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Abstract

This paper proposes and discusses an instrumental variable estimator that can be
of particular relevance when many instruments are available. Intuition and recent work
(see, e.g., Hahn (2002)) suggest that parsimonious devices used in the construction of
the final instruments, may provide effective estimation strategies. Shrinkage is a well
known approach that promotes parsimony. We consider a new shrinkage 2SLS estima-
tor. We derive a consistency result for this estimator under general conditions, and
via Monte Carlo simulation show that this estimator has good potential for inference
in small samples.
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1 Introduction

Recent work in instrumental variable estimation has considered two distinct routes. The

first is one where instrumental variables are only weakly correlated with the endogenous

explanatory variables of an instrumental variables (IV) regression. Work by, e.g., Phillips

(1983), Rothenberg (1984), Stock and Yogo (2003b) and Chao and Swanson (2005) consider

a natural measure of instrument weakness (or strength) in a linear IV framework to be the

so-called concentration parameter. In standard analysis the concentration parameter is taken

to grow at the rate of the sample size whereas in the case of weak instruments this parameter

grows more slowly or in the extreme case introduced and considered by Staiger and Stock

(1997) it remains finite asymptotically. In the case of weak instruments, the properties of IV

estimators such two stage least squares (2SLS) and limited information maximum likelihood
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(LIML) are affected relative to the case of strong instruments and the estimators may, in

fact, be inconsistent.

Another direction in IV research involves the case where the number of available instru-

ments is large. This approach was first taken by Morimune (1983) and later generalized by

Bekker (1994). Other relevant papers include Donald and Newey (2001), Hahn, Hausman,

and Kuersteiner (2001), Hahn (2002), and Chao and Swanson (2004). More recently, the two

different stands have been combined to provide a comprehensive framework for the analysis

of the properties of IV estimators in the case of many weak instruments. Work on this

includes Hansen, Hausman, and Newey (2006), Stock and Yogo (2003a), Newey (2004) and

Chao and Swanson (2005). The last paper is closest to the spirit of the analysis of the current

paper. A clear conclusion from this work suggests that inconsistency of IV estimators is a

probable outcome when many weak instruments are used.

With this in mind, a further recent development focuses on considering parsimonious

modeling assumptions for the set of instruments to avoid IV estimator inconsistency. In

particular, Kapetanios and Marcellino (2006) and Bai and Ng (2006) suggest that imposing

a factor structure on the set of instruments, extracting estimates of these factors and using

them as instruments can be very useful. Of course, an issue with this approach is the need

to assume a factor structure, albeit a possibly weak one, as discussed in detail in Kapetanios

and Marcellino (2006). Simulation evidence suggests that if no factor structure exists then

assuming one is problematic for IV estimation as one would expect. Another approach similar

to Kapetanios and Marcellino (2006) but designed to parsimoniously summarise large sets

of instruments in the complete absence of a factor structure is suggested by Kapetanios and

Marcellino (2007). The basic idea is that a finite number of cross-sectional weighted averages

of the available instruments can, under certain conditions, be valid instruments themselves.

The current paper provides a new approach that is valid for IV estimation more generally

than those discussed in the previous paragraph, but shares a common characteristic of parsi-

mony. In particular, we suggest that a shrinkage estimator be considered in the first stage of

IV regression to construct appropriate instruments which can then be used in a standard way

to estimate the parameters of the structural equation. Shrinkage promotes parsimony in the

first stage of estimation. There is a reasonably strong case for parsimony to be made for IV

estimation. Hahn (2002) provides grounds for parsimony in terms of optimal inference when

many instruments are available. We provide a theoretical justification for the validity of the

new shrinkage IV estimator. Further, we carry out a Monte Carlo study which provides clear

evidence in favor of the new estimator compared with existing estimators.

The paper is structured as follows: Section 2 presents the theoretical results. Section 3
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reports results of the Monte Carlo study. Finally, Section 4 concludes. Proofs are relegated

to an Appendix.

2 Theoretical Results

The model is given by

y1n = Y2nβ + un (1)

Y2n = ZnΠn + Vn (2)

where y1n and Y2n are respectively an n× 1 vector and an n×G matrix of observations

on the G + 1 endogenous variables of the system, Zn is an n×Kn matrix of observations on

the Kn instrumental variables, and un = (u1, ..., ui, ..., un)′ and Vn = (v1, ..., vi, ..., vn)′ are,

respectively, an n× 1 vector and an n×G matrix of random disturbances.

We propose a two stage shrinkage estimator for β obtained as follows: In the first stage,

we obtain instruments by using a standard shrinkage estimator to estimate Πn in (2). Then,

we use these instruments in a standard fashion to obtain a second stage estimator for β. For

simplicity we use the following shrinkage estimator:

Π̂n = (Z ′
nZn + snI)−1Z ′

nY2n

Then, straightforwardly, the two stage estimator is given by

β̂SKG =
(
Y ′

2nZn(Z ′
nZn + snI)−1Z ′

nY2n

)−1
Y ′

2nZn(Z ′
nZn + snI)−1Z ′

ny1n (3)

We refer to this estimator as the 2SLS Shrinkage (2SLSS) estimator. This estimator be-

comes of interest if the shrinkage parameter sn becomes large enough to promote parsimony

asymptotically. As we will see, for this it is required that n/sn = o(1). We make the following

assumptions.

Assumption 1 (i) Kn → ∞ as n → ∞ such that Kn/n → τ , 0 ≤ τ ≤ C < ∞. (ii) ∀n,

Z ′
nZn + snI has full rank. (iii) There exist two nondecreasing sequences of real numbers, rn

and sn, such that as n → ∞ rn/n → µ for some nonnegative constant µ, n/sn = o(1) and

sn/nKn = o(1), and such that

qnΠ′
nZ ′

nZn(Z ′
nZn + snI)−1Z ′

nZnΠn

rn

→ Ψ (4)

where qn = sn/n, almost surely for some positive definite matrix Ψ and

qnΠ′
nZ

′
nZn(Z ′

nZn + snI)−1Z ′
nZn(Z ′

nZn + snI)−1ZnZnΠn

rn

→ 0
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almost surely. (iv) The eigenvalues of Z ′
nZn/n are bounded away from zero and infinity for

all n.

Assumption 2 (i) Zn and ηi = (ui, v
′
i)
′ are independent for all i, n, (ii) ηi ∼ i.i.d.(0, Σ),

where Σ =

(
σuu σ′V u

σV u ΣV V

)
, (iii) ηi has finite fourth moments.

Given the above, we have the following Theorem

Theorem 1 Let P sn
Zn

= Zn(Z ′
nZn + snI)−1Z ′

n. Let qn = sn/n such that qn → ∞ and
Kn

qn
→∞ and rn

qn
→∞. Let the shrinkage estimator be given by

β̂SKG =
(
Y ′

2nP
sn
Zn

Y2n

)−1 (
Y ′

2nP sn
Zn

y1n

)

Assume that Kn

rn
→ 0. Then, β̂SKG is consistent for β0.

Remark 1 Some comments on the assumptions are in order. In particular Assumption

1(iii) is worthy of comment. The first part of assumption 1(iii) is the counterpart of the

assumption relating to the concentration parameter made usually in the literature concerning

the 2SLS and other IV estimators. Note that there is no need for the sequence rn satisfy-

ing Assumption 1(iii) for the 2SLSS estimator to be the same or have the same order of

magnitude as that required for the 2SLS estimator.

Remark 2 The importance of parsimony for IV estimation has been pointed out by Hahn

(2002) who conjectured that a 2SLS estimator using a small subset of available instruments,

when the number of available instruments is large, may be optimal. We view our shrinkage

estimator in the same spirit as the estimator suggested by Hahn (2002). It is important to

note Condition 1 of Hahn (2002) which requires that the fit of a parsimonious estimator be

comparable to that of the 2SLS estimator using all instruments. In this sense it is reasonable

to expect that the fit of the shrinkage estimator may, under certain conditions relating to

the structure of Πn, be close to that of the 2SLS estimator using all instruments, thereby

implying that the rn sequence for the 2SLSS estimator be of a larger order of magnitude than

the analogous sequence for the 2SLS estimator. However, it is difficult to envisage specific

conditions for Πn that ensure this is the case.

Remark 3 We have chosen to focus on the simplest shrinkage estimator on the grounds of

simplifying the asymptotic analysis. This estimator shrinks, in a uniform way, the parameter

estimates towards zero. It may in fact be more appropriate to shrink towards a nonzero

constant or vary the degree of shrinkage depending on the instrument. For such shrinkage
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estimators the condition (4) would have a different form and therefore it is entirely possible

that such estimator will have different and possibly superior consistency properties, depending

of course on the data generating process for zt. We leave theoretical investigation of this

possibility to future work mainly because there are many possibilities for the shrinkage setup.

However, in the Monte Carlo section we consider uniform shrinkage to a non-zero constant

and obtain interesting results.

3 Monte Carlo Evidence

In this section we provide a Monte Carlo study of the 2SLS Shrinkage (2SLSS) estima-

tor and its relative performance compared to the traditional 2SLS estimator, given by

(Y ′
2nZn(Z ′

nZn)−1Z ′
nY2n)−1Y ′

2nZn(Z ′
nZn)−1Z ′

ny1n, and the bias corrected Nagar’s B2SLS esti-

mator given by
(
Y ′

2nZn(Z ′
nZn)−1Z ′

nY2n + Kn−2
n

Y ′
2nY2n

)−1 (
Y ′

2nZn(Z ′
nZn)−1Z ′

ny1n + Kn−2
n

Y ′
2ny1n

)

. The basic setup of the Monte Carlo experiments is:

yi = xi + εi, i = 1, ..., n (5)

zij = eij, j = 1, ..., Kn, i = 1, ..., n (6)

xi =
Kn∑
j=1

K−1/2
n (1 + αj)zij + ui, (7)

where eij ∼ i.i.d.N(0, 1), cov(eil, esj) = 0 for i 6= s or l 6= j, d is either 1 or 2 with

probability 0.5, αj ∼ N(0, c2) with c = 0.1, 0.5, 1. Let κi = (εi, ui)
′. Then, κi = Pηi, where

ηi = (η1,i, η2,i)
′, ηj,i ∼ i.i.d.N(0, 1) and P = [pij], pij ∼ i.i.d.N(0, 1). The errors eij and us

are independent for each i and s.

The 2SLSS estimator is computed for a grid of values of the tightness parameter sn.

In particular we use the grid sn = 0, 10, 103, 105. For sn = 0 the 2SLSS and 2SLS are

equivalent, therefore we do not report results for this case. Higher values of sn correspond to

stronger shrinkage. We consider two different shrinkage setups: one where we shrink towards

zero and one where we shrink towards 1/
√

Kn. The latter corresponds to the actual setup

of the Monte Carlo data generation process. However, we have also considered shrinking

towards 1/Kn with very similar results1 to those for 1/
√

Kn giving us some comfort that the

actual choice of the non-zero constant may not be crucial. In all cases the 2SLS, B2SLS and

2SLSS estimators have negligible biases and we therefore concentrate on their variances.

Results are reported in Tables 1-2. Both tables are organized so that on the rows are

reported results for different numbers of observations n while on the columns are displayed

1These results are not reported but are available upon request.
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results for different proportions of the number of instruments to the number of observations,

i.e. Kn/n. Both tables are divided in subpanels providing results for the three cases c =

0.1, 0.5, 1.

Table 1 shows results on the 2SLS and the B2SLS estimator. In particular, the panels

on the left hand side of the table display the variances of the 2SLS estimator, while the

panels on the right hand side display the ratio V AR(B2SLS)/V AR(2SLS). Therefore, in

the subpanels on the right, a figure smaller than 1 signals that the B2SLS is more efficient

than 2SLS. The B2SLS substantially improves on the traditional 2SLS in all the cases in

which Kn < n (with large n) while in the case n = Kn the two estimators are by construction

equivalent2.

Table 2 shows the ratios V AR(2SLSS)/V AR(2SLS), therefore a figure below 1 signals

that the variance of the 2SLSS estimator is smaller than that of the traditional 2SLS. The

panels on the left report the results for the case in which the shrinking is towards q = 0

while the panels on the right report results for the case in which the shrinking is towards

q = 1/
√

Kn. Two main results are apparent. First, the 2SLSS features a systematically

smaller variance than both 2SLS and, to a smaller extent, B2SLS. Second, when both n

and Kn are large the variances of 2SLSS with prior mean q = 1/
√

Kn become remarkably

small.

Finally we focus on the case Kn > n. As for this case the competitor estimators are not

implementable, we provide results only for the 2SLSS. Table 3 displays the variances of

the 2SLSS estimator in the cases Kn/n = 1 and Kn/n = 1.1, as well as their ratio. The

variance ratios are systematically around 1, showing that the 2SLSS estimator can handle

the Kn > n case as efficiently as the case n = Kn.

These results confirm our theoretical findings and, further, show that using shrinkage

in the first stage may significantly improve the small sample efficiency of the estimator.

Our results for the case q = 1/
√

Kn suggest that shrinking the coefficients towards an

appropriate direction might improve the results even further, possibly indicating that the

consistency properties of this shrinkage estimator are different to those of the simple one

analysed theoretically in the previous section. As we noted in Remark 3 this is entirely

possible since the relevant consistency condition (4) will be different for the two shrinkage

estimators. This is a topic of interest for future work.

2The two estimators are also equivalent to OLS when n = Kn. The two equivalences are obvious once
one notes that for n = Kn, Y ′

2nZn(Z ′nZn)−1Z ′nY2n = Y ′
2nY2n and Y ′

2nZn(Z ′nZn)−1Z ′ny1n = Y ′
2ny1n.
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4 Conclusion

Estimation of structural equations using instrumental variable techniques, in the presence of

a large number of, possibly weak, instruments, is a topic that has received a lot of attention

in the literature. Most work has focused on the properties of existing estimators in the case

of many, possibly weak, instruments. These estimators include the 2SLS estimator and the

LIML estimator.

This paper is part of a small literature that discusses estimators that can be of particular

relevance when many instruments are available. Intuition and recent work (see, e.g., Hahn

(2002)) suggests that parsimonious devices used in the construction of the final instruments,

may provide effective estimation strategies. Shrinkage is a well known approach that pro-

motes parsimony. We consider a new shrinkage 2SLS estimator. We derive a consistency

result for this estimator under general conditions, and via Monte Carlo simulations show

that it has also good potential for inference in small samples.

An open and interesting question for future research relates to the choice of the shrinkage

parameter, sn. It is of interest to develop a data-dependent way of determining this. An

interesting possibility is to derive approximations of the MSE of the 2SLS shrinkage estimator

and optimise the choice of sn with respect to this measure, in the spirit of Donald and Newey

(2001). We consider such an investigation to be the next step in our research agenda on this

topic.
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Appendix

Lemmas

Lemma 1 Let assumptions 1-2 hold. Let P sn
Zn

= Zn(Z ′
nZn + snI)−1Z ′

n. Define qn = sn/n

such that qn →∞, Kn

qn
→∞ and rn

qn
→∞. Then, (i) for some constant C,

V ′
nP

sn
Zn

Vn

/(
CKn

qn

)
= ΣV V + Op

(√
qn

Kn

)
,

(ii) for some contant C,

V ′
nP sn

Zn
un

/(
CKn

qn

)
= σV u + Op

(√
qn

Kn

)
,

(iii)

V ′
nP sn

Zn
ZnΠn

/(
rn

qn

)
= Op

(√
qn

rn

)

and (iv)

u′nP
sn
Zn

ZnΠn

/(
rn

qn

)
= Op

(√
qn

rn

)
.

Proof. C denotes constants which may be differ across contexts. To prove (i) it is sufficient

to prove the statement for the g, h-th element of V ′
nP

sn
Zn

Vn denoted by V ′
gnP

sn
Zn

Vhn where Vgn

denotes the g-th column of Vn. It is sufficient to show that

E

(
V ′

gnP
sn
Zn

Vhn

/(
CKn

qn

)
− Σgh

V V

)2

= Op

(
qn

Kn

)

where Σgh
V V denotes the g, h-th element of ΣV V . So, denoting the (i, j)-th element of P sn

Zn
by

psn
ij,n, we have

E

(
V ′

gnP sn
Zn

Vhn

/(
CKn

qn

)
− Σgh

V V

)2

=

(
qn

CKn

)2 n∑
i=1

n∑

k=1

n∑

k=1

n∑

l=1

E
(
psn

ij,np
sn
kl,n

)
E (vigvjhvkgvlh)−

2qnΣgh
V V

CKn

n∑
i=1

n∑
j=1

E
(
psn

ij,n

)
E (vigvjh) +

(
Σgh

V V

)2

=

(
qn

CKn

)2

E
(
v2

igv
2
jh

)
[

n∑
i=1

E
((

psn
ii,n

)2
)]

+

(√
2qn

CKn

)2

Σgg
V V Σhh

V V

[
n∑

i=2

i−1∑
j=1

E
((

psn
ij,n

)2
)]

+





(√
2Σgh

V V qn

CKn

)2 [
n∑

i=2

i−1∑
j=1

E
(
psn

ii,np
sn
jj,n +

(
psn

ii,n

)2
)]
−
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2
(
Σgh

V V

)2

qn

CKn

n∑
i=1

E
(
psn

ii,n

)
+

(
Σgh

V V

)2





= A1n + A2n + A3n

We examine each of A1n, A2n and A3n in turn. Starting with A1n we have that

(
qn

CKn

)2

E
(
v2

igv
2
jh

)
[

n∑
i=1

E
((

psn
ii,n

)2
)]

≤

(
qn

CKn

)2 √
E

(
v4

ig

)√
E

(
v4

jh

)
[

n∑
i=1

E
((

psn
ii,n

)2
)]

≤
(

qn

CKn

) √
E

(
v4

ig

)√
E

(
v4

jh

)
= O

(
qn

Kn

)
.

The second inequality follows from the fact that

n∑
i=1

E
((

psn
ii,n

)2
)
≤

n∑
i=1

E
(
psn

ii,n

)

which follows from the fact that 0 ≤ psn
ii,n ≤ 1. This in turn follows from the fact that

0 ≤ pii,n ≤ 1 where pii,n is the (i, i)-th element of Zn(Z ′
nZn)−1Z ′

n. The result then follows

from Lemma 2. Next, focusing on A2n we have that

(√
2qn

CKn

)2

Σgg
V V Σhh

V V

[
n∑

i=2

i−1∑
j=1

E
((

psn
ij,n

)2
)]

≤

(
qn

CKn

)2

Σgg
V V Σhh

V V

[
n∑

i=1

E
((

psn
ii,n

)2
)

+ 2
n∑

i=2

i−1∑
j=1

E
((

psn
ij,n

)2
)]

But [
n∑

i=1

E
((

psn
ii,n

)2
)

+ 2
n∑

i=2

i−1∑
j=1

E
((

psn
ij,n

)2
)]

= tr
(
E

(
P sn

Zn
P sn

Zn

)) ≤ CKn

q2
n

by Lemma 2. So

(√
2qn

CKn

)2

Σgg
V V Σhh

V V

[
n∑

i=2

i−1∑
j=1

E
((

psn
ij,n

)2
)]

≤ CqnΣgg
V V Σhh

V V

Kn

= O

(
qn

Kn

)

Fnally, we consider A3n. We have that

|A3n| =
∣∣∣∣∣∣

(√
2Σgh

V V qn

CKn

)2 [
n∑

i=2

i−1∑
j=1

E
(
psn

ii,np
sn
jj,n +

(
psn

ii,n

)2
)]
−

2
(
Σgh

V V

)2

qn

CKn

n∑
i=1

E
(
psn

ii,n

)
+

(
Σgh

V V

)2

∣∣∣∣∣∣∣
=
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∣∣∣∣∣∣

(
Σgh

V V qn

CKn

)2 {
(
tr

(
E

(
P sn

Zn

)))2
+ tr

(
E

(
P sn

Zn
P sn

Zn

))− 2
n∑

i=1

E
((

psn
ii,n

)2
)}

−

2
(
Σgh

V V

)2

qn

CKn

n∑
i=1

E
(
psn

ii,n

)
+

(
Σgh

V V

)2

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣

(
Σgh

V V qn

CKn

)2 {
(
tr

(
E

(
P sn

Zn

)))2 − 2
n∑

i=1

E
((

psn
ii,n

)2
)}

− (8)

2
(
Σgh

V V

)2

qn

CKn

n∑
i=1

E
(
psn

ii,n

)
+

(
Σgh

V V

)2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣

(
Σgh

V V qn

CKn

)2

tr
(
E

(
P sn

Zn
P sn

Zn

))
∣∣∣∣∣∣

The second term of (8) is O
(

1
Kn

)
= o

(
qn

Kn

)
by Lemma 2. Focusing on the first term

we note that by Lemma 2 there exists a constant such that tr
(
E

(
P sn

Zn

))
= CKn

qn
. Thus, we

have ∣∣∣∣∣∣

(
Σgh

V V qn

CKn

)2 {
(
tr

(
E

(
P sn

Zn

)))2 − 2
n∑

i=1

E
((

psn
ii,n

)2
)}

−

2
(
Σgh

V V

)2

qn

CKn

n∑
i=1

E
(
psn

ii,n

)
+

(
Σgh

V V

)2

∣∣∣∣∣∣∣
≤

(
Σgh

V V

)2

Kn

+
2
(
Σgh

V V

)2

q2
n

∑n
i=1 E

((
psn

ii,n

))

K2
n

≤
C

(
Σgh

V V

)2

qn

Kn

= O

(
qn

Kn

)

where the first inequality follows from Lemma 2. This concludes the proof of part (i) of

Lemma 1. Part (ii) is proven similarly. Next, we move on to part (iii). We have

E

(∥∥∥∥
qnV ′

nP sn
Zn

Πn

rn

∥∥∥∥
)2

=

E

(∥∥∥∥
q2
nΠ′

nZ ′
nZn(Z ′

nZn + snI)−1Z ′
nVnV ′

nZn(Z ′
nZn + snI)−1Z ′

nZnΠn

r2
n

∥∥∥∥
)2

=

tr (ΣV V ) E

(
tr

[
q2
nΠ′

nZ
′
nZn(Z ′

nZn + snI)−1Z ′
nZn(Z ′

nZn + snI)−1Z ′
nZnΠn

r2
n

])
≤

qn

rn

tr (ΣV V ) E

(
tr

[
qnΠ′

nZ
′
nZn(Z ′

nZn + snI)−1Z ′
nZn(Z ′

nZn + snI)−1Z ′
nZnΠn

rn

])
≤

qn

rn

tr (ΣV V ) E

(
tr

[
qnΠ′

nZ
′
nZn(Z ′

nZn + snI)−1Z ′
nZnΠn

rn

])
≤

qnC

rn

= O

(
qn

rn

)

where the last but one inequality follows by the second part of assumption 1(iii) and the last

by the first part of assumption 1(iii). Part (iv) can be proved similarly.
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Lemma 2 Let P sn
Zn

= Zn(Z ′
nZn + snI)−1Z ′

n and let assumptions 1-2 hold. Then, for all n,

tr
(
P sn

Zn

)
, and therefore E

(
tr

(
P sn

Zn

))
are bounded from above by CnKn

sn
. Further, for all n,

tr
((

P sn
Zn

)2
)
,and therefore, E

(
tr

((
P sn

Zn

)2
))

, are bounded from above by Cn2Kn

s2
n

.

Proof. We have that

tr
(
Zn(Z ′

nZn + snI)−1Z ′
n

)
= tr

(
Z ′

nZn(Z ′
nZn + snI)−1

)
=

tr

(
Z ′

nZn

n

(
Z ′

nZn

n
+

sn

n
I

)−1
)

= tr




(
I +

sn

n

(
Z ′

nZn

n

)−1
)−1


 (9)

We next use standard results (see, e.g., Bai and Golub (1997)) on upper bounds of the

trace of the inverse of a matrix. We first note the following: By assumption 1(iv), for all

n, all eigenvalues of Z′nZn

n
, and therefore those of

(
Z′nZn

n

)−1

, are bounded and bounded away

from zero. As a result all eigenvalues of sn

n

(
Z′nZn

n

)−1

, and therefore of I + sn

n

(
Z′nZn

n

)−1

, are

O
(

sn

n

)
. Then, we use Kantorovich’s inequality for a square m ×m matrix A, which states

that for the i, i-th element of A−1 the following holds:

(A−1)ii ≤ 1

4aii

(
α

β
+

β

α
+ 2

)
(10)

where aii is the i, i-th element of A, α = mini λi(A), β = maxi λi(A) and λi denotes the i-th

eigenvalue of A. Applying this result to our case gives

tr




(
I +

sn

n

(
Z ′

nZn

n

)−1
)−1


 ≤ C

nKn

sn

noting firstly that both α
β

and β
α
, in (10), in our case are O(1) and secondly that aii =

O
(

sn

n

)
. Note that since we assume that n = o(sn), it follows that

lim
n→∞

E
(
tr

(
Zn(Z ′

nZn + snI)−1Z ′
n

))
= o(Kn).

This proves the first part of the Lemma. Given the preceding analysis, in order to prove the

second part of the Lemma, it is simply sufficient to analyse the behaviour of tr

((
I + sn

n

(
Z′nZn

n

)−1
)−2

)
.

Then, we have

tr




(
I +

sn

n

(
Z ′

nZn

n

)−1
)−2


 =

tr




((
I +

sn

n

(
Z ′

nZn

n

)−1
)(

I +
sn

n

(
Z ′

nZn

n

)−1
))−1


 =
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tr




(
I + 2

sn

n

(
Z ′

nZn

n

)−1

+
(sn

n

)2
(

Z ′
nZn

n

)−2
)−1


 = tr

((
I + Σ̃n

)−1
)

where

Σ̃n = 2
sn

n

(
Z ′

nZn

n

)−1

+
(sn

n

)2
(

Z ′
nZn

n

)−2

Since all eigenvalues of
(

Z′nZn

n

)−1

are bounded, and bounded away from zero, the same

follows for the eigenvalues of
(

Z′nZn

n

)−2

. Then, it is easy to see that all eigenvalues of I +Σ̃n

are O
((

sn

n

)2
)
. Then, by a similar analysis as that used for tr

((
I + sn

n

(
Z′nZn

n

)−1
)−1

)
we

have that

tr

((
I +

sn

n
Σ−1

)−2
)
≤ C

n2Kn

s2
n

Proof of Theorem 1

We have that

β̂SKG − β0 =
(
Y ′

2nP sn
Zn

Y2n

)−1 (
Y ′

2nP
sn
Zn

un

)
=

(
qnY ′

2nP sn
Zn

Y2n

rn

)−1 (
qnY ′

2nP sn
Zn

un

rn

)
(11)

We analyse each term of the product of the RHS of (11) in turn. We have,

qnY ′
2nP

sn
Zn

Y2n

rn

=
qnΠ′

nZ
′
nP sn

Zn
ZnΠn

rn

+
qnV

′
nP sn

Zn
ZnΠn

rn

+

qnΠ′
nZ

′
nP sn

Zn
Vn

rn

+

(
Kn

rn

)
qnV ′

nP
sn
Zn

Vn

Kn

p→ Ψ

by the fact that Kn

rn
→ 0, Assumption 1(iii) and Lemma 1(i),(iii). Next, we have that

qnY
′
2nP sn

Zn
un

rn

=
qnΠ′

nZ
′
nP sn

Zn
un

rn

+

(
Kn

rn

)
qnV ′

nP
sn
Zn

un

Kn

By Lemma 1 (ii),
qnV ′nP sn

Zn
un

Kn
= Op (1) and so

(
Kn

rn

)
qnV

′
nP sn

Zn
un

Kn

= Op

(
Kn

rn

)

Further, by lemma 1 (iv)
qnΠ′

nZ
′
nP̃ sn

Zn
un

rn

= Op

(√
qn

rn

)

Overall,
qnY ′

2nP̃
sn
Zn

un

rn

= Op

(
Kn

rn

)
+ Op

(√
qn

rn

)
= op(1)

under the assumptions of Theorem 1.
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Table 1. Variance of the 2SLS and B2SLS estimates.

2SLS B2SLS/2SLS (RATIO)
Kn/n 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

n c = 0.1 c = 0.1
50 0.214 0.229 0.246 0.263 0.281 1.446 1.636 1.924 2.180 1.000
100 0.203 0.220 0.242 0.258 0.271 0.723 0.867 1.257 1.874 1.000
200 0.200 0.220 0.239 0.253 0.270 0.498 0.555 0.704 1.385 1.000
400 0.198 0.217 0.239 0.251 0.272 0.346 0.368 0.434 0.684 1.000

c = 0.5 c = 0.5
50 0.193 0.206 0.223 0.239 0.256 1.187 1.280 1.565 2.138 1.000
100 0.181 0.198 0.218 0.234 0.246 0.664 0.765 0.888 1.734 1.000
200 0.177 0.196 0.214 0.228 0.244 0.474 0.505 0.594 0.902 1.000
400 0.175 0.193 0.213 0.226 0.245 0.331 0.349 0.392 0.567 1.000

c = 1 c = 1
50 0.147 0.162 0.175 0.188 0.199 0.862 0.918 1.142 1.589 1.000
100 0.138 0.153 0.166 0.181 0.191 0.628 0.628 0.744 0.965 1.000
200 0.132 0.148 0.162 0.176 0.191 0.449 0.453 0.495 0.623 1.000
400 0.131 0.145 0.162 0.175 0.188 0.319 0.317 0.348 0.442 1.000
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Table 2. Variance Ratio of the 2SLSS vs 2SLS estimates.

q = 0 q = K−0.5
n

c Kn/n 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1
n sn = 10 sn = 10

0.1 50 0.924 0.905 0.886 0.870 0.854 0.844 0.828 0.816 0.804 0.791
100 0.943 0.928 0.913 0.896 0.877 0.895 0.883 0.871 0.858 0.842
200 0.964 0.953 0.940 0.923 0.904 0.938 0.929 0.917 0.902 0.885
400 0.979 0.971 0.961 0.946 0.928 0.965 0.959 0.949 0.935 0.917

sn = 103 sn = 103

50 0.818 0.786 0.757 0.741 0.722 0.550 0.503 0.460 0.433 0.411
100 0.784 0.751 0.731 0.716 0.699 0.393 0.362 0.331 0.314 0.306
200 0.772 0.749 0.729 0.714 0.700 0.336 0.322 0.313 0.310 0.308
400 0.782 0.761 0.743 0.728 0.714 0.392 0.388 0.389 0.392 0.395

sn = 105 sn = 105

50 0.815 0.782 0.752 0.736 0.717 0.574 0.529 0.484 0.459 0.437
100 0.774 0.739 0.718 0.702 0.685 0.405 0.374 0.336 0.317 0.303
200 0.746 0.721 0.700 0.684 0.670 0.282 0.256 0.239 0.225 0.214
400 0.733 0.710 0.690 0.674 0.661 0.201 0.182 0.167 0.157 0.143

sn = 10 sn = 10
0.5 50 0.922 0.901 0.881 0.863 0.845 0.853 0.835 0.819 0.805 0.790

100 0.942 0.925 0.907 0.889 0.868 0.900 0.885 0.870 0.855 0.837
200 0.962 0.950 0.935 0.917 0.896 0.939 0.928 0.915 0.899 0.879
400 0.978 0.969 0.959 0.942 0.921 0.966 0.958 0.948 0.932 0.912

sn = 103 sn = 103

50 0.818 0.782 0.750 0.731 0.711 0.611 0.559 0.508 0.475 0.448
100 0.781 0.745 0.720 0.703 0.684 0.434 0.397 0.361 0.341 0.330
200 0.763 0.736 0.715 0.697 0.682 0.366 0.348 0.336 0.331 0.326
400 0.771 0.749 0.729 0.711 0.695 0.418 0.410 0.408 0.408 0.409

sn = 105 sn = 105

50 0.815 0.779 0.745 0.726 0.705 0.651 0.601 0.546 0.513 0.488
100 0.771 0.732 0.707 0.689 0.670 0.460 0.422 0.377 0.353 0.337
200 0.736 0.708 0.685 0.668 0.651 0.320 0.288 0.269 0.250 0.237
400 0.721 0.696 0.674 0.656 0.640 0.227 0.205 0.186 0.175 0.159

sn = 10 sn = 10
1 50 0.921 0.898 0.873 0.848 0.827 0.875 0.853 0.831 0.808 0.790

100 0.936 0.920 0.896 0.875 0.850 0.908 0.891 0.870 0.851 0.828
200 0.958 0.944 0.927 0.906 0.881 0.942 0.929 0.913 0.892 0.868
400 0.976 0.966 0.952 0.934 0.908 0.967 0.958 0.945 0.926 0.901

sn = 103 sn = 103

50 0.832 0.789 0.752 0.720 0.695 0.787 0.727 0.665 0.590 0.567
100 0.770 0.744 0.705 0.683 0.656 0.530 0.482 0.445 0.411 0.393
200 0.750 0.721 0.692 0.670 0.650 0.442 0.417 0.396 0.380 0.368
400 0.755 0.727 0.703 0.682 0.660 0.477 0.464 0.455 0.449 0.441

sn = 105 sn = 105

50 0.830 0.787 0.749 0.717 0.690 0.919 1.026 0.823 0.700 0.678
100 0.760 0.733 0.693 0.671 0.642 0.611 0.550 0.513 0.464 0.442
200 0.724 0.694 0.663 0.641 0.619 0.442 0.392 0.350 0.323 0.297
400 0.703 0.672 0.647 0.625 0.603 0.301 0.271 0.247 0.228 0.211
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Table 3. Variances of the 2SLSS. Case Kn > n

c = 0.1000 c = 0.5000 c = 1.0000
Kn/N 1 1.1 ratio 1 1.1 ratio 1 1.1 ratio
N q = K−0.5

n ; sn= 10
50 0.220 0.225 1.022 0.201 0.205 1.021 0.159 0.162 1.018
100 0.231 0.238 1.032 0.208 0.215 1.033 0.160 0.166 1.037
200 0.242 0.248 1.026 0.217 0.223 1.027 0.167 0.172 1.029
400 0.249 0.250 1.004 0.224 0.226 1.009 0.171 0.174 1.017

q = K−0.5
n ; sn= 103

50 0.115 0.112 0.976 0.114 0.111 0.975 0.113 0.109 0.972
100 0.082 0.084 1.018 0.080 0.082 1.020 0.075 0.076 1.017
200 0.084 0.087 1.037 0.080 0.083 1.034 0.071 0.073 1.031
400 0.107 0.111 1.036 0.100 0.104 1.039 0.084 0.087 1.041

q = K−0.5
n ; sn= 105

50 0.122 0.119 0.977 0.124 0.121 0.970 0.137 0.129 0.942
100 0.081 0.082 1.009 0.082 0.083 1.010 0.084 0.085 1.007
200 0.059 0.057 0.971 0.059 0.057 0.971 0.059 0.057 0.963
400 0.039 0.040 1.020 0.039 0.040 1.018 0.039 0.040 1.023

q = 0; sn= 10
50 0.237 0.241 1.019 0.214 0.218 1.018 0.166 0.169 1.017
100 0.241 0.248 1.029 0.216 0.222 1.030 0.165 0.170 1.035
200 0.247 0.253 1.025 0.222 0.227 1.026 0.169 0.174 1.028
400 0.252 0.253 1.004 0.226 0.228 1.008 0.172 0.175 1.017

q = 0; sn= 103

50 0.200 0.203 1.015 0.181 0.182 1.009 0.141 0.141 1.002
100 0.192 0.197 1.023 0.170 0.175 1.025 0.128 0.131 1.027
200 0.191 0.196 1.030 0.168 0.173 1.030 0.124 0.128 1.033
400 0.194 0.196 1.011 0.171 0.173 1.016 0.125 0.128 1.026

q = 0; sn= 105

50 0.199 0.201 1.014 0.179 0.181 1.008 0.140 0.140 1.001
100 0.188 0.192 1.021 0.167 0.170 1.022 0.125 0.128 1.024
200 0.182 0.188 1.029 0.160 0.165 1.028 0.118 0.122 1.030
400 0.180 0.181 1.010 0.157 0.159 1.015 0.114 0.117 1.024
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