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Abstract

The paradigm of a factor model is very appealing and has been used extensively
in economic analyses. Underlying the factor model is the idea that a large number of
economic variables can be adequately modelled by a small number of indicator vari-
ables. Throughout this extensive research activity on large dimensional factor models
a major preoccupation has been the development of tools for determining the number
of factors needed for modelling. This paper provides builds on the work of Kapetanios
(2004) to provide an alternative method to information criteria as a tool for estimating
the number of factors in large dimensional factor models. The new method is robust
to considerable cross-sectional and temporal dependence. The theoretical properties of
the method are explored and an extensive Monte Carlo study is undertaken. Results
are favourable for the new method and suggest that it is a reasonable alternative to
existing methods.
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1 Introduction

The paradigm of a factor model is very appealing and has been used extensively in economic

analyses. Underlying the factor model is the idea that a large number of economic variables

can be adequately modelled by a small number of indicator variables. Factor analysis has

been used fruitfully to model, among other cases, asset returns, macroeconomic aggregates

and Engel curves (see, e.g., Stock and Watson (1989), Lewbel (1991) and others).

Most analyses have traditionally been focused on small datasets meaning that the num-

ber of variables, N , to be modelled via a factor model is finite. Recently, Stock and Watson
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(2002) have put forward the case for analysing large datasets via factor analysis, where N

is allowed to tend to infinity. Stock and Watson (2002) suggest the use of principal com-

ponents for estimating factors in this context. Further work has been carried out by, e.g.,

Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2004) in

which use of dynamic principal components has been made.

Throughout this extensive research activity on large dimensional factor models a ma-

jor preoccupation has been the development of tools for determining the number of factors

needed for modelling. The only tool, used in econometrics, for estimating the number of

factors for large dimensional datasets is the use of information criteria developed by Bai and

Ng (2002). The criteria developed are modifications of standard information criteria such

Akaike’s information criterion where the penalty terms needed for consistent estimation of

the number of factors depend both on the number of observations T as well as N , unlike the

traditional criteria where the penalty terms depend only on T .

This paper aims to provide an alternative to information criteria as tools for estimating

the number of factors in large dimensional factor models. The main reason for proposing

this alternative method is that Monte Carlo evidence suggests that it can a much more ro-

bust method than information criteria in determining the number of factors. Further, the

approach is based on random matrix theory which, although widely used in the statistical

and physics literature, is not well known in econometrics.

Previous work by the author (Kapetanios (2004)) has made use of random matrix theory

(RMT) to devise methods for determining the number of factors in large datasets. However,

a number of problems existed with the approach suggested in that paper. The main problem

related to the stringency of the assumptions made to derive formal results for the method.

In the current paper we relax most such assumptions. Further, the current method is in

fact based on a sequence of tests on the largest eigenvalues of the sample covariance matrix.

Given the available results from RMT which will be briefly presented in the following section

it may appear suprising that we can propose an operational method based on asymptotic

distributions of eigenvalues. However, we are able to do this because we use subsampling

which is a resampling technique similar to the bootstrap but much more widely applicable.

The need for a resampling method is clear. Asymptotic distributional results exist only for

very special cases such as the case of i.i.d. data. It is further likely that deviations from such

restrictive assumptions will not only lead to different distributions but different convergence

rates too. In such an environment subsampling is likely to be the only technique available

2



for distributional analysis for some time.

The paper is organised as follows: Section 2 surveys the available results on the behaviour

of the eigenvalues of large sample covariance matrices and introduces the new method. Sec-

tion 3 discusses the new method and provides some theoretical results. Results from a Monte

Carlo study are presented in Section 4. Finally, Section 5 concludes.

2 Preliminaries

The factor model we consider for a given dataset for cross sectional unit i at time t, is given

by

yi,t = f ′tλi + εi,t (1)

where ft is an r-dimensional vector of factors at time t, λi is an r-dimensional vector of factor

loadings for cross sectional unit i and εi,t is the idiosyncratic part of yi,t. Usually factors are

assumed to be weakly dependent time series processes and the factor loadings are assumed

to be random variables. We will also assume that in general the idiosyncratic terms are

weakly dependent processes as well with mild cross-sectional dependence. The nature of this

dependence will be made clear later.

Rewriting the above model in matrix notation gives

Y = FΛ + ε (2)

where Y = (Y1, . . . , YN), F = (F1, . . . , Fr), Λ = (λ1, . . . , λN), ε = (ε1, . . . , εN), Yi =

(yi,1, . . . , yi,T )′, Fi = (fi,1, . . . , fi,T )′ and εi = (εi,1, . . . , εi,T )′. Following Chamberlain and

Rothschild (1983) and assuming uncorrelatedness between the factors and the idiosyncratic

components εi,t, it is easy to see that the variance covariance matrix of the dataset is given

by

ΣY = Σf + Σε (3)

where Σf is a matrix with finite rank r and Σε is the covariance matrix of the idiosyncratic

component which is assumed to have bounded eigenvalues for all N . Under certain condi-

tions on the factor loadings, detailed in the next section, the largest r eigenvalues of Σf will

tend to infinity at rate N whereas the rest will be equal to zero.

Before outlining in intuitive terms the new methodology we quote some results on large

dimensional covariance matrices. Let ε = [εi,t] denote a T ×N matrix of i.i.d. mean zero and
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unit variance random variables. Let Σ̂ε denote the sample covariance matrix given by 1
T
ε′ε.

Then, the largest eigenvalue of Σ̂ε denoted µ̂1 converges almost surely to (1 +
√

c)2 where

c = limN,T→∞ N
T

. The result is remarkable in its simplicity. For example, for N = T the

largest eigenvalue converges almost surely to 4. This result has been proven repeatedly under

successively weaker conditions culminating in the work of Yin, Bai, and Krishnaiah (1988)

who proved the result showing that a necessary and sufficient condition is that E(ε4
i,t) < ∞.

In this context it has also been shown that the minimum eigenvalue of Σ̂ε converges almost

surely to (1 − √
c)2 as long as N < T and, obviously, zero otherwise. We note that the

condition E(ε4
i,t) < ∞ is crucial. If this condition does not hold the maximum eigenvalue

tends to infinity.

The result has been extended to more complicated setups. To appreciate the following

result we note that in the case of large dimensional matrices, where the dimension of the

matrix tends to infinity, focus has been placed on the limit of the empirical distribution of

the eigenvalues of the matrix (referred to as empirical spectral distribution (ESD) in the

literature). Thus, it has been shown, among other things, by Bai and Silverstein (1998), for

a N×N nonnegative definite symmetric matrix QN , that the limit as N, T →∞ of the ESD

of 1
T
Q

1/2
N ε′εQ1/2

N has a support which is almost surely contained in the support of the limit of

the empirical distribution of the eigenvalues of QN . The latter support, of course, depends

on c.

The above results relate to temporally i.i.d. data. Recently, work by Hachem, Louba-

ton, and Najim (2005a) and Hachem, Loubaton, and Najim (2005b) derived the limit of

the ESD of the sample covariance matrix of temporally independent but heterogeneously

distributed data and temporally dependent data with absolutely summable autocovariances.

In the latter case it is shown that this limit crucially depends on the MA coefficients of

the data. This suggests that temporal dependence does not only affect the parameters of

the asymptotic limits but their functional form too. This necessarily implies that standard

asymptotic approaches to the construction of testing procedures are likely to be of little value.

The above results deal with the form of the limits of extreme eigenvalues and the ESD. An

important question concerns the rates at which these limits are approached. Unfortunately,

results here are rarer. The first major work to address this was Tracy and Widom (1996) who

showed that the distribution function associated with the limit law of the largest eigenvalue
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of a Gaussian symmetric matrix is given by

F1(s) = exp

{
0.5

∫ ∞

s

q(x) + (x− s)q2(x)dx

}

where q solves the nonlinear Painleve II differential equation given by

q′′(x) = xq(x) + 2q3(x)

Of more relevance to our purposes is the result obtained by Johnstone (2001) who showed

that
µ̂1 − (1 +

√
c)2

T−1(
√

T − 1 +
√

N)
(

1√
T−1

+ 1√
N

)1/3
⇒ W ∼ F1 (4)

where µ̂1 is the maximum eigenvalue of the sample covariance matrix of an T ×N matrix of

i.i.d. N(0, 1) variates. There does not seem to be any work publicly available on convergence

rates for temporally or cross-sectionally dependent data.

We now outline the suggested estimation method for the number of factors. It clear that

if the number of factors in the dataset is r then the first r eigenvalues of ΣY will increase at

rate N whereas the rest will remain bounded. It is reasonable to expect a similar behaviour

from the eigenvalues of the sample covariance matrix. This statement will be made formal

in the next section. Let us denote the eigenvalues of the sample covariance matrix by µ̂i,

i = 1, . . . N . Then it is reasonable to expect that for some r < rmax, µ̂i − µ̂rmax+1 will

tend to infinity for i = 1, . . . , r0 but remain bounded for i = r0 + 1, . . . , rmax. The role of

µ̂rmax+1 is as an estimator of the upper bound for the maximum eigenvalue when there is no

factor structure in the dataset. For example, for i.i.d. data this bound is known and equal to

(1 +
√

c)2. In general however, this bound is not known. However, under certain conditions

on the limit of the ESD which will be spelt out in the next section, O(1) of the largest

eigenvalues will tend to the upper bound of the ESD and so µ̂rmax+1 is a valid estimator for

that bound.

If there is no factor structure then µ̂i − µ̂rmax+1, i = 1, . . . , rmax, suitably normalised

by some sequence of constants depending on N and T , denoted τN,T , should converge to

some limit law. In the presence of factors it should tend to infinity at rate NτN,T . If the

limit law and τN,T were known then the null hypothesis that the true number of factors, r0

in the dataset is equal to r (H0,r : r0 = r) against the alternative hypothesis H1,r : r0 > r

could be tested by considering the test statistic µ̂r+1− µ̂rmax+1. Unfortunately this limit law

is not known and given the available results discussed above it is highly likely to depend

in complicated ways on the characteristics of the data such as temporal and cross-sectional
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dependence. As will be argued in the next section, the form of τN,T it self is likely to depend

on the ESD of the dataset. Hence, asymptotic analysis is likely to be problematic. A standard

solution in such cases is to consider the bootstrap. Unfortunately, asymptotic validity of

the standard bootstrap is difficult to establish as well, since necessary uniform smoothness

conditions with respect to the limit law are likely to be very hard to establish. We suggest an

alternative resampling technique, referred to as subsampling, which is asymptotically valid

under minimal conditions. Using this technique the exact distribution of µ̂r+1 − µ̂rmax+1

can be approximated and a test can be carried out. Then a sequence of such tests can

be used to determine the number of factors in the dataset. Such an approach has a long

history in econometrics and statistics for solving similar inference problems such as, e.g.,

the determination of the rank of matrices from their estimated counterparts. In particular,

the problem may be thought as one of determining the rank of Σf when only an estimate

of ΣY is available. Then, it follows a considerable body of work on rank determination

using a sequence of tests such as Camba-Mendez, Kapetanios, Smith, and Weale (2003) and

Camba-Mendez and Kapetanios (2005).

3 Theory

In this section we discuss the theoretical properties of the new method. For that we provide

the following set of assumptions.

Assumption 1 T−1
∑T

t=1 ftf
′
t

p→ Σ for some r × r positive definite matrix Σ.

Assumption 2 E(λiλi) = D for some positive definite matrix D. There is an ordering

of the cross-sectional units such that the sequences {εi}N
i=1 and {λi}N

i=1 are cross-sectionally

strong mixing processes in the sense of Connor and Korajczyk (1993) with mixing size equal

to ζ > 0

Assumption 3 E(εi,t) = 0, E(ε2
i,t) = σ2

i , E|εi,t|4 ≤ M . The largest eigenvalue of E(1/Tε′ε)

is bounded.

Assumption 4 Let r0 denote the number of true factors. Then, for every i = r0+1, . . . , rmax,

there exists a sequence of constants τN,T such that τN,T (µ̂i − µ̂rmax+1)
d→ Ji where Ji is a

limit law.

Assumption 5 N, T →∞ in such a way that N/T → c, where 0 ≤ c < ∞

These assumptions are less restrictive than those used in Bai and Ng (2002). Assump-

tions 1 and 3 impose minimal conditions on the factors and idiosyncratic errors. Assump-

tion 4 is not standard but simply posits the existence of a limit law for the normalised
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difference of the eigenvalues. No assumptions are placed on that limit law such as conti-

nuity. Further nothing is assumed about the rate of convergence to that limit law or even

whether τN,T actually tends to infinity. Notice that no conditions are explicitly placed on the

temporal or cross-sectional dependence of εi,t either. Of course, some conditions are implied

by the need for bounded eigenvalues for Σε. The assumption of finite fourth moments for εi,t

is minimal. It is required even when εi,t are cross-sectionally and temporally independent

to obtain bounded eigenvalues for Σ̂ε. Assumption 2 is related to the more usual conditions

on the maximum eigenvalue of Σε by Lemma 1 below which provides a lower bound for the

mixing size of εi.

Lemma 1 The maximum eigenvalue of Σε is bounded if δ > 1/(ζ−1) where E
(
|εi,t|2+2δ

)
<

∞.

The lemma is proven in the appendix. Note that the above Lemma relaxes Theorem 1 of

Connor and Korajczyk (1993) which requires that δ > 2/(ζ − 2). In this context, it is worth

noting that the maximum eigenvalue of the sample covariance matrix of the estimator of the

idiosyncratic component εi,t obtained via the method of principal components is bounded.

The following Lemma formalises this assertion and is proven in the appendix.

Lemma 2 Let ε̂ denote the estimator of ε using principal components. Then, under as-

sumptions 1-5 and assumptions A-D of Bai (2003) the maximum eigenvalue of 1/T ε̂′ε is

Op(1).

We next discuss the subsampling methodology for estimating Ji. Subsampling was in-

troduced informally by Mahalanobis (1946). Its properties were first discussed formally in

Politis and Romano (1994). The method entails resampling without replacement from the

original data and constructing samples of smaller size than the original sample. By virtue of

the fact that the resampled samples are smaller a more robust approximation to the prop-

erties of statistics based n the original sample is feasible. In our case we need to address

the fact that data are both cross-sectionally and temporally dependent. In these cases block

resampling is suggested by Politis and Romano (1994). However, in our case there an asym-

metry between temporal and cross-sectional resampling. The temporal ordering is clearly of

importance and needs to be retained when resampling. On the other hand the cross-sectional

ordering is unknown in the case of the εi and irrelevant in the case of the factor structure

since this structure is retained intact when units are reordered. We therefore resample whole

individual units (yi) without replacement to carry out subsampling. More specifically letting

T (N) be a function of N , we resample b ¿ N units without replacement and for each unit we

retain only observations indexed t, . . . , t+T (b) for some random observation t ≤ T (N)−T (b).
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As we have stated above we allow for an unknown sequence of normalising constants,

τN,T . In fact, it is heuristically easy to see that, in the absence of a factor structure, the

form of τN,T will depend on the upper tail of the limit of the ESD . To see this we adapt a

heuristic argument of Johnstone (2001). Let T be a function of N . Then, the constants τN,T

are sole functions of N . Define ti = b− µ̂i where b denotes the upper bound of the limit of

the ESD. Let the O(1) smallest ti lie in the interval [0, g(N)]. Denote the density associated

with limiting distribution of the ti by f(x). Then, it is easy to see that

∫ g(N)

0

f(x)dx ∼ N−1 (5)

where ∼ denotes exact order behaviour. The function g(.) that solves (5) gives the order of

magnitude of τ−1
N,T . It is clear then that τN,T are not easy to obtain analytically and depend

crucially on f and g.

Subsampling can be used to estimate τN,T . As discussed in Chapter 8 of Politis, Romano,

and Wolf (1999) if we define

L0,b,i(x) =
1

Nb

Nb∑
j=1

1
{(

µ̂j
1+i − µ̂j

rmax+1

) ≤ x
}

, i = 0, . . . , rmax − 1 (6)

where the superscript j denotes the j-th subsample and b denotes the subsample size, then

for any point x > Ji(0)

log
(
L−1

0,b,i(x)
)

= log
(
J−1

i (x)
)− log τb,T (b) + op(1)

L0,b,i(x) can be viewed as a subsample estimator of the degenerate asymptotic distribution

of µ̂j
1+i − µ̂j

rmax+1. If we assume that τN,T = Nβ β > 0 then by estimating Ji(x) using two

different subsampling sizes b1 = Nβ1 and b2 = Nβ2 , β1 > β2 we get

log

(
b1

b2

)−1 (
log

(
L−1

0,b1,i(x)
)− log

(
L−1

0,b2,i(x)
))

= β + op

(
log

(
b1

b2

)−1
)

(7)

Thus an estimate of β can be obtained. To formalise this estimator we make the following

assumption

Assumption 6 Ji(x) is continuous and strictly increasing in x. τN,T is of the form Nβ

β > 0.

Note that the need for a point x such that x > Ji(0) to construct the above estimator is

cumbersome rather than restrictive as a slightly more complicated argument can be used to

dispense with this requirement as discussed in Politis, Romano, and Wolf (1999, Ch. 8 p.
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181). Further, the assumption that τN,T (N) = Nβ can be dispensed with by assuming that

τN,T (N) = h(N) for some increasing function h(.) with limN→∞ h(N) = ∞ by using remark

8.2.3 of Politis, Romano, and Wolf (1999). However, it is likely that estimating h(.) will be

cumbersome in practice.

Denote by LT (b),b,i(x) the subsampling estimate of the asymptotic distribution of τN,T (µ̂i−
µ̂rmax+1). Then, we provide a formal definition of the new factor number estimator through

the following algorithm

Algorithm 1 Estimation of number of factors

Step 1 Demean the data yi,t. Normalise yi,t by dividing every observation of each series with

the estimated standard deviation of that series.

Step 2 Calculate the rmax + 1 largest eigenvalues of the estimated covariance matrix of yi,t,

denoted µ̂i, i = 1, . . . , rmax.

Step 3 Set i = 0.

Step 4 Construct the test statistic µ̂i+1−µ̂rmax+1. Using subsampling, estimate the normalising

constants τ i
N,T (N) for this statistic.

Step 5 Compare τ̂ i
N,T (N)(µ̂i+1−µ̂rmax+1) with the 1−αN quantile of the subsampling distribution

given by LT (b),b,i(x) where αN → 0.

Step 6 Set r̂ = i if τ̂ i
N,T (N)(µ̂i+1− µ̂rmax+1) does not exceed the quantile. Otherwise set i = i+1

and go to step 4.

We refer to this algorithm as the MED (maximal eigenvalues distribution) algorithm. Then,

we have the following theorems.

Theorem 1 Under assumptions 1-5, b = o(N) , and as N, T →∞, LT (b),b,i(x) is a consis-

tent estimator of the asymptotic distribution of τN,T (µ̂i − µ̂rmax+1), i = r0 + 1, . . . , rmax

Theorem 2 Under assumptions 1-5, and as N, T →∞, r̂ converges in probability to r0.

We also have the following theorem on the estimated normalising constants.
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Theorem 3 Under assumptions 1-6 and setting

β̂ = log

(
b1

b2

)−1 (
log

(
L−1

b1,i(x)
)− log

(
L−1

b2,i(x)
))

bi = Nβi, i = 1, 2, τ̂N,T = N β̂ we have that

τN,T (µ̂i − µ̂rmax+1)− τ̂N,T (µ̂i − µ̂rmax+1) = op(1)

The proofs for these theorems are given in the Appendix.

4 Monte Carlo Study

4.1 Monte Carlo Setup

In this section we provide a detailed Monte Carlo study of the new number of factors estima-

tor compared with the information criteria suggested by Bai and Ng (2002). We also consider

the method of Kapetanios (2004) referred to as the ME (maximum eigenvalue) algorithm.

The general model we consider has many similarities with Bai and Ng (2002) and is given

by

yi,t =
r0∑

j=1

λj,ifj,t +
r0∑

j=1

λ2,j,ifj,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T

εt = Σ1/2νt

νi,t = ρiνi,t + ξi,t

We set fj,t ∼ N(0, 1), ξi,t ∼ N(0, θr0), λs,j,i ∼ N(0, 1), N = 50, 100, 200, T = 50, 100, 200.

One of the most important determinants of the performance of the number of factor

estimators is the proportion of variance explained by the factors. This is controlled by θ.

So for θ = 1, R2 is 0.66 whereas for θ = 9, R2 is 0.182. Evidence seems to suggest that in

many datasets this R2 is quite low. Hence, it is crucial that any method works well in these

circumstances. We consider θ = 1, 9, 19 leading to R2 of 0.66, 0.1 and 0.095. The latter

value may seem extreme but it will provide an envelope for the performance of the methods

for most circumstances. Also we consider r0 = 2 and rmax = 8. For Experiments A, Σ = I,

ρi = 0. For experiments B, Σ = [σi,j], σi,i = 1, σi,j = σj,i ∼ U(−0.1, 0.1) for |i − j| ≤ 5

and ρi = 0.5. Experiments C are as Experiments B but ρi = 0.95. Finally experiments D

are as experiments C but σi,j = σj,i ∼ U(0, 0.199). This is the most extreme example of

cross-sectional and temporal dependence we consider. We should note two points. Firstly,

for the approximate factor models the values of R2 reported above are not exactly accurate
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because of the AR structure of νi,t which implies lower values for R2 than reported. Secondly,

the calculation giving rise to the reported values of R2 take into account both the variability

of fj,t and λj,i which are assumed random.

So the approximate factor models allow for considerable cross-sectional dependence and

temporal dependence. For the MED algorithm we do not consider estimation of the con-

vergence rate of the asymptotic distribution of the eigenvalues but simply normalise by the

correct rate for i.i.d. data given in (4). For subsampling we consider b(N) = a(N)N where

a(N) = 0.7, 0.6, 0.5 for N = 50, 100, 200. Finally, each test of the sequence of tests for MED

is carried out at the 1% significance level. These choices are made for simplicity and to il-

lustrate that the approach can still work when used in a simplified setting. We compare the

new method with the information criteria suggested by Bai and Ng (2002). These criteria,

which are minimised over r, are given below

PC1(r) = Vr + rσ̂2

(
N + T

NT

)
ln

(
NT

N + T

)

PC2(r) = Vr + rσ̂2

(
N + T

NT

)
ln C2

NT

PC3(r) = Vr + rσ̂2

(
ln C2

NT

C2
NT

)

IC1(r) = Vr + r

(
N + T

NT

)
ln

(
NT

N + T

)

IC2(r) = Vr + r

(
N + T

NT

)
ln C2

NT

IC3(r) = Vr + r

(
ln C2

NT

C2
NT

)

where

Vr = (NT )−1

N∑
i=1

T∑
i=1

(
yi−t −

r∑
j=1

λ̂j,if̂j,t

)2

and σ̂2 = Vrmax . Note that we choose to start the search at r = 0 both for the MED algorithm

and for the information criteria. The Monte Carlo study of Bai and Ng (2002) did not

consider the value r = 0 in the information criteria search. However, such a search does not

address the very interesting problem of whether a given dataset supports a factor structure

at all. Assuming the presence of at least one factor does not really seem as innocuous as

usually presumed in the literature. Hence, we choose to modify the setting to address this

very interesting question.
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4.2 Monte Carlo Results

Tables 1-4 report the average selected number of factors over 1000 replications for Experi-

ments A-D. Results make interesting reading. We start with results in Table 1. The setup

here is one where the true number of static factors is equal to 4. For θ = 1 all methods do

well. In particular, the MED algorithm does particularly well for all experiments with the

estimated number of factors, practically always, being chosen to be slightly above 4. This

is expected given that the test significance level is kept fixed. The information criteria do

quite well too with some problems being encountered at N = 50 for all values of T . The

method suggested in Kapetanios (2004) also performs very well.

As soon as θ increases we note a marked deterioration in the performance of the infor-

mation criteria. They underestimate the number of factors significantly in many cases. ME

seems to suffer as well but to a much lesser extent. MED seems to suffer least and we con-

clude that it is relatively unaffected by the R2 of the factor model unlike the other methods.

Moving on to experiments B-D in Tables 2-4 we see a steep deterioration of the per-

formance of the information criteria. The pattern for experiments B resembles that of

experiments A as θ rises. However, the introduction of cross-sectional and temporal de-

pendence affects negatively the performance of information criteria. ME is affected as well

overestimating the number of factors. MED is again least affected. For experiments C and

D performance is similar. Information criteria now overestimate massively the number of

factors. They select the maximum allowable number of factors practically always. A similar

result appears for ME which is expected as this method cannot deal with temporal depen-

dence. Once again MED is the least affected providing reasonable estimates of the number of

factors in all circumstances considered. In particular, while the estimated number of factors

increases beyond the true number as N and T rise, the asymptotic results kick in for θ = 1

when at N = 200 a rise of T from 100 to 200 improves the estimate, both for experiments C

and D.

To conclude, MED seems to outperform the information criteria across a variety of Monte

Carlo experiments. It seems insensitive to moderate cross sectional and considerable tem-

poral dependence. Importantly it seems less sensitive to low R2 for the factor equations

compared to the information criteria. Given that factors are likely to explain a relatively

small average proportion of the variance of empirical datasets due to the extreme parsimony

of the factor model such a property is highly prized. The performance of MED makes the
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method a reasonable alternative to information criteria. Nevertheless, we still feel that the

ease of implementation of ME together with the favourable Monte Carlo results reported in

Kapetanios (2004) allow it to be a reasonable competitor to MED and information criteria.

5 Conclusions

Factor models for large datasets have gained much prominence in empirical and theoretical

econometric work recently. Following on from the path breaking work of Stock and Watson

(2002) a series of papers by Bai and Bai and Ng (Bai and Ng (2002), Bai (2003), Bai (2004))

have provided the theoretical foundations of static factor models for large datasets. Work in

Forni, Hallin, Lippi, and Reichlin (2000) and other papers by these authors have provided

an alternative explicitly dynamic approach to factor analysis. An important issue in this

work is choosing the number of factors to be included in the factor model. The only rigorous

method for doing this has been developed in an influential paper by Bai and Ng (2002) and

uses information criteria.

This paper suggests a new method for this problem. The method is based on the be-

haviour of the eigenvalues of a large sample covariance matrix when no factor structure

exists. In particular there exists a large literature on the fact that the largest eigenvalue

of such a covariance matrix tend to a constant asymptotically. Since the behaviour of the

eigenvalues of the covariance matrix tend to infinity when a factor structure exists a method

for distinguishing these two cases suggests itself. The paper develops rigorously this idea for

a variety of settings following on the work of Kapetanios (2004).

Monte Carlo analysis indicates that the method works very well. In a majority of in-

stances of empirical interest it outperforms information criteria methods. Thus, it provides

a useful alternative to existing methods.
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Appendix

5.1 Proof of Lemma 1

We need to derive a trade-off between the order of moments that need to exist and the

α-mixing size for the sequence {εi,t}N
i=1 for all t such that the covariance matrix of εt =

(ε1,t, . . . , εN,t)
′ has bounded eigenvalues. By Schwarz, Rutishauser, and Stiefel (1973), the

eigenvalues of Σε will be bounded if the column sum norm of Σε is bounded. This will be

the case if the covariances E(εi,tεi+m,t) of εt are absolutely summable. This will be the case

if |E(εi,tεi+m,t)| = O (m−s) as m →∞ where s > 1. By Corollary 14.3 of Davidson (1994)

|E(εi,tεi+m,t)| ≤ Cα1−2/(2+2δ)
m

where E
(
|εi,t|2+2δ

)
< ∞. Thus |E(εi,tεi+m,t)| = O

(
m−ζ(1−1/(1+δ))

)
. So we need

ζ (1− 1/(1 + δ)) > 1

or δ > 1/(ζ − 1). Clearly, this is a weaker condition than δ > 2/(ζ − 2) which is required by

Connor and Korajczyk (1993). Since minimally, δ > 1 by assumption 3 it follows that ζ is

at most needed to be equal to 2.

5.2 Proof of Lemma 2

We must prove that the largest and therefore all eigenvalues of 1/T ε̂′ε̂ are bounded. To see

this we first write

1/T ε̂′ε̂ = 1/Tε′ε + 1/T (Ĉ − C)′(Ĉ − C) + 2/T (Ĉ − C)′ε = A + B + C

Then, the result follows if the maximum eigenvalue of each of A,B, C is bounded. The

maximum eigenvalue of 1/Tε′ε is bounded by assumption 4. By Theorem 3 of Bai (2003)

Ĉ − C = Op(min{N−1/2, T−1/2}) = Op(N
−1/2)

since we assume that limN,T→∞ N/T = c. Thus, the diagonal elements of (Ĉ − C)′(Ĉ − C)

denoted Ĉcc
ii are Op(1) and since

N∑
i=1

µC
i =

N∑
i=1

Ĉcc
ii = Op(N)

where µC
i are the eigenvalues of (Ĉ − C)′(Ĉ − C) it follows that µC

1 = Op(N) and therefore

1/TµC
1 = Op(1). Similarly, the i, j-th element of (Ĉ − C)ε is given by Ĉcε

ij =
∑T

s=1 Ĉsiεi,s

14



where Ĉij is the i, j-th element of Ĉ −C. We need to examine Ĉij. By the proof of theorem

3 of Bai (2003) we see that

√
NĈij = λ′i

(
Λ′Λ
N

)−1
1√
N

N∑

k=1

λkεk,t + 1/cft

(
F ′F
T

)−1
1√
T

T∑
s=1

fsεi,s + op(1)

Given that Ĉcε
ij is defined as a sum across t, it is useful to note that

√
NĈij can be written

as ξNi + ψT ft where

ξNi = λ′i

(
Λ′Λ
N

)−1
1√
N

N∑

k=1

λkεk,t

and

ψT = 1/c

(
F ′F
T

)−1
1√
T

T∑
s=1

fsεi,s

As a result viewed as a time series
√

NĈij inherits the dependence properties of ft. Then, a

central limit theorem applied to
√

NĈij gives that Ĉcε
ij = Op(1). By a similar treatment to

that used to derive the order in probability for µC
1 we get that µCε

1 = Op(N) where µCε
i are

the eigenvalues of (Ĉ−C)′ε and, therefore, that 1/TµCε
1 = Op(1) which completes the proof.

Proof of Theorem 1

Define

JT (N),N,i(x, P ) = PrP

{
τT (N),N (µ̂1+i − µ̂rmax+1) ≤ x

}
, i = 0, . . . , rmax − 1 (8)

By assumption 4, JT (N),N,i(x, P ) → J(x, P ) as N →∞. The subsampling approximation to

JT (N),N,i(x, P ) is given by

LT (b),b,i(x) =
1

Nb

Nb∑
j=1

1
{
τT (b),b

(
µ̂j

1+i − µ̂j
rmax+1

) ≤ x
}

, i = 0, . . . , rmax − 1 (9)

For xα, where J(xα, P ) = α, we need to prove that LT (b),b,i(xα) → J(xα, P ) for the the-

orem to hold. But, E(LT (b),b,i(xα)) = JT (b),b,i(xα, P ). Hence, it suffices to show that

V ar(LT (b),b,i(xα)) → 0 as N → ∞. The subsampling approach we use samples without

replacement b units of length T (b) starting at some random t < T (N) − T (b) out of the N

available units where the time series ordering is not tampered with. Let

1b,j,i = 1
{
τT (b),b

(
µ̂j

1+i − µ̂j
rmax+1

) ≤ xα

}
(10)

vNb,h,i =
1

Nb

Nb∑
j=1

Cov (1b,j,i, 1b,j+h,i) (11)
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Then,

V ar
(
LT (b),b,i(xα)

)
=

1

Nb

(
vNb,0,i + 2

Nb−1∑

h=1

vNb,h,i

)
= (12)

1

Nb

(
vNb,0,i + 2

b−1∑

h=1

vNb,h,i

)
+

2

Nb

Nb−1∑

h=b

vNb,h,i = V1 + V2

But V1 = O(b/Nb) = o(1). We next examine V2. For this we need to note that V2 ≤ Ṽ2 where

Ṽ2 is made up of covariances obtained by sampling a contiguous block of Nb series of time

series dimension equal to T (b) from the unknown ordering of the elements of {{yi,t}∞t=1}∞i=1

given by

ỹ = {{yi1,t}ti1+T (b)
t=ti1

, . . . , {yiNb
,t}

tiNb
+T (b)

t=tiNb

}
such that ỹ is a cross sectionally mixing process. The mixing nature of ỹ arises from the fact

that there are two unknown orderings (not necessarily the same but assumed the same with

loss of generality) such that

ε̃ = {{εi1,t}ti1+T (b)
t=ti1

, . . . , {εiNb
,t}

tiNb
+T (b)

t=tiNb

}

and

λ̃f = {{λ′i1ft}ti1+T (b)
t=ti1

, . . . , {λ′iNb
ft}

tiNb
+T (b)

t=tiNb

}
are cross sectionally mixing processes. λ̃f is mixing since there is an ordering that makes

the sequence λ1, . . . , λN cross-sectionally mixing and {ft}ti+T (b)
t=ti is simply a set of constants

when sampling across cross-sections. Tildes will be used below to denote that the unknown

mixing ordering is used. But, by Lemma 1 it then follows that ṽNb,h = o(1). Hence

Ṽ2 =
2

Nb

Nb−1∑

h=b

ṽNb,h = o(1)

proving the convergence of LT (b),b,i(xα) to J(xα, P ). In order the complete the proof we

finally need to show that

L̂T (b),b,i(xα) =
1

B

B∑
j=1

1
{
τT (b),b

(
µ̂j

1+i − µ̂j
rmax+1

) ≤ x
}

, i = 0, . . . , rmax − 1

converges in probability to LT (b),b,i(xα) as B →∞. But this result follows from Proposition

4.1 of Romano (1989).

Proof of Theorem 2

In order to prove the theorem we need to show firstly that if H0,r : r0 = r, r = 0, . . . , rmax

holds then

PrP

(
τT (N),N (µ̂r+1 − µ̂rmax+1) > q̂b

r,α,N

)
= o(1) (13)
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where q̂b
i,αN

solves1

LT (b),b,i(x) = αN (14)

and secondly that, if H1,r : r0 > r holds then

lim
N→∞

PrP

(
τT (N),N (µ̂r+1 − µ̂rmax+1) > q̂b

r,α,N

)
= 1 (15)

(13) simply follows by (14) and αN → 0. We now have to show that (15) holds. We establish

the following three facts. Firstly, by Weyl’s Theorem (see, e.g. Lutkepohl (1996, 5.3.2(9))),

µ̂1+r ≥ µ̄1+r, r = 0, . . . , rmax−1 where µ̄1+r is the 1+r largest eigenvalue of Λ′F ′FΛ which is

Op(N). Secondly, again by Weyl’s theorem it follows that µ̂rmax+1 is smaller than the largest

eigenvalue of 1/Tε′ε and is therefore bounded. Thirdly, by virtue of the fact that b = o(N),

q̂b
αN

is op(τT (N),NN). The first two facts imply that τT (N),N (µ̂1+i − µ̂rmax+1) tends to infinity

under H1,r at rate τT (N),NN . This together with the third fact imply (15).

Proof of Theorem 3

It is sufficient to show the following: Firstly

τN,T (µ̂i − µ̂rmax+1)− τ̂N,T (µ̂i − µ̂rmax+1) = op(1) (16)

if β̂ − β = op(ln N) and secondly that

β̂ − β = op(ln N) (17)

But, by (7) we get that β̂−β = op

(
log

(
b1
b2

)−1
)

and since log
(

b1
b2

)−1

= o(log N) we get (17).

To get (16) we simply note that it is sufficient to show that

τ̂N,T /τN,T = N β̂/Nβ = 1 + op(1) (18)

since (τ̂N,T − τN,T )(µ̂i − µ̂rmax+1) = op(1) if τ̂N,T − τN,T = op(τN,T ) or τ̂N,T /τN,T = 1 + op(1).

But N β̂/Nβ = 1 + op(1) if ln
(
N β̂

)
− ln

(
Nβ

)
= op(1) or (β̂ − β) ln N = op(1).

1In the case where (14) has a continuum of solutions we choose the minimum value of x such that (14)
holds.
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Table 1. Experiments A
N T MED PC1 PC2 PC3 IC1 IC2 IC3 ME

θ = 1
50 50 4.287 4.687 4.032 8.000 4.000 3.995 7.999 4.000
100 50 4.216 4.000 4.000 5.232 4.000 4.000 4.002 4.000
200 50 4.173 4.000 4.000 4.000 4.000 4.000 4.000 4.009
50 100 4.326 4.055 4.003 6.157 4.000 4.000 4.155 4.000
100 100 4.275 4.000 4.000 7.026 4.000 4.000 5.223 4.000
200 100 4.241 4.000 4.000 4.000 4.000 4.000 4.000 4.000
50 200 4.407 4.004 4.000 4.196 4.000 4.000 4.000 4.000
100 200 4.404 4.000 4.000 4.005 4.000 4.000 4.000 4.000
200 200 4.326 4.000 4.000 4.094 4.000 4.000 4.000 4.000

θ = 10
50 50 3.477 3.075 1.922 7.970 0.088 0.001 7.040 0.800
100 50 4.389 2.575 1.934 4.049 0.133 0.019 2.098 2.945
200 50 4.458 2.515 2.158 3.442 0.236 0.085 1.284 3.972
50 100 4.183 2.558 1.933 4.072 0.132 0.015 2.093 1.563
100 100 4.353 2.782 1.787 4.745 0.663 0.053 3.978 3.816
200 100 4.274 3.289 2.725 3.997 1.739 0.851 3.907 3.999
50 200 4.231 2.451 2.087 3.353 0.210 0.078 1.282 2.553
100 200 4.273 3.260 2.718 3.996 1.755 0.826 3.908 3.996
200 200 4.265 3.963 3.633 4.000 3.745 2.765 4.000 4.000

θ = 19
50 50 1.612 1.906 0.534 7.933 0.000 0.000 4.687 0.020
100 50 3.228 0.683 0.208 3.221 0.000 0.000 0.087 0.441
200 50 4.453 0.247 0.103 1.206 0.000 0.000 0.001 2.372
50 100 2.755 0.677 0.168 3.075 0.000 0.000 0.068 0.025
100 100 4.460 0.332 0.011 4.380 0.000 0.000 2.360 1.041
200 100 4.732 0.282 0.046 2.481 0.000 0.000 0.634 3.479
50 200 3.895 0.222 0.094 1.113 0.000 0.000 0.002 0.092
100 200 4.512 0.292 0.070 2.460 0.001 0.000 0.648 2.044
200 200 4.478 0.815 0.113 4.000 0.028 0.000 3.936 3.983

Notes: MED refers to the method defined by Algorithm 1
PCi and ICi, i = 1, 2, 3 refer to the information criteria of Bai and Ng (2002)

ME refers to the method defined in Algorithm 1 of Kapetanios (2004)

20



Table 2. Experiments B
N T MED PC1 PC2 PC3 IC1 IC2 IC3 ME

θ = 1
50 50 4.574 7.138 5.751 8.000 4.745 3.972 8.000 7.094
100 50 4.513 6.784 5.841 8.000 4.447 4.044 8.000 8.000
200 50 4.451 6.622 5.994 7.956 4.217 4.055 7.650 8.000
50 100 4.363 5.402 4.648 7.954 4.026 4.000 7.581 4.830
100 100 4.395 4.629 4.022 8.000 4.003 4.000 8.000 7.971
200 100 4.347 4.204 4.005 7.896 4.000 4.000 7.495 8.000
50 200 4.420 4.136 4.034 5.304 4.000 4.000 4.019 4.019
100 200 4.412 4.000 4.000 6.003 4.000 4.000 4.313 5.291
200 200 4.396 4.000 4.000 8.000 4.000 4.000 8.000 8.000

θ = 10
50 50 2.026 5.741 3.888 8.000 0.132 0.002 8.000 2.273
100 50 2.861 5.357 4.133 7.988 0.156 0.025 7.837 7.996
200 50 3.584 5.147 4.351 7.343 0.232 0.101 2.056 8.000
50 100 3.124 3.474 2.465 7.009 0.037 0.002 2.631 1.616
100 100 4.835 3.013 1.701 8.000 0.207 0.014 8.000 7.715
200 100 5.502 3.143 2.471 7.254 0.678 0.203 5.197 8.000
50 200 4.304 2.199 1.777 3.435 0.019 0.004 0.438 1.867
100 200 5.191 2.657 1.979 4.495 0.450 0.107 3.478 4.736
200 200 5.191 3.604 2.751 8.000 2.342 0.812 7.993 8.000

θ = 19
50 50 1.088 5.432 3.559 8.000 0.030 0.000 8.000 1.535
100 50 1.470 4.873 3.653 7.939 0.032 0.000 7.088 7.938
200 50 1.608 4.640 3.899 6.868 0.016 0.002 0.852 8.000
50 100 1.323 2.595 1.453 6.470 0.000 0.000 0.602 0.334
100 100 2.030 1.663 0.278 8.000 0.000 0.000 8.000 6.035
200 100 2.568 1.194 0.406 6.378 0.000 0.000 1.706 8.000
50 200 2.263 0.441 0.158 1.995 0.000 0.000 0.000 0.064
100 200 3.945 0.197 0.032 3.291 0.000 0.000 0.312 2.323
200 200 5.310 0.450 0.016 7.995 0.000 0.000 7.971 8.000

Notes: MED refers to the method defined by Algorithm 1
PCi and ICi, i = 1, 2, 3 refer to the information criteria of Bai and Ng (2002)

ME refers to the method defined in Algorithm 1 of Kapetanios (2004)
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Table 3. Experiments C
N T MED PC1 PC2 PC3 IC1 IC2 IC3 ME

θ = 1
50 50 3.056 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 50 4.699 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 50 6.767 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.438 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 100 5.604 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 6.995 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 3.276 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 4.880 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 6.676 8.000 8.000 8.000 8.000 8.000 8.000 8.000

θ = 10
50 50 1.613 7.999 7.853 8.000 7.993 7.285 8.000 8.000
100 50 3.123 8.000 7.999 8.000 8.000 7.974 8.000 8.000
200 50 4.713 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.229 8.000 7.999 8.000 8.000 7.989 8.000 8.000
100 100 5.167 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 7.050 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 4.021 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 5.772 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 7.326 8.000 8.000 8.000 8.000 8.000 8.000 8.000

θ = 19
50 50 1.576 7.996 7.842 8.000 7.988 7.355 8.000 8.000
100 50 2.731 8.000 7.996 8.000 8.000 7.975 8.000 8.000
200 50 4.118 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.219 8.000 8.000 8.000 8.000 7.995 8.000 8.000
100 100 4.756 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 6.977 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 3.845 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 5.453 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 7.290 8.000 8.000 8.000 8.000 8.000 8.000 8.000

Notes: MED refers to the method defined by Algorithm 1
PCi and ICi, i = 1, 2, 3 refer to the information criteria of Bai and Ng (2002)

ME refers to the method defined in Algorithm 1 of Kapetanios (2004)
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Table 4. Experiments D
N T MED PC1 PC2 PC3 IC1 IC2 IC3 ME

θ = 1
50 50 2.731 8.000 8.000 8.000 8.000 7.999 8.000 8.000
100 50 4.932 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 50 6.918 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.244 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 100 5.559 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 7.052 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 3.568 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 5.116 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 6.901 8.000 8.000 8.000 8.000 8.000 8.000 8.000

θ = 10
50 50 1.761 8.000 7.853 8.000 7.997 7.329 8.000 8.000
100 50 2.919 8.000 7.998 8.000 8.000 7.966 8.000 8.000
200 50 4.443 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.237 8.000 8.000 8.000 8.000 7.992 8.000 8.000
100 100 5.109 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 7.026 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 4.066 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 5.751 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 7.340 8.000 8.000 8.000 8.000 8.000 8.000 8.000

θ = 19
50 50 1.576 7.999 7.862 8.000 7.993 7.391 8.000 8.000
100 50 2.791 8.000 7.996 8.000 8.000 7.971 8.000 8.000
200 50 4.192 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 100 3.234 8.000 8.000 8.000 8.000 7.996 8.000 8.000
100 100 4.973 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 100 6.833 8.000 8.000 8.000 8.000 8.000 8.000 8.000
50 200 4.109 8.000 8.000 8.000 8.000 8.000 8.000 8.000
100 200 5.433 8.000 8.000 8.000 8.000 8.000 8.000 8.000
200 200 7.240 8.000 8.000 8.000 8.000 8.000 8.000 8.000

Notes: MED refers to the method defined by Algorithm 1
PCi and ICi, i = 1, 2, 3 refer to the information criteria of Bai and Ng (2002)

ME refers to the method defined in Algorithm 1 of Kapetanios (2004)
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