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Abstract

This paper surveys the techniques of wavelets analysis and the asso-
ciated methods of denoising. The Discrete Wavelet Transform and
its undecimated version, the Maximum Overlapping Discrete Wavelet
Transform, are described.

The methods of wavelets analysis can be used show how the fre-
quency content of the data varies with time. This allow us to pinpoint
in time such events as major structural breaks.

The sparse nature of the wavelets representation also facilitates
the process of noise reduction by nonlinear wavelet shrinkage, which
can be used to reveal the underlying trends in economic data.

An application of these techniques to the UK real GDP (1873–
2001) is described. The purpose of the analysis is to reveal the true
structure of the data—including its local irregularities and abrupt
changes—and the results are surprising.

KEY WORDS: Wavelets, Denoising, Structural Breaks, Trend Es-
timation.
JEL: C22, C14, C53.

1 Introduction: From Fourier

to Wavelet Analysis

Econometric methodology is dominated by time-invariant linear parametric
models and, as a consequence, it is rooted in the time-domain. However,
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the frequency-domain approach sometimes provides a more insightful repre-
sentation of econometric data by decomposing it into sinusoidal components
of various frequencies, which have intensities that vary across the frequency
spectrum. However neither mode of analysis is sufficiently flexible to cater
for truly evolving phenomena, which may be subject to gradual drifts or to
occasional abrupt changes.

This inadequacy of Classical Fourier analysis in the face of evolutionary
phenomena is a consequence of the assumption that the intensities are ap-
proximately constant through time. The analysis has a global nature; and,
whereas they are localised in frequency, the sines and cosines functions are
not localised in time but extend over the entire real line. This feature makes
Fourier methods ineffective in analysing signals containing local irregularities,
such as spikes or discontinuities.

Another drawback, when transforming to the frequency domain, is the
loss of the time information which would indicate the incidence of events
and their duration. Such time information is encoded in the phase spectrum
from which it cannot be easily deciphered. The amplitude spectrum or,
equivalently, the power spectrum, which is the primary object of a Fourier
analysis, contains no time information. It tells what a signal contains at each
frequency, but it does not indicate when these frequency components were
emitted. For example, a particular frequency might occur continuously or
over a very short time interval. However, a classical Fourier analysis cannot
distinguish between these two cases.

The short-time Fourier transform (Gabor, 1946), also known as windowed
Fourier transform, was the first attempt to achieve a resolution in both time
and frequency. The idea was to study the frequency content of a signal,
segment by segment, by multiplying it by a windowing function, usually
a unit box, which is zero outside a finite interval and whose size is fixed
throughout the sample.

In such a way, a part of the data is isolated which can then be subjected
to a Fourier transform. When one segment of the signal has been analysed,
the window is slid along the signal so as to analyse further segments, until
the entire signal has been covered. The technique has two main drawbacks.

First, fixing the size of the window involves accepting compromises. If
one is interested in the high-frequency components, then a small window is
appropriate; but then is impossible to get information about the low fre-
quency components of the signal. Conversely, a large window allows one to
analyse only the coarse features of the data. Also, analysing the data with
various window widths, in order to capture the features existing at different
frequencies, will generate a considerable amount of data compared with what
is entailed in a simple Fourier transform of the data sequence.
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To achieve additional flexibility, methods are called for that can combine
both temporal and frequency information. An answer is provided by wavelets.

Often, they have finite supports, which means that they exist only within
a given interval of time. If they have infinite supports, then their effects
tend to disappear as the distance on either side from a central time point
increases.

The term wavelet has been introduced by Grossman and Morlet (1984)
to describe a square integrable function whose translation and dilation form
a basis of L2(R). All wavelet basis functions are self-similar, and they differ
from one another only by translations along the time axis and changes of
scale.

Wavelet analysis can be considered as a windowing technique with variable-
sized regions. Instead of combining sines and cosines at different frequencies
which extend throughout time from minus to plus infinity, wavelet analysis
decomposes a signal into shifted (translated) and scaled (dilated or com-
pressed) versions of a mother wavelet. In this way, discontinuities in signals,
can be located in time by means of very short basis functions, whereas ac-
curate discrimination amongst low frequencies can be achieved via highly
dilated low-frequency basis functions.

Throughout the 20th century, scientists in many areas of research have
been trying to overcome the limitations of the classical Fourier Analysis.
They have described, in their own languages, their particular versions of
what has amounted to a wavelets analysis. Under different names, the pyra-
mid algorithm (Mallat, 1987, 1989) used in image processing, the subband
coding (Vetterli and Kovacevic, 1995) of signal processing, the quadrature
mirror filters of digital speech processing (Vaidyanathan, 1990;1993) have
bee addressing the same problem.

The manner in which wavelet analysis is usually presented is, therefore, a
consequence of the field in which it has originated. There have been two main
sources: the functional analysis, which gives strong emphasis to continuous
wavelet analysis and the theory of digital signal processing which approaches
the subject as an application of the techniques of multi-rate filtering.

A common belief has been that, if the aim of the analysis is the perfect
reconstruction of a signal, then a Continuous Wavelet Transform (CWT)
must have been adopted. The signal is analysed at all possible resolutions and
the wavelets are displaced by all values, and not only by integer translations.
Because the parameters governing the dilation and the translation are real
numbers, the outcome is an infinite number of wavelet coefficients which
retain a mass of redundant information.

In fact, in the CWT the wavelets overlap each other, so that most of
the information encoded by one wavelet is also encoded by its neighbours.
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The signal is said to be over-sampled. That redundancy can be avoided by
employing orthogonal transforms of the data that allow for perfect recon-
struction (Hubbard, 1998). The use of an orthogonal basis implies the use
of a Discrete Wavelet Transform whereas a non-orthogonal function can be
used with either the Discrete or the Continuous Wavelet Transform.

In the process of selecting a wavelet, one is faced with two kinds of choices,
The first concerns the system of representation which may be discrete, con-
tinuous or semi-continuous 1. The second choice concerns the properties of
the wavelets themselves. These include the number of vanishing moments
and the degree of regularity, which will be explained later 2.

A Continuous Wavelet function centred at τ and with scale s can be
expressed as

ψs,τ =
1√
|s|

ψ(
t− τ

s
) (1)

where τ, s ∈ R and s > 0. The continuous wavelet transform can then be
thought of as a measuring the correlation between the signal and the wavelet
function. In mathematical terms, it performs the following convolution:

CWT (s, τ) =
1√
|s|

∫ ∞

−∞
f(t)ψ(

t− τ

s
)dt (2)

The transform is a function of scale and translation and it will be large valued
if the signal and the wavelet match in shape at a specific scale and location.
If not, the transform will be small.

The so-called admissibility condition must be satisfied by the wavelet in
order to reconstruct the signal from its transform. This is

Cψ =
∫ ∞

−∞
|ψ(ω)|2

ω
dω < ∞ (3)

where ψ(ω) is the Fourier transform of ψ(t). That condition implies that
ψ(0) = 0—ψ(ω) goes to zero as ω goes to zero—and that

∫ ∞

−∞
ψ(t)dt = 0 (4)

1The semi-continuous transform is a translation-invariant transform in which the scale
parameter, but not the translation parameter, is discreteised and sampled. It is a highly
redundant transform for which a fast algorithm, known as algorithm a trou (algorithm
with holes) has been developed by Holsschneider at al., 1989.

2The first of these two choices is affected by the Shannon-Whittaker Sampling Theorem.
According to that theorem, any continuous and band limited function with frequency
content in the interval [0, π] can be reconstituted from its sampled ordinates by using a
basis of sinc functions at unit displacements.
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In other words, the mother wavelet is an oscillatory function of limited dura-
tion and with average value equal to zero. It is a well localised function both
in time and frequency and it decays rapidly in both. If a wavelet satisfies the
above condition, then, the transform is left-invertible and the signal can be
reconstructed (synthesised) from its wavelet coefficients in the following way

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
W(s, τ)ψτ,s(t)

dsdτ

s2
(5)

The CWT is well suited to detecting singularities or sudden localised
changes. Singularities are mathematically expressed in terms of the so called
Lipschitz exponent, α, which measures the degree of regularity of a signal. In
the resulting time-scale decomposition, the lines that link the maxima of the
moduli of the coefficients at the different scales converge to the singularities
of the signal. By proper manipulation, it is possible to estimate the degree
of regularity. Jumps, for example, can then be modelled as points of local
Lipschitz regularity with a very small exponent α.

In the case of band-limited functions, it is possible to think of the Discrete
Wavelet Transform as a critical sampling of the Continuous Time Wavelet
Transform. This is a consequence of the Shannon-Whittaker sampling theo-
rem (Shannon and Weaver, 1964). More often, the DWT is derived indepen-
dently from the CWT through an appropriate choice of the filter coefficients.
For the dyadic case, which dominates the wavelet literature, s = 2j and
τ = k · 2j.

Most of the accounts of wavelet analysis start with the Haar wavelet.
The Haar wavelet is an excellent tool for teaching purposes but less useful
for most applications because of its discontinuity. On the other hand, it is
well suited to analysing and synthesising time series with sharp jumps or
steps. Its compact support makes it highly localised in time but dispersed in
the frequency domain. It turns out to be the only orthogonal wavelet that
has symmetric analysis and synthesis filters.

The popularity of compact support wavelets, like the ones belonging to
the Daubechies’ family (1992), is mainly due to their relation to the dyadic
multiresolution analysis which dominates wavelet research.3 The frequency
bands of a multiresolution analysis are obtained by dividing the frequency
range into successively smaller intervals in a descent from the high frequencies
to the low frequencies, each band having half the width of its predecessor.

3Among the infinite support wavelets are, on the other hand, Gaussian wavelets, the
Mexican Hat, Morlet and Meyer ’ wavelet. Gaussian wavelets are obtained from the deriva-
tives of the Gaussian function. Mexican Hat is similar to the Gaussian G(2). Among these
wavelets, only Meyer wavelet has a scaling function.
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In the process, the dispersion of the wavelets that constitute the bases of the
frequency subspaces is doubled, and the number of bases wavelets is halved.

The main disadvantage of the conventional dyadic wavelet analysis is the
restriction on the sample size N , which has to be a power of 2, and the
restriction on the location of the frequency and time bands.

This sort of rigidly structured analysis is not always appropriate for sta-
tistical data analysis, for the structure to be investigated might not fall neatly
into dyadic time and frequency bands. These difficulties can be overcame by
pursuing a Mixed-Radix Wave-Packet Analysis—see Pollock and Lo Cascio,
(2006)—which can be applied to sample sizes with arbitrary factorisations
and can be seen as an extension of the dyadic wave-packet analysis (Wicker-
hauser, 1994).

Some flexibility can be achieved if one is prepared to accept an incomplete
DWT by identifying a scale beyond which a wavelet analysis is no longer of
interest. (The stage at which the dyadic decomposition must cease is when
no further divisions of the sample size by higher powers of two are available.)
A partial DWT of level J0 allows us to relax the restriction that N = 2J for
some J and to replace it with the condition that N be an integer multiple of
2J0 .

Another transform variant is the Maximum Overlapping Discrete Wavelet
Transform (MODWT) (known under many different names, i.e., Station-
ary Wavelet Transform (Nason and Silverman, 1995), Translation Invariant
DWT (Coifman and Donoho, 1995), Time Invariant DWT (Pesquet et al.
1996), Non-Decimated DWT (Bruce and Gao, 1996)).

This represents an attempt to generate a transform which is not sensitive
to the choice of the starting point for the data series. In order to eliminate
that sensitivity, one does not subsample the filtered output at each stage
of the pyramid algorithm. As a consequence, the number of coefficients
generated at any stage of the decomposition are in number equal to the
sample size, T , instead that equal to T/2j.

However, even though the MODWT is an energy-preserving transform
(the variance of the signal is perfectly captured by the variance of the coeffi-
cients, but, contrary to the DWT case not by the variance of the components),
the MODWT components are not orthogonal.

An important feature of the MODWT is that, besides handling any sam-
ple size, the detail and smooth coefficients of the multiresolution analysis are
associated with linear phase filters. The consequence is that it is possible to
align the features of the original time series with those of the multiresolution
analysis. Hence the redundancy of the MODWT turns out to be a useful
which we exploit it in the context of denoising schemes.

Translation invariance can also be achieved by means of a semi-continuous
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transform, in which only the scale parameter (but not the translation pa-
rameter) is discreteised and sampled. For these highly redundant cases a
fast algorithm is available, known as the algorithm a trous and developed by
Holschneider, Kronland-Martinet, Morlet and Tchamitchian (1989).

In many applications in signal (and image) processing, the data points Yi,
are assumed to represent noisy observations on a smooth underlying function
g(t) defined, for convenience, as a function of t ∈ [0, 1], with the unit interval
as its domain. Thus

Yi = g(ti) + εi i = 1, . . . , n (6)

where n = 2J , ti = i/n and ε ∼ i.i.d N (0, σ2), and the question is how to
strip away the noise ε. Wavelet theory has provided statisticians with new
and powerful techniques for nonparametric function estimation.

The fact that the signal energy is often mostly concentrated in only few
big coefficients (i.e., sparsity of the DWT) together with the natural ability
of wavelets to adapt to local variations is the basis for noise reduction by
nonlinear wavelet shrinkage and wavelet thresholding estimators (Donoho
and Johnstone (1994) and Donoho et al., (1995)).

A review of these techniques is given in section 3. Among their advantages
is the fact that they can be applied without prior knowledge of the family
{gθ; θ ∈ Θ}— Θ being an infinite dimensional parameter set—to which g
may belong.

A linear approach to wavelet thresholding is also available and an expo-
sition is given by Antoniadis (1996); its main limitation is that, it is not well
suited to handling spatially or temporally inhomogeneous functions with a
low degree of regularity.

The structure of the paper is as follows. In section 2, a lengthy and
detailed account of wavelet multiresolution analysis is given, together with
concepts and theorems that relate to denoising. Section 3 describes wavelet
denoising procedures which are then applied in Section 4 to the wavelet
transform of the UK log real annual GDP—available from 1873 to 2001—for
the purposes of detecting structural breaks and of estimating the trend.

2 Dyadic Multiresolution Analysis

Whatever the field in which it has originated, wavelet analysis is dominated
by the so called Dyadic Multiresolution Analysis. The concept of multireso-
lution analysis was introduced by Mallat (1987,1989) and Meyer (1992) and
it provides a natural framework in which to understand the orthonormal and
compactly supported wavelet bases.
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Figure 1: The partitioning of the time-frequency plane according to a dyadic
multiresolution analysis of a data sequence of T = 128 = 27 points.

The purpose of a mutliresolution analysis is to decompose a data sequence
into a set of wavelets associated with the cells of a grid that partitions the
time-frequency plane4. The partitioning is known as Mosaic Diagram and
it is illustrated by Figure 1, which is for a sample size of T = 128 = 27. In
the conventional dyadic multiresolution analysis, the sample size T = 2n is
restricted to be a power of two and the scale resolution is s = 2j. Here, the
integer j also refers to the iterative stage of an algorithm of wavelet analysis.

In Figure 1, the height of a cell corresponds to the bandwidth in the
frequency domain whereas its width represents the temporal duration. The
highest observable frequency in the sampled data is the Nyquist frequency
of π radians per observation interval, which is the upper limit of the range
of frequencies detectable via regular sampling.

Centred on each cell there is a wavelet. Each band contains a succession
of wavelets that have a common frequency range and an equal temporal
duration but different amplitudes. These wavelets form a set of orthogonal
functions and, in case of finite samples, there are as many wavelets as there
are data points. From the mosaic, it is clear that high frequency wavelets
are tightly packed in time and that they cover a wide frequency range.

As we descend the frequency scale, the wavelets become increasingly dis-
persed in time but their resolution in frequency is enhanced. At the lower end
of the frequency spectrum, wavelets are widely dispersed in time but they
subsist within narrow frequency bands. In descending the frequency range,
at each scale, the frequency band is halved and the temporal dispersion is

4As pointed out by Priestley (1995), it is more appropriate to think in terms of level
of resolution rather than in terms of frequency, given that the term frequency refers only
to sines, cosines and exponential of an imaginary argument.
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doubled.
However, wavelets are never completely confined to a cell. In all but the

case of the Haar wavelets, they break the bounds that demarcate the nominal
time intervals and, in all but the case of the Shannon wavelets, they break the
bounds of the nominal frequency intervals. Therefore, in general, we cannot
say that a succession of basis wavelets spans a nominal frequency interval,
and we shall say, instead that it corresponds to the interval.

Conventional dyadic multiresolution analysis considers a succession of fre-
quency intervals in the form of (π/2j, π/2j−1); j = 1, 2, . . . , n, whose band-
widths are halved repeatedly in descending from high frequencies to low
frequencies. By the jth round, there will be j wavelet bands and one accom-
panying scaling function band. The set {ψj(t−2jk); t, k ∈ I} containing T/2j

mutually orthogonal wavelets, separated from each other by 2j points, that
correspond to the nominal frequency range [π/2j, π/2j−1), will be comple-
mented by the set {φj(t− 2jk); t, k ∈ I} of scaling functions that correspond
to the lower nominal frequency range [0, π/2j). These wavelets and scaling
functions form bases for the corresponding details and approximation spaces,
Vj and Wj respectively.

More formally, a sequence {Vj}j∈Z of closed subspaces of L2(R) is a mul-
tiresolution approximation if and only if the following properties under (7)–
(12) are satisfied:

∀j, k ∈ Z, f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj (7)

This condition declares that, if the function f(t) belongs to the space Vj,
such that it can be expressed in terms of the basis of that space, then the
same must be true of its translated version f(t− 2jk).

∀j ∈ Z, Vj+1 ⊂ Vj (8)

∀j ∈ Z, f(t) ∈ Vj ⇔ f

(
t

2

)
∈ Vj+1 (9)

The two conditions above assert that every subspace Vj contains a subspace
Vj+1 comprising the functions that have twice the dilations of those of Vj.

⋂

j∈Z
Vj = {0} (10)

⋃̄

j∈Z
Vj = L2(R) (11)
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The condition (10) and (11) indicate that the direct sum of the subspaces
constitutes a space of square-integrable functions. Finally, there must be a
space that contains all levels of resolution up to finest; and so it must be
declared that there exists φ ∈ V0 such that

{φ(0)(t− k); t, k ∈ Z} is an orthonormal basis in V0 (12)

Here V0, corresponds to the nominal frequency range [0, π) in the Mosaic
diagram.

The basis for the subspace Vj is a set of orthonormal translated func-
tions; each of these function sets is a fixed dilation of the scaling function,
{φj,k; j, k ∈ Z}. Let Wj be the orthogonal complement of Vj in Vj−1. Then
we have

Vj−1 = Vj ⊕Wj (13)

and

Wj⊥Wj′ if j 6= j
′

(14)

The wavelet basis {ψj,k(t) = 2−j/2ψ(2−jt − k); j, k ∈ Z} forms an or-
thonormal basis in Wj. Wj is the space containing the detail information
necessary to go from an approximation with resolution 2j−1 to a coarser ap-
proximation with resolution 2j. Thus, if a dyadic decomposition is pursued
from the resolution level j down to the level n > j, there will be the following
direct sum of subspaces:

Vj = Vn ⊕Wn ⊕Wn−1 ⊕ · · · ⊕Wj+1 (15)

The outcome is that, whenever a collection of closed subset satisfies the
MRA definition, there exists an orthonormal wavelet basis {ψj,k; j, k ∈ Z} of
L2(R), ψj,k(t) = 2−j/2ψ(2−jt − k) such that any function f(t) ∈ L2(R) can
be represented as a sequence of projections onto father (scaling) and mother
(wavelets) functions, namely:

f(t) =
∑

k

sJ,kφJ,k(t) +
∑

j

∑

k

dj,kψj,k (16)

Here, J is the furthest level of decomposition and sj,k and dj,k are the fol-
lowing projections of f(t) on the bases φj,k and ψj,k respectively:

sj,k =
∫

f(t)φj,k(t)dt

dj,k =
∫

f(t)ψj,k(t)dt (17)
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The signal can then be written as a set of orthogonal components at resolu-
tions 1 to J :

f(t) = SJ + DJ + DJ−1 + . . . + D1 (18)

A direct consequence of the definition of multiresolution is that, given that
the original scaling function φ and the wavelet function ψ are both members
of V0, they also belong to V−1. As {√2φ(2t− k)} is an orthonormal basis for
V−1, it follows that both φ and ψ can be expressed as a linear combination
of {√2φ(2t− k)}. In other words:

φ(t) =
√

2
∑

k

hkφ(2t− k) (19)

ψ(t) =
√

2
∑

k

gkφ(2t− k) (20)

These two equations are known as dilation and wavelet equation respec-
tively, but also as refinement or two-scale equations, and they are used to
move from the continuous wavelet transform to the discrete wavelet trans-
form. They express a wavelet in one frequency band and a scaling function
in the band below as a linear combination of the more densely packed and
less dispersed scaling functions. In the process, they generate the wavelet
coefficients {gk} and the scaling-function coefficients {hk} that are the basis
of the discrete transform.

In the case of compactly supported wavelets, ψ assumes non-zero values
only on a bounded interval; the two coefficient sequences {hk} and {gk}
contain the same finite number L of non-zero terms.

A somewhat curious fact is that, it is possible to analyze a signal into its
components at different scales without ever referring to wavelet and scaling
functions. All we need are filters. In the two equations above, {hk} and {gk}
behave as lowpass and highpass filters respectively and they are such that:

gk = (−1)k+1hL−k−1 k = 0, . . . , L− 1 (21)

where L is the length of the filter. A set of conditions must be satisfied by
the coefficients before they can represent an orthonormal wavelet. A wavelet
filter must sum to zero, have unit energy and be orthogonal to its even shift;
in other words:

K−1∑

k=0

gk = 0 (22)
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K−1∑

k=0

g2
k = 1 (23)

K−1∑

k=0

gkgk+2l =
∞∑

k=−∞
gkgk+2l = 0 (24)

for all l 6= 0, where the integer 2l is the index of the even displacement of
the wavelet.

The two filters {hk} and {gk} are also called Quadrature Mirror filters
(Smith and Barnwell, 1986; Croisiere, Esteban and Galand, 1976).They play
the main role in a two-channel filter bank, where, in the analysis channel, a
signal of length T = 2n is passed in parallel through lowpass and highpass
filters. The output is downsampled by 2, so as to guarantee the non redun-
dancy in the information contained in the filtered output. The downsampled
output from the first highpass filter is the set of wavelet coefficients at the
highest time resolution. The downsampled output from the first lowpass
filter is, instead, the input for the next lowpass/highpass filtering and deci-
mation process. The iteration continues throughout the n levels of a wavelet
decomposition.

The synthesis channel aims at reconstructing the original signal from the
coefficients produced in the analysis channel. Prior to reassembling them,
and starting from the final average and the wavelet coefficients at the high-
est level of decomposition, zeros are interpolated between the elements of
the component signals to replace the discarded elements. These are then
replaced by estimates of the missing values obtained by passing the upsam-
pled sequences through separate highpass and lowpass filters. Then the two
signals are added together to recreate the original signal.

An important condition, which must be fulfilled if perfect reconstruction
is to be to achieved, is that wavelets that are displaced relative to each other
by multiples of 2 sampling intervals should be mutually orthogonal, in which
case they form an orthonormal basis of the corresponding function space.

The orthogonality of the wavelets will be reflected in the autocorrela-
tion function ρ(τ) = {ρτ ; τ = 0,±1,±2, . . .} of the sequence of wavelets
coefficients. There should be ρ0 = 1 ; and ρτ = 0; for τ ∈ {±2,±4, . . .}.
Therefore, the subsampled sequence ρ(2τ) = {ρ2τ ; τ = 0,±1,±2, . . .} should
have characteristics akin to those of the autocovariance function of a discrete
white-noise process.

In particular, the Fourier transform of the subsampled sequence should be
a constant function defined over the interval [−π, π]. If the Fourier transform
of the sequence ρ(τ) is denoted by G(ω), then the Fourier transform of the
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subsequence will be

G(ω) + G(ω + π) = 2 for all ω (25)

This is a consequence of the process of wrapping in the frequency domain,
or of “aliasing”, that accompanies the process of subsampling in the time
domain.

For a proof of this result, consider the z-transform of the autocovariance
function. Taking account of the fact that the autocovariances with an even
index are zero-valued, this becomes

G(z) = {1 + ρ1(z + z−1) + ρ2(z
3 + z−3) + · · ·} (26)

Now let
z = e−iω and s = e−i(ω+π) = e−iπe−iω = −e−iω (27)

Then we have

s + s−1 = −(z + z−1), s3 + s−3 = (z3 + z−3) etc. (28)

and it is clear that

G(z) + G(s) = G(ω) + G(ω + π) = 2. (29)

Due to the QMF relation, that follows:

H(ω) = G(π − ω) (25)

where H(ω) is the squared gain of the lowpass filter. As a consequence, for
all ω, it is possible to write:

H(ω) +H(ω + π) = 2 or H(ω) + G(ω) = 2 (26)

The Multiresolution Analysis is implemented via the pyramid algorithm,
which has been introduced in the context of wavelets by Mallat (1989). The
iterative nature of the algorithm is fully encapsulated in the frequency domain
version of the dilation equation:

φ̂(ω) = H

(
ω

2

)
φ̂

(
ω

2

)
(27)

which results from taking the Fourier transform of both sides of the dilation
equation (19) after replacing 2t − k with u. Here H(ω) = 1√

2

∑L−1
k=0 hke

iωk
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is a 2π periodic function and φ(ω) = 1√
2

∫∞
−∞ φ(t)eiωtdt. From the wavelet

equation (20) we have likewise:

ψ̂(ω) = G

(
ω

2

)
φ̂

(
ω

2

)
(28)

where G(ω) = 2−1/2 ∑L−1
k=0 gke

iωk = e−iωH̄0(ω + π).
The second step of iteration produces

φ̂(ω) = H

(
ω

2

)[
H

(
ω

4

)
φ̂

(
ω

4

)]
(29)

After the j iteration,5 we have:

φ̂(ω) = H

(
ω

2

)
H

(
ω

4

)
. . . H

(
ω

2j

)
φ̂

(
ω

2j

)
=

∞∏

j=1

H

(
ω

2j

)
φ̂

(
ω

2j

)
(30)

As j →∞ the final factor goes to 1, therefore, it is possible to write

φ̂(ω) =
∞∏

j=1

H

(
ω

2j

)
(31)

If the factors approach 1 as j goes to infinity, then, the infinite product
converges. In particular, the natural requirement on H(ω), for the decay of
φ̂(ω), is that H(π) = 0 H(0) = 1. That can easily be seen from the fact
that, given the periodicity of H(ω), we have H(2π) = H(4π) = . . . = 1. As
a consequence, the values of, for example, φ̂(2ω), φ̂(4ω), φ̂(8ω) are all equal.
If H(π) = 0, then, these values will all equal zero—(i.e. φ̂(2π) = H(π)φ̂(π)).

Notwithstanding the limitation of using finite response impulse filters
(their are not band limited, therefore, they admit substantial leakage across
the frequency range), the pyramid algorithm reaches its greatest efficiency
when it is used in conjunction with wavelets, such as the Daubechies’, which
are compactly supported in the time-domain. In particular, it owes its ef-
ficiency to the manner in which each bandpass can be constructed from
elementary component filters (Pollock and Lo Cascio, 2006) and is faster
(O(N)) than the Fast Fourier Transform algorithm O(N log2 N). It can be
recognised that, once the filter H = {hk}L−1

k=0 has been chosen, it completely
determines φ and ψ. Indeed, there focus of the DWT is upon the computation
of wavelet amplitude coefficients rather than upon the wavelets themselves
which may never need to be represented explicitly.

5j is also the degree of the polynomial that can be reconstructed.
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The ability of the discrete wavelet transform to encode a signal with only
a few coefficients different from zero, which is its so-called sparsity property,
and the tendency for most of the fine-scale wavelet coefficients to be very
small, depends on the number of vanishing moments, the degree of regularity
and the length of the support. These features are strictly related to each
other.

Nm ≡
∫ ∞

−∞
tmψ(t)dt = 0 0 ≤ m < r (32)

or if its scaling function can generate polynomials of degree up to r. The
vanishing order corresponds to the number of zeros, r, at ω = π for the
frequency response function of the lowpass filter and the number of zeros at
ω = 0 for the frequency response function of the highpass filter6. A wavelet
with many vanishing moments is a rapidly oscillating function which gives
small coefficients when it is used to analyze low frequencies. As a conse-
quence, it produces a multiresolution analysis characterized by a smoother
transition from one approximation to the next one. That is the reason why
Daubechies (1988, 1992) decided to incorporate the vanishing moments and
the regularity requirements into her filter design.

The continuity of ψ and of r − 1 of its derivatives is a pre-requisite for
the existence of r vanishing moments. Given that regularity is concerned
with differentiability, vanishing moments and regularity are related to each
other. A signal is regular if it can be approximated by a polynomial. On the
other hand, non-smooth basis functions (like the Coiflets) introduce artificial
discontinuity which creates spurious artifacts in the reconstructed signal. For
that reason, one must be cautious in choosing the appropriate basis keeping
well in mind the trade-off between regularity and localisation (in terms of
support, the smoother is a function the less local it is.). Daubechies proved
that a wavelet with r vanishing moments must have a support at least of
2r − 1. As a consequence, an increase in the number of vanishing moment
increases the burden of computation but, more importantly, makes more
difficult to detect local features in the signal (i.e., to locate singularities)7.

6The vanishing moment property implies that the Fourier transform of ψ(.) and of
certain number of derivatives are zero at zero frequency. That can be seen by considering
the m-th order derivative ψm(ω) = (−iω)m

∫ +∞
−∞ tmψ(t)e−iωtdt. If Nm = 0, then, ψm(0) =

0.
7A more accurate reconstruction of the signal can be done by using biorthogonal filters;

good accounts are given in Chui (1997), Burrus et al. (1998) amongst others. In contrast
to the orthogonal case where the analysis and synthesis wavelets are the same (filters are
time reversal of each others) and bear the same characteristics in terms of regularity and
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Singularities, abrupt changes and frequency transients, in time series anal-
ysis, are often more interesting than smooth and regular behavior. The
wavelet transform is an excellent tool for its ability to characterize the lo-
cal regularity of signals. Singularities and edges are detected with accuracy
through an appropriate choice of the basis function.

Local irregularities are reflected within a wavelet analysis by the presence
of high coefficients associated with fine scales, or high frequency, wavelets.
Mallat, amongst others, has made a formal analysis of the phenomenon which
makes reference to the concept of Lipischtz regularity. It is also common to
look at the asymptotic decay of its Fourier transform, f̂(ω). In particular, a
function f is bounded and uniformly Lipschitz-α over R if8

∫ ∞

−∞
|f̂(ω)|(1 + |ω|α)dω < ∞ (33)

This is still a global regularity condition, given the nature of the Fourier
transform. In fact, it does not tell us if the function is locally more regular at
a particular point. A regular function can be approximated by a polynomial;
then, for any α > 0, a function is pointwise Lipschitz α at v, if and only if
there exists a constant K and a polynomial of degree m, m < α ≤ m + 1
such that

|f(t)− Pv(t)| ≤ K|t− v|α ∀t∈ R (34)

9 The Lipschitz regularity of f at v or over [a, b] is the sup of α such that f
is Lipschitz-α. Moreover, a function is singular at v if it is not Lipschitz-1 at
v (A function that is continuously differentiable at a point is Lipschitz-1 at
this point.).

An important theorem by Holschneider and Tchamitchian (1990), in some
cases attributed to Jaffard (1989), relates the pointwise regularity of a signal
to the decay of its wavelet transform’ modulus. It states that, if f ∈ L2(R)
is a Lipschitz -α ≤ m at v, then, there exists A such that

vanishing moments, in the biorthogonal case more flexibility can be reached by assigning
the two offsetting properties to two different functions. In particular, the vanishing order
refers to the analysis wavelet; the synthesis wavelet needs instead to be regular so as to
minimize reconstruction artifacts.

8A proof can be found in Mallat ()
9For the case of sharp cusp detection (Wang, 1995, 1999), 0 ≤ α < 1. The case of α = 0

corresponds to a jump at v. If α ≥ 1, f(t) is continuous and differentiable. If 0 < α < 1
f(t) is continuous but not differentiable. For −1 < α ≤ 0 f(t) is discontinuous and not
differentiable. If α ≤ −1 f(t) is no longer locally integrable.
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∀(τ, s) ∈ R×R+,|W(τ, s)| ≤ Asα+ 1
2

(
1 +

∣∣∣ τ−v
s

∣∣∣
α
)

(35)

Conversely, if α < m is not an integer and there exists A and α
′
< α such

that

∀(τ, s) ∈ R×R+,|W(τ, s)| ≤ Asα+ 1
2

(
1 +

∣∣∣ τ−v
s

∣∣∣
α
′)

(36)

then, f is Lipschitz -α at v.
In other words, if f is differentiable at v, its wavelet transform has order

s3/2 as s tends to zero; if f has an α-cusp at v, the maximum of its transform
over a neighborhood of τ of size proportional to the scale s converges to zero
at a rate no faster than sα+1/2 as s tends to zero.

If the uniform Lipschitz regularity is positive, then, the previous two equa-
tions (after taking logs) imply that the amplitude of the wavelet transform
modulus maxima should decrease when the scale decreases. In particular, an
important theorem by Mallat and Hwang (1992) proves that there cannot be
a singularity in a signal without a local maximum of its wavelet transform
at the finer scale.

It should be clear from that discussion that the Holder regularity features
do not hold in general for the discrete wavelet transform (Abry, 1994). This
is due to the lack of translation invariance of the transform; in other words
the transform of a shifted version of the signal does not corresponds to the
shifted version of the transform of the original signal. As a consequence,
the change points are usually located by mean of a continuous transform
evaluated at discretised and dyadic scales, overcoming, in this way, also the
lack of fast computational algorithm through the use of a modified version
of the algorithm a trous (Abry, 1994).

The same sort of transform is used by Xu et al. (1994); in order to detect
singularities and edges, they provide a spatially selective noise filtration tech-
nique which makes use of the direct spatial correlation of the nonorthogonal
wavelet transform at several adjacent scales (Corrl(m,n) =

∏l−1
i=0 W (m+i, n)

where n = 1, . . . N , l is the number of scales involved in the direct multipli-
cation, m < M − l + 1 and M is the total number of scales.). The use of a
nonorthogonal transform is motivated by the fact that, it produces a trans-
formed signal which is correlated across scales. A high correlation indicates
the presence of a significant feature at the position that should be passed
through the filter, whereas a moderate correlation leads to the cancelation.
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In general, edges can be identified as part of the signal showing peaks across
many scales. Then, the signal at small scales, where most of the noise is
usually confined, is passed if it is around an identified edge, otherwise it
is eliminated. That technique is very convenient for the optimal trade-off
between noise reduction and edges preservation. Now let us attempt to re-
late the concept of Lipschitz regularity to the number of vanishing moments
that characterize the Daubechies wavelet we shall employ in the subsequent
analysis.

The Daubechies’compactly supported wavelets constitute a family of mother
wavelets with varying smoothness, ψr, where r is the number of vanishing
moments; ψr ∈ Cµr(R) with µ ≈ 0.2 and Cα(R) is the space of α times
continuous differentiable functions on R.

The Daubechies wavelets have no explicit expression except for the Haar
case, which corresponds to a DB(1)10. However the squared modulus of the
transfer function of the filter coefficients hk is explicit and quite simple. The
transfer function has a compact support and is r continuously differentiable.

The key to achieve that, while maintaining the orthogonality condition
H(ω) +H(ω + π) = 2, is given by

H(ω) =

(
1 + eiω

2

)r

Q(ω) (37)

where Q(ω) is such that |Q(ω)|2 = Q(ω) and Q(ω.) is a polynomial in
sin2(ω/2). Implicit in that equation is the fact that a (unitary) scaling filter
is said to be r-regular if its z-transform has r zeros at z = eiπ, namely if

H(z) =

(
1 + z−1

2

)r

Q(z) (38)

where H(z) =
∑

k hkz
−k is the z-transform of the scaling coefficients hk and

Q(z) has no poles or zeros at z = eiπ

If the filter is r-regular, then, its length is K = 2r and H(z) is a polyno-
mial of degree K − 1; moreover, given that there are r zeroes at z = −1 the
polynomial Q(z) is of degree K − 1− r.

The squared gain of the scaling filter is given by

H(ω) = 2 cos2r(ω/2)
r−1∑

k=0

(
r − 1 + k

k

)
sin2k(ω/2) (39)

whereas the one for the wavelet is

10DB(K) corresponds to a filter with (K) vanishing moments and of length 2K.
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G(ω) = 2 sin2r(ω/2)
r−1∑

k=0

(
r − 1 + k

k

)
cos2k(ω/2) (40)

The same squared gain function can generate several real-valued wavelet
filters with the same number of coefficients when subject to spectral factor-
ization, namely, when one takes the square root of H(ω).

The squared gain associated with the transfer function of the scaling filter
can be written as

H(ω) = |H(ω)|2 =

∣∣∣∣∣
eiω + 1

2

∣∣∣∣∣
2r

|Q(ω)|2 = cos2r(ω/2)Q(ω) (41)

Q(ω) can be written as a polynomial in cos(ω) (because {hk} is a real-
valued sequence, and H(ω) is a polynomial in cos(ω/2). Given that cos(ω) =
1− 2 sin2(ω/2), it is possible to write H(ω) as a polynomial in sin2(ω/2):

H(ω) = | cos2r(ω/2)|P(sin2(ω/2)) (42)

By letting y = sin2(ω/2) = 1− cos2(ω/2) in | cos2(ω/2)|rP(sin2(ω/2)) we get
(1− y)rP(y) and the orthogonality condition H(ω)+H(ω +π) = 2 takes the
following form11

(1− y)rP(y) + yrP(1− y) = 2 (43)

which should hold for all y ∈ [0, 1]. Daubechies proved that

P(y) = 2[Pr(y) + yrR(
1

2
− y)] (44)

where

Pr(y) ≡
r−1∑

k=0

(
r − 1− k

k

)
yk (45)

and R(.) is an odd polynomial chosen so that P(y) ≥ 0 for y ∈ [0, 1]. By
choosing R(.) = 0, she derives the class of filters having the squared gain
functions given in (50) and (51). Derived under certain regularity conditions,
once applied to data sequences, the Daubechies filters produce coefficients

11

cos2r(ω/2)P(sin2(ω/2)) + sin2r(ω/2)P(cos2(ω/2)) = 2

19



that can be easily interpreted in terms of changes in adjacent weighted av-
erages. They can be interpreted in terms of a cascade of filters made up by
K/2 = r difference (yielding the overall differencing operation) along with a
lowpass filter (yielding the weighted average). Two different criteria imposed
led to the extremal phase filters, conventionally known as DB(r), and to the
Least Asymmetric filters, known as LA(.) or Symmlets.

3 Wavelet Denoising

The sparsity property, also called coherence of the wavelet transform, which
is its ability to encode a signal in few big coefficients, is the basis for noise
reduction techniques by thresholding the wavelet coefficients . These tech-
niques outperform classical linear filtering.

Only if the signal and the noise components reside in separate frequency
bands can such linear filtering techniques succeed in separating them per-
fectly. If the preponderant of the signal relies in the low frequency range and
if the noise extends uniformly over the range or if it is biased towards the high
frequency then the relevant filtering techniques are liable to be described as
smoothing. These procedures often blur edges in signals and images.

The distinction between smoothing and denoising has been pointed out by
Barclay et al. (1997) and becomes more apparent in a transform domain (i.e,
Fourier or Wavelet). A white noise, not only has an incoherent structure, i.e.
there is no way to compactly represent it, but it carries no useful information.
It manifests itself in small amplitude coefficients which are widely dispersed
across the frequency domain; the signal, instead, is well localised to parts of
the frequency range.

Donoho and Johnstone (1994, 1995) have developed a simple way to sup-
press the noisy part of a signal, X, and to recover f in the context of a
non-parametric regression

X(t) = f(t) + σe(t) (46)

where, in the simplest case, e(t) is a Gaussian white noise with mean zero
and variance, σ2, equal to one. The method does involve shrinkage in the
wavelet domain –an overall reduction in the size of the wavelet coefficients
which will reduce coefficients of negligible value to zero– and is quite effective
when applied to functions with a sparse wavelet representation. In such cases,
given that the noise affects all the coefficients regardless of scale, shrinking
them towards zero has the effect of suppressing the noise while preserving
the essential features of the signal.
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The denoising scheme consists of three steps. In the first step, a discrete
wavelet transform is applied to the observed data sequence to produce

ηj,k = dj,k + εj,k (47)

where j = 1, . . . , J0 and t = 0, . . . , Nj − 1. Rather than a full transform, a
partial at level J0 is usually recommended. The detail coefficients are the
superposition of the transform coefficients of f(t) and of ε(t). Moreover the
transform of the Gaussian white noise is also Gaussian white noise.

In the second step, the coefficients above a primary resolution are sub-
jected to thesholding rules, which may reduce their values or set them to
zero if they are below a certain level (see Johnstone and Silverman, 1997).
Below the primary resolution level no thresholding is performed because it is
presumed the signal is must predominate over the noise in the region of low
frequencies.

There are two main rules of thresholding In the case soft thresholding,
the coefficients below the threshold are regarded as noise and are set to zero;
and the ones above are shrunk towards zero according to the following rule:

η(dj,k) =

{
0, if |dj,k| ≤ λ
sign(dj,k)(|dj,k| − λ) if |dj,k| > λ

(48)

In the case of hard thresholding, the coefficients are not shrunk. Instead
they are set them equal to zero only if their absolute values are below the
threshold:

η(dj,k) =

{
0, if |dj,k| ≤ λ
dj,k if |dj,k| > λ

(49)

The rule that is mostly used is the soft one. Even though the hard rule is
better able to preserve the peaks, it also produces greater spurious oscillations
close discontinuities. For this reason it is not especially favoured However,
the problem can be mitigated through the use of a time-invariant transform

In the last step, the shrunken coefficients are transformed back in the
signal domain, generally time, to give a sparser representation of the signal.
However, we need to clarified how to choose the threshold. There are different
ways corresponding to different trade-offs between optimal denoising and
oversmoothing of the signal details.

Bruce and Gao (1996) and Marron et al. (1998) showed that the ap-
plication of a particular threshold λ according to the hard rule results in
larger variance in the function to be estimated. On the other hand, the same

21



threshold value with soft thresholding shifts the estimated coefficients by an
amount of λ even when the empirical detail coefficients stands way above the
noise level. This creates avoidable biases when the true coefficients are large.

Another issue is the instability of the hard threshold that is attributable
to its discontinuity. It is sensitive to small changes in the data. As a rem-
edy, Bruce and Gao (1997) proposed the firm threshold rule, known as a
keep or shrink or kill rule. Firm threshold makes a transition from the soft
to the hard threshold; that is to say, coefficients below the threshold level
are nullified. Those at an intermediate level are reduced to an extent that
diminishes as the values increases. When their value reach an upper bound
they are preserved. However, the firm threshold is seldom applied because,
by requiring two threshold values, it makes the estimation procedure more
computationally expensive.

All of the above procedures entail thresholds and discontinuities. At-
tempts to remove such discontinuities have resulted in various formulations
which have been described as garroting procedures (Gao, 1998).

The universal or fixed-form threshold, λ = σ̂
√

2 ∗ log(n), (Donoho and

Johnstone, 1994), where σ̂ is an estimate of the noise standard deviation,
is a conservative choice. The motive for this, as explained by Donoho and
Johnstone, is the fact that, for a standard normal sequence, {zi; i = 1, . . . , n},
the probability of exceeding that threshold tends to zero as n increases, i.e.

P
{

max |zi| >
√

2 ∗ log(n)
}
→ 0 as n →∞ (50)

whether or not they are independent. The expected number of |zi| exceeding√
2 ∗ log(n) tends to zero, and so is the probability as n → ∞. Equiva-

lently, the maximum of n i.i.d. standard Gaussian variables is smaller than√
2 log(n) with probability equal to one as n increases.

Donoho and Johnstone (1994) proved the asymptotical optimality of the
universal threshold, in Mean Square Error (MSE) sense, for mimicking the
MSE of an ideal estimator designed via an oracle that provides crucial infor-
mation regarding the functional form of the signal that is not conveyed by
the data.

The estimate σ̂ of the noise standard deviation can be obtained by ap-
plying a median absolute deviation (MAD) estimator to the N/2 wavelet
coefficients at the first level of decomposition, incorporating a scale factor
equal to 0.6745 12. It can be presumed that these high frequency coefficients

12The scale factor 0.6745 is the upper quartile of the standard normal distribution; given
that the DWT gives rise to a sparse representation of a signal, only upper few ηj,k will
contain signal as well noise.
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belong almost entirely to the noise component and contain virtually nothing
of the signal .

The Median Absolute Standard Deviation (MAD) estimate of the stan-
dard deviation is a robust estimator against large deviations and reflects the
noise variance rather then the signal variance.

The universal threshold is asymptotically optimal for many classes of
functions and needs no a priori assumption concerning the class that f may
belong to. For that reason is said to produce an asymptotically adaptive
estimator. However, the use of the universal method comes at the price of
a higher threshold level compared to other methods. As a consequence, it
gives rise to a smoother representation of the signal which can be too far
from the original. Better performance is obtained with smaller thresholds13.

To address this problem, Donoho and Johnstone (1995) proposed that
the threshold should depend upon the level of the wavelet decomposition.
They have adopted the so-called SURE (Stein’s Unbiased Risk Estimator)
estimator due to Stein (1981), which leads to an unbiased estimate for the
mean squared error of soft thresholding for each possible threshold choice
λ. The level dependent thresholds are derived by considering the different
resolution levels j as independent multivariate normal estimation problems
and, then, by minimizing the estimate with respect to λ over the range

[0, σ
√

(2 log n)]. The risk estimator is derived as follows. Suppose Y ∼
N (d, σ2) and let d̂ be a k-dimensional vector of the form d̂ = Y + g(Y ).
Stein showed that it is possible to estimate the loss ‖d̂− d‖2 unbiasedly also
in the case of nonlinear biased estimators. The risk is defined as:

R(d̂, d) =
E(d̂− d)2 = E(Y + g(Y )− d)2

= E(Y − d)2 + 2E(g(Y ))(Y − d) + E(g(Y ))2

(51)

If g(Y ) is differentiable, E[g
′
(Y )] < ∞, then

Eg(Y )(Y − d) = σ2Eg
′
(Y ) (52)

and the equation above become

E(d̂− d)2 =
E(Y − d)2 + E[g(Y )2 + 2σ2g

′
(Y )]

= σ2 + E[g(Y )2 + 2σ2g
′
(Y )]

(53)

13However, when used with translation invariant transforms, the lower threshold pro-
duces a very large number of noise spikes, apparently much larger than in the non-invariant
case.
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If the soft-threshold estimator is used, we get

g(Y ) =





λ, if Y < −λ
−Y if |Y | ≤ λ
−λ if Y > λ

(54)

Then

g
′
(Y ) =





0 if Y < λ
−1 if |Y | ≤ λ
0 if Y > λ

(55)

g(Y )2 = min(Y 2, λ2) (56)

As a consequence, an unbiased estimate of the risk E‖d̂−d‖2 can be written
as

SURE(λ, Y ) = kσ2 − 2σ2
k∑

i=1

{|Y | ≤ λ}+
k∑

i=1

min(Y 2, λ2) (57)

from which the threshold is derived according to

λ = argmin
0≤λ≤σ

√
2logk

SURE(λ, Y ) (58)

As outlined by Donoho and Johnstone (1995) that minimization can be ac-
complished in O(klogk) time. However, if most of the wavelet coefficients are
zeros, then, the universal threshold is to be preferred. In other words, if the
signal-to noise ratio is very small the SURE estimate is very noisy. So if such
a situation is detected, the fixed form threshold is used. In order to detect
that situation, Donoho and Johnstone proposed a measure of the sparsity
of the wavelet representation and an hybrid method called HeurSure which,
based on that measure, determines at each resolution level a threshold which
is either the universal or the SURE one.

Another method proposed by Donoho and Johnstone (1998) is the mini-
max thresholding. The minimax principle is widely used in statistics to design
estimators. Some prior information is often available concerning the vector of
parameters, θ, and used to design some estimators the performance of which
is then compared. This principle is also known as the worst case analysis:
given some error measures, i.e. the mean squared error, compute the maxi-
mum expected error over the restricted parameter space and then determine
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the estimator that minimizes the maximum risk14.The minimax risk serves
as a benchmark or ideal risk against which to measure the performance of
alternative possible estimators. In our nonparametric framework, we are en-
dowed with n noisy samples of a function f(ti); i = 1, . . . , n which has to
be estimated on the basis of n available observations on x(ti). We want the
estimate f̂ to have a small mean square error or Risk Rn(f̂ , f) = E‖f̂ −f‖2.
As the universal threshold, the minimax threshold is of a fixed form and is
chosen so as to yield minimax performance for the mean square error against
an ideal procedure. The performances of the shrinkage estimators are eval-
uated in terms of a benchmark that can be thought as obtained through an
oracle that tells which of the details, dj,k, is close to zero. Two oracles have
been used by Donoho and Johnstone (1994): the Diagonal Linear Projec-
tion which tells when to keep or kill the coefficient and the Diagonal Linear
Shrinker which tells how much to shrink each empirical wavelet coefficient.
In the diagonal projection case, the oracle sets θ̂i = δidi with δi = 1 or δi = 0,
depending if it keep or kill the wavelet coefficient; then the risk for the ideal
choice of the sequence {δi} is

R(DLP, θ) = min
{δi}

{ ∑

i

E(δidi−θi)
2
}

=
∑

i

min{θ2
i , E(di−θi)

2} =
∑

i

(θ2
i ∧σ2)

(59)
Ideally, the oracle must tell us which of the θ̂i exceeds the noise standard

deviation σ; in fact, δi = I[θ2
i ≥ E(xi − θi)

2] = I[‖θi‖ ≥ σ]. The empirical
wavelet coefficient is kept if its contribution to the energy of the function is

14The minimax principle can be seen as the results of adapting some game theory tools
for use in statistics (Johnstone, 1999). There are two players facing a statistical decision
problem. Player I, the scientist, faced with the problem of recovering θk (basis coefficients)
from yk = θk+σnzk; k = 1, . . . , n, is allowed to choose any estimator θ̂(y), linear, threshold
or of more complicated type. Player II, the nature, may choose θ ∈ Rn at random with a
probability, π, associated, subject only to a sparsity constraint, which is usually measured
in terms of lp norms, ‖θp‖p = (

∑n
1 |θk|p)1/p for p < 2. The pay-off is calculated as the

expected mean squared error of θ̂(Y ) when θ is chosen according to π and Y satisfies
Y = θ + σnz for z ∼ Nn(0, I). As a consequence, the pay-off averages over both θ and Y
and is such that

r(θ̂, π) = EπEY |θ‖θ̂(Y )− θ‖22
Obviously, the scientist aims at minimizing the pay-off and nature tries to maximize it.
Therefore, it is possible to apply the minimax theorem of von Newmann to get the minimax
risk

Rn = inf
θ

sup
π

r(θ̂, π) = sup
π

inf
θ̂

r(θ̂, π)

The first part of the equality is the minimax estimator for player I, while a prior distribu-
tion π attaining the right end supremum is an optimal strategy for player II and is called
the least favourable (Johnstone, 1999).
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bigger than the variance of the noise, otherwise is discarded. This ideal situa-
tion will never happen but the risk attained RORACLE(DLP, θ) =

∑
i(θ

2
i ∧σ2)

which is the MSE of θ̂, is used as a benchmark 15. More precisely, the bench-
mark includes also an additional term, σ2. Donoho and Johnstone (1994)
showed that the performance of the universal threshold comes surprisingly
close to the performance of the ideal estimator built via an oracle and de-
rived an upper bound of the risk of the minimax estimator in terms of the
unattainable ideal risk for the entire vector of wavelet coefficients; in the case
of soft thresholding, it is

E‖θ̂ − θ‖2 ≤ (1 + 2 log n)

{
σ2 +

∑

i

(θ2
i ∧ σ2)

}
for all θ ∈ Rn (60)

In other words, for all possible θ, the estimator θ̂ can mimic, within
a factor (1 + log n) the performance of the ideal risk plus the additional
parameter, σ2; moreover, if the soft threshold is used, the estimate is with
high probability at least as smooth as the original function.

In the case of colored noise, instead, the upper bound is

E‖θ̂ − θ‖2 ≤ (1 + 2 log n)

{
σ̄2 +

∑

i

(θ2
i ∧ σ2)

}
for all θ ∈ Rn (61)

Other approaches are available for the choice of the threshold value. We
give only a brief outline of some of them and provide the main references for
them.

The Cross-Validation approach is a technique which has been widely used
in statistics for the purpose of choosing a smoothing parameter in a nonpara-
metric regression (Green and Silverman, 1994). For wavelet thresholding, it
is applied in the iid Gaussian noise framework. The approach (Nason, 1994,
1995, 1996; Weyrich and Warhola (1995)) focus on minimizing the prediction
error generated by two competing approximations of the unknown function.
Two methods are available, the Twofold Cross-Validation and the Leave-
One-Out. 16

15In the diagonal linear shrinker case, instead, the risk is RORACLE(DLS, θ) =∑
i(d

2
i /(d2

i + 1))
16The former consists of splitting the data series into odd and even indexed observations.

Given a threshold, the odd-indexed sample is used to estimate a signal which is, then,
interpolated and compared, using squared differences, with the even-indexed downsamples.
The threshold which minimizes the sum of the squared differences is chosen. The latter,
instead, removes from the sample, X0, X1, . . . , XN−1, one observation, let’s say Xt, and
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The Bayesian approach to wavelet shrinking and denoising is based on
a prior imposed on the wavelet coefficients of the function that has to be
recovered. That prior intends to capture the sparseness of the transform and
assigns to each of the wavelet coefficients a scale mixture of two distribu-
tions, one corresponding to negligible coefficients and the other to significant
coefficients. It is common practice to use a scale mixture of two normal distri-
butions or a mixture of a normal and a point mass at zero17. For details see,
amongst others, Abramovich et al. (1998), Chipman et al. (1997); Crouse et
al. (1998).

Despite the near-optimality properties in comparison to other methods,
classical wavelet denoising suffers from a serious drawback which sees it
as responsible of creating artifacts in the recovered function (Coifman and
Donoho, 1995). In particular, in the neighborhood of a discontinuity in the
noisy sampled series, the denoised signal can exhibit pseudo-Gibbs phenom-
ena. These arise as a consequence of using only a subset of coefficients in
the reconstruction of the function; however, they behave much better than
those in the Fourier domain, i.e. they are better localized and of smaller
oscillations. The presence of these oscillations is related to the lack of shift-
invariance of the discrete wavelet transform which does not allow alignment
between the signal features and those of the wavelet basis chosen. Shift in-
variance can be achieved by means of overcomplete or redundant transforms
according to different methods. In the attempt to realign signal and basis
features, so as to improve the denoising performance, one can shift the signal
by an optimal amount, then denoise it and unshift it. However, if a sig-
nal has more than one discontinuity, a shift that is optimal for one of the
features might turn out to be not appropriate for the others. To overcome
that, Coifman and Donoho (1995) proposed the idea of Cycle Spinning which
consists in denoising all possible shifts of a signal and, then, averaging them
(in sequence: circular shift, DWT, thresholding, IDWT, unshift, average).
The algorithm has complexity O(n2); however, Beylkin (1992) and Shensa et
al. (1992) have proved that it can be implemented efficiently in terms of an

considers two subsamples, one made up by the observations before Xt and the other by
the observations after Xt. For a given threshold, an estimate of the unknown function is
produced and also an estimate of the removed value which is, then compared to the true
value of the expelled point. This is repeated for each t and the threshold is chosen so as to
minimize the sum of the squared differences between the estimated and the true removed
point. That procedure is faced with the dimensionality problem. By removing one point,
we end up with 2M − 1 observations and, unless one pads with zeros, a Discrete Wavelet
Transform cannot be used. A MODWT can be applied instead.

17A point mass in statistics is a discontinuous segment in a probability distribution; in
physics, is an idealization of a body whose dimensions are very small compared to the
other distances that are relevant to that problem.
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overcomplete transform such as the MODWT. Removing the downsampling
step at each stage of the pyramidal algorithm is equivalent to compute only
n log n different coefficients among those corresponding to all shifts of the
input signal. That procedure is computationally heavier than the classical
DWT - which is O(n) - but the complexity is still far lower than that of the
averaging-shift method.

The MODWT gives rise to components that are not mutually orthogonal
but, in terms of its wavelet coefficients, is still an energy preserving transform.
As the DWT, it is well suited to analyze the scale dependence in an ANOVA
framework. Moreover it is possible to build an unbiased estimator of the
sample variance as the sum of the variances at each level of decomposition18.

4 Empirical Application

As an illustration of the power of the shrinkage techniques, we consider the
problem of identifying structural breaks in the process that has generated
the UK real GDP from 1873 to 2001. These data have often been quoted in
the debate concerning the appropriate means of reducing trended sequences
to stationarity. The issue is whether this should be achieved by subtracting
an interpolated trend from the data or by applying a difference operator to
them (i.e, Duck, 1992; Mills, 1994; Mills and Crafts, 1996).

It has been claimed (by Rappoport and Reichlin, 1989, amongst others,)
that the tendency to opt for the difference stationary model can be attributed
to the difficulty in finding an adequate functional representation the trend.

In fact, the period in question, of slightly more than a century and a
quarter, has witnessed many policy regime shifts, two world wars and two oil
crises, as well as major legislative and technological changes. To accommo-
date such upheavals, one might be justified in using a broken or a segmented
function. However, this is not the only available recourse; i.e., given their
ability to decompose functions into localised oscillations, wavelets are ex-
tremely good at capturing sudden changes in noisy sequences.

Disjunctions or singularities in the data are usually detected, as we have
discussed in details, by identifying the values of the abscissae where the

18For a sample size N and a wavelet filter of length L, the wavelet variance σ2
x(λj) can

be estimated by

σ2
x(λj) =

1
Ñj

N−1∑

t=Lj−1

w̃2
j,t

where w̃j,t are the jth level MODWT coefficients, Lj = (2j − 1)(L − 1) + 1 is the length
of the scale j wavelet filter, Ñj = N − Lj + 1 and Lj = 2j−1.
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modulus maxima of the continuous wavelet transform converge at fine scales
(Mallat and Hwang, 1992; Wang, 1995;1999). In the presence of singular-
ities, the asymptotic decay is much slower than the case of Holder-regular
functions, as we have already described. However, the DWT cannot be char-
acterized in terms of Holder regularity (Abry, 1994) due to to the lack of
translation invariance, which is a crucial property for pattern recognition
applications, such as the detection of structural changes.

A redundant transform, such as the MODWT, which gives rise to com-
ponents that are correlated across the scales,can be used in detecting singu-
larities.

The MODWT comprises an analysis transform that generates the wavelet
coefficients and a synthesis transform that forms the components of the
data decomposition. Since the analysis transform entails a backward look-
ing causal filter, the coefficients of the MODWT embody a phase lag which
throws them out of alignment with the events in the data to which they
correspond (this difficulty also affects the DWT). In the synthesis stage the
MODWT coefficients are processed by an anticausal filter which eliminates
the phase lag. The effect is to produce a set of sequences at all levels that are
precisely aligned with the events in the data. The avoidance of downsam-
pling also enhances the manner in which the MODWT components reflects
the events in the data. The phase lag of the analysis stage can be minimized
by choosing wavelet filters that are nearly symmetric and by applying an
appropriate phase adjustment. However, the choice of the wavelet filter is
less critical in the case of the MODWT than in the case of the DWT.

There is also the question of what happens when the wavelet filter ap-
proaches the end of a finite data sequence. The difficulties increase with the
length of the support of the filter.

A filter with a wider support is usually more closely confined to its nom-
inal passband band within the frequency domain. Therefore, it tends to
produce a smoother reconstruction by reducing the artefacts in a MRA that
are due to the shape of the filter. However, a wide filter also produces a larger
number of boundary coefficients, especially at higher scales. In a MODWT
the support of the filter increases in the descent from high frequency to low
frequency.

A shorter filter, on the other hand, corresponds to a less regular wavelet
with a shorter support; and it is better suited to detecting sudden changes
and jumps. However, the corresponding wavelet filters at different scales
entail more leakage from frequencies outside the passband compared to longer
filters. On the basis of these considerations, we have chosen to perform a
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MODWT by using a symmlet(2)19

The Least Asymmetric family is characterised by approximate linear phase
and near symmetry about the filter midpoint.

It is usual, in the case of MODWT, to handle the end effects by making
a periodic extension of the data. Of course, this is equivalent to applying
the wavelet filters to a data sequence that has been wrapped around the
circle.A problem with the periodic extension can occur when there is a large
discontinuity between the end of one replication of the sample end the be-
ginning of the next. To reduce this problem the data should be suitably
detrended. An alternative to periodic extension is an extension by symmet-
ric reflection in which successive segments of the extension contain the data
of their predecessors in reverse order.

A failure adequately to detrend the data may result in radical disjunction
in passing from the end of one replication of the sample to the beginning of
the next. This can cause severe border distortions, albeit that, in a wavelets
analysis, they are less severe than they would be in a conventional Fourier
analysis. For these reasons, the series that is subject of the analysis has been
reduced to stationary by taking first differences. The good news, however, is
that the boundary condition has little impact on detecting jumps and sharp
cusps away from the boundary points which are at the beginning and the
end of the sample (Percival and Walden, 2000)20.

Departing from the middle of the sample in either direction there is a
decreasing variability in the annual UK GDP growth (Figure 2) that is even
more manifest from its multiresolution decomposition performed up till level
j = 5 (Figure 3).

The components at each scale of resolution are synthesized from the
wavelet and scaling coefficients. In the attempt to reveal the true structure
of the data, i.e. to locate the dates of sudden changes, jumps and disjunctions
in general, these wavelet coefficients have been subject to soft shrinkage once
the threshold parameter, λ, has been determined.

We have chosen the universal threshold method to derive the threshold
λ = σ̂

√
2 log n. Here σ̂ = σMAD is the MODWT-based MAD (Median Ab-

solute Deviation) estimator of the standard deviation and is calculated from
the elements of the smallest scale vector of wavelet coefficients. These coef-
ficients are noise dominated with the exception of the largest values and are

19N = 2 denotes the number of vanishing moments. accordingly the length of the filter
is 2N = 4

20The MODWT that are affected by circularity are W̃j,t and Ṽj,t for t = 0, . . . , min{Lj−
2, N − 1}, where Lj ≡ (2j − 1)(L− 1) + 1. Since the size of these vectors of coefficients is
always N and since Lj increases with N , the proportion of boundary coefficients increases
with J and reaches its maximum, unity, when Lj − 1 ≥ N .
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Figure 2: Logarithms of UK GDP annual growth.
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Figure 3: MODWT multiresolution of logarithms of the UK GDP annual
growth using the LA(2) wavelet.
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used to derive:

σ̂MAD ≡ 21/2median{|W̃1,0|, |W̃1,1|, . . . , |W̃1,N−1|}
0.6745

(62)

The resulting threshold is equal to 0.051. All the coefficients below it are set
to zero. The others have been shrunk according to the formula (49).

Figure 4 shows the denoised version of UK GDP. Whereas Figure 2 gives
an obscure picture of the events occurring in the sample, the sharp decline in
the growth series, revealed by Figure 4, is a clear indication of a structural
break occurring in 1918. A major shock in the economy commonly results in
a dramatic decline in the levels of output, followed by a recovery. It is easy to
recognise that the post-break growth rate is higher than the pre-break one.
To a lesser extent, this applies also to the second break corresponding to the
second world war. The effects of that war, however, are not easily discernible
in Figure 2.

Manifestly the period that is bounded by the 2 world wars was much
more volatile than the preceding and succeeding periods. It is also surprising
to note that in terms of the growth rate the effects of the crash of 1929
are smaller than the effects of the cessation of hostilities after both World
Wars. The break is an event that has a structure that extends across the
scales of resolution. It is well located temporally and stands out across the
frequency range. Cycles of length between 4 and 8 years are detectable from
the MRA, corresponding to a substantial concentration of details energy at
level 3. Cycles shorter than 16 years are also important (level j = 4) but to
a lesser extent.

To conclude the analysis, we have used the denoised annual growth to
recover the trend that has been, then, plotted with the UK GDP in levels.
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Figure 4: Denoised version of the logs of the UK GDP annual growth.
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