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Abstract

This paper develops a simple model to examine the interaction between part-
ner choice and individual behavior in games of coordination. An important
ingredient of our approach is the way we model partner choice: we suppose
that a player can establish ties with other players by unilaterally investing in
costly pair-wise links. In this context, individual efforts to balance the costs
and benefits of links are shown to lead to a unique equilibrium interaction
architecture. The dynamics of network formation, however, has powerful
effects on individual behavior: if costs of forming links are below a certain
threshold then players coordinate on the risk-dominant action, while if costs
are above this threshold then they coordinate on the efficient action. These
findings are robust to a variety of modifications in the link formation process.
For example, it may be posited that, in order for a link to materialize, the
link proposal must be two-sided (i.e. put forward by both agents); or that,
in case of a unilateral proposal, the link may be refused by the other party
(if, say, the latter’s net payoff is negative); or that a pair of agents can play
the game even if connected only through indirect links.

Keywords: networks, links, coordination games, equilibrium selection, risk
dominance, efficiency
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1 Introduction

In recent years, several authors have examined the role of interaction struc-
ture – different terms like network structure, neighborhood influences, and
peer group pressures, have been used – in explaining a wide range of social
and economic phenomena. This includes work on social learning and adop-
tion of new technologies, evolution of conventions, collective action, labor
markets, and financial fragility.1 The research suggests that the structure
of interaction can be decisive in determining the nature of outcomes. This
leads us to examine the reasonableness/robustness of alternative structures
within a model in which the social network is itself an object of study and
co-evolves with the other dimensions of agents’ choice.

More specifically, in the present paper we apply this approach to the following
problem: the influence of link formation on individual behavior in games of
coordination.2 There is a group of players, who have the opportunity to
play a 2 × 2 coordination game with each other. This game has two pure-
strategy Nash equilibria, one of them Pareto efficient (but risk-dominated)
and the other risk dominant (but inefficient). Two players can only play
with one another if they have ‘link’ between them. These links are made on
individual initiative. They are also costly to form, in the sense that it takes
effort and resources to create and maintain them. A link permits several
interpretations; examples include communication links (with messages sent
from one person to another), investments of time and effort by two persons
in building a common understanding of a research problem, or travel by one
person to the location of another to carry out some joint project.

The link decisions of different players define a network of social interaction.
In addition to the choice of links, each player has to select an action that she
must use in all the games that she engages in. Thus, given the incentives
of individuals to form (or destroy) their links, twin processes of link and
action adjustment unfold that jointly determine the social outcome. We

1See e.g., Allen and Gale (1998), Bala and Goyal (1998), Chwe (2000), Coleman (1966),
Ellison and Fudenberg (1993), Ellison (1993), Granovetter (1974), Haag and Lagunoff
(1999), and Morris (2000), among others.

2Many games of interest have multiple equilibria. The study of equilibrium selection
(which manifests itself most sharply in coordination games) therefore occupies a central
place in game theory. We discuss the contribution of our paper to this research in greater
detail below.
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are interested in the nature of networks that emerge and the effects of link
formation on social coordination. We mostly focus on a setting where links
as well as actions in the coordination game are chosen by individuals on
an independent basis. (The idea that links can be one-sided is closer in
spirit to the first and third examples of links given above.) This approach
of one-sided links allows us to explore the implications of link formation for
social coordination as part of a non-cooperative game, which facilitates the
exposition greatly.3

We start with a consideration of the static problem. Here we find that a
variety of networks – including the complete network, the empty network and
partially connected networks – can be supported at Nash equilibria of the
static (strategic-form) game induced. Moreover, the society can coordinate
on different actions and conformism as well as diversity with regard to actions
of individuals is possible at equilibrium. The immediate counterpart of this
multiplicity of Nash equilibria is that any (best-response) learning dynamics
must also has multiple rest points, which in turn motivates an examination
of the stochastic stability of different outcomes.

To this end, we propose a dynamic model in which, at regular intervals,
individuals choose links and actions to maximize (myopically) their respective
payoffs. Occasionally, they also make errors or experiment. Our interest is
in the nature of long run outcomes, when the probability of these errors is
small. This leads to clear-cut predictions, both concerning the architecture
of networks as well as the nature of social coordination.

First, we show that, provided the costs of link formation are not too high,4

any network architecture that is robust enough to be observed a significant
fraction of time in the long run (i.e. occurs at so-called stochastically stable
states) must be complete.5 (Figure 1a gives an example of a complete network
in a society with 4 players, where a filled circle lying on the edge near a
player indicates that this player has formed, or supports, that link.) This
implies that partially connected networks, even if they define Nash equilibria

3In a subsequent section we elaborate on alternative formulations of link formation and
argue that the main insights are robust to a variety of modifications (see Section 4).

4Of course, if the linking cost is higher than the maximum payoff in the coordination
game, only the empty network can prevail.

5In a complete network, every pair of players is directly linked.
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of the social game (and thus rest-points of the perturbation-free best-response
dynamics), are just ephemeral situations in the long run.

Secondly, we also find that in the long-run states (where the social net-
work is complete), players always coordinate on the same action, i.e. social
conformism obtains. However, the specific nature of coordination sharply
depends on the costs of link formation. There is a threshold value in the
interior of the payoff range such that, if the costs of link formation are below
the threshold, players coordinate on the risk-dominant action. In contrast, if
those costs are above that threshold, players coordinate on the efficient ac-
tion at all stochastically stable states. This is the content of our main result,
Theorem 4. In sum, therefore, our analysis reveals that, even though the
eventual architecture of the social network is the same (i.e. complete) in all
“robust” cases, the process of network formation (i.e. the dynamics by which
links are created and destroyed out of equilibrium) has crucial implications
for the nature of social coordination. Specifically, it leads to very different
conclusions concerning the strategy choice selected in the long run, as the
magnitude of linking costs changes. We elaborate on some aspects of these
results and sketch the intuition underlying them.
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Figure 1b

Center-sponsored Star

First, we stress that the dynamics of link formation play a crucial role in
the model. Despite the fact that the only architecture that is stochastically
stable (within the interesting parameter range) is the complete one, players’
behavior in the coordination game is different depending on the costs of
forming links. But if the network were to remain fixed throughout, standard
arguments indicate that the risk-dominant action must prevail in the long
run (cf. Kandori, Mailath and Rob, 1993). This serves to highlight the fact
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that, indeed, it is the link formation process that, by allowing for the co-
evolution of the links and actions, plays a decisive role in shaping individual
behavior in our model.

Second, we want to develop some intuition on the sharp relationship found
between the costs of forming links and the corresponding behavior displayed
by players in the coordination game. On the one hand, note the obvious fact
that, if the cost of forming links is small and the gross payoffs to be earned in
the game are positive,6 players wish to be linked with everyone irrespective of
the actions they choose. Hence, from an individual perspective, the relative
attractiveness of different actions is quite insensitive to what is the network
structure faced by any given player at the time of revising her choices. In
essence, a player must make her fresh choices as if she were in a complete
network. In this case, therefore, the risk dominant and inefficient conven-
tion prevails since, under complete connectivity, this convention is harder to
destabilize (through mutations) than the efficient but risk-dominated one.
By contrast, if costs of forming links are high, individual players choose to
form links only with those who lead to substantial gross payoffs. This, in
turn, leads to more selective linking decisions by players and a reduction
in their strategic uncertainty, consequently facilitating the emergence of the
efficient action.

Third, we elaborate on the role of cost-bearing in link formation. In our
model, links are one-sided, i.e. they are taken at the initiative of one player,
who also incurs its cost. This brings in the issue of externalities in the link
formation process and the potential for free-rider problems. But perhaps
more interestingly, it also has an important bearing on the different vul-
nerability to change displayed by the very different ways of supporting a
given architecture.7 To fix ideas, consider a state where the social network
is complete and all players choose a common action. What is the underlying
pattern of links that makes some such state more fragile to a particular set
of mutations? A moment’s reflection suggests that the particular state of

6The role played by our assumption that the game payoffs are positive (or at least
non-negative) is discussed in Subsection 2.2. In Section 4, we contemplate alternative
variations of the model that may dispense with it.

7Note, for example, that there are 2n(n−1)/2 strategy profiles that support (with non-
redundant links) a complete network with n players. Clearly, these strategy profiles allow
for wide variation in the number of links formed by individual players (and hence also a
wide range of payoffs).
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that kind which is most fragile is the one where the mutant players induce
the strongest externalities (and thus incentives to change) on the rest of the
players. This happens when, collectively, all of the mutants support (i.e.
have active) links to the remaining players. If, for concreteness, the mutants
are indexed from 1 to k and the other players from k + 1 to n, some such
(complete) network would be one where every player i supports a link to
every other player with higher index. In fact, our analysis yields the insight
that such a highly asymmetric pattern of connections enhances the fragility
of otherwise stationary states and thus must be at the origin of the paths of
least-resistance that underlie the notion of stochastic stability.8 This, again,
serves to illustrate the interplay between network structure and action choice
that is at the heart of our analysis.

We now place the paper and the results in the context of the literature.
Traditionally, sociologists have held the view that individual actions, and in
turn aggregate outcomes, are in large part determined by interaction struc-
ture. By contrast, economists have tended to focus on markets, where social
ties and the specific features of the interaction structures between agents
are typically not important. In recent years, economists have examined in
greater detail the role of interaction structure and found that it plays an im-
portant role in shaping important economic phenomena (see the references
given above, and also Granovetter, 1985). This has led to a study of the
processes through which the structure emerges. The present paper is part of
this general research program.

Next, we relate the paper to work in economics. The paper contributes to two
research areas: network formation games and equilibrium selection/coordination
problems. In earlier work on network formation it is assumed that the sole
concern of players is whom they connect to – i.e. the only strategic con-
siderations are associated to their linking decisions (see e.g., Aumann and
Myerson (1989), Bala and Goyal (2000), Dutta, van den Nouweland and Tijs

8This observation is related to some recent work by Albert, Jeong, and Barabási (2000)
on the error and attack tolerance displayed by different network arrangements. Specifically,
these authors show that the inhomogenous connectivity of many complex networks (e.g.
the World-Wide Web, where some nodes bear many links whereas most others only have
a few) makes them rather fragile to targeted attack although very tolerant to unguided
error. In our case, where mutation probabilities are conceived as very small, the “attack
fragility” is the dominant consideration and this lends to inhomogenous networks their
key role in the analysis.
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(1995), and Jackson and Wolinsky (1996)). By contrast, the present paper
presents a unified framework in which the emergence of social networks and
the behavior of linked players can be jointly studied.9

Next we outline briefly the relationship of our paper to the literature on
equilibrium selection in games. In many games of interest, multiple equi-
libria arise naturally, and so recent years have seen a considerable amount
of research on equilibrium selection/coordination.10 An important finding of
this work is that interaction structure (i.e. the social network) matters and
that, by varying it, the rate of change as well as the long run outcome can
be significantly altered.11 This underscores the importance of endogenizing
the social network, i.e., examining the circumstances under which different
interaction patterns emerge. From a methodological point of view, a natural
way to do this is by assessing the stochastic stability of the different net-
works arising at Nash equilibria. This is the route undertaken in the present
paper, where we adapt the techniques customarily used in the evolutionary
literature to the present scenario (where players choose not only actions but
partners as well).

Somewhat more specifically, the present approach is related in spirit to that
subbranch of recent evolutionary literature where players are allowed to move
among a fixed set of locations.12 The basic insight flowing from it is that,
if individuals can separate/insulate themselves easily from those who are

9In independent work, Droste, Gilles and Johnson (1999), Jackson and Watts (1999)
and Skyrms and Pemantle (2000), study endogenous network formation. The first and
third paper have a model of link formation based on individual incentives and are more
directly related to our paper. The primary difference between these papers and our paper
pertains to the timing of actions and links. We assume that the two are simultaneous,
while the earlier papers assume that links and actions are revised one at a time, taking
the other as given. This difference leads to different conclusions. We further discuss the
issue of timing of actions and links in Subsection 4.3 below.

10One strand of this work considers dynamic models. This work includes Blume (1993),
Canning (1992), Ellison (1993), Kandori, Mailath and Rob (1993), and Young (1993),
among others. For a consideration of this same equilibrium selection problem from a
different (“eductive”) perspective, the reader may refer to the work of Harsanyi and Selten
(1988) or the more recent paper by Carlson and van Damme (1993).

11See, for example, Ellison (1993), Goyal (1996), Lee and Valentinyi (2000), and Morris
(2000), and Robson and Vega-Redondo (1996), among others.

12See e.g. Ely (1996), Mailath, Samuelson and Shaked (1994), Oechssler (1997), or
Bhaskar and Vega-Redondo (2000), among others.
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playing an inefficient action (e.g., the risk-dominant action), then efficient
“enclaves” will be readily formed and eventually attract the “migration” of
others (who will therefore turn to playing efficiently). In a rough sense, one
may be inclined to identify easy mobility with low costs of forming links.
However, the considerations involved in each case turn out to be very differ-
ent, as is evident from the stark contrast between our conclusions and those
of the mobility literature (recall the above summary). There are two main
reasons for this contrast. First, in our case, players do not indirectly choose
their pattern of interaction with others by moving across a pre-specified net-
work of locations (as in the case of player mobility). Rather, they construct
directly their interaction network (with no exogenous restrictions) by choos-
ing those agents with whom they want to play the game. Second, the cost
of link formation is paid per link formed and thus becomes truly effective
only if it is high enough. In a heuristic sense, we may say that it is pre-
cisely the restricted “mobility” that high costs induce which helps insulate
(and thus protect) the individuals who are choosing the efficient action. If
the link-formation costs are too low, the extensive interaction this facilitates
may have the unfortunate consequence of rendering risk-dominance consid-
erations decisive.

The rest of this paper is organized as follows. Section 2 describes the frame-
work. Section 3 presents the results for the basic model. Section 4 explores a
variety of modifications in the model that consider alternative link-formation
rules or allow for players to interact with directly as well as indirectly linked
players. Section 5 concludes.

2 The Model

2.1 Networks

Let N = {1, 2, . . . , n} be a set of players, where n ≥ 3. We are interested
in modelling a situation where each of these players can choose the subset
of other players with whom to play a fixed bilateral game. Formally, let
gi = (gi1, . . . gi,i−1, gi,i+1, . . . gin) be the set of links formed by player i. We
suppose that gij ∈ {1, 0}, and say that player i forms a link with player j
if gij = 1. The set of link options is denoted by Gi. Any player profile of
link decisions g = (g1, g2 . . . gn) defines a directed graph, called a network.
Abusing notation, the network will also be denoted by g.
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Specifically, the network g has the set of players N as its set of vertices while
its set of arrows, Γ ⊂ N × N, is defined as follows: Γ = {(i, j) ∈ N × N :
gij = 1}. Graphically, the link (i, j) may be represented as an edge between i
and j, a filled circle lying on the edge near agent i indicating that this agent
has formed (or supports) that link. Every link profile g ∈ G has a unique
representation in this manner. Figure 2 below depicts an example. In it,
player 1 has formed links with players 2 and 3, player 3 has formed a link
with player 1, while player 2 has formed no links.13
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Figure 2

Given a network g, we say that a pair of players i and j are directly linked
if at least one of them has established a linked with the other one, i.e. if
max{gij, gji} = 1. To describe the pattern of players’ links, it is useful
to define a modified version of g, denoted by ḡ, that is defined as follows:
ḡij = max{gij, gji} for each i and j in N . Note that ḡij = ḡji so that the
index order is irrelevant. We refer to gij as an active link for player i and a
passive link for player j.

We say there is a path between i and j if either ḡij = max{gij, gji} = 1 or
there exist agents j1,. . .,jm distinct from each other and i and j such that
ḡi,j1 = · · · = ḡjk,jk+1

= · · · ḡjm,j = 1.A sub-graph g′ ⊂ g is called a component
of g if for all i, j ∈ g′, i �= j, there exists a path in g′ connecting i and
j, and for all i ∈ g′ and j ∈ g, gij = 1 implies g′ij = 1. A network with
only one component is called connected. On the other hand, a network (or
a component) is said to be complete if every pair of nodes in it is connected
by a link in either direction (recall Figure 1a). Finally, a network is called
minimally connected if the removal of any single link renders it disconnected.
A simple example of such a network is provided by the center-sponsored star
of Figure 1b.

13Since agents choose strategies independently of each other, two agents may simulta-
neously initiate a two-way link, as seen in the figure.
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2.2 Social Game

Individuals located in a social network play a 2×2 symmetric game in strate-
gic form with common action set. The set of partners of player i depends
on her location in the network. In the basic model we assume that two in-
dividuals can play a game if, and only if, they have a direct link between
them.

We now describe the bilateral game that is played between any two partners.
The set of actions is A = {α, β}. For each pair of actions a, a′ ∈ A, the payoff
π(a, a′) earned by a player choosing a when the partner plays a′ is given by
the following table:

2
1

α β

α d e

β f b

Table I

We shall assume that the game is one of coordination with two pure strategy
equilibria, (α, α) and β, β). Without loss of generality we will assume that
(α, α) is the efficient equilibrium. Finally, in order to focus on the interesting
case, we will assume that there is a conflict between efficiency and risk-
dominance. These considerations are summarized in the following restrictions
on the payoffs.14

d > f ; b > e; d > b; d+ e < b+ f. (1)

An important feature of our approach is that links are costly. Specifically,
every agent who establishes a link with some other player incurs a cost c > 0.
Thus, we suppose that the cost of forming each link is independent of the
number of links being established and is the same across all players.

14Our results extend in a natural way in case the risk-dominant equilibrium is also
efficient, i.e., if d + e > b + f . In particular, players coordinate on the (α, α) equilibrium,
which is risk-dominant as well as efficient, in the long run.
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In the basic model we assume that links are one-sided. This aspect of the
model allows us to use standard solution concepts from non-cooperative game
theory in addressing the issue of link formation. We shall suppose that the
payoffs in the bilateral game are all positive and, therefore, no player has
any incentive to refuse links initiated by other players. There are different
ways in which the assumption of positive payoffs in the coordination game
can be relaxed. One route is to dispense with any restriction on payoffs but
suppose that, when player i supports a link to player j, the payoff (which
may be negative) flows only to i. This formulation may be interpreted as
reflecting a model of peer groups and fashion, where asymmetric flow of
influence seems a natural feature. Another possible route to tackle possibly
negative payoffs would be to maintain the bilateral nature of payoffs but give
players the option to refuse the links initiated by others. We discuss a variety
of alternative formulations of the link formation process in section 4.

Every player i is obliged to choose the same action in the (possibly) several
bilateral games that she is engaged in. This assumption is natural in the
present context: if players were allowed to choose a different action for every
two-person game they are involved in, this would make the behavior of players
in any particular game insensitive to the network structure. Thus, combining
the former considerations, the strategy space of a player can be identified with
Si = Gi × A, where Gi is the set of possible link decisions by i and A is the
common action space of the underlying bilateral game.15

We can now present the payoffs of the social game. Given the link decisions
of players, g = (g1, g2, ..., gn), let N(i; g) ≡ {j ∈ N : gij = 1} be the set of
agents in the induced network with whom player i has established links, while
ν(i; g) ≡ |N(i; g)| is its cardinality. Similarly, denote by N(i; ḡ) ≡ {j ∈ N :
ḡij = 1} the set of agents with whom player i is directly connected (by active
or passive links), while ν(i; ḡ) ≡ |N(i; ḡ)| stands for the cardinality of this set.
Then, given the strategies of other players, s−i = (s1, . . . si−1, si+1, . . . sn), the

15In our formulation, players choose links and actions in the coordination game at the
same time. An alternative formulation would be to have players choose links first and
then choose actions, contingent on the nature of the network observed. Finally another
alternative, considered by the literature, is to postulate that the action and every link are
revised separately (cf. Footnote 9 and Subsection 4.3).
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payoff to a player i from playing some strategy si = (gi, ai) is given by:

Πi(si, s−i) =
∑

j∈N(i;ḡ)

π(ai, aj)− ν(i; g) · c. (2)

We note that the individual payoffs are aggregated across the games played
by him. In much of earlier work, e.g. Kandori, Mailath and Rob (1993) or
Ellison (1993), the distinction between average or total payoffs was irrelevant
since the size of the neighborhood was given. In our model, however, where
the number of games an agent plays is endogenous, we want to explicitly
account for the influence of the size of the neighborhood and thus choose the
aggregate-payoff formulation.16

These payoff expressions allow us to particularize the standard notion of
Nash Equilibrium to each of the two alternative scenarios. Thus, for the
model with direct links, a strategy profile s∗ = (s∗1, . . . s

∗
n) is said to be a

Nash equilibrium if, for all i ∈ N,

Πi(s
∗
i , s

∗
−i) ≥ Πi(si, s

∗
−i), ∀si ∈ Si. (3)

On the other hand, a Nash equilibrium in either scenario will be called strict
if every player gets a strictly higher payoff with her current strategy than she
would with any other strategy. The set of Nash equilibria will be denoted by
S∗ and that of strict Nash equilibria by S∗∗.

2.3 Dynamics

Time is modeled discretely, t = 1, 2, 3, . . . . At each t, the state of the system
is given by the strategy profile s(t) ≡ [(gi(t), ai(t))]

n
i=1 specifying the action

played, and links established, by each player i ∈ N. At every period t, there
is a positive independent probability p ∈ (0, 1) that any given individual gets
a chance to revise her strategy. If she receives this opportunity, we assume
that she selects a new strategy

si(t) ∈ argmax
si∈Si

Πi(si, s−i(t− 1)). (4)

16When players seek to maximize average payoffs, the size of the interaction group plays
no essential role and we conjecture that at least some efficient state (i.e. a state where all
players choose action α) must be stochastically stable. The intuition for this conjecture is
that when neighborhood size is irrelevant per se it should be particularly easy to destabilize
inefficient states.
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That is, she selects a best response to what other players chose in the pre-
ceding period.17 If there are several strategies that fulfill (4), then any one
of them is taken to be selected with, say, equal probability. This strategy
revision process defines a simple Markov chain on S ≡ S1 × ... × Sn. In our
setting, which will be seen to display multiple strict equilibria, there are sev-
eral absorbing states of the Markov chain.18 This motivates the examination
of the relative robustness of each of them.

To do so, we rely on the approach proposed by Kandori, Mailath and Rob
(1993), and Young (1993). We suppose that, occasionally, players make
mistakes, experiment, or simply disregard payoff considerations in choosing
their strategies. Specifically, we assume that, conditional on receiving a
revision opportunity, a player chooses her strategy at random with some
small “mutation” probability ε > 0. For any ε > 0, the process defines a
Markov chain that is aperiodic and irreducible and, therefore, has a unique
invariant probability distribution. Let us denote this distribution by µε. We
analyze the form of µε as the probability of mistakes becomes very small,
i.e. formally, as ε converges to zero. Define limε→0 µε = µ̂. When a state
s = (s1, s2, . . . , sn) has µ̂(s) > 0, i.e. it is in the support of µ̂, we say that
it is stochastically stable. Intuitively, this reflects the idea that, even for
infinitesimal mutation probability (and independently of initial conditions),
this state materializes a significant fraction of time in the long run.

3 Evolving networks and social coordination

We first characterize the Nash equilibrium of the social game. We then
provide a complete characterization of the set of stochastically stable social
outcomes.

3.1 Equilibrium outcomes

Our first result concerns the nature of networks that arise in equilibria. If
costs of link formation are low (c < e), then a player has an incentive to

17We are implicitly assuming that players have complete information the network struc-
ture as well as the profile of actions. This assumption simplifies the strategy choice signif-
icantly in a setting where a player can potentially play with everyone else in the society.

18We note that the set of absorbing states of the Markov chain coincides with the set of
strict Nash equilibria of the one-shot game.

14



link up with other players irrespective of the actions the other players are
choosing. On the other hand, when costs are quite high (specifically, b < c <
d) then everyone who is linked must be choosing the efficient action. This,
however, implies that it is attractive to form a link with every other player
and we get the complete network again. Thus, for relatively low and high
costs, we should expect to see the complete network. In contrast, if costs are
at an intermediate level (f < c < b), a richer set of configurations is possible.
On the one hand, since c > f(> e), the link formation is only worthwhile
if other players are choosing the same action. On the other hand, since
c < b(< d), coordinating at either of the two equilibria (in the underlying
coordination game) is better than not playing the game at all. This allows
for networks with two disconnected components in equilibria. The former
considerations are reflected by the following result, whose proof is given in
Appendix.

Proposition 1 Suppose (1) and (2) hold. (a) If c < min{f, b}, then an equi-
librium network is complete. (b) If f < c < b, then an equilibrium network
is either complete or can be partitioned into two complete components.19 (c)
If b < c < d, then an equilibrium network is either empty or complete. (d) If
c > d, then the unique equilibrium network is empty.

Next, we characterize the Nash equilibria of the static game. First, we in-
troduce some convenient notation. On the one hand, recall that ge denotes
the empty network characterized by ge

ij = 0 for all i, j ∈ N (i �= j). We
shall say that a network g is essential if gijgji = 0, for every pair of players
i and j. Also, let Gc ≡ {g : ∀i, j ∈ N, ḡij = 1, gijgji = 0} stand for the
set of complete and essential networks on the set N. Analogously, for any
given subset M ⊂ N, denote by Gc(M) the set of complete and essential
subgraphs on M. Given any state s ∈ S, we shall say that s = (g, a) ∈ Sh

for some h ∈ {α, β} if g ∈ Gc and ai = h for all i ∈ N. More generally, we
shall write s = (g, a) ∈ Sαβ if there exists a partition of the population into
two subgroups, Nα and Nβ (one of them possibly empty), and corresponding
components of g, gα and gβ, such that: (i) ga ∈ Gc(Nα), gβ ∈ Gc(Nβ); and
(ii) ∀i ∈ Nα, ai = α; ∀i ∈ Nβ, ai = β. With this notation in hand, we may
state the following result.

19Our parameter conditions allow both f < b and b < f. If the latter inequality holds,
Part (b) of Proposition 1 (and also that of Proposition 2 below) applies trivially.
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Proposition 2 Suppose (1) and (2) hold. (a) If c < min{f, b}, then the set
of equilibrium states S∗ = Sα∪Sβ. (b) If f < c < b, then Sα∪Sβ ⊂ S∗ ⊂ Sαβ,
the first inclusion being strict for large enough n. (c) If b < c < d, then
S∗ = Sα ∪ {(ge, (β, β, ..., β))}. (d) If c > d, then S∗ = {ge} × An.

Parts (a) and (c) are intuitive; we therefore elaborate on the coexistence
equilibria identified in part (b). In these equilibria, there are two unconnected
groups, with each group adopting a common action (different in each group).
The strategic stability of this configuration rests on the appeal of ‘passive’
links. A link such as gij = 1 is paid for by player i, but both players i and
j derive payoffs from it. In a mixed equilibrium configuration, the links in
each group must be, roughly, evenly distributed. This means that all players
enjoy some benefits from passive links. In contrast, if a player were to switch
actions, then to derive the full benefits of this switch, she would have to form
(active) links with everyone in the new group. This lowers the incentives to
switch, a consideration which becomes decisive if the number of passive links
is large enough (hence the requirement of large n).

The above result indicates that, whenever the cost of links is not excessively
high (i.e. not above the maximum payoff attainable in the game), Nash
equilibrium conditions allow for a genuine outcome multiplicity. For exam-
ple, under the parameter configurations allowed in Parts (a) and (c), this
multiplicity permits alternative states where either of the two actions is ho-
mogeneously chosen by the whole population. Under the conditions of Part
(b), the multiplicity allows for a wide range of possible states where neither
action homogeneity nor full connectedness necessarily prevails. The model,
therefore, raises a fundamental issue of equilibrium selection.

3.2 Dynamics

This section addresses the problem of equilibrium selection by using the
techniques of stochastic stability. As a first step in this analysis, we establish
convergence of the unperturbed dynamics for the relevant parameter range.

Let S̄ denote the set of absorbing states of the unperturbed dynamics. In
view of the postulated adjustment process, it follows that there is an one-
to-one correspondence between S̄ and the class of strict Nash equilibria of
the social game, i.e. S̄ = S∗∗. Proposition 2 characterizes all Nash equilibria
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of this game. But, clearly, if c < b, every Nash equilibrium is strict, while
if b < c < d, only the Nash equilibria in Sα are strict. Since, on the other
hand, no strict Nash equilibrium exists if c > d, the next result focuses on
the case where c < d.

Proposition 3 Suppose (1)-(2) hold and c < d. Then, starting from any
initial strategy configuration, the best response dynamics converges to a strict
Nash equilibrium of the social game, with probability one.

The proof of the above result is given in Appendix. This result delimits the
set of states that can potentially be stochastically stable since, obviously,
every such state must be a limit point for the unperturbed dynamics. Let
the set of stochastically stable states be denoted by Ŝ ≡ {s ∈ S : µ̂(s) > 0}.
The following result summarizes our analysis.

Theorem 4 Suppose (1) and (2) hold. There exists some c̄ ∈ (e, b) such
that if c < c̄ then Ŝ = Sβ while if c̄ < c < d then Ŝ = Sα, provided n is large
enough.20 Finally, if c > d then Ŝ = {ge} × An.

Recall that a social outcome is stochastically stable if it lies in the support of
the limit distribution, µ̂. In order to determine this support we use the well-
known graph-theoretic techniques developed by Freidlin and Wentzell (1984)
for the analysis of perturbed Markov chains, as applied by the aforementioned
authors (Kandori et al. and Young) . They can be summarized as follows.
Fix some state s ∈ S̄. An s-tree is a directed graph on S̄ whose root is s and
such that there is a unique (directed) path joining any other s′ ∈ S̄ to s. For
each arrow s′ → s′′ in any given s-tree, a “cost” is defined as the minimum
number of simultaneous mutations that are required for the transition from
s′ to s′′ to be feasible through the ensuing operation of the unperturbed
dynamics alone. The cost of the tree is obtained by adding up the costs
associated with all the arrows of a particular s-tree. The stochastic potential
of s is defined as the minimum cost across all s-trees. Then, a state s ∈ S̄ is
seen to be stochastically stable if it has the lowest stochastic potential across
all s ∈ S̄.
In our framework, individual strategies involve both link-formation and ac-
tion choices. This richness in the strategy space leads to a corresponding

20The proviso on n is simply required to deal with possible integer problems when
studying the number of mutations needed for the various transitions.
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wide variety in the nature of (strict) Nash equilibria of the social game.
There are two facets of this variety: (a) we obtain three different types of
equilibria in terms of action configuration: Sα, Sβ and Sαβ; and (b) there are
a large number of strategy profiles that support the complete connectivity
prevailing at equilibrium configurations - recall Footnote 7. This prolifer-
ation of equilibria leads us to develop a simple relationship between the
different profiles. In particular, we consider strategy profiles within the sets
Sh (h = α, β) and show that states in each of these sets can be connected
by a chain of single-mutation steps, each such step followed by a suitable
operation of the best-response dynamics. To state this result precisely, it
is convenient to introduce the metric d(·) on the space of networks that,
for each pair of networks g and g′, has their respective distance given by
d(g, g′) = d(g′, g) ≡ ∑

i,j |gi,j − g′i,j|/2. In words, this distance is simply a
measure of the number of links that are different across the two networks.
With this metric in place, we have:

Lemma 5 For each s ∈ Sh, h = α, β, there exists an s-tree restricted to Sh

such that for all arrows s′ → s′′ in it, d(g′, g′′) = 1, where g′ and g′′ are the
networks respectively associated to s′ and s′′.

The proof of this lemma is given in Appendix. This lemma implies that,
provided Sh ⊂ S̄, the (restricted) tree established by Lemma 5 for any s ∈ Sh

involves the minimum possible cost
∣∣Sh

∣∣−1. This lemma also indicates that,
in the language of Samuelson (1994), Sα (if c < d) and also Sβ (if c < b) are
recurrent sets. This allows each of them to be treated as a single “entity”
in the following two complementary senses: (i) if any state in one of these
recurrent sets is stochastically stable, so is every other state in this same
set; (ii) in evaluating the minimum cost involved in a transition to, or away
from, any given state in a recurrent set, the sole relevant issue concerns the
minimum cost associated to a transition to, or away from, some state in
that recurrent set. Using (i)-(ii), the analysis of the model can be greatly
simplified. To organize matters, it is useful to consider different ranges for c
separately.

Let us start with the case where 0 < c < e, where the set of absorbing states
S̄ = Sα ∪ Sβ. Since, by Lemma 5, the sets Sα and Sβ are each recurrent,
the crucial point here is to assess what is the minimum mutation cost across
all path joining some state in Sh to some state in Sh′

for each h, h′ = α, β,
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h �= h′. Denote these mutation costs by mh,h′
and let �z� stand for the

smallest integer no smaller than any given z ∈ R+. With this notation in
place, we state:.

Lemma 6 Suppose that 0 < c < e. Then,

mβ,α =

⌈
b− e

(d− f) + (b− e)(n− 1)

⌉
; mα,β =

⌈
d− f

(d− f) + (b− e)(n− 1)

⌉
.

Thus, mβ,α > mα,β, for large enough n.

The proof, given in Appendix, reflects the standard considerations arising in
much of the recent evolutionary theory when the fixed pattern of interaction
involves every individual of the population playing with all others. Now, if
costs are low (c < e), such full connectivity is not just assumed but it endoge-
nously follows from players’ own decisions, both at equilibrium (i.e. when
the unperturbed best-response dynamics is at a rest-point) and away from
it. In effect, this implies that the same basin-of-attraction considerations
that privilege risk-dominance in the received approach also select for it in
the present case.

We next examine the case where e < c < min{f, b} where S̄ = Sα∪Sβ. Now,
since c > e, players who choose action α no longer find it attractive to form
links with other players who choose action β. This factor plays a crucial role
in the analysis. The following result derives the relative magnitude of the
minimum mutation costs.

Lemma 7 Suppose e < c < min{f, b}. Then,

mβ,α =

⌈
b− c

(d− f) + (b− c)(n− 1)

⌉
; mα,β =

⌈
d− f

(d− f) + (b− e)(n− 1)

⌉
.

Thus, there is some c̃, e < c̃ ≤ min{f, b}, such that if c < c̃ then mβ,α −
mα,β > 0, while if c > c̃ then mβ,α −mα,β < 0, for large enough n.

The methods used to prove this lemma are quite general; we use them in
establishing a number of other lemmas required for the proof of Theorem 4.
It is therefore useful to explain them in the text.

Proof of Lemma 7: Let sα and sβ be generic states in Sα and Sβ, respec-
tively.
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Step 1: Consider transitions from state sβ to state sα and let k be the number
of mutations triggering it. If this transition is to take place after those many
mutations, there must be some player currently choosing β (i.e. who has
not mutated) that may then voluntarily switch to α. Denote by qh the
number of active links this player chooses to support to players choosing h
(h = α, β) and let rh stand for the number of passive links she receives from
players choosing h (h = α, β). If she chooses α, her payoff is given by:

πα = rαd+ rβe+ qα(d− c), (5)

where we implicitly use the fact that qβ must equal zero – since c > e,
an agent who switches to α will not find it worthwhile to support any link
to players choosing β. On the other hand, if the agent in question were to
continue adopting β, her payoff would be equal to:

πβ = r̂αf + r̂βb+ q̂α(f − c) + q̂β(b− c), (6)

where q̂h and r̂h are interpreted as the active and passive links that would be
chosen by the player if she decided to adopt β. Clearly, we must have rh = r̂h

for each h = α, β. Thus, if a switch to α is to take place, it must be that

πα − πβ = (rα + qα)d− (rα + q̂α)f − rβ(b− e)− q̂β(b− c) ≥ 0. (7)

Note that rα + qα = k, since c < d and therefore the player who switches to
α will want to be linked (either passively or by supporting herself a link) to
all other players choosing α, i.e. to the total number k of α-mutants. On the
other hand, since c < min{f, b}, we must also have that r̂β + q̂β = n− k − 1
and rα + q̂α = r̂α + q̂α = k, i.e. the player who chooses β must become linked
to all other players, both those choosing β and those choosing α.

We now ask the following question: What is the lowest value of k consistent
with (7)? Since c > e, the desired payoff advantage of action α will occur for
the lowest value of k when rβ = r̂β = 0 and therefore q̂β = n−k−1. That is,
if the desired transition is to take place, the necessary condition (7) holds for
the minimum number of required mutations when the arbitrary agent that
must start the transition has no passive links to individuals choosing action
β. Recall that mβ,α stands for the minimum number of mutations required
for the transition. Now introducing the above observations in (7), we obtain
the following lower bound

mβ,α ≥ b− c
(d− f) + (b− c)(n− 1) ≡ H. (8)
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The above expression gives the minimum number of players choosing α that
are needed to induce some player to switch to action α across all possible
network structures. Next, we argue that this number of mutations is also
sufficient to induce a transition from some sβ to some sα. The proof is
constructive. The main idea is to consider a particular state sβ where its
corresponding (complete) network displays the maximal responsiveness to
some suitably chosen mutations. Using the observations on the distribution
of active and passive links, this is seen to occur when there are some players
who support links to all others – those are, of course, players with a “critical”
role whose mutation would be most effective. Specifically, suppose that the
network prevailing in sβ has every player i = 1, 2, ..., n support active links
to all j > i. (This means, for example, that player 1 supports links to
every other player whereas player n only has passive links.) Then, recalling
that �z� denotes the smallest integer no smaller than z, the most mutation-
effective way of inducing the population to switch actions from β to α is
precisely by having the players % = 1, 2, ..., �H� simultaneously mutate to
action α and maintain all their links. Thereafter, a transition to some state
sα will occur if subsequent strategy revision opportunities are appropriately
sequenced so that every player with index j = �H�+1, ..., n is given a revision
opportunity in order. This, in effect, shows that the lower bound in (8) is
tight and mβ,α = �H�.

Step 2: Consider next the transition from some state sα to a state sβ and let
again k be the number of mutations (now towards β) triggering it. Using
arguments from Step 1 above, it is easy to show that mα,β, must satisfy:

mα,β ≥ d− f
(d− f) + (b− e)(n− 1) ≡ H ′. (9)

Again, we can use previous arguments to show that �H ′� is sufficient.

Step 3: Finally, we wish to study the difference mβ,α −mα,β as a function of
c. For low c (close to e) and large n, this difference is clearly positive in view
of the hypothesis that b − e > d − f . Next, to verify that it switches strict
sign at most once in the range c ∈ (e,min{f, b}), note that H−H ′ is strictly
declining with respect to c in the interval (e,min{f, b}). �

Lemma 7 applies both to the case where b < f and that where b > f. Suppose
first that b < f. Then, since H −H ′ < 0 for c = b, a direct combination of
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former considerations leads to the desired conclusion for the parameter range
c ∈ (e, b]. We now take up the case f < b and focus on the range c ∈ (f, b).
We first derive the relative magnitude of the minimum mutation costs for
s ∈ Sh, where h = {α, β}.

Lemma 8 Suppose f < c < b.

m̃β,α =

⌈
b− c

(d− f) + (b− c)(n− 1)

⌉
; m̃α,β =

⌈
d− c

(d− c) + (b− e)(n− 1)

⌉
.

Thus there is a threshold č ∈ [f, b) such that if c < č then mβ,α −mα,β > 0,
while if c > č then mβ,α −mα,β < 0, for large enough n.

The arguments needed to establish this result are very similar to those used
in the proof of Lemma 7; we provide the computations in Appendix.

The principal complication in case c ∈ [f, b) is that the set of absorbing
states in not restricted to Sα ∪ Sβ but will generally include mixed states
where the population is segmented into two different action components (cf.
Propositions 2 and 3). Let mh,αβ, for h = α, β, denote the minimum number
of mutations needed to ensure a transition from some s ∈ Sh to some s ∈
Sαβ. The first point to note is that by the construction used in Lemma 7,
mα,αβ ≥ mα,β and, similarly, mβ,αβ ≥ mβ,α. This implies that the transition
from any state in some Sh towards a mixed equilibrium state in Sαβ is not
costlier than a transition towards Sh′

(h′ �= h). Concerning now the converse
transitions (i.e. from states in Sαβ to either Sα or Sβ), the following lemma
indicates that it is relatively “easy” since it involves a suitable chain of single
mutations..

Lemma 9 Let f < c < b and consider any equilibrium state s ∈ Sαβ involv-
ing two non-degenerate (α and β) components, gα and gβ, with cardinalities
| A(s) |> 0 and | B(s) |> 0, respectively. Then, there is another equilibrium
state s′ with cardinality for the resulting α component |A(s′)| ≥ |A(s)| + 1
that can be reached from s by a suitable single mutation followed by the best-
response dynamics. An identical conclusion applies to some equilibrium state
s′′ with | A(s′′) |≤| A(s) | −1.

The proof of this Lemma is given in Appendix. We briefly sketch the argu-
ment here. Fix some mixed state, and suppose the strategy of some player
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i ∈ A(s) mutates as follows: she switches to action β, while everything else
remains as before. Now, have all the players in the α group move and sup-
pose that they still wish to keep playing action α. Since c > f , their best
response is to delete their links with player i. Next, have all the players in
group β move; their best response is to form a link with player i. This is
true since the original state was an equilibrium, and c < b. Finally, have
player i choose a best response; since the original state was an equilibrium
and c > f , her best response is to play action β and delete all links with
players in the α group. We have thus increased the number of β players
with a single mutation. This argument extends in a natural manner to prove
the above result. We now have all the information to complete the proof of
Theorem 4.

Proof of Theorem 4: Consider first the case where c < b. If f > b, the sets
Sα and Sβ are the only candidates for stochastic stability and we simply need
to compare mα,β versus mβ,α. Then, the desired conclusion follows directly
from Lemmas 6-8. The same applies if f < b but c < f. Thus, consider
the case where f < c < b. Then, the states in Sα, Sβ, and Sαβ are possible
candidates for stochastic stability. Take any state s ∈ Sh for some h = α, β.
With the help of Lemmas 5 and 9 we can infer that s-trees for any s ∈ Sα

will have the following minimum cost: mβ,α + |Sα| + ∣∣Sβ
∣∣ + ∣∣Sαβ

∣∣ − 2. For
any s′ ∈ Sβ, the situation is symmetric, the minimum cost being equal to
mα,β + |Sα|+ ∣∣Sβ

∣∣ + ∣∣Sαβ
∣∣ − 2. Next, concerning any s ∈ Sαβ, we note that

the corresponding s-tree would have to display a path joining some state
in Sα to s and some path joining some state in Sβ to s. Thus, the cost of

such an s-tree will be at least mα,β +mβ,α + |Sα| + ∣∣Sβ
∣∣ + ∣∣∣S̃αβ

∣∣∣ − 3. This

expression is greater than the minimum s-tree costs for s ∈ Sh (h = α, β)
since each mh,h′

> 1 if the population is large. We therefore conclude that a
state s ∈ Sαβ cannot be stochastically stable. Again, therefore, the problem
boils down to a comparison of mα,β versus mβ,α which, as before, leads to
the desired conclusion.

Next, suppose that b < c < d. Then, the key point to observe is that the
set of strict Nash equilibria and hence the set of absorbing states is simply
S̄ = Sα. This immediately establishes the result for this case. Finally, similar
considerations apply to the case where c > d, in which case Propositions 2
and 3 indicate that S̄ = {ge} × An. �
In our analysis we have not placed any restrictions on the number of links
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a player can form and, in equilibrium, the nature of interaction is ‘global’.
This has the implication that transitions from one strict Nash equilibrium
to another require a number of mutations which is a proportion of the total
number of players. As is well known, for large populations this implies that
the rate of convergence will be slow. In Subsection 4.4 we discuss the possi-
bility that players might be limited in the number of links they can support,
a modelling feature which would have a significant bearing on this issue.

4 Discussion of the assumptions

In this section, we discuss the main assumptions underlying the analysis. We
do so by addressing in turn a number of variations of the basic model that
highlight the role played by some of its key features. Due to space constraints,
we cannot present the different models in detail, nor therefore state formally
and prove the results we have obtained. However, a full account of the proofs
is available from the authors upon request.

4.1 The nature of link formation

An important aspect of our model is that link formation is one-sided. From
a methodological point of view this formulation has the advantage that it
allows us to study the social process of link formation and coordination as
a non-cooperative game; from a substantive viewpoint this formulation is
interesting since it allows for an explicit consideration of the role of active and
passive links. To clarify this assumption, we explore in turn two variations
of the model. In the first one, we maintain the feature that any link must
be unilaterally decided by a particular player, but suppose that she alone
derives the benefits of it. That is, the cost of links and the flow of benefits
are both one-sided, which makes passive links payoff-irrelevant. In the second
variation, the links are two-sided in the sense that both agents involved must
express the desire to form it and bear an equal share of the linking cost.
However, we keep the feature that such decisions are independently adopted
by each player, and therefore the link-formation process can be modelled as
a non-cooperative game.

One-sided active links: We have carried out a complete analysis of this model,
whose main findings and implications may be briefly summarized as follows.
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First, in the static setting, we have shown that the only (non-empty) net-
work that can arise is the complete network. Moreover, in this network,
everyone chooses the same action, thus social conformism obtains. These
results demonstrate that coexistence of different conventions and the possi-
bility of an unconnected society arises in our basic model solely due to the
presence of (payoff-relevant) passive links. Next we note that a complete net-
work in the present setting with only active links is one in which every player
forms a link with every other player. Thus there is only one possible strategy
configuration that can support the complete network. The only multiplicity
that remains concerns the choice of action: both outcomes, everyone choosing
action α and everyone choosing action β, are possible in equilibrium.

Our analysis of the (stochastic) dynamics reveals that there is a cut-off value
for the cost of forming links ĉ ∈ (e, f), such that for all c < ĉ, the risk-
dominant action β prevails, while for all c > ĉ, the efficient action α prevails.
It is worth noting that the cut-off level of costs ĉ with only active links is
lower than the cut-off level of costs c̄ that arises in the presence of active
and passive links. Thus passive links have the effect of making the risk-
dominant action more likely. The intuition behind this finding is as follows.
In our proof of Theorem 4 we showed that transition across equilibria is
easiest, in terms of ‘the number of mutations required’, when the pattern
of link formation is very asymmetric. This creates the maximum scope for
passive links to act as a bridge to induce other players to switch actions.
This construction also reveals why the risk-dominant strategy is favoured in
a setting with passive links. Passive links allow the connectedness of the
network to be sustained, without costs being incurred by the recipients of
the links. In a situation where players are choosing different actions, this has
the effect of creating greater strategic uncertainty. And, as is well known,
such strategic uncertainty acts in favour of the risk-dominant action, which
in turn helps explain why the risk-dominant action prevails under a wider
range of cost conditions once passive links are allowed.

Two-sided links through independent decisions: We next discuss the case
where a link is formed if, and only if, both parties involved offer to form
a link, in which case the linking cost is divided equally.21 We have also

21In this setting we need to make some assumption about the payoff implications of
unreciprocated links. In our analysis, we assume that unreciprocated links involve no
costs and yield no benefits either.
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analyzed this model fully. The findings are broadly in line with the results of
the one-sided active links model. In the static setting, we show that the only
(non-empty) strict Nash network is the complete network. Moreover, in this
network, everyone chooses the same action, thus social conformism obtains.
The only multiplicity that remains again concerns the choice of action: both
outcomes, everyone choosing action α and everyone choosing action β, are
possible in equilibrium. Our analysis of the (stochastic) dynamics reveals
that there is a cut-off value for the cost of forming links ĉ ∈ (e, f) such
that, for all c < ĉ, the risk-dominant action β prevails, while for all c > ĉ
the efficient action α prevails. This cut-off value is, somewhat surprisingly,
identical to the cut-off value in the one-sided active links model. It is worth
noting, however, that in the two-sided setting the cost of forming a link is 2c
and therefore the precise value of the cut-off level should be interpreted with
care here. What remains, however, as the most interesting observation is
the similarity in the qualitative features of the result: for low costs the risk-
dominant action prevails, while for high costs the efficient action prevails.

4.2 Negative payoffs and link refusal

Throughout the analysis of the basic model we have maintained the assump-
tion that the (gross) payoffs to be earned by playing the bilateral game are
all positive. This justifies the formulation that, at a zero linking cost, no
player should refuse a unilateral proposal to play this game. But if this cost
were positive (and higher than some of the payoffs in the game) or the game
payoffs themselves were negative, such a one-sided approach could be hardly
defended as a meaningful or plausible model of network formation.

To address this issue, we have studied an extension of the basic model
where, after any player receives a unilateral link proposal, this player may
object to forming the link. It is posited, in particular, that at the stage of
possible refusal, the actions chosen by both players are already irreversibly
fixed and therefore the agent in question can safely evaluate whether it is
profitable or not to accept the proposal. As mentioned, this formulation
may accommodate the case where passive links are costly and/or the payoffs
of the bilateral game display some negative payoffs. And, of course, when
passive links are costless and gross payoffs positive, the basic model studied
in this paper follows from that general (one-sided) framework of network
formation as a particular case.

In the context outlined, the main gist of our analysis is that whether
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the efficient state is selected (through the notion of stochastic stability) still
depends on the link cost being high enough. The exact value of the threshold
is not generally the same as in Theorem 4. It always lies, however, between
the lowest equilibrium payoff (i.e. payoff b in Table I) and the lowest payoff
in the game (payoff e).

4.3 Simultaneity of actions and links

We assume that players can form links and choose actions simultaneously.
In independent work, Droste, Johnson and Gilles (1999), and Jackson and
Watts (1999) also study a two-sided link model where directly connected
agents play a bilateral game, but allow for players to choose links and actions
in separate revision stages. They find that if the costs of link formation are
high, all those states where players choose a common action are stochastically
stable, i.e. either of the two actions may obtain. The contrast with our
analysis arises out of the assumption that individuals choose links and actions
at separate stages, i.e. players choose links taking actions as given while
they choose actions taking the links as a given. Instead, in our setting, any
individual undertaking a revision is allowed to modify both her action and
her supported links. Our arguments pertaining to alternative models of link
formation clarify that it is this simultaneity of actions and link formation
decisions and not the one-sided nature of link formation that is critical for
the difference in the results. This would motivate an examination of the
effects of varying levels of flexibility in the two choice dimensions, links and
actions – for example, one could allow for the possibility that link revision
might be more rigid than action change.

4.4 Number of links

Another important assumption concerns the number of links allowed or, relat-
edly, the shape (e.g. concavity or convexity) of the underlying cost function.
In our model, we have imposed no limit on the number of links a player can
support and the marginal cost of any additional link has been assumed con-
stant. It is certainly more realistic to assume that players are constrained in
the number of links they can support due to time and resource constraints.
Under this assumption, stable networks will generally be incomplete and
possibly partially connected. We feel that a model with a limited number
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of individual links may also be more amenable to weaker assumptions con-
cerning information on the network and the action profiles of players, issues
which are of course interesting in their own right.

4.5 Indirect links

In the real world, social networks are far from complete. This happens be-
cause, in practice, not only there are a large variety of relevant factors that
limit the “linking capacity” of agents (cf. the former subsection) but because
indirect connections often facilitate transactions and make complete networks
unnecessary. Motivated by these latter considerations, we have explored the
role of indirect linkages that facilitate transactions between players. As be-
fore, the focus is on the architecture of stable networks and the influence of
link formation on the behavior of players.

Consider a model in which two players can play a game if there is a path
between them (recall Subsection 2.1). Given a network g and any two players,

i and j, let us write i
g←→ j when a path between them exist. Then, we may

define the indirect neighborhood of a player i by N̂(i; g) ≡ {j ∈ N : i
g←→ j},

i.e. the set of players with whom player i has a path in the network g. With
this notation in place, the payoff to a player i from choosing some strategy
si = (gi, ai) when other players choose s−i = (s1, . . . si−1, si+1, . . . sn) is given
by:

Π̂i(si, s−i) =
∑

j∈N̂(i;ḡ)

π(ai, aj)− ν(i; g) · c, (10)

where recall that ν(i; g) ≡ |N(i; g)| is the cardinality of the set of direct links
established by player i.

In this setting, we find that the unique stochastically stable architecture is
the minimally-connected network that we call a center-sponsored star (recall
Figure 1b). We also find that there exists a critical cost of forming links, such
that, for costs below this level, players coordinate on the risk-dominant ac-
tion, while for linking costs above this level they coordinate on the efficient
action. Thus, comparing matters with the basic model, we find a similar
qualitative conclusion concerning the selection of efficiency versus risk dom-
inance although, naturally, the specific network architecture that underlies
players’ interaction is very different. A detailed proof of these results can be
found in our earlier working paper, Goyal and Vega-Redondo (1999).
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5 Conclusion

We develop a simple model to study the interaction between partner choice
and individual behavior in games of coordination. We suppose that two play-
ers can play a game only if they have a link between them. Our analysis shows
that individual attempts to balance the costs and benefits of link formation
yield a unique network. We also find, however, that the dynamics of net-
work evolution have a powerful impact on the nature of social coordination:
at low costs of forming links, individuals coordinate on the risk-dominant
action, while for high costs of forming links individuals coordinate on the
efficient action. These results on the role of network evolution and the rela-
tionship between costs of forming links and social coordination appear to be
robust to a variety of modifications of the basic model.

6 Appendix

Proof of Proposition 1: The proof of part (a) follows directly from the
fact that c < f and is omitted. We provide a proof of part (b). In this
case f < c < b. We first show that ai = aj = a, if i, j belong to the
same component. Suppose not. If ḡij = 1, then it follows that the player
forming a link can profitably deviate by deleting the link, since c > f . Similar
arguments apply if i and j are indirectly connected. We next show that if
i ∈ g′ and j ∈ g′′, where g′ and g′′ are two components in an equilibrium
network g, then ai �= aj. If ai = aj then the minimum payoff to i from playing
the coordination game with j is b. Since c < b, player i gains by forming
a link, i.e. choosing gij = 1. Thus g is not an equilibrium network. The
final step is to note that since there are only two actions in the coordination
game, there can be at most two distinct components. We note that the
completeness of each component follows from the assumption that c < b.
We next prove part (c). There are two subcases to consider: c > max{b, f} or
b < c < f. (Note, of course, that the former subcase is the only one possible if
b > f.) Suppose first that c > max{b, f}, and let g be an equilibrium network
which is non-empty but also incomplete. From the above arguments in (b),
it follows that if ḡi,j = 1, then ai = aj = α. Moreover, if aj = β, then player
j can have no links in the network. (These observations follow directly from
the hypothesis that c > max{b, f}.) However, since g is assumed incomplete,
there must exist a pair of agents, i and j, such that gij = 0. First, suppose
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that ai = aj = α. Then, since c < d, it is clearly profitable for either of the
two players to deviate and form a link with the other player. Suppose next
that ai = aj = β. Then, players i and j can have no links and, furthermore,
since g is non-empty, there must be at least two other players k, l ∈ N such
that ak = al = α. But then player i can increase her payoff by choosing
action α and linking to player k. Finally, consider the case where ai �= aj

and let player i choose β. Then, if this player deviates to action α and forms
a link with player j she increases her payoff strictly. We have thus shown
that gij = 0 cannot be part of an equilibrium network. This proves that a
non-empty but incomplete network cannot be an equilibrium network in the
first sub-case considered.
Consider now the case b < c < f and suppose, for the sake of contradiction,
that g is an equilibrium network which is non-empty but incomplete. Since
b < c < d, it follows directly that not every player chooses action α or
β. Moreover, in the mixed configuration, all the players who choose α are
directly linked (since c < d), there is a link between every pair of players who
choose dissimilar actions (since c < f), but there are no links between players
choosing β (since b < c). But then it follows that every player choosing β can
increase her payoff by switching to action α. This contradicts the hypothesis
that the mixed configuration is an equilibrium. This completes the argument
for part (c).
Part (d) is immediate from the hypothesis that c > d. �
Proof of Proposition 2: We start proving Part (a). In view of Part (a)
of Proposition 1 and the fact that the underlying game is of a coordination
type, the inclusion Sα ∪ Sβ ⊂ S∗ is obvious. To show the converse inclusion,
take any profile s such that the sets A(s) ≡ {i ∈ N : ai = α} and B(s) ≡
{j ∈ N : aj = β} are both non-empty. We claim that such an s cannot be
an equilibrium.
Assume, for the sake of contradiction, that such a state s is a Nash equilib-
rium of the game and denote u ≡ |A(s)| , 0 < u < n. Recall from Proposition
1 that every Nash network in this parameter range is complete. This implies
that for any player i ∈ A(s), we must have:

(u− 1)d+ (n− u)e− ν(i; g) · c ≥ (u− 1)f + (n− u)b− ν(i; g) · c (11)

and for players j ∈ B(s) :
(n− u− 1)b+ uf − ν(j; g) · c ≥ (n− u− 1)e+ ud− ν(j; g) · c. (12)
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It is easily verified that (11) and (12) are incompatible.
Now, we turn to Part (b). The inclusion Sα ∪ Sβ ⊂ S∗ is trivial. To show
that the inclusion S∗ ⊂ Sαβ holds strictly for large enough n, consider a
state s where both A(s) and B(s), defined as above, are both non-empty and
complete components. Specifically, focus attention on those configurations
that are symmetric within each component, so that every player in A(s)
supports u−1

2
links and every player in B(s) supports n−u−1

2
links. (As before,

u stands for the cardinality of A(s) and we implicitly assume, for simplicity,
that u and n − u are odd numbers.) For this configuration to be a Nash
equilibrium, we must have that the players in A(s) satisfy:

d(u− 1)− u− 1

2
c ≥ f u− 1

2
+ b(n− u)− c(n− u) (13)

where we use the fact that, in switching to action β, any player formerly
in A(s) will have to support herself all links to players in B(s) and will
no longer support any links to other players in A(s) – of course, she still
anticipate playing with those players from A(s) who support links with him.
On the other hand, the counterpart condition for players in B(s) is:

(n− u− 1)b− n− u− 1

2
c ≥ du+ en− u− 1

2
− cu (14)

where, in this case, we rely on considerations for players in B(s) that are
analogous to those explained before for players in A(s). Straightforward al-
gebraic manipulations show that (13) is equivalent to:

u

n
≥ 1

n

2d− c− f
2b+ 2d− 3c− f +

2(b− c)
2b+ 2d− 3c− f (15)

and (14) is equivalent to:

u

n
≤ 1

n

c+ e− 2b

2b+ 2d− 3c− e +
2b− c− e

2b+ 2d− 3c− e. (16)

We now check that, under the present parameter conditions:

2b− c− e
2b+ 2d− 3c− e >

2(b− c)
2b+ 2d− 3c− f . (17)

Denote Y ≡ 2b − c, Z ≡ 2b + 2d − 3c, and rewrite the above inequality as
follows:

Y − e
Y − c >

Z − e
Z − f (18)
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which is weaker than:
Y − e
Y − f >

Z − e
Z − f (19)

since c > f. The function ζ(z) ≡ z−e
z−f

is uniformly decreasing in z since

b > f > e. Therefore, since Y < Z, (19) obtains, which implies (18). Hence
it follows that, if n is large enough, one can find suitable values of u such
that (15) and (16) jointly apply. This completes the proof of Part (b).
We now present the proof for part (c). We know from Proposition 1 that
the complete and the empty network are the only two possible equilibrium
networks. Since c > b > f > e, it is immediate that, in the complete network,
every player must choose α and this is a Nash equilibrium. Then note that,
for the empty network to be an equilibrium, it should be the case that no
player has an incentive to form a link. This implies that every player must
choose β. On the other hand, it is easy to see that the empty network with
everyone choosing β is a Nash equilibrium.
The proof of part (d) follows directly from the hypothesis c > max{d, b, f, e}.
�

Proof of Proposition 3: It is enough to show that, from any given state
s0, there is a finite chain of positive-probability events (bounded above zero,
since the number of states is finite) that lead to a rest point of the best
response dynamics.
Choose one of the two strategies, say β, and denote by B(0) the set of
individuals adopting action β at s0. Order these individuals in some pre-
specified manner and starting with the first one suppose that they are given
in turn the option to revise their choices (both concerning strategy and links).
If at any given stage τ , the player i in question does not want to change
strategies, we set B(τ + 1) = B(τ) and proceed to the next player if some
are still left. If none is left, the first phase of the procedure stops. On the
other hand, if the player i considered at stage τ switches from β to α, then
we make B(τ + 1) = B(τ)\{i} and, at stage τ + 1, re-start the process with
the first-ranked individual in B(τ + 1), i.e. not with the player following i.
Clearly, this first phase of the procedure must eventually stop at some finite
τ1.
Then, consider the players choosing strategy α at τ1 and denote this set
by A(τ1) ≡ N\B(τ1). Proceed as above with a chain of unilateral revision
opportunities given to players adopting α in some pre-specified sequence,
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restarting the process when anyone switches from α to β. Again, the second
phase of the procedure ends at some finite τ2.
By construction, in this second phase, all strategy changes involve an increase
in the number of players adopting β, i.e. B(τ2) ⊇ B(τ1). Thus, if the network
links affecting players in B(τ1) remain unchanged throughout, it is clear that
no player in this set would like to switch to α if given the opportunity at τ2+1.
However, in general, their network links will also evolve in this second phase,
because individual players in A(τ1) may form or delete links with players in
B(τ1). In principle, this could alter the situation of individual members of
B(τ1) and provide them with incentives to switch from β to α. It can be
shown, however, that this is not the case. To show it formally, consider any
given typical individual in B(τ1) and denote by r̂h, h = α, β, the number
of links received (but not supported) by this player from players choosing
action h. On the other hand, denote û ≡ |A(τ1)|. Then, since the first phase
of the procedure stops at τ1, one must have:

max
qα,qβ

b(qβ + r̂β) + f(qα + r̂α)− c(qα + qβ)

≥ max
qα,qβ

e(qβ + r̂β) + d(qα + r̂α)− c(qα + qβ)
(20)

for all qα, qβ such that 0 ≤ qα ≤ û− r̂α, 0 ≤ qβ ≤ n−û−1− r̂β. Now denote
by r̃h and ũ the counterpart of the previous magnitudes (r̂h and û) prevailing
at τ2. We now show that ũ ≤ û, r̃α ≤ r̂α, and r̃β ≥ r̂β. First, we note that
ũ ≤ û by construction of the process. Next note that if r̃α > r̂α then this
implies that some player who chooses action α has formed an additional link
with player i in the interval between τ1 and τ2. This is only possible if c < e.
It also implies that player i did not have a link with this player at τ1. This
is only possible if c > f , a contradiction. Thus r̃α ≤ r̂α. Finally note that
r̃β ≥ r̂β follows from the fact that the all the players choosing β at τ1 do not
revise their decisions in the interval between τ1 and τ2.
Therefore, (20) implies:

max
qα,qβ

b(qβ + r̃β) + f(qα + r̃α)− c(qα + qβ)

≥ max
qα,qβ

e(qβ + r̃β) + d(qα + r̃α)− c(qα + qβ)

for all qα, qβ such that 0 ≤ qα ≤ ũ − r̃α, 0 ≤ qβ ≤ n − ũ − 1 − r̃β. This
allows us to conclude that the concatenation of the two phases will lead the
process to a rest point of the best response dynamics, as desired. �

33



Proof of Lemma 5: The proof is constructive. Let s ∈ Sh, h = α, β, and
order in some arbitrary fashion all other states in Sh\{s}. Also order in some
discretionary manner all pairs (i, j) ∈ P × P with i �= j. For the first state
in Sh\{s}, say s1, proceed in the pre-specified sequence across pairs (i, j)
reversing the links of those of them whose links are different from what they
are in s. This produces a well-defined path joining s1 to s, whose constituent
states define a set denoted by Q1. Next, consider the highest ranked state in
Sh\Q1, say s2. Proceed as before, until state s2 is joined to either state s or a
state already included in Q1. Denote the states included in the corresponding
path by Q2. Clearly, when a stage n is reached such that Sh\(∪n

�=1Q�) = ∅,
the procedure described has fully constructed the desired s-tree restricted to
Sh. �

Proof of Lemma 6: Let sα and sβ be generic states in Sα and Sβ, respec-
tively. We want to determine the minimum number of mutations needed to
transit across a pair of them in either direction.

(1). First, consider a transition from sβ to sα and let k be the number of
mutations triggering it. If this transition is to take place via the best-response
dynamics after those many mutations, there must be some player currently
choosing β (i.e. who has not mutated) that may then voluntarily switch to
α. As before, denote by qh the number of active links this player supports to
players choosing h (h = α, β) and let rh stand for the number of passive links
she receives from players choosing h (h = α, β). The payoff from choosing α
for that player is given by:

πα = rαd+ rβe+ qα(d− c) + qβ(e− c). (21)

On the other hand, the payoff to choosing β is given by:

πβ = r̂αf + r̂βb+ q̂α(f − c) + q̂β(b− c), (22)

where q̂h and r̂h have the same interpretation of active and passive links as
before, now associated to the possibility that the player chooses β. Clearly,
we have qh = q̂h and rh = r̂h for each h = α, β. Concerning the passive links,
this is immediate; for active links, it follows from the fact that, since c < e,
a player will want to create links to all unconnected players, independently
of what they do. Analogous considerations also ensure that (i). rα + qα = k
and (ii). rβ + qβ = n− k− 1. Thus, in sum, for a transition from some state
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in Sβ to a state in Sα to be triggered, one must have:

πα − πβ = (rα + qα)(d− f)− (rβ + qβ)(b− e)
= k(d− f)− (n− k − 1)(b− e) ≥ 0

Let mβ,α stand for the minimum number of mutations which lead to such a
transition. The above considerations imply that

mβ,α ≥ b− e
(d− f) + (b− e)(n− 1), (23)

which gives us the minimum number of mutations that are necessary for a
transition from any state sβ to some sα. However, denoting by �z� the small-
est integer no smaller than z, suppose that the strategies of � b−e

(d−f)+(b−e)
(n−

1)� players undergo a simultaneous mutation from any particular state sβ

(i.e. these players maintain their links but switch from β to α). Thereafter,
the repeated operation of the best-response dynamics is sufficient to induce a
transition to a state sα. Thus the necessary number of mutations computed
above is also sufficient to induce a transition from any sβ to some sα. That
is, the inequality in (23) holds with equality.

(2). Consider on the other hand, the transition sα to sβ. Using the expressions
(21) and (22), we can deduce that the minimum number of mutations mα,β

needed to transit from some state in Sα to a state in Sβ satisfies:

mα,β ≥ d− f
(d− f) + (b− e)(n− 1). (24)

As in the first case, this gives us the minimum number of mutations needed for
a transition. However, consider any state sα and suppose that the strategies
of � d−f

(d−f)+(b−e)
(n − 1)� players undergo a simultaneous mutation (i.e. they

maintain their links but switch from α to β). It again follows that the
operation of the best-response dynamics suffices to induce a transition to a
state sβ. That is, (24) holds with equality.
To conclude, simply note that, if n is large enough,

⌈
b− e

(d− f) + (b− e)(n− 1)

⌉
<

⌈
d− f

(d− f) + (b− e)(n− 1)

⌉

since d− f < b− e. �
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Proof of Lemma 8 (Sketch): The proof proceeds in the same way as the
proof of Lemma 7. We therefore only spell out the main computations.

(1). First, consider transitions from state sβ to state sα and let k be the
number of mutations triggering it. We focus on a player currently choosing
β and aim at finding the most favorable (i.e. least mutation-costly) conditions
that would induce him to switch to α. Along the lines explained in the proof
of Lemma 7, this leads to the following lower bound:

mβ,α ≥ b− c
(d− f) + (b− c)(n− 1) ≡ H, (25)

which again can be seen to be tight in the sense that, in fact, mβ,α = 〈H〉 –
recall that �z� stands for the smallest integer no smaller than z.

(2). Analogous considerations for a transition from state sα to state sβ leads
to the lower bound

mα,β ≥ d− c
(b− e) + (d− c)(n− 1) ≡ H ′, (26)

which is also tight, i.e. mβ,α = �H ′� .
(3). Finally, to study how the sign of mβ,α −mα,β changes for large n as a
function of c, note that

H −H ′ ≡ ∆(c) =
(b− c)(b− e)− (d− f)(d− c)

[(d− f) + (b− c)] [(b− e) + (d− c)](n− 1). (27)

Observe that the denominator of ∆(c) is always positive, the numerator is
decreasing in c, and is moreover negative at c = b. This completes the proof.
�

Proof of Lemma 9: Fix some s ∈ Sαβ, with the players A(s) and B(s) of
the α and β components displaying respective cardinalities |A(s)| ≡ u > 0
and |B(s)| ≡ n−u > 0, respectively. To address the first part of the lemma,
suppose that a player i ∈ B(s) experiences a mutation, which has the effect
of switching her action from β to α and the deletion of all her links with
players in B(s). Now consider the players in the set B(s)\{i}. There are two
possibilities: either all of them wish to retain action β, or there is a player
who wishes to switch actions.
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In the former case, let all of them move and they will retain their earlier
strategy except for one change: they will each delete their link with player
i, since f < c < b. We now get players in A(s) to move and they all form
a link with player i, since f < c < b < d. It may be checked that we have
reached an equilibrium state s′, with A(s′) ≥ A(s) + 1.
Consider now the second possibility. Pick a player j ∈ B(s)\{i}, who wishes
to switch actions from β to α. It follows that this player will delete all
her links with players in B(s) and form links with all players in A(s) (since
e < f < c < b < d). We then examine the incentives of the players still
choosing action β, i.e., players in the set B(s)\{i, j}. If there are no players
who would like to switch actions then we repeat step above and arrive at a
new state with a larger α-component. If there are players who wish to switch
actions from β to α then we get them to move one at a time. Eventually, we
arrive at either a new state s′ ∈ Sαβ, or we arrive at a state s′ ∈ Sα.
In either case, we have shown that starting from a state s ∈ Sαβ, we can move
with a single mutation to a state s′ such that A(s′) ≥ A(s)+1. Since s ∈ Sαβ

was arbitrary, the proof is complete for the first part. The second conclusion
concerning some new equilibrium state s′′ with | A(s′′) |≤| A(s) | −1 is
analogous. �
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J. Szücs. Springer-Verlag, New York.

[18] Goyal, S. (1993), Sustainable Communication Networks, Tinbergen In-
stitute Discussion Paper, 93/250.

38



[19] Goyal, S. (1996), Interaction Structure and Social Change, Journal of
Institutional and Theoretical Economics, 152, 3, 472-495.

[20] Goyal, S. and F. Vega-Redondo (1999), Learning, Network Formation,
and Coordination, Working Paper, Erasmus University and University
of Alicante.

[21] Granovetter, M. (1974), Getting a Job: A Study of Contacts and Ca-
reers, Harvard University Press, Cambridge MA.

[22] Granovetter, M (1985), Economic Action and Social Structure: The
Problem of Embeddedness, American Journal of Sociology 3, 481-510.

[23] Haag, M. and R. Lagunoff (1999), Social Norms, Local Interaction, and
Neighborhood Planning, mimeo, Georgetown University.

[24] Harsanyi, J.C. and R. Selten (1988), A General Theory of Equilibrium
Selection, Cambridge, Mass., MIT Press.

[25] Jackson, M. and A. Wolinsky (1996), A Strategic Model of Economic
and Social Networks, Journal of Economic Theory 71, 1, 44-74.

[26] Jackson, M. and A. Watts (2002), On the formation of interaction net-
works in social coordination games, Games and Economic Behavior,
forthcoming.

[27] Kandori, M. and G. J. Mailath and R. Rob (1993), Learning, Mutation,
and Long Run Equilibria in Games. Econometrica 61, 29–56.

[28] Kirman, A. (1997), The Economy as an Evolving Network, Journal of
Evolutionary Economics 7, 339-353.

[29] Lee, I. H. and A. Valentinyi (2000), Noisy Contagion without Mutation,
Review of Economic Studies, 67, 1, 17-47.

[30] Mailath, G. Samuelson, L. and Shaked, A., (1994), Evolution and En-
dogenous Interactions, mimeo., Social Systems Research Institute, Uni-
versity of Wisconsin.

[31] Morris, S. (2000), Contagion, Review of Economic Studies, 67, 1, 57-79.

39



[32] Oechssler, J (1997), Decentralization and the coordination problem,
Journal of Economic Behavior and Organization 32, 119-135.

[33] Robson, A. and F. Vega-Redondo (1996), Efficient Equilibrium Selection
in Evolutionary Games with Random Matching, Journal of Economic
Theory 70, 65-92.

[34] Samuelson, L. (1994), Stochastic stability in games with alternative best
replies, Journal of Economic Theory 64, 35-65.

[35] Skyrms, B. and R. Pemantle (2000), A dynamic model of social net-
work formation, Proceedings of the National Academy of Sciences 97,
16, 9340-9346.

[36] Young, H. P. (1993), The Evolution of Conventions. Econometrica 61,
57-84.

40



This working paper has been produced by
the Department of Economics at
Queen Mary, University of London

Copyright © 2003 Sanjeev Goyal and Fernando Vega-Redondo
All rights reserved. 

Department of Economics 
Queen Mary, University of London
Mile End Road
London E1 4NS
Tel: +44 (0)20 7882 5096 or Fax: +44 (0)20 8983 3580
Email: j.conner@qmul.ac.uk
Website: www.econ.qmul.ac.uk/papers/wp.htm


