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Abstract

This paper develops a break detection procedure for the well-known AR(p)
linear panel data model with exogenous or pre-determined regressors. The test
allows for a structural break in the slope parameters as well as in the fixed
effects. Breaks in the latter are not constrained by any type of cross-sectional
homogeneity and are allowed to be correlated with all past information.
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1 Introduction

With the increasing availability of longitudinal datasets, panel data methods have
become a popular tool in applied econometric research. By comparing individuals
across both the cross-sectional and the intertemporal dimension, more powerful in-
ferences can be made than with a single cross-section or a single time-series. The
most commonly used linear regression models for panel data impose fairly stringent
additional structure on the data by assuming that slope coefficients are constant
across individuals and over time, and that unobserved variables are constant over
time.
In this paper, we develop a method to test the validity of the latter two as-

sumptions. More particularly, we construct a standard significance test for the null
hypothesis that unobserved variables are constant across time and that slope co-
efficients are constant across both dimensions against the alternative that there is
a single “structural break” at a possibly unknown point in time in either or both
components. Our method can serve as a diagnostic procedure as well as a break
detection device. The method is designed for use with the type of short panels often
encountered in practical work.
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Our motivation for studying breaks in slope parameters and individual inter-
cepts is twofold. Firstly, a commonly cited virtue of panel data models is their
ability to identify structural parameters that are difficult to estimate using a single
cross-section because of the presence of unobserved heterogeneity. Identification of
the parameters of interest using panel data is based on the assumption that the un-
observed variables are constant over time and can therefore be “differenced away”.
In many practical applications this assumption is reasonable1, at least in the sense
that these variables’ fluctuations over time are very small in comparison with other
sources of variability. However, when the system is subject to a significant shock
(as e.g. in the examples cited below), the situation may be less clear-cut.
Secondly, one can think of a panel dataset as a concatenation of time series.

In the time series literature there is a large and expanding literature on detection
of structural breaks, starting with the well-known tests of Chow (1960), Quandt
(1960) and Brown, Durbin, and Evans (1975) through more recent contributions by
Andrews (1993), Bai (1994), Bai (1997), Bai and Perron (1998) and Perron (1989),
to name just a few. Although panel datasets typically span a much shorter time
period than time series data there is no reason why the former could not be subject
to a structural break, nor is the limited time horizon an impediment to consistent
parameter estimation or detection of the breakpoint2. In the time-series literature,
extensive evidence has emerged that allowing for intercept breaks can alter the
conclusions of unit root tests and reduce the magnitude of estimates of persistence;
the same phenomenon may be present in the panel data context.
Examples of the kind of effects we have in mind are not difficult to find. When

considering a model of firm-level output or investment, trade liberalization may sig-
nificantly affect unobservable characteristics such as management practices, strat-
egy, marketing methods etc. Both the direction and magnitude of the effect will
typically differ very significantly across firms (by market, national vs international
competitiveness, reliance on protection etc). Financial reforms such as the UK con-
sumer credit reform in 1997 may affect consumption / saving decisions of different
agents in different ways (e.g. depending on their reliance on consumer credit and
risk aversion). In a model explaining dividend payout ratios, changing dividend tax-
ation legislation will have an impact on companies’ decision making regarding the
optimal mix between buy-backs, dividend payouts and internal investment. This
impact may be dependent on how different types of shareholders are affected by the
legislation and hence vary across companies.
An important theme in the above examples is the differential impact exogenous

shocks can have across the cross-section3. In the light of important changes in
their environment, agents may be forced to reoptimize very costly decisions, thereby
changing some or all (to the econometrician) unobservable characteristics. Since
these characteristics were not constant across units before the break, there is no

1For instance, when estimating a wage equation the unobserved variable could capture the effect
of “ability”, which can reasonably be assumed to be time-invariant.

2The limited time-horizon does, however, justify our decision to restrict our attention to the
case in which only a single break occurs.

3It is important to note that such effects cannot be captured by the inclusion of a period—specific
dummy variable.
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reason to believe that they will change by the same amount in response to a major
shock. Additionally, the new decisions are likely to be related to the pre-break
situation and history4.
Given the importance of structural changes, both in terms of fundamental as-

sumptions regarding identification in panel data models and the attention they have
received in the time-series literature, there is a comparative lack of methods for their
detection in a panel data context. The closest related to our work in practical terms
is Andrews and Lu (2001), who consider a model selection approach to the break
detection problem based on an extention of Andrews (1999). They do not allow for
the type of breaks in unobserved individual effects we focus on, but their approach
can be extended to include this feature using the ideas presented in Section 3 below.
Holtz-Eakin, Newey, and Rosen (1988) and Ahn, Lee, and Schmidt (2001) discuss
estimation of a number of models in which individual effects fluctuate through time
following a common temporal pattern. When following such an approach, multiple
changes in fixed effects may occur without jeopardizing identification. However, in
the context of the examples cited above, our assumption that fixed effects can change
independently for different cross-sectional units is more appropriate. Additionally
it is consistent with the standard interpretation of fixed effects as agents’ decision
variables or modifiable characteristics.
This paper is organized as follows. In Section 2 we define the problem precisely.

Section 3 develops the break detection procedure based on the GMM estimator of
Arellano and Bond (1991). Section 4 examines the finite-sample behaviour of our
test in a Monte Carlo experiment. Section 5 contains an illustrative application and
Section 6 concludes.

2 Problem description and assumptions

Our test aims to detect structural breaks in the familiar linear AR(p) regression
model with exogenous or pre-determined regressors for a panel withN cross-sectional
units and T time-periods. That is, under the null hypothesis that no breaks occur
we postulate the model

yi,t = ηi +

pX
l=1

ρlyi,t−l + β0xi,t + vt + εi,t

The model contains k time-varying5 regressors xi,t. The error term has the usual
error component structure consisting of an individual-specific “fixed or random6

effect” ηi which is typically correlated with some or all regressors, a time-period-
specific component vt and a temporally and cross-sectionally varying noise term εi,t.

4One may argue that this also holds for regression parameters. However, in this paper we will
not address this more difficult problem and consider the case where slope parameters can change
over time without abandoning cross-sectional homogeneity. In doing so, we keep the structure of
the “post-break model” identical to that of the “pre-break model”.

5Coefficients on regressors that do not vary over time are not identifiable by the estimation
procedure we will use.

6In what follows, we treat η as a random variable.
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The latter is assumed to be uncorrelated across time, cross-sectionally independent
with bounded fourth moments and uncorrelated with the other random variables in
the model. The initial conditions yi,1, ..., yi,p may be correlated with ηi but not with
the idiosyncratic noise εi,t. These assumptions on the process and error structure
are sometimes referred to as the “standard assumptions” - see e.g. Ahn and Schmidt
(1995).
Under the alternative hypothesis, a single structural break may occur at some

(possibly unknown) time-point τ , p+ 2 ≤ τ ≤ T , from when onwards slope param-
eters and fixed effects come into place:

yi,t = ηi +

pX
l=1

ρlyi,t−l + β0xi,t + vt + εi,t t < τ (1)

yi,t = (ηi + δi,τ ) +

pX
l=1

(ρl + ωτl) yi,t−l + (β + γτ)
0 xi,t + vt + εi,t t ≥ τ (2)

The (scalar) parameters ωτl (l = 1, ..., p) and the vector γτ denote the changes
in the autocorrelation and slope parameters, respectively. The change δi,τ in the
fixed effect is not restricted to be identical across individuals and may be correlated
with ηi and past idiosyncratic shocks εi,t (t < τ). No assumptions are made on the
random variables η and δτ apart from existence of second moments (including joint
moments with the initial conditions). Any kind of dependence structure between δτ
and past εi,t and xi,t and initial conditions yi,1, ..., yi,p is allowed. Summarizing, we
have the following assumptions regarding the fixed effects break:

E(δi,τεi,s) = / 6= 0 (s < τ) ; = 0 (s ≥ τ)

E(δi,τηi) = / 6= 0
E(δi,τyi,π) = / 6= 0 (π = 1, ..., p)

As mentioned in the Introduction, these assumptions regarding the changes in the
fixed effects differ from those of Holtz-Eakin, Newey, and Rosen (1988) and Ahn,
Lee, and Schmidt (2001), who allow for changes in every time-period but impose a
common temporal pattern using the parametrization ηi,t = θtµi.
Our aim is to detect the breakpoint τ and to derive consistent estimators for

all slope parameters (including their changes). We do this in the well-known GMM
framework used by Arellano and Bond (1991), amongs others. Asymptotics are in
the N-direction with T considered fixed. This implies that the individual intercepts
ηi and their changes δi,τ can not be treated as consistently estimable parameters.
The assumptions on the error structure and initial conditions made above are the
generalization of those of Arellano and Bond (1991) to the specification (1) - (2) and
are in that sense minimal. We wish to refrain from making additional assumptions
on the structure of the model in order to avoid spuriously detecting breaks. For
instance, Arellano and Bover (1995) show how imposing mean-stationarity leads to
an improved estimator. In our context this is not a natural assumption since our
aim is to detect a particular type of departure from stationarity.
We remark that the assumptions on the error structure are too general to allow

identification without a restriction on the number of breakpoints. By assuming the
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presence of at most a single breakpoint we can circumvent the problem. The fact
that the breakpoint is unknown is dealt with by an iterative procedure, as explained
below.

3 Break detection

3.1 Outline

Break detection in the set-up of model (1) - (2) follows an analogous procedure
to that used in some of the time-series literature (e.g. Andrews (1993), Zivot and
Andrews (1992)) and in the panel data literature (Tzavalis (2002)). We construct
a standard significance test where the null hypothesis contains no break and the
alternative allows for a single break. This break-point is not known (but we also
cover the case where it is known); hence one can look at the alternative hypothesis
as a number of models of the form (1) - (2), each associated with a break at some
point τ = p+ 2, ..., T .
For each potential break-point, the parameters of the model (1) - (2) is estimated

using GMM. In order to obtain a consistent estimator for a model of the form (1) -
(2) with given τ , the standard moment conditions will obviously need to be adapted,
except in a few special cases to be discussed below. The difference in the value of
the GMM objective functions under the null and each of the alternatives will be the
basis for the test-statistic. The point τ for which this difference is the largest is the
candidate for the break-point7. The asymptotic distribution of the largest of these
T − (p+1) differences is not the familiar chi-square distribution that often features
in GMM specification testing, but that of the maximum of T − (p+ 1) (correlated)
chi-squares8. The resulting confidence intervals will be wider than those for the case
of a known breakpoint, reflecting the search over a number of possibilities for the
“worst evidence” against the null.
To avoid obscuring the ideas through notational clutter associated with the gen-

eral setup in (1) - (2), we first explain the details of our test in the simplified setting
of the dynamic AR(1) panel data model without regressors:

yi,t = ηi + ρyi,t−1 + εi,t t < τ (3)

yi,t = (ηi + δi,τ ) + (ρ+ ωτ) yi,t−1 + εi,t t ≥ τ (4)

As before, a structural break may occur at (unknown) time τ (3 ≤ τ ≤ T ) either in
the individual-specific intercepts ηi or in the autoregressive parameter ρ (or both).
Since one can always include time dummies, we assume that E(ηi) = E(δiτ ) = 0
∀i, τ . The other features of the model remain as before.

7We do not claim that this criterion leads to the optimal test in any conventional sense of the
word.

8Because we use cross-sectional asymptotics, this result is much easier to establish than in
related work in the time-series literature.

5



3.2 Moment functions for the AR(1) model

In order to construct the GMM estimator for a model of the form (3) - (4) with fixed
τ , we examine how the moment functions for the Arellano-Bond estimator change
in the presence of a structural break. These moment functions are derived from the
insight that past levels are valid instruments for differenced equations if no break
occurs, or more generally that

E [yi,s∆εi,t(θ)] = 0 t ≥ 3; s ≤ t− 2 (5)

with θ = ρ. Expression (5) is still valid in the presence of a structural break, but as
we now show, the corresponding moment functions differ and θ may contain extra
parameters related to the break.
It is useful to introduce some additional notation for the moment functions at

this point. One can order the moment conditions (5) by t and then by s to get a
(T −2)(T −1)/2 vectorm2(θ2) with components m

(j)
2 (θ2), j = 1, ..., (T −2)(T −1)/2

m2(θ2) =


E [yi,1 (∆yi,3 − ρ∆yi,2)]
E [yi,1 (∆yi,4 − ρ∆yi,3)]
E [yi,2 (∆yi,4 − ρ∆yi,3)]

...
E [yi,T−2 (∆yi,T − ρ∆yi,T−1)]

 (6)

The subscript-2 of the moment functions and the parameter vector refers to “break
at t = 2”, which is equivalent to “no break” because both the autoregressive param-
eter and the fixed effects only “start existing” at t = 2. Since the only parameter
to be estimated under the null is ρ, one has θ2 = ρ. When a second subscript
is added, this refers to an observation on a particular individual i, e.g. m2i(ρ) =
[yi,1 (∆yi,3 − ρ∆yi,2) · · · yi,T−2 (∆yi,T − ρ∆yi,T−1)]

0. Som2(ρ) = E (m2i(ρ)). The mo-
ment covariance matrix is then defined as Φ(ρ) = E [m2i(ρ)m2i(ρ)

0].
Using this notation, we now examine what m3(θ3) (the vector of moment func-

tions when a break occurs at τ = 3) will look like. As mentioned before, the
statements (5) are still valid in these situations, but the actual moment functions
derived from them are somewhat different. First consider the first component (the
moment condition based on the differenced 3rd equation instrumented by yi1).

E [yi,1∆εi,3] = E [yi,1 ({yi,3 − (ηi + δi,3)− (ρ+ ω3) yi,2}− {yi,2 − ηi − ρyi,1})]
= E [yi,1 (∆yi,3 − ρ∆yi,2 − δi,3 − ω3yi,2)]

= E [yi,1∆yi,3]− ρE [yi,1∆yi,2]−E [yi,1δi,3]− ω3E [yi,1yi,2]

The two final terms in this expression did not show up in the corresponding mo-
ment functions derived under H0. If there is a break at t = 3, it is possible that
E [yi,1δi,3] ≡ σy1δ3 6= 0. Additionally, ω3 need not be equal to zero. Hence the first
moment condition is

m
(1)
3 (θ3) = E [yi,1∆yi,3]− ρE [yi,1∆yi,2]− σy1δ3 − ω3E [yi,1yi,2] = 0 (7)

where θ3 = [ρ ω3 σy1δ3]
0. As a prelude to Remark 1 below, we notice that if a break

occurs at τ = 3 with the properties that either the slope coefficient changes or
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the individual effect undergoes a shift that is correlated with the initial conditions,
the standard Arellano-Bond estimator will be inconsistent. However, if there is no
slope-break and the intercept shifts are uncorrelated with the initial conditions, i.e.
σy1δ3 = ω3 = 0, there is no inconsistency.
The other moment conditions m(j)

3 ; j ≥ 29 are similar to the familiar Arellano-
Bond expressions, but with an autoregressive parameter ρ+ ω3:

m
(j)
3 (θ3) = E [yi,s∆yi,t]− (ρ+ ω3)E [yi,s∆yi,t−1] = 0 t ≥ 4, s ≤ t− 2 (8)

If the objective were to test for the presence of a break at t = 3, one could
now simply construct a Likelihood Ratio (Distance Metric) type statistic based on
estimation using the standard Arellano-Bond moment conditions on the one hand
and those in expression (8) on the other, discarding the moment function (7). If
one uses the efficient GMM weighting matrix to estimate the parameters under both
hypotheses then this LR statistic has a χ2(1) distribution under the null, as shown
below.
When testing for a break at t = τ , τ > 3, one can follow the same procedure

based on the following general expressions for the moment functions mτ :

1. All functions m(j)
τ (θτ) where j ≤ (τ − 3)(τ − 2)/2 (that is, derived from equa-

tions before the breakpoint) are like the components of the vector in (6).

2. All functions m(j)
τ (θτ) with j > (τ − 2)(τ − 1)/2 (derived from equations after

the breakpoint) are of the form (8) (with appropriate timings).

3. Moment functions derived from the differenced equation for t = τ (i.e. m(j)
τ (θτ)

where (τ − 3)(τ − 2)/2 < j ≤ (τ − 2)(τ − 1)/2) are of the form

m(j)
τ (θτ) = E [yi,s∆yi,τ ]− ρE [yi,s∆yi,τ−1]−

Ã
1−ρs−1
1−ρ σηδτ+

ρs−1σy1δτ +
Ps−2

k=0 ρ
kσεs−kδτ

!
(9)

−ωτE [yi,syi,τ−1]

where σηδτ := E [ηδτ ], σy1δτ := E [y1δτ ], σεs−kδτ := E [εs−kδτ ].

Expression (9) is easily derived by realizing that for any s < τ one has yis =
ηi
¡Ps−2

k=0 ρ
k
¢
+ ρs−1yi1 +

Ps−2
k=0 ρ

kεi,s−k because there is no break before τ . Conse-
quently

E [yi,sδi,τ ] =

Ã
s−2X
k=0

ρk

!
E [ηiδi,τ ] + ρs−1E [yi,1δi,τ ] +

s−2X
k=0

ρkE [εs−kδτ ]

Plugging this expression in equation (5) yields (9).
Only the moment functions of the form (9) contain the parameters related to

intercept breaks; the number of these parameters is greater than the number of mo-
ment conditions. Consequently, the moment functions derived from the differenced

9We do not make the relationship between j and t and s explicit; j is just an index that indicates
the position of the moment function in the vector m3 and is only used to distinguish between the
vector m and its components.
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equation for t = τ will equal zero in sample for any value of the slope parameters.
When estimating the model under the hypothesis that a break occurs at τ , one
can therefore disregard the moment conditions (9) and construct a GMM estimator
using only the remaining moment functions.

Remark 1 It is clear from the above derivation of the moment functions that the
standard Arellano-Bond estimator will be inconsistent when a structural break is
present.
The only exception to this is the case where there is no slope break and the individual
intercept breaks are uncorrelated with the initial fixed effects, initial conditions and
past errors. Indeed, as can be seen from comparing the expressions for m2 and mτ

(τ > 2), the breaks in the fixed effects will essentially be detected by looking at the
covariance of the break-size δτ with the original fixed effect η, the initial conditions
y1 and past idiosyncratic errors. No parameter capturing E(δ2τ ) is present. This
means that breaks in the fixed effects that are not correlated with either η, ε or y1
will not be detected.
The intuition for this is as follows. The moment conditions we have used relate to
differenced data. When there is a break, some or all of the fixed effects will follow
a step function (of time). Their differences (looked at as a function of time) are
zero except for a "spike" at the break-point. When the break is independent of all
other variables and the model is estimated under the null of no break, this spike is
indistinguishable from an increase in the variance of ∆ετ . Since the Arellano-Bond
moment conditions do not impose homoskedasticity, such an increase in variance is
not at odds with the assumptions under the null.

Remark 2 As a corrolary to the previous remark, one sees that the standard Arellano-
Bond estimator is robust to uncorrelated breaks in fixed effects, regardless of whether
these occur more than once.

Remark 3 When correlated fixed effects breaks and/or slope breaks occur, the above
procedure provides consistent parameter estimates when the breakpoint is known.

Remark 4 For certain τ , not all components of the vector θτ are identified under
the alternative. For instance in the case of τ = 3, it is clear from expressions (7)
- (8) that σy1δ3 and ω3 are not jointly identified. Hence the “size” of the model to
be estimated under the alternative that a break occurs at τ will depend on τ and the
dimension of the parameter θτ is adjusted accordingly.

3.3 Test-statistic

For any given candidate breakpoint τ , the slope and slope break parameters ρ and ωτ

can be estimated by GMM. To construct the estimator, the moment functions based
on the differenced equation at the breakpoint are discarded. The same procedure
can be followed to obtain estimates for ρ under the null that no break occurs. Given
a consistent estimate of the efficient GMM weighting matrix and estimated sample
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moments vectors bmτ(bθτ)10 evaluated at the estimated parameters bθτ for each τ , one
can construct a vector of Likelihood Ratio statistics.
Somemore notation is needed at this point. LetQτ(θτ) = mτ (θτ)

0Φτ (θ
o
τ)
−1mτ (θτ)

denote the objective function for the model with a break at time τ evaluated at pa-
rameter value θτ , where in this case the population moments and the population
covariance matrix Φτ(θ

o
τ ) = E [mτi(θ

o
τ)mτi(θ

o
τ)
0] evaluated at the true parameter

value θoτ are used. The sample counterpart is bQτ(bθτ) = bmτ(bθτ )0bΦ−1τ bmτ (bθτ) wherebΦτ =
1
n

Ph
mτi( bθτ)mτi( bθτ )0i. Note that the dimension of this matrix is smaller

under the alternative than under the null if the former contains intercept breaks.
Note also that depending on the timing of the break, slope break parameters may
not be identifiable11.
Estimation of the model under the alternative for τ = 3, ..., T and under the null

yields the T − 2 vector V (bθ) of LR−statistics
V (bθ) = n

h bQ2(bθ2)− bQ3(bθ3) · · · bQ2(bθ2)− bQT (bθT )i (10)

bθ is the vector containing all parameter estimates. Denote its components by V (k)(bθ).
The test-statistic is the maximum of the scaled LR-statistics

Vmax(bθ) = max
k=1,...,T−2

V (k)(bθ).S(k) (11)

and the candidate break-point is τ = k+2 if the maximum is attained at component
k. The scaling factor S(k) is constructed such that each component V (k)(bθ).S(k)
has the same marginal distribution.
Note that one could choose to not include all lagged y as instruments when

estimating the model under the null. The above procedure still applies in this case
as long as no instruments are used under the alternative that are not used under
the null.

3.4 Asymptotic distribution

The derivation of the asymptotic distribution of both tests is straightforward and
is therefore relegated to the Appendix. Here we present the results and a brief
discussion. For the test with known break-point, the asymptotics are similar to
the standard Sargan difference test. The only difference between our test and a
Sargan difference test is that in our case the model with fewer moment conditions
also contains more parameters. This does not affect asymptotic chi-squaredness of
the test, however:

Theorem 1 (known breakpoint) The test-statistic n
³ bQ2(bθ2)− bQτ(bθτ)´ is asymp-

totically chi-squared distributed with #(omitted moment conditions) + (dim(θτ ) −
dim(θ2)) degrees of freedom.

10The "hat" on m indicates that the expectations are replaced by sample averages.
11In the basic AR(1) model we consider here, this is the case when τ = 3 and τ = T .

9



Proof. See Appendix.
The actual number of degrees of freedom depends on the model specification

and how many moment conditions the user chooses to include for estimation of the
model without a break.
The test with unknown breakpoint does not have a chi-square distribution but

that of the maximum of correlated (scaled) chi-squared variables. The dependence
structure is given by the matrices Gτ in Theorem 2. For precise formulae the reader
is referred to the Appendix.

Theorem 2 (unknown breakpoint) The statistic Vmax(bθ) is asymptotically distributed
as max(v0Gτminv, ..., v

0GTv) where v ∼ N(0, Id) and d is the number of moment
conditions used when estimating the parameters under the null of no break. The
idempotent matrices Gτ depend on the parameters but can be consistently estimated.

Proof. See Appendix.
In practice, quantiles of the asymptotic distribution need to be computed by

simulation. Each replication involves the generation of T − τmin+1 normal variates
and the computation of the quadratic forms v0Gτv.
To derive this asymptotic distribution, only standard arguments are needed: the

weak convergence of the scaled vector V (bθ) in (10) to its limit is a simple case of mul-
tivariate convergence in distribution. This is a consequence of our decision to keep
T fixed in the approximation procedure. In contrast, in related work in time-series
analysis the convergence is to a process with index set the positive real line because
asymptotics are in the time-direction. Ensuring weak converge then becomes much
harder, and in particular requires establishing asymptotic equicontinuity of the nor-
malized score process - see Andrews and Ploberger (1994). In our case the limiting
stochastic process V (k)(bθ).S(k) (with index k) has a finite index set.
3.5 Generalization to the AR(p) model with exogenous re-

gressors

The generalization of the procedure to the full model described in expressions (1)
- (2) is straightforward and does not contain any new insights. In fact, the test
procedure and the asymptotic distribution theory are identical. It only remains to
derive the exact expressions for the Arellano-Bond moment functions in the presence
of a structural break. As before, they are derived from the expressions

E [yi,s∆εi,t] = 0 t ≥ p+ 2; s ≤ t− 2 (12)

E [xi,s∆εi,t] = 0 t ≥ p+ 2 (13)

In (13), the feasible values of s are not explicitly stated: which lags and leads of the
regressors can be used as instruments depends on their “exogeneity status”. Their
treatment is identical to the estimation procedure for the AR(p) panel data model
without structural breaks - see Arellano and Bond (1991) for details. For clarity, we
split the discussion in two parts.
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Moments based on (13) The moments for t < τ and t > τ are standard (in the
latter case with the post-break parameters). The only issue arises for the moments
for the break-point equation:

E(xi,s∆εi,τ ) = E

·
xis

µ ¡
yi,τ − (ηi + δiτ )−

Pp
l=1 (ρl + ωτl) yi,τ−l − (β + γτ)

0 xi,τ − εi,τ
¢−

(yi,τ−1 − ηi +
Pp

l=1 ρlyi,τ−1−l + β0xi,τ + εi,τ )

¶¸
= E (xi,s∆yi,τ )−

pX
l=1

ρlE (xi,s∆yi,τ−l)− β0E (xi,s∆xi,τ )

−E (xi,sδi,τ )−
pX
l=1

ωτlE (xi,s yi,τ−l)− γ0τE (xi,sxi,τ ) (14)

Multiplication of two vectors of the same dimension is interpreted as component-
by-component multiplication.
The 3 last terms are related to the structural break. In particular, E (xi,sδi,τ )

is an extra parameter, call it σxsδτ . The user may specify that E (xi,sδi,τ ) = 0, but
in general this will not be the case; hence moment conditions (14) are not used for
estimation under the alternative. This shows that regressors can contribute to break
detection to the extent that they are related to the break.

Moments based on (12) These moments are again standard for t < τ and t > τ .
For the break-point equation we have as above

E(yi,s∆εi,τ ) = E (yi,s∆yi,τ )−
pX
l=1

ρlE (yi,s∆yi,τ−l)− β0E (yi,s∆xi,τ )

−E (yi,sδi,τ )−
pX
l=1

ωτlE (yi,s yi,τ−1−l)− γ0τE (yi,sxi,τ ) (15)

Now the term E (yi,sδi,τ ) is somewhat problematic as it needs to be expressed in
terms of the initial conditions (as in the simple AR(1) case); the only difference is
that the recursion is not as simple as in the AR(1) case. Transform the system in
(1) into a first-order p-dimensional system (the so-called companion form). Define
yi,t = [yi,t...yi,t−p+1]. (1) is then the first component in the system of equations

yi,t = e1ηi +


ρ1 ρ2 · · · ρp
1 0 · · · 0
0 1 · · · 0
0 · · · 1 0

 yi,t−1 +


β1 β2 · · · βk
0 0 · · · 0
...

...
. . .

...
0 · · · · · · 0

xi,t + e1εi,t

= e1ηi +Π yi,t−1 +B xi,t + e1εi,t

where e1 = (1 0 ... 0)0. Now recursions are easy again: one gets

yi,t =

Ã
t−p+1X
j=0

Πj

!
e1ηi +Πt−pyi,p +

t−p+1X
j=0

ΠjBxi,t−j +
t−p+1X
j=0

Πje1εi,t−j

11



This is not easily expressed in terms of the original parameters, but the term
E (yisδiτ) can be written as

E (yi,sδi,τ ) =

Ã
t−p+1X
j=0

e01Π
je1

!
σηδτ+e

0
1Π

t−pσypδτ+
t−p+1X
j=0

e01Π
jBσxt−jδτ+

t−p+1X
j=0

e
0
1Π

je1σεt−jδτ

Here σηδτ and σεt−jδτ are scalar parameters, and σypδτ and σxt−jδτ are p and k vectors
of parameters, respectively. As in the simple case, moment conditions (15) contain
too many new parameters and are not used for estimation under the alternative.
Hence the testing procedure works exactly as in the simple AR(1) case.

4 Finite-sample properties

We now discuss the results of a small Monte Carlo experiment. The set-up is as
follows. Data are generated from a DGP described by

yi,t = η∗i (1− ρ) + ρyi,t−1 + εi,t t < τ (16)

yi,t =
¡
η∗i + δ∗i,τ

¢
(1− ρ− ωτ) + (ρ+ ωτ) yi,t−1 + εi,t t ≥ τ (17)

where ε, η∗i , δ
∗
iτ and the initial conditions yi1 are jointly normally distributed. The

difference with our notation in (3) - (4) is that the fixed effects are now denoted by
η∗i (1− ρ) and (η∗i + δ∗iτ ) (1− ρ− ωτ). η∗i and η

∗
i + δ∗iτ are interpreted as the mean of

the stationary distribution of the relevant regime12.
The initial conditions are normally distributed: yi,1 = η∗i+ei with ei ∼ N(0, σ2e/(1−

ρ2)). Here σε is the standard deviation of the idiosyncratic errors, which is fixed to
1 in all the experiments; the standard deviation ση of the pre-break fixed effects is
set to 2 throughout. The ratio of these standard deviations affects the results signif-
icantly: when the noise in the data is large, the test loses power; when the noise is
small compared to the variability of the fixed effects, the test behaves badly under
the null but has larger power. However, these effects only change the conclusions
below for rather unrealistic values (ratios >5 or <1/5).
The dependence of the fixed effects break δ∗i,τ on η∗i and past ε was specified as

follows: Corr(δ∗i,τ , η
∗
i ) = ρηδ, Corr(δ

∗
i,τ , εi,t) = 1{t<τ}ρηδ.t

2/(τ − 1)2, i.e. the idiosyn-
cratic shock the period before the break has the same correlation with the intercept
break as the initial fixed effect; then the correlation decreases quadratically with the
lag. The standard deviation of the fixed effects break is kept fixed throughout all
experiments at σδ = 0.4, i.e. 20% of the pre-break fixed effect. To mimic common
practice in applied work with the Arellano-Bond estimator, the maximum number
of instruments for any estimating equation is fixed at 4. When T = 6, this implies
the full set of moment conditions.
In the experiments, we investigate the effect of the sample dimensions, the lo-

cation of the breakpoint, the autocorrelation parameter and the size of its change,
and of the correlation of the fixed effects break with the initial fixed effect and past
idiosyncratic shocks. All computations are executed using programs written in the
matrix language Ox version 3.30 (Doornik (1999)).

12This is a more easily interpretable quantity than the intercept itself.
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ρ = 0.5 ρ = 0.8
τ = 3 τ = 5 τ = 3 τ = 5

N = 100;T = 6 full 6/7 6 6/7 8
red. 7/8 7 8/9 7

N = 500;T = 6 full 4/7 4 4/6 5
red. 6/5 5 6/7 6

N = 500;T = 12 full 6/7 7 6/7 5
red. 5/6 7 5/6 5

Table 1: actual size of the tests at the 5 percent level

4.1 Size

Rejection frequencies of the test for a range of experimental designs are reported in
Table 1. The rows marked “full” contain results for the test for breaks in both fixed
effects and slopes, whereas the one marked "red." (reduced) refers to the test for a
break in the fixed effects only. Where the notation a/b is used, a is the rejection
frequency for the test with known breakpoint and b that for unknown breakpoint.
In some cells, the latter is suppressed to avoid duplication.
There seems to be only a very slight tendency to over-rejection. In a number of

further experiments - not reported here - we did notice an increase in size as the
ratio of the variability of the fixed effects to that of the idiosyncratic errors was
increased furtherr.
Other studies on the GMM estimator for the AR1 panel data model have reported

often substantial negative biases in the estimates of the autocorrelation parameter.
When estimating the model under the alternative of a break, these biases do not
disappear, and become more severe in some cases (details not reported here).

4.2 Power

We now study the power of the tests. Tables 2, 3 and 4 present the results of a series
of experiments for 3 different sample sizes. Results are displayed in the form a/b(c)
where a represents the rejection frequency at the nominal 5% level of the test with
known breakpoint, b that of the test with unknown breakpoint, and c the frequency
of correct breakpoint detection13.
For the small sample size (N = 100; T = 6) in Table 2, power at the nominal 5%

level hardly exceeds the actual size for most cases. However, comparison with the
results in Table 1 reveals that the test is not biased. Additionally, correct detection of
the breakpoint happens in less than 50%where rejection occurs. The only exceptions
are the cases with a positive (negative) slope break and positive (negative) fixed
effect break correlation. Not allowing for a break in the autocorrelation parameter
in the model (third and fourth lines from the bottom of the table) does not result
in a noticeable increase in performance.
The low power of the test in small samples against alternatives without a slope

break suggests that the Arellano-Bond estimator is relatively robust against insta-

13One has c ≤ b in general; if the test always finds the correct breakpoint when it rejects, c = b.
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ρ = 0.5 ρ = 0.8
τ = 3 τ = 5 τ = 3 τ = 5

ω = −0.1 ρηδ = −0.5 21/15(11) 12/11(6) 19/17(11) 9/11(5)
ρηδ = 0.5 7/7(2) 11/7(3) 9/12(4) 6/5(2)

ω = 0 ρηδ = −0.5 11/10(5) 8/6(2) 8/8(5) 8/6(2)
ρηδ = 0.5 9/7(1) 9/7(2) 5/7(2) 6/12(3)

ω = N\A ρηδ = −0.5 10/9(4) 8/10(5) 7/8(2) 7/9(3)
(no slop e break) ρηδ = 0.5 8/6(2) 8/7(2) 6/8(2) 6/7(2)
ω = 0.1 ρηδ = −0.5 6/6(2) 6/7(2) 5/6(1) 8/9(1)

ρηδ = 0.5 14/10(4) 9/6(0) 5/7(1) 10/10(2)

Table 2: power for N=100; T=6

ρ = 0.5 ρ = 0.8
τ = 3 τ = 5 τ = 3 τ = 5

ω = −0.1 ρηδ = −0.5 69/58(51) 52/40(33) 63/56(47) 28/22(18)
ρηδ = 0.5 18/11(5) 28/22(15) 20/17(11) 7/6(3)

ω = 0 ρηδ = −0.5 27/20(14) 17/20(12) 5/8(3) 5/8(4)
ρηδ = 0.5 36/21(12) 30/22(14) 9/6(2) 6/9(2)

ω = N\A ρηδ = −0.5 26/15(11) 23/21(15) 8/7(4) 6/8(3)
(no slop e break) ρηδ = 0.5 40/22(14) 35/20(14) 8/7(1) 7/8(1)
ω = 0.1 ρηδ = −0.5 4/6(3) 16/9(4) 22/11(3) 9/11(2)

ρηδ = 0.5 62/42(29) 33/17(10) 28/15(3) 20/21(5)

Table 3: power for N=500; T=6

bility in the fixed effects, even if their changes are correlated with other variables in
the model.
Power properties greatly improve with an increase in cross-sectional sample size,

as illustrated in Table 3. When ω and ρηδ have the same sign, both tests perform
well, and the test with unknown breakpoint functions as a good break detection
device. Comparing these results with the case where ω = 0, it seems that slope
breaks are easier to detect than fixed effects breaks. This is true regardless of
whether one incorporates knowledge that there is no slope break.
Generally, the results for ρ = 0.8 are worse than those for ρ = 0.5, especially

in the absence of a slope break. This may be partly explained by the fact that
the invalidity of the standard Arrelano-Bond moment conditions depends on the
covariance of δ∗iτ(1 − ρ − ωτ ) with other variables in the model, and for a given
magnitude of δ∗iτ , the total fixed effect is smaller the larger ρ.
Increasing the time-series dimension of the data as well, the results improve

further. Table 4 reports very large power and good detection accuracy in all cases
except when ρ is large and no slope break is present.
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ρ = 0.5 ρ = 0.8
τ = 6 τ = 10 τ = 6 τ = 10

ω = −0.1 ρηδ = −0.5 90/84(66) 79/68(57) 74/64(47) 55/42(36)
ρηδ = 0.5 49/31(18) 76/56(39) 14/13(4) 6/9(1)

ω = 0 ρηδ = −0.5 41/28(17) 52/31(21) 7/9(2) 8/8(3)
ρηδ = 0.5 63/33(21) 73/46(32) 7/7(1) 6/10(0)

ω = N\A ρηδ = −0.5 44/26(15) 50/33/(24) 8/9(2) 11/9(3)
(no slop e break) ρηδ = 0.5 70/42(28) 73/49(35) 8/7(2) 12/10(1)
ω = 0.1 ρηδ = −0.5 25/17(7) 32/21(11) 27/15(3) 11/7(1)

ρηδ = 0.5 90/71(44) 76/47(38) 40/20(6) 34/35(6)

Table 4: power for N=500; T=12

variable parameter 
estimate t-ratio

EXPEND(-1) 0.404 12.000
REV(-1) 0.034 1.040
GRANTS(-1) 0.068 0.633
Sargan test: 62.93, p-value = 0.004

Table 5: Results for standard 2-step Arellano-Bond estimation

5 An application

As an illustration of how break detection can affect parameter estimates in practice,
we now apply our method to the data taken from Dahlberg and Johansson (2000).
This study examines causal links between expenditures and revenues of local gov-
ernments based on a yearly sample of 265 Swedish municipalities over the period
1979-1987. Since our aim is purely illustrative, we will not replicate the entire orig-
inal study, but rather re-examine the results presented in Table VI of Dahlberg and
Johansson (2000, p. 414). In particular, we will re-estimate the equation

EXPENDi,t = ηi+ρEXPENDi,t−1+β1REVi,t−1+β2GRANTSi,t−1+vt+εi,t (18)

where EXPEND denotes local government expenditures and REV and GRANTS
represent the two components of revenues (own-source revenues and special grants
from central government). The parameters β1 and β2 do not have a structural
interpretation; rather, the aim of the original paper is to examine whether the
revenue components Granger-cause expenditures. This is simply done by examining
the statistical significance of the parameter estimates.
We do not wish to question the issues addressed in Dahlberg and Johansson

(2000, p. 414)14; instead we illustrate what kinds of effects can arise when a struc-
tural break is accounted for. First applying the standard Arellano-Bond estimator
for the model (18) yields the results in Table 5. We only use the second and third
lags of each variable as instruments (resulting in a total of (3 + 6× (9− 3))+7 = 46
14The original paper is concerned with the reliability of standard GMM asymptotics and exam-

ines whether bootstrap confidence intervals yield different inferences. The authors find that this is
indeed the case, both in a Monte Carlo experiment and in the actual data.
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test-statistic p-value
unknown 
breakpoint

19.7 (attained for 
break in 1983)

0.02

known BP 
(break in 1983) 19.7 0.003

Table 6: Results for unknown and known breakpoint tests. Tests do not allow for
the presence of slope breaks (but these turn out to be not important).

moment conditions) because including further lags results in numerical singularity of
the moment covariance matrix15. The estimates in Table 5 suggest that there is a fair
amount of persistence in expenditures and that own-source revenues and especially
grants do not Granger-cause expenditures. The joint validity of all 36 overidenti-
fying moment restrictions is rejected by the Sargan test. These conclusions change
somewhat when additional lags are included: in particular, the coefficient on REV
does become statistically significant when all Arellano-Bond moment conditions are
used16.
Table 6 presents the results of applying our test for both the known and unknown

breakpoint cases. Our break detector clearly reveals the presence of a structural
break at τ = 1983. We remark that test-statistics are numerically identically since
1983 saw the maximal value of the test-statistic - the test for known breakpoint
was set up with the benefit of hindsight. Note that the p-value for the UBP test is
larger than that for the KBP test since it reflects the fact that some searching for
the largest break has taken place. Variations in the choice of instruments do not
alter the conclusions of the test.
We have not been able to associate the break we discover with any kind of direct

intervention. Reforms of local government finances happened before and after the
sample period, but not in 1983 or 1982. We remark that an actual government
reform is not the exclusive potential explanation for the observed break in the data:
announcements of potential future reforms or even simple redefinitions in public
accounting conventions may also result in the observations we make. Since the
researcher may not always be aware of potential anomalies in the data, our break
detector can act as a useful diagnostic, even when no direct interventions are a priori
suspected to be present.
It is interesting to visually inspect the expenditure series as plotted in Figure 1

for the first 100 observations in the sample17. A level-shift is visible in 1983 for most
expenditure series. Since it is negative for almost all municipalities, part of the effect
will be picked up by the time-dummy. However, in line with the reasoning presented

15This is not really a problem since one can use generalized inverses - results are not substantially
affected by doing so.
16The estimates in Table 5 differ from those in Dahlberg and Johansson (2000) because we use

a different instrument set and a different first-step covariance matrix. When using exactly the
same set-up as the original paper (all appropriate available lags of the dependent variable only
as instruments and the 1st step covariance matrix of Holtz-Eakin, Newey, and Rosen (1988)), the
results below do not change qualitatively (but they become somewhat stronger).
17The order of the observations was kept identical to that of the original file downloaded from

the Journal of Applied Econometrics data archive. Plots of observations 100 to 256 result in the
same overall impression but are suppressed to save space.
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Figure 1: Plot of the expenditure time series by municipality for the first 100 mu-
nicipalities in the sample.

in the introduction, there is no reason why an external intervention should affect all
municipalities in the same manner and to the same extent. This differential impact,
to the extent that it is correlated with the initial municipality-specific effect, leads
to invalidity of some moment restrictions and allows us to detect a break.
We remark that, although the graphical evidence confirms the test results in this

case, purely graphical methods are much less useful in short panel datasets than
they are in typical time-series applications where the data consist of a single long
time-series. Indeed, on the basis of Figure 1 alone, without knowing the information
provided by our break detector, it would have been very difficult to convincingly
argue for the presence of a break, especially given that any “apparent overall shifts
in the data” may be explained by time dummies rather than a structural break.
As a counterpart to Table 5, Table 7 presents the results from estimation under

the alternative that a break occurs at τ = 1983. Clearly, the parameter estimates
are drastically different. Most strikingly, the persistence parameter is much smaller
and statistically far less significant than before. When one does not allow for the
presence of a break, the persistence parameter mistakenly picks up the part of the
level shift in the data that cannot be accounted for by the time-dummy. Once a break
is accounted for, this effect disappears. Further, because the break in the present
dataset is rather large, it represents a significant amount of the variability. This
variability essentially disappears when a break with the correct timing is accounted
for, explaining the drastically different estimation results for the parameters on
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variable parameter 
estimate t-ratio

EXPEND(-1) 0.100 2.657
REV(-1) -0.109 -2.825
GRANTS(-1) 0.398 2.183
Sargan test: 36.39, p-value = 0.20

Table 7: Estimation results under the alternative that a break occurs at 1983. The
estimator is a standard GMM estimator based on only the Arellano-Bond moment
conditions that remain valid in the presence of a break at 1983.

lagged revenues. Perhaps most interestingly, the Sargan test for the model under the
alternative does not reject the validity of the overidentifying restrictions anymore.
This is additional evidence that the structural break led to the apparent inadequacy
of model (18) for this dataset.

6 Conclusion

This paper has developed a break detection procedure for the standard AR(p) panel
regression model. The set-up allows for a general dependence structure between
changes in fixed effects at a single unknown point in time and other sources of
variability in the model as well as for breaks in the slope parameters. Other as-
sumptions on the error structure are the weakest in the literature so as to avoid
spurious detection of breaks.
Although no closed-form solution is available for the distribution of the test

statistic when the breakpoint is unknown, implementation of the procedure is easy.
Its performance was found to be satisfactory in a Monte Carlo study.
In a small illustrative application of our test to data on spending behaviour of

Swedish municipalities, it was shown how the type of intercept breaks that are the
main focus of the paper can affect estimation results. In particular estimates of
persistence in the data can be misleading when structural breaks are ignored.

7 Appendix

In this Appendix, we prove the results given in the main text. We first derive the
asymptotic distribution under the null hypothesis of a single component of V (bθ).
Analogously to that of tests for overidentifying restrictions, this distribution will
be chi-squared if the GMM weighting matrix is a consistent estimate of the inverse
of the covariance matrix of the moment functions. The proof of Theorem (2) then
follows by some reorganizing.

For notational simplicity we consider the case of the AR(1) model with regressors,
i.e. model (1) - (2) with p = 1. The parameter vector θ contains, in the following
order, the autoregressive coefficients, the regressor coefficients, dummy coefficients,
breaks in the AR and regressor coefficients (where applicable), and the dummy co-

18



efficient that is not identified under the alternative (where applicable). Wherever
the symbol 0 or I is used in a matrix without further specifications, the dimensions
should be clear from the context.

Proof of Theorem 1 Because of the assumption of cross-sectional independence
and boundedness of fourth moments of ε, the multivariate Lindeberg-Levy CLT
implies that √

nbmτ(θ
o
τ ) =

√
nbmτ(θ

o
τ)

a∼ N(0,Φτ (θ
o
τ)) ∀τ , t (19)

Now let Dτ denote the Jacobian of the mapping θτ → mτ(θτ) evaluated at θoτ .
A consistent estimate of this matrix can be obtained by replacing expectations by
sample averages and the true parameter value by a consistent estimate. The first
order approximation to the sample moment vectors evaluated at the estimated values
of the parameters reads (see e.g. Newey and McFadden (1994))

√
nbmτ (bθτ) = ³I −Dτ

¡
D0

τΦ
−1
τ Dτ

¢−1
D0

τΦ
−1
´√

nbmτ(θ
o
τ ) + op(1)

Reorganizing this expression, one obtains

√
nΦ−1/2 bmτ(bθτ) =

³
I − Φ−1/2Dτ

¡
D0

τΦ
−1
τ Dτ

¢−1
D0

τΦ
−1/2
τ

´√
nΦ−1/2 bmτ(θ

o
τ ) + op(1)

≡ M
Φ
−1/2
τ Dτ

¡√
nΦ−1/2τ bmτ (θ

o
τ)
¢
+ op(1) (20)

where the last equality is a definition: M
Φ
−1/2
τ Dτ

is the idempotent matrix defining

a projection off the space spanned by the columns of the matrix Φ
−1/2
τ Dτ .

In what follows, fix τ and reorder the vectorm2 such that the moment conditions
that are not included for estimation under the alternative of a break at τ are grouped
at the bottom. The generic component of the vector (10) is written as

V (τ−2)(bθ) = n
³ bQ2(bθ2)− bQτ(bθτ)´ = n

³bm2(bθ2)0bΦ−12 bm2(bθ2)− bmτ(bθτ)0bΦ−1τ bmτ(bθτ)´
Using (20) and ignoring op(1) quantities this becomes

V (τ−2)(bθ) a
=

√
nbm2(θ

o
2)
0Φ−1/22 M

Φ
−1/2
2 D2

√
nΦ

−1/2
2 bm2(θ

o
2) (21)

−√nbmτ(θ
o
τ )
0Φ−1/2τ M

Φ
−1/2
τ Dτ

√
nΦ−1/2τ bmτ(θ

o
τ )

Note that θoτ = [ρ
o βo0 ν 0−τ 0]

0 where ν−τ refers to a full set of dummy coefficients
excluding the one for the breakpoint and 0 is a k + 1 vector of zeros (de values of
the slope break parameters under the null). We use the convention that the omitted
dummy is located at the bottom of the vector θo2. All that is needed to show the

chi-squaredness of expression (21) is to prove that M
Φ
−1/2
2 D2

−
·
M

Φ
−1/2
τ Dτ

0

0 0

¸
is

idempotent. To do so, we need to deal with the fact that D2 has more rows and
potentially fewer columns than Dτ and that Φ

−1/2
2 is not block-diagonal (and hence

does not have a block equal to Φ−1/2τ .
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First introduce a transformation that orthogonalizes the components of m2 re-
lating to the moment conditions that do not feature in mτ to those that do. Writing

Φ2 =

·
Φ2(11) Φ2(12)
Φ02(12) Φ2(22)

¸
, this transformation is denoted byAτ =

·
I 0

−Φ02(12)Φ−12(11) I

¸
.

Denote the transformed version of bm2(θ
o
2) by em2(θ

o
2), i.e.em2(θ

o
2) = Aτ bm2(θ

o
2)

and the counterpart of Φ2 by eΦ2, which is block-diagonal. The Jacobian of the trans-
formedmoment functions is written as eD2. Since bm2(bθ2)0Φ−12 bm2(bθ2)= em2(bθ2)0eΦ−12 em2(bθ2)
one has
√
nbm2(θ

o
2)
0Φ−1/22 M

Φ
−1/2
2 D2

√
nΦ

−1/2
2 bm2(θ

o
2) =

√
nem2(θ

o
2)
0eΦ−1/22 MeΦ−1/22

eD2

√
neΦ−1/22 em2(θ

o
2)

Finally, let SLτ denote the matrix selecting the columns corresponding to the mo-
ments that are still valid under the alternative from em0

2, i.e. SLτ em2(θ
o
2)= SLτ bm2(θ

o
2)

= bmτ (θ
o
τ) (because θ

o
τ = [ρ

o βo0 0 ν 0−τ ]
0). Using this notation we now rewrite expres-

sion (21) as

V (τ−2)(bθ) a
=
√
nbm2(θ

o
2)
0Φ−1/22 (Φ

1/2
2 A0τ eΦ−1/22 (22)

{MeΦ−1/22
eD2
− SL0τMΦ

−1/2
τ Dτ

SLτ}eΦ−1/22 AτΦ
1/2
2 )
√
nΦ

−1/2
2 bm2(θ

o
2)

At this point some extra notation is needed. Define eD2 :=

" eD2(1)eD2(2)

#
, and eD2(1) =h eD2(I) 0

i
with 0 a column vector of zeros, and eD2(2) =

h eD2(II) dτ
i
where the column

vector dτ is the observed derivative of the moment conditions that are obsolete
under the alternative w.r.t. the dummy for the breakpoint equation. Using these
conventions, note that eD2(I) is equal to the first block of columns of Dτ (denoted
correspondingly by Dτ(I)). Also note that the upper left block of eΦ−1/22 , eΦ−1/22(11) is

equal to Φ−1/2τ .
It only remains to be proven that the matrix between {} is idempotent. Denote

MeΦ−1/22
eD2
as fM = I− eP , we need to show (since SL0τMΦ

−1/2
τ Dτ

SLτ =
·
M

Φ
−1/2
τ Dτ

0

0 0

¸
is idempotent) that

fM.SL0τMΦ
−1/2
τ Dτ

SLτ = SL0τMΦ
−1/2
τ Dτ

SLτ .

Indexing the blocks of fM according to the partitioning of the moment functions, we
therefore need to establish thateP21 = eP21PΦ

−1/2
τ Dτ

(23)eP11 = eP11PΦ
−1/2
τ Dτ

(24)

The RHS of condition (23) is written out as

eΦ−1/22(22)
eD2(2)

³ eD0eΦ−12 eD´−1 eD0
2(1)
eΦ−1/22(11)Φ

−1/2
τ Dτ

¡
D0

τΦ
−1
τ Dτ

¢−1
D0

τΦ
−1/2
τ
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Now define Dτ =
£
Dτ(I) Dτ(II)

¤
and note that Dτ(I) = eD2(I). Define the trans-

formation

Bτ =

"
1 −

³
D0

τ(I)Φ
−1
τ Dτ(I)

´−1 ³
D0

τ(I)Φ
−1
τ Dτ(II)

´
0 I

#
which orthogonalizes the second colomn of the matrix Φ

−1/2
τ Dτ w.r.t. the first (by

postmultiplication), i.e. Φ
−1/2
τ DτBτ has orthogonal blocks of columns. The first

block of columns is not affected by the transformation. We can rewrite

P
Φ
−1/2
τ Dτ

= Φ−1/2τ Dτ

¡
D0

τΦ
−1
τ Dτ

¢−1
D0

τΦ
−1/2
τ

= Φ−1/2τ DτBτ

¡
B0
τD

0
τΦ

−1
τ DτBτ

¢−1
B0
τD

0
τΦ

−1/2
τ .

For the following, recall that the first block of columns ofΦ−1/2τ DτBτ equals eΦ−1/22(11)
eD2(I)

and that (B0
τD

0
τΦ

−1
τ DτBτ)

−1 is block-diagonal by construction. We can now writeeD0
2(I)
eΦ−1/22(11)Φ

−1/2
τ DτBτ

¡
B0
τD

0
τΦ

−1
τ DτBτ

¢−1
B0
τD

0
τΦ

−1/2
τ

= eD0
2(I)
eΦ−1/22(11)

£
Φ−1/2τ Dτ(I) (Φ

−1/2
τ DτBτ)(II)

¤ ¡
B0
τD

0
τΦ

−1
τ DτBτ

¢−1
B0
τD

0
τΦ

−1/2
τ

=
£
D0

τ(I)Φ
−1/2
τ Φ−1/2τ Dτ(I) D0

τ(I)Φ
−1/2
τ (Φ−1/2τ DτBτ)(II)

¤ ¡
B0
τD

0
τΦ

−1
τ DτBτ

¢−1
B0
τD

0
τΦ

−1/2
τ

=
£
D0

τ(I)Φ
−1
τ Dτ(I) 0

¤
³
D0

τ(I)Φ
−1
τ Dτ(I)

´−1
0

0

Ã
(B0

τD
0
τΦ

−1/2
τ )(II)×

(Φ
−1/2
τ DτBτ )(II)

!−1
B0

τD
0
τΦ

−1/2
τ

=
£
I 0

¤ " D0
τ(I)Φ

−1/2
τ

B0
τD

0
τ(II)Φ

−1/2
τ

#
= D0

τ(I)Φ
−1/2
τ = eD0

2(I)
eΦ−1/22(11)

Finally, recall that eD2(1) =
h eD2(I) 0

i
. We now have

eD0
2(1)
eΦ−1/22(11)Φ

−1/2
τ Dτ

¡
D0

τΦ
−1
τ Dτ

¢−1
D0

τΦ
−1/2
τ = eD0

2(1)
eΦ−1/22(11)

proving the validity of (23). The argument proving statement (24) is similar.
The conclusion is that MeΦ−1/22

eD2
− SL0τMΦ

−1/2
τ Dτ

SLτ in (22) is idempotent with
rank #rows(bm2) - #rows(bmτ ) + dim(θτ) - dim(θ2). This proves the theorem.

Proof of Theorem 2 So far we have assumed that the obsolete moment conditions
under the alternative are grouped at the bottom of bm2(θ

o
2). To make the notation

more general, we introduce the row-reordering matrix Rτ . Note that R−1τ = R0τ .
Where equation (22) assumed the correct ordering, we want to make the different
ordering explicit. If Aτ and SLτ already assume the obsolete moment conditions to
be at the bottom of the vector bm2(θ

o
2) but other quantities do not, we get

V (τ−2)(bθ) a
=
√
nbm2(θ

o
2)
0R0τRτΦ

−1/2
2 R0τ (RτΦ

1/2
2 R0τA

0
τRτ

eΦ−1/22 R0τ{MRτ
eΦ−1/22

eD2

−SL0τMΦ
−1/2
τ Dτ

SLτ}Rτ
eΦ−1/22 R0τAτRτΦ

1/2
2 R0τ)

√
nRτΦ

−1/2
2 R0τRτ bm2(θ

o
2)

= v(Φ
1/2
2 R0τA

0
τ

³
Rτ
eΦ−1/22 R0τ

´
{M

Rτ eΦ−1/22
eD2

−SL0τMΦ
−1/2
τ Dτ

SLτ}
³
Rτ
eΦ−1/22 R0τ

´
AτRτΦ

1/2
2 )v
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where we have used the fact that
√
nbm2(θ

o
2)
0Φ−1/22 has asymptotically a multivariate

standard normal distribution. Construction of the matrix Rτ
eΦ−1/22 R0τ is most easily

done by first reordering Φ2 and then applying the orthogonalization.
Denoting

Gτ : = Φ
1/2
2 R0τA

0
τ

³
Rτ
eΦ−1/22 R0τ

´n
M

Rτ eΦ−1/22
eD2
− SL0τMΦ

−1/2
τ Dτ

SLτ

o
×³

Rτ
eΦ−1/22 R0τ

´
AτRτΦ

1/2
2

we have that the joint distribution of V is

V (bθ) a
= (v0 [G3 · · · GT ] (IT−2 ⊗ v))

0 (25)

The components of V are asymptotically marginally χ2 distributed, but jointly
are distributed as in (25), which is a multivariate chi-squared distribution with a
correlation structure given by the matrices Gτ . The asymptotic distribution of the
maximum of the scaled components of V (bθ) equals that of the maximum of the
scaled right-hand side of (25) because the maximum component of a vector is a
continuous function of its components. One can therefore apply the continuous
mapping theorem.
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