding up gives µ̃4 + µ̃2σ2
u/(1− γ2) if γ2 < 1. mul-

tiplying the second summand of the second term with the whole first term,

adding up and taking expectations gives σ2
uµ̃

2 + σ4
u/(1 − γ2) + γ2(τ 4 − σ4

u)

where τ i is the i-th moment of ut. Doing similar operations for the rest of

the terms gives an overall sum of

µ̃4+2µ̃2σ2
u/(1−γ2)+f1,1(τ

4−σ4
u)+σ4

u/(1−γ2)+γ2σ4
u/(1−γ2)+γ4σ4

u/(1−γ2)+. . . =

µ̃4 + 2µ̃2σ2
u/(1− γ2) + f1,1(τ

4 − σ4
u) + σ4

u/(1− γ2)2

where

f1,1(τ
4 − σ4

u) =
∞∑
i=0

γ2+4i(τ 4 − σ4
u) = γ2(τ 4 − σ4

u)/(1− γ4)

We now move to determine

E((µ̃2 +
∑
i=0

γ2iu2
t−i)(µ̃

2 +
∑
i=0

γ2iu2
t−i−1)(µ̃

2 +
∑
i=0

γ2iu2
t−i−2))

Proceeding as before gives an expectation of

µ̃6+3µ̃4σ2
u/(1−γ2)+3µ̃2σ4

u/(1−γ2)2+σ6
u/(1−γ2)3+f2,1(τ

6−σ6
u)+f2,2(τ

4−σ4
u)
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where the terms involving the fourth and sixth moments of ut are given by

f2,1(τ
6 − σ6

u) = γ4(τ 6 − σ6
u)/(1− γ6)

and

f2,2(τ
4 − σ4

u) = [γ
2σ2(τ 4 − σ4

u)]/[(1− γ4)(1− γ2)] + [µ̃2γ2(τ 4 − σ4
u)]/[(1− γ4)]

Continuing in a similar fashion gives an expectation for E(
∏n

j=1 a
2
t−j) equal

to (µ̃2+σ2
u/(1− γ2))n+M(n) where the term M(n) is a sum of terms which

are products of τ i−σi, µ̃i and γi , i = 1, . . . , 2n. There is a multiple of n such

terms in E(
∏n

j=1 a
2
t−j). Clearly convergence of (µ̃

2 + σ2
u/(1 − γ2))n requires

that µ̃2 + σ2/(1− γ2) < 1. Now if the following condition also holds

Assumption 1 τ 2i − σ2i
u ≤ 1

the termM(n) is guaranteed to decline geometrically in n. This is easy to see

as setting τ 2i − σ2i
u = 1, for all i, results in geometrically declining sequences

in M(n). Therefore,

E(x2
t ) = σ2(1+

∞∑
i=1

E(
i∏

j=1

a2
t−j)) = σ2(

∞∑
i=0

σ2i
u /(1−γ2)i)+M̃ =

σ2(1− γ2)

[1− γ2 − σ2
u]
+M̃

(14)

where [σ2(1−γ2)]/[1−γ2−σ2
u] > 0 by σ2/(1−γ2) < 1 and M̃ =

∑∞
n=1 M(n) <

∞. A similar treatment proves that the covariances of xt are finite and do

not depend on t. Assumption 1 is extremely strict. It essentially implies

that the support of ut is (−1, 1). We can relax somewhat this assumption
by setting µ = 0. Then by repeating the above analysis it is easy to see that

the alternative assumption for the moments of ut suffices

Assumption 2 γ2i(τ 2i − σ2i
u ) ∼ ci, |c| < 1
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To see this we have that in this case (µ = 0) the termM(n) contains terms in

all even moments of ut up to 2n. More specifically, M(n) will contain terms

of the form
γ2s−2σ2(n−s)(τ 2s − σ2s)

(1− γ2s)(1− γ2)n−s
, s = 1, . . . , n

The sum of these terms is larger than M(n) since the construction of some

terms involves duplication of expectations of cross products of lags of u2
t .

Adding up terms made up of τ 2s − σ2s for fixed s over n gives terms of the

form
γ2s−2(τ 2s − σ2s)

1− γ2s

1

1− σ2

1−γ2

s = 1, . . . , n

These terms make up a geometric series by assumption 2 and therefore are

summable giving a finite M̃ .

However, even this assumption is quite strict. The normal distribution

cannot satisfy this condition as τn = O(n!) if ut is normally distributed

for even n. Some truncated distributions satisfy this condition but only

truncated distributions with support in [−1, 1] are guaranteed to satisfy it
for all |γ| < 1. To conclude, covariance stationarity of the DRC(1, 1) model

requires quite strict conditions. If µ 	= 0 we need assumption 1, γ < 1 and

µ̃2 + σ2/(1− γ2) < 1. If µ = 0, assumption 1 can be relaxed to assumption

2.
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