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Abstract

We introduce and characterize a new class of bargaining solutions:

those which can be obtained by sequentially applying two binary re-

lations to eliminate alternatives. As a by-product we obtain as a par-

ticular case a partial characterization result by Zhou (Econometrica,

1997) of an extension of the Nash axioms and solution to domains in-

cluding non-convex problems, as well as a complete characterizations

of solutions that satisfy Pareto optimality, Covariance with positive

affine transformations, and Independence of irrelevant alternatives.
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1 Introduction

Imagine an arbitrator who can rank alternatives on the basis of a fairness

criterion. He chooses an alternative from the feasible set by means of the

following procedure. First, he discards all alternatives which are Pareto

dominated. Then, among the remaining ones, he picks the fairest alterna-

tive. In this paper we introduce and characterize a new class of bargaining

solutions that generalizes (to arbitrary criteria) this intuitive two-stage proce-

dure. A two-stage bargaining solution is a solution which can be constructed

by sequentially applying two asymmetric binary relations P1 and P2. More

precisely, the solution point from each feasible set is the (single-valued) set

that P2−dominates all the P1−maximizers.
There are several features of interest in our concept and characterizations.

First, the sequential procedure by which we model the arbitrator’s decisions

is natural. Indeed, Tadenuma [9] has considered the sequential application

of exactly the two above criteria, efficiency and fairness, in social choice1.

Our contribution generalizes and abstracts this idea within an axiomatic

bargaining framewok a la Nash ([6])2. We provide a complete characterization

of two-stage bargaining solutions.

Second, even when the two criteria are well-behaved in the sense of being

transitive, they can generate solutions which violate the Independence of

Irrelevant Alternatives (IIA) axiom. For example, suppose that c is fairer

than a which is fairer than b, and that the only possible Pareto comparison is

that b Pareto dominates c. Then the arbitrator chooses a from {a, b, c} (first
1Tadenuma studies in particular the effect of the order of application of the two criteria
2See Thomson [10] for an overview of axiomatic bargaining theory.

2



discarding c by Pareto dominance and then b by fairness), but he chooses c

from {a, c} (by applying fairness). Contrast this with the maximization of
a single relation: on a standard domain a bargaining solution maximizes a

binary relation if and only if it satisfies IIA (Peters and Wakker [8]), and on

many domains including non-convex problems the relation must be transitive

when the solution also satisfies Pareto optimality (Denicoló and Mariotti [2]).

Third, we consider solutions on domains that include non-convex prob-

lems. In this respect our paper is related to a number of papers on the ex-

tension of bargaining solutions satisfying the original Nash axioms (discussed

below) on larger domains. Our framework delivers a major by-product by

yielding a generalization of a theorem of Zhou [11], which states that any

solution that satisfies IIA, Pareto optimality (PAR) and Covariance with

positive affine transformations (COV) is a selection from some asymmetric

Nash multivalued solution3. We show that any solution that satisfies a certain

weakening of IIA (discussed below), in addition to PAR and COV, sequen-

tially maximizes two relations that are invariant with affine transformations

(that is xPiy if and only if τ (x)Piτ (y) for any positive affine transformation

τ). If the solution satisfies IIA in full, then the two relations collapse into a

single transitive relation: this provides a complete characterization of PAR,

COV and IIA bargaining solutions. Zhou’s partial characterization result

then follows easily.

The weakening of IIA is achieved through two consistency axioms that,

together with PAR, characterize two-stage bargaining solutions. The first

3Zhou’s theorem is also obtained with different techniques by Denicolo and Mariotti

[2] and in a recent paper by Peters and Vermeulen [7].
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is Expansion (EXP): if x is the solution point of each problem in a class of

bargaining problems then it is the solution of their union. The second axiom

is Weak IIA (WIIA): if x is the solution point of two nested bargaining

problems R and T which both contain y, then y is not the solution point of

any ‘intermediate’ problem S. WIIA allows some ‘menu effects’ excluded by

IIA. EXP and WIIA are both implied by IIA while the converse is not true

(as the Pareto/fairness example in the opening paragraph illustrates).

2 Preliminaries

A (bargaining) problem is a pair (S, d), where S ⊂ Rn and d ∈ S. The set

S is interpreted as the set of feasible alternatives (welfare or utility vectors

for n agents) from which an arbitrator must choose, and d is a distinguished

point relevant for the arbitrator’s decision. Following usage, we call d the

disagreement point.

Rn is viewed as a vector space, with the origin and the unit vector denoted

0 and e, respectively. The vector inequalities are: s > t iff si > ti for all i;

s ≥ t iff si ≥ ti for all i. A positive affine transformation is a function τ :

Rn → Rn such that, for some real numbers αi > 0 and βi, i = 1, ..., n, τi (s) =

αisi + βi for all i. Given S ⊂ Rn and and a positive affine transformation τ ,

denote τ (S) = {t ∈ Rn|t = τ (s) for some s ∈ S}. For a bargaining problem
(S, d), denote τ (S, d) = (τ (S) , τ (d)).

Given a domain of bargaining problems Σ, a solution on Σ is a function

γ : Σ→ Rn such that γ (S, d) ∈ S for all (S, d) ∈ Σ. Sometimes we will refer

to multi-solutions, for which γ is allowed to be a correspondence.
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We consider a very general class of domains of bargaining problems4.

Say that a domain Σ of bargaining problems is admissible if the following

assumptions hold:

D1: For all (S, d) ∈ Σ: S is compact and there exists s ∈ S such that

s > d.

D2: For all d ∈ Rn, for all s, t ∈ {u ∈ Rn|u > d}, there exists a unique
(M (s, t) , d) ∈ Σ such that: (a) s, t ∈M (s, t) and for all u ∈ S with u 6= s, t,

s ≥ u, or t ≥ u, or both. (b) for any (S, d) ∈ Σ with s, t ∈ S, M (s, t) ⊆ S.

D3: For any class
©
Sk, d

ª ∈ Σ of problems,
¡S

k S
k, d
¢ ∈ Σ.

All domains of non-convex problems considered in the literature are par-

ticular cases of admissible domains. For example the set of comprehensive

problems (Zhou [11], Peters and Vermeulen [7]), the set of finite problems

(Mariotti [4], Peters and Vermeulen [7]), the set of all problems satisfying

D1 (Kaneko [3]), the set of d-star shaped problems5. While D1 is standard

and D3 straightforward, D2 deserves a special note. Its role in the analysis is

to guarantee the existence of a ‘minimal’ problem containing any two given

alternatives, and such that the solution point is (under PAR) one of those

two alternatives.

From now on, unless specified otherwise, fix an admissible domain Σ. We

consider the following axioms on solutions, intended for all (S, d) , (R, d) ∈ Σ:

COV: For any positive affine transformation τ , γ (τ (S, d)) = τ (γ (S, d)).

PAR: For all s ∈ Rn with s ≥ γ (S, d) and s 6= γ (S, d): s /∈ S.

IIA: If γ (S, d) ∈ R ⊂ S, then γ (R, d) = γ (S, d).

4This class was was essentially introduced in Denicolo and Mariotti [2].
5That is, those problems (S, d) for which the convex hull of {d, s} is in S for all s ∈ S.
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EXP: Given a class of problems
©
Sk, d

ª
, if s = γ

¡
Sk, d

¢
for all k and¡S

k S
k, d
¢ ∈ Σ, then s = γ

¡S
k S

k, d
¢
.

WIIA: If γ (R, d) = γ (T, d) = s and t ∈ R ⊂ S ⊂ T , then γ (S, d) 6= t.

The first theree axioms are standard in bargaining theory. EXP is stan-

dard in choice theory. Only the last axiom is relatively new6. It can be

interpreted as follows. Start with IIA: one way of reading it is that if new

alternatives are added to the problem, then either the solution point is un-

changed, or the new solution point is one the the new alternatives. In other

words, there are no ‘menu-effects’: the effect of a new alternative cannot be

to change the solution point to one of the ‘old’ alternatives. By contrast,

WIIA allows for some such menu effects. However, suppose that adding a

large set of new alternatives does not produce any effect. Then adding a

smaller set of new alternatives does not make an old alternative a solution

point.

3 Two-stage bargaining solutions

As standard, we consider only solutions that satisfy translation-invariance (as

most known solutions do)7. This permits to simplify notation by normalising

the disagreement point of all problems to the origin. A bargaining problem

can then be defined simply as a subset of Rn containing the origin, and a

bargaining solution can be denoted accordingly. The main new definition

of this paper is the following (where max (S, P ) denotes the set of maximal

6This axiom was suggested by Michele Lombardi.
7In obvious notation, translation invariance means γ (S + t, d+ t) = γ (S, d) + t for all

t ∈ Rn.
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elements of the relation P in the set S).

Definition 1 A solution γ is a two-stage solution if there exist two asym-

metric relations P1 and P2 on Rn
++ such that, for all S ∈ Σ,

{γ (S)} = {s ∈ max (S, P1) |sP2t for all t ∈ max (S, P1) , t 6= s}

In this case we say that P1 and P2 rationalize γ. If P1 and P2 can be chosen

so that P1 = P2 = P we say that the solution is a degenerate two-stage

solution, rationalized by P .

We have discussed the idea behind this definition in the introduction, so

we shall not repeat it here.

Example 1 (Nash solutions): The symmetric Nash bargaining multi-

solution ν is defined by the correspondence which associates with each prob-

lem the maximizers of the symmetric Nash product, namely

ν (S) = argmax
S∩Rn

+

Y
i

si

for all S ∈ Σ. A symmetric Nash selection is a solution that coincides with

a selection from ν.8 Some symmetric Nash selections (e.g. those satisfying

IIA) can be naturally thought of as a two-stage solution for which sP1t iffQ
i si >

Q
i ti and the relation P2 is used to break the ties between Nash

product maximizers within each set. For a specific case, consider n = 2 and

sP2t iff s1 > t1. However this is a degenerate two-stage solution, as by taking

the union of P1 and P2 one can rationalize the solution in one stage.

8Note that the adjective ‘symmetric’ refers to the objective function to be maximized,

obviously not to the selection itself, which on the usual domains will not be symmetric.
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Example 2 (first efficiency, then equality): let sP1t iff s ≥ t and

s 6= t. Let sP2t iff Xµ
siP
si

¶2
>
Xµ

tiP
ti

¶2
or Xµ

siP
si

¶2
=
Xµ

tiP
ti

¶2
and a suitable tie-breaking rule, left undefined here, is met. The resulting

two-stage solution picks the alternative that maximizes a measure of equality

over the set of strongly Pareto optimal alternatives. As we have seen in

the introduction, this procedure can generate cycles. Together with this

observation, our theorem 3 below shows that this two-stage solution is not

degenerate.

Example 3 (first goodness, then efficiency): fix a set G ⊂ Rn
+

of ‘good’ alternatives. Let sP1t iff s ∈ G and t ∈ Rn\G. Let sP2t iff

s1 > t1 or s1 = t1 and s2 > t2 etcetera. The resulting two-stage solution first

eliminates all alternatives which are not ‘good’, provided there are some good

alternatives which are feasible, and then it lexicographically maximizes the

welfare of the agents. If there are no good alternatives, one moves directly

to the lexicographic maximization stage. As a specific example, let G =©
s ∈ Rn

+|s = λe for some scalar λ > 0
ª
. In this case goodness is equality: if

the feasible set intersects the 450 line, the solution is egalitarian (and whether

it is Pareto optimal or not depends, of course, on the domain). If equality is

not achievable a specific form of efficiency is sought.

The main result of this section is a complete characterization of two-stage

solutions. Say that a relation P on Rn is Pareto consistent if it contains the

strong Pareto relation:
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Theorem 2 A solution is a two-stage solution, which can be rationalized by

Pareto consistent P1and P2, if and only if it satisfies PAR, EXP and WIIA.

Proof: Sufficiency. Let γ be a solution that satisfies the axioms. Note

first that by D2 and PAR, given s, t ∈ Rn there exist a minimal (in the

order of set inclusion) problem M (s, t) ∈ Σ with the property that either

γ (M (s, t)) = s or γ (M (s, t)) = t.

Now we explictly construct the relations P1 and P2. Define sP1t iff there is

no S ∈ Σ such that t = γ (S) and s ∈ S. Define sP2t iff s = γ (M (s, t)). The

relation P1 is asymmetric since sP1t and tP1s could be both true only if both

s 6= γ (S) for all S ∈ Σ with t ∈ S and t 6= γ (S) for all S ∈ Σ with s ∈ S:

But, as observed, γ (M (s, t)) ∈ {s, t}. The asymmetry of P2 is guaranteed
by the single valuedness of γ. That P1 and P2 are Pareto consistent follows

immediately from PAR.

For any S ∈ Σ, obviously there exists no s ∈ S for which sP1γ (S). Take

any s ∈ S for which sP2γ (S): we show that then s is eliminated in the first

round. Suppose to the contrary that there is no t ∈ S with tP1s. Therefore,

by the definition of P1, for all t ∈ S\s there exists Tt ∈ Σ such that t ∈ Tt

and s = γ (Tt). By D3,
S

t Tt ∈ Σ. By EXP, s = γ (
S

t Tt). Since sP2γ (S),

s = γ (M (s, γ (S))). Since we have M (s, γ (S)) ⊆ S ⊂ St Tt ∈ Σ, WIIA

is contradicted. We can conclude that there exists t ∈ S such that tP1s.

Observe finally that γ (S)P2s for any s ∈ max (S, P1): in fact, by D2 and
PAR, P2 is a complete relation, and by the previous argument it cannot be

s = γ (M (s, γ (S))) for any s ∈ max (S, P1).
Necessity. Let γ be a two-stage solution that satisfies PAR, rationalized

by P1 and P2. Let
©
Sk
ª
be a class of problems. Suppose that s = γ

¡
Sk
¢
for
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all k and
S

k S
k ∈ Σ. Then tP1s for no t ∈

S
k S

k. Moreover sP2t for all t ∈
max

¡
Sk, P1

¢
, witht 6= s, for all k. Therefore sP2t for all t ∈ max

¡S
k S

k, P1
¢

(since max
¡S

k S
k, P1

¢ ⊆ S
kmax

¡
Sk, P1

¢
), and EXP is satisfied. Next,

suppose that s = γ (R) = γ (T ) with t ∈ R ⊂ T . Suppose by contradiction

that t = γ (S) for some S ∈ Σ with R ⊂ S ⊂ T . Since t = γ (S) there cannot

exist u ∈ R ⊂ S for which uP1t. Then sP2t (as s = γ (R)), and there exists

u ∈ S such that uP1s. But this contradicts s = γ (T ). QED

The result that follows makes precise the difference betwen the combina-

tion of WIIA and EXP on the one hand, and IIA on the other.

Theorem 3 A solution is a degenerate two-stage solution, which can be ra-

tionalized by a complete9, asymmetric, transitive and Pareto consistent rela-

tion P , if and only if it satisfies PAR and IIA.

Proof : Let γ be a solution that satisfies the axioms. Since IIA is easily

seen to imply WIIA and EXP, asymmetric relations P1 and P2 can be con-

structed as in the proof of the previous theorem. Note that for any s, t > 0,

if sP1t then (by D2 and PAR) s = γ (M (s, t)) so that sP2t. And using IIA

and the definition of M (s, t), if sP2t then sP1t: otherwise, t = γ (T ) for

some T ∈ Σ with s ∈ T would imply t = γ (M (s, t)), that is tP2s. Therefore

P1 = P2 = P .

To see that P is transitive, suppose that sPtPu. This means (viewing P

as P2) that s = γ (M (s, t)) and t = γ (M (t, u)). Suppose by contradiction

that it is not the case that sPu, so that u = γ (M (s, u)). Let T =M (s, t)∪
M (t, u) ∪M (s, u). By D3, T ∈ Σ. By PAR, γ (T ) ∈ {s, t, u}, so that IIA
applied to T and one of the setsM (s, t),M (t, u) orM (s, u) is contradicted.

9By complete we mean here that either sPt or tPs for any distinct s and t.
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P is clearly complete and Pareto consistent by D2 and PAR. To conclude,

it is easy to show that a solution that can be rationalized as in the statement

satisfies the axioms. QED

We can see, then, that weakening IIA to the combination of WIIA and

EXP has two distinct effects: first, it permits solutions that are rationalized

by two relations rather than a single one. Second, it permits to relax the

transitivity of the rationalizing relations.

Finally, we consider a property that merges WIIA and EXP into a single

axiom:

WIIA*: Let
©
Sk, d

ª
be a class of problems . If s = γ (R, d) = γ

¡
Sk, d

¢
for all k, and t ∈ R ⊂ S ⊂ Sk

¡
Sk, d

¢
, then γ (S, d) 6= t.

By using arguments essentially identical to those in the proof of theorem

2, one can obtain an extension of that theorem:to even more general domains:

Theorem 4 Consider a domain Σ that satisfies D1 and D2. A solution on Σ

is a two-stage solution, which can be rationalized by Pareto consistent P1and

P2, if and only if it satisfies PAR, and WIIA*.

4 Covariant solutions

In this section we consider solutions that satisfy COV. To this end, we need to

make two further domain assumptions (formulated for normalized problems:

D4: For all S ∈ Σ, for all positive affine transformation τ : τ (S) ∈ Σ.

D5: For all s, t ∈ Rn
++, for all positive affine transformation τ : τ (M (s, t)) =

M (τ (s) , τ (t))
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As before, fix an admissible domain Σ, which satisfies in addition D4 and

D5. A relation P onRn
++ is invariant with positive affine transformations (or

pat-invariant in short) iff, for all positive affine transformations τ , τ (s)Pτ (t)

whenever xPt.

We can now provide a characterization of two-stage and degenerate two-

stage COV solutions:

Theorem 5 (i) A solution is a two-stage solution, which can be rationalized

by P1 and P2 that are Pareto consistent and pat-invariant, if and only if it

satisfies WIIA, EXP and COV.

(ii) A solution is a degenerate two-stage solution, which can be ratio-

nalized by a complete10, asymmetric, transitive, Pareto consistent and pat-

invariant P , if and only if it satisfies PAR, IIA and COV.

Proof : Let γ be a two-stage solution that satisfies COV, and define P1

and P2 as in the proof of theorem 2. Let τ be a positive affine transformation.

Let sP1t. Suppose by contradiction that it is not the case that τ (s)P1τ (t).

Then there exists S ∈ Σ such that τ (t) = γ (S) and τ (s) ∈ S. By COV,

t = γ (τ−1 (S)) (where γ (τ−1 (S)) is well-defined by D4), so that (since s ∈
τ−1 (S) ∈ Σ) sP1t is contradicted. Next, let sP2t. By the definition of P2,

D5 and COV it is immediate that τ (s)P2τ (t).

The statement now follows from theorems 2 and 3. QED

The interest and novelty of part (ii) of the theorem is that it is a complete

characterization of PAR, COV and IIA solutions. In the literature only

partial characterizations are stated for such solutions.

10By complete we mean here that either sPt or tPs for any distinct s and t.
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The theorem yields as an easy corollary a generalization (to different

domains) of a partial characterization theorem by Zhou [11] given by Denicoló

and Mariotti [2] and more recently by Peters and Vermeulen [7]. Define the

asymmetric, α-weighted Nash multi-solution, by

να (S) = argmax
S∩Rn

+

Y
i

sαii

for all S ∈ Σ, for some vector of non-negative weights α = (α1, ..., αn) ∈ Rn
+.

Corollary 6 A solution that satisfies IIA, PAR and COV is a selection from

some asymmetric Nash multisolution.

Proof: It follows from theorems 3.3.3. in d’Aspremont [1], reformulated

transforming the variables in logs as in Moulin [5], that for any relation P

on Rn
++ that is complete, transitive, Pareto consistent and pat-invariant the

following holds: If
P

i αi log si >
P

i αi log ti, then sPt. QED
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