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Abstract

This paper proposes a new regression model–a smooth transition mixed data

sampling (STMIDAS) approach–that captures recurrent changes in the ability of

a high frequency variable in predicting a low frequency variable. The STMIDAS

regression is employed for testing changes in the ability of financial variables in

forecasting US output growth. The estimation of the optimal weights for aggre-

gating weekly data inside the quarter improves the measurement of the predictive

ability of the yield curve slope for output growth. Allowing for changes in the im-

pact of the short-rate and the stock returns in future growth is decisive for finding

in-sample and out-of-sample evidence of their predictive ability at horizons longer

than one year.
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1 Introduction

Asset prices incorporate expectations on future economic activity because they are set

based on expectations on future dividends and interest rates. This forward-looking char-

acteristic suggests that bond and stock returns should be useful predictors of output

growth (Harvey, 1988; Stock and Watson, 2003). Indeed, one of the most popular lead-

ing indicators of the US growth is the spread between long-term and short-term interest

rates (Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002). In contrast, Stock and

Watson (2003) conclude that stock returns have only marginal content for predicting

output growth, although the results of Estrella and Mishkin (1998) suggest some power

in predicting recessions at short horizons. Short-term interest rates are not as popular

indicators as the spread, but recently Ang, Piazzesi and Wei (2006) argue that it is a

better leading indicator than the spread from 1990 onwards.

In general, asset prices have predictive ability for economic activity, but the conclusion

of the survey by Stock and Watson (2003) is that they are not always reliable. Estrella,

Rodrigues and Schich (2003) report evidence of instability in the ability of the spread

in predicting output growth, but no instability when the spread is used for predicting

recessions. The measurement of predictive ability when there is a break is the object of

study of Clark and McCracken (2005b). They show that breaks help understanding why

some researchers find in-sample evidence of predictive ability, but no predictive content

in the out-of-sample period. Out-of-sample tests of predictive ability have low power if

the break towards no predictive ability occurs in the out-of-sample period.

This paper contributes to improve the measurement of the ability of asset returns in

forecasting output growth. My new regression model is able to capture two important

features of the ability of asset returns for predicting output growth: the predictive ability

may be changing recurrently over time, and the information on asset returns may be

available at higher frequencies than output growth.

Modelling recurrent changes over time is an alternative to modelling breaks. Although

switching-regimes models may also capture breaks (Carrasco, 2002), there are economic

reasons for adopting models with recurrent regimes. Changes in the predictive power of

asset returns for output growth may be related to business cycle regimes. An inverted

yield curve anticipates recessions, but an upward curve does not say much about booms

or average growth. Bull and bear markets normally describe different regimes in the

stock market. There is a popular saying that “the stock market correctly forecast nine

of the last four recessions” (Harvey, 1988, p.39). However, this only makes sense if bear

markets always lead to recessions. Recently, Sims and Zha (2006) have identified recurrent

monetary policy regimes. They argue that monetary policy changes are better described
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by processes with recurrent regimes than by process with break changes. Monetary policy

changes may be also a candidate explanation for changes in the content of asset returns

in predicting growth.

One usually aggregates financial variables before using them as predictors for quarterly

output growth. A popular procedure is to take quarterly averages of monthly data.

This imposes a restriction on how the information of the high frequency regressor is

weighted inside the quarter for predicting economic activity. Averaging may not be the

aggregation method that maximises the power of a high frequency variable in predicting

a low frequency one.

The new regression model combines a non-linear time series regression model - smooth

transition regressions (Teräsvirta, 1998) - with a MIxed Data Sampling approach - MI-

DAS (Ghysels, Santa-Clara and Valkanov, 2004). The mixed sampling approach allows

for the direct use of high frequency data, while smooth transition allows changes in pre-

dictive ability over time. I show how to test for changes in predictive ability with mixed

frequency data and how to estimate smooth transition MIDAS (STMIDAS) regressions.

The regression model can be extended by including an autoregressive term and multi-

ple predictors. More flexible specifications allow us to answer questions on the predictive

content of a variable in addition to an autoregressive term and/or another predictor. One

can test for no predictive content of a predictor for a dependent variable with STMIDAS

regressions by employing a bootstrap procedure to compute p-values, so that the com-

putation of p-values takes into account the estimation of aggregation weights.

I use the STMIDAS regression to measure the ability of asset returns in predicting

output growth. This approach builds on predictive regressions. On the one hand, some

authors (Valkanov, 2003; Ang and Bekaert, 2007) have criticized long-run regressions

to measure the predictive power when applied to highly persistent regressors that are

correlated with autoregressive disturbances. On the other hand, Inoue and Kilian (2004)

argue that in-sample tests of predictability may have more power than out-of-sample

tests even under dynamic mispecification. In this paper, I use both in-sample and out-

of-sample evaluation. The in-sample evaluation of predictive ability is based on Wald

statistics, while the out-of-sample evaluation is based on tests of equal forecast accuracy

and forecast encompassing with an autoregressive model as benchmark. Because there

is an AR term in the STMIDAS regressions, the model is nested to the benchmark.

As a consequence, the usual test statistics have a non-standard distribution. Thus the

evaluation requires a bootstrap procedure to be able to test the predictive content of

financial variables under different specifications as recommended by Clark andMcCracken

(2005a).
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My empirical results obtained with STMIDAS improve our knowledge about the con-

tent in asset prices about future economic activity. In contrast to simple regression

models, I find evidence that short-rates and stock returns have ability in predicting

output growth at forecast horizons such as 8 and 12 quarters, both in-sample and out-

of-sample. Averaging over quarters does harm the measurement of the predictive ability

of the spread. There is more agreement between the in-sample and out-of-sample evi-

dences of predictive ability when using STMIDAS regressions. The estimated chronology

of changes of predictive ability sheds a light on the instability of financial variables as

leading indicators and explains why results may change with the definition of the out-

of-sample period. Finally, a novel empirical result is that stock returns have information

in addition to the slope of the yield curve for predicting the growth of next 2-3 years.

Only STMIDAS regressions are able to identify the information contained in high stock

returns that is useful to predict growth.

The remaining of this paper is organized as follows. Section 2 presents the smooth

transition MIDAS together with test procedures to identify changes in the predictive

ability of financial variables for US GDP. A Monte Carlo exercise illustrates the prop-

erties of the estimator and testing procedures in small samples. In-sample evaluation

of the predictive content of financial variables for output growth is presented in section

3. Section 4 presents the results of the out-of-sample evaluation using real-time data of

output growth. Section 5 summarizes the main contributions and indicates some points

for future research.

2 Smooth Transition MIDAS

2.1 MIDAS approach

Financial variables are available at high frequencies such as daily, weekly and monthly

while the most popular measure of economic activity–output growth–is available quar-

terly. As a consequence, one aggregates financial variables in time before measuring their

ability to predict the low frequency dependent variable. Using the regressor and the

dependent variable with the same frequency, one can employ predictive regressions to

measure the predictive power of the regressor at h-steps ahead (Estrella and Hardou-

velis, 1991; Ang et al., 2006). An alternative exploited in this paper is the direct use of

the high frequency predictor, letting aggregation weights to be estimated so that they

maximise the ability the predictive content of the regressor.

The MIxed Data Sampling approach (MIDAS), proposed by Ghysels et al. (2004),

permits the regression of low frequency data on high frequency data. Therefore, the
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information on the weekly financial variables can be directly employed for checking the

ability of the variables in predicting quarterly output growth.

A linear MIDAS regression to measure the predictive content of x for yt at h-steps

ahead is:

yt+h = β
(m)
0,h + β

(m)
1,h w(L

1/m)x
(m)
t + εt+h (1)

where w(L1/m) =
K−1P
j=0

w(j)Lj/m is a polynomial of length K − 1 in the lag operator L1/m

such that Lj/mxt = xt−j/m. The weights are identified if
K−1P
j=0

w(j) = 1. When x
(m)
t is

sampled weekly, for example, and only the information inside the quarter t is considered

(m = 13 = K), one has the following equation:

yt+h = β
(13)
0,h + β

(13)
1,h

h
w(0)x

(13)
t + w(1)x

(13)
t−1/13 + · · ·+ w(12)x

(13)
t−12/13

i
+ εt+h.

1

An advantage of MIDAS is that aggregation over time may smooth out information from

the high frequency predictor that might otherwise help to predict y.

A problem is that the number of parameters in w(L1/m) increases with the frequency

of predictor. A solution is the use of an exponential function for obtaining the weights. As

a consequence, one has to estimate only the two parameters of the exponential function:2

w (j;κ) =
exp(κ1j + κ2j

2)PK−1
k=0 exp(κ1j + κ2j2)

.

The estimation of the function w (j;κ) together with the coefficients of the regression

(1) implies that the best combination of information inside the quarter is employed for

predicting yt+h. Because of the smoothness of the weight function, the MIDAS regression

can be estimated by nonlinear least squares.

While taking the average over the quarter equally weighs current information on x(m)t ,

similar weighting scheme only occurs with MIDAS approach when κ1 = κ2 = 0, so that

w(0) = ... = w(K − 1) = 1/K. In these circumstances, the MIDAS regression (1) nests:

yt+h = β0,h + β1,hxt + εt+h. (2)

1Of course not all quarters have 13 full weeks, consequently, m = 13 is an approximation. In the

empirical part, the observation of a specific week is the one from Friday (or the previous day that the

market was open). As a result, I always use the last 13 observations from the date of the end of quarter

as information at t.
2Ghysels, Santa-Clara and Valkanov (2006) use a beta function to compute the weights. For the

shorter macroeconomic data, the exponential function is computationally easier to estimate. I use

Gauss CML routines to estimate MIDAS regressions. More details on the estimation procedure are in

Appendix B.
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This type of regression was employed to measure the ability of the spread for pre-

dicting output growth (Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002; Ang

et al., 2006), of dividend/price ratios for excess returns (see Cochrane (2005), ch. 20 for

a survey), and of economic fundamentals for exchange rates (Kilian and Taylor, 2003).

If β1,h = 0, xt has no predictive content for yt+h. This can be verified with a t-statistic

after the estimation of the parameters. Although the coefficients can be consistently

estimated by ordinary least squares, the t-statistic has to be computed using an esti-

mator for var(β̂1,h) robust to heteroscedasticity and autocorrelation. A consistent and

popular choice is the Newey and West (1987) estimator. An alternative measure of the

predictive power of xt at each forecasting horizon is the R2 computed after estimating

the forecasting regression (2).

In the context of MIDAS regressions, the null hypothesis of no predictive ability of

x
(m)
t for yt+h cannot be tested using the standard distribution of the t-ratio, because

the parameters κ are unidentified under the null. Appendix A describes a procedure

for computing p-values for the t-ratio by bootstrap. The contributions of the MIDAS

regressions for the measurement of the ability of x(m)t in predicting yt+h can be evaluated

in comparison to regressions (eq. 2) and autoregressive models. The comparison of in-

sample fit may use information criteria (Inoue and Kilian, 2006), while the out-of-sample

performance may be compared in terms of means of squared forecast error.

2.2 Smooth Transition MIDAS

Switching regimes are a popular way of modelling nonlinear dynamics in regressions by

using piecewise linear regimes linked by a transition function (Tong, 1990). When the

transition between regimes is smooth and it depends on the size of an observed transition

variable, switching-regime models are called smooth transition regressions (surveyed by

Van Dijk, Teräsvirta and Franses (2002)). This type of non-linear approach permits the

modelling of changes in the predictive content of a high frequency variable for a low

frequency one in a simple way. The switches between regimes depend on the sign and

the size of the weighted high frequency predictor.

Before writing the model with changes in predictive ability, I simplify the notation

by writing the weighted sum of x(m)t as

x
(m)
t(κ,m) =

m−1X
j=0

w(j, κ)Lj/mx
(m)
t , (3)

and imposing the restriction that K = m, so that only the current information on x is

employed for forecasting y. The smooth transition MIDAS (STMIDAS) regression is:
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yt+h = β
(m)
0,h +β

(m)
1,h x

(m)
t(κ,m)

h
1−Gt(x

(m)
t(κ,m); γ, c)

i
+β

(m)
2,h x

(m)
t(κ,m)

h
Gt(x

(m)
t(κ,m); γ, c)

i
+εt+h, (4)

where

Gt(x
(m)
t(κ,m); γ, c) =

1

1 + exp(−(γ/σ̂x)(x(m)t(κ,m) − c)
.

The transition functionGt(x
(m)
t(κ,m); γ, c) is a logistic function that depends on the weighted

sum of the explanatory variable in the current quarter. The function Gt(x
(m)
t(κ,K); γ, c) has

values between 0 and 1. When the smoothing parameter γ is large, the function has all

values equal to either 0 or 1. In the latter case, the function is similar to an indicator

function that is zero when x
(m)
t(κ,K) ≤ c and equal to 1 when x

(m)
t(κ,K) > c. Thus the impact

of x(m)t(κ,m) in predicting yt+h is β
(m)
1,h when the weighted sum of x

(m)
t is small and β(m)2,h when

the weighted sum x
(m)
t(κ,m) is large. When γ is small but is not equal to zero, the impact

of x(m)t(κ,m) in predicting yt+h is a time-varying weighted sum of β(m)1,h and β
(m)
2,h depending

on the value of Gt(x
(m)
t(κ,K); γ, c).

The estimates of κ for regression (1) may be different from regression (4) because the

weights are chosen to maximize the predictive power of x(m)t assuming that its predictive

ability changes over time. Note that the weights are kept constant over time, but the

impact of the weighted predictor is allowed to vary over time with the smooth transi-

tion. A discussion of the application of nonlinear least squares to estimate STMIDAS

regressions is on Appendix B.

I would like to emphasize some important features of the STMIDAS regressions. In

contrast to previous applications of non-linear time series models (see Anderson and

Vahid (2001) for an application similar to this paper), I am not required to choose the

delay, which is the lag of the transition variable, before estimating the smooth transition

regression. For the purpose of modelling shifts in the predictive content of x(m)t for y

at a given horizon, the weighted high frequency predictor x(m)t(κ,m) is the only reasonable

candidate for transition variable.

Another feature is that STMIDAS regressions are designed for direct forecasting.

Previous applications of non-linear time series models for verifying changes in the dynamic

relationship between output growth and the spread (Galbraith and Tkacz, 2000; Anderson

and Vahid, 2001; Galvão, 2006) have specified models only for one-step-ahead forecasts.

Iterated forecasts for longer horizons are then obtained by bootstrap. Massimiliano, Stock

and Watson (2006) show that only when longer lags are allowed, iteration generates more

accurate forecasts than direct forecasting. In my application for measuring predictive

ability, only the current quarter information about x(m)t is employed for forecasting. In

this absence of longer lags, the direct computation of forecasts generates predictions that
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are probably more accurate than iterating, specially for predicting at long horizons such

as 2 and 3 years. In addition, one does not need a simulation procedure for computing

the forecasts for h > 1. A simulation procedure is required when computing iterated

forecasts because the conditional mean needs to be approximated numerically.

Another alternative for modelling switching regimes is to make the regimes dependent

on a latent variable, which is controlled by aMarkov process (Hamilton, 1989). A problem

with this alternative is that a consistent estimation of the parameters requires maximum

likelihood methods, which assumes normality of the residuals (see Kim and Nelson (1999)

for a survey). This assumption needs a well-specified model. Because it is unlikely that

a Markov-switching version of (2) will have well-behaved errors, the use of nonlinear

least squares together with robust estimation of the variance is more adequate for testing

changes in the ability of x(m)t in predicting yt+h.

2.2.1 Testing for Changing Predictive Ability

I rewrite regression (4) as:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(κ,K) + δ

(m)
h x

(m)
t(κ,K)

h
Gt(x

(m)
t(κ,K); γ, c)

i
+ εt+h, (5)

where δ(m)h = β
(m)
2,h −β(m)1,h . Thus a test for changes in the predictive ability of x

(m)
t(κ,K) on yt+h

has the null hypothesis δ(m)h = 0. For testing this hypothesis, traditional methods cannot

be used because the parameters γ and c are not identified under the null (Granger and

Teräsvirta, 1993). This implies that the test for δ(m)h = 0 using STMIDAS estimates is

severely oversized. Fortunately, the testing procedure proposed by Luukkonen, Saikkonen

and Terasvirta (1988) can be applied. The testing procedure makes use of a Taylor

approximation of the logistic function. Using a first-order approximation, the auxiliary

regression for testing constant predictive ability (linearity) using equation (4) as the

alternative hypothesis is:

yt+h = π
(m)
0,h + π

(m)
1,h x

(m)
t(κ̂,m) + π

(m)
2,h

³
x
(m)
t(κ̂,m)

´2
+ εt+h. (6)

The null hypothesis is π(m)2,h = 0, assuming that κ̂ has been estimated under the null.

This variable addition test has also power for detecting threshold linearity (Strikholm

and Teräsvirta, 2005).

A problem of applying this approach for forecasting regressions is that the properties

of the test are derived assuming that εt+h is iid. It is only reasonable to assume that this

is the case when h = 1. For horizons longer than one quarter, I use estimates of var(π̂(m)2,h )

robust to autocorrelation (and heteroscedasticity for h = 1, ...,H). This is also the usual

approach when testing for no predictive content of xt in yt+h using in-sample estimates.
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This testing approach may be oversized and underpowered when the sample is small. In

the context of testing for no predictive ability, the results of Ang and Bekaert (2007)

indicate that the Newey and West (1987) estimator is oversized in small samples (100)

for large h (20). They suggest to employ the Hodrick (1992) estimator for computing the

variance matrix because the implied t-test has the correct size. However, the t-statistic

using the Hodrick (1992) estimator has very low power when h is large. I investigate the

size and power properties of the use of Newey and West (1987) estimator to compute

var(β̂
(m)

2,h ) for testing changing predictive ability in section 2.3.2.

An approach similar to this one can be also applied to test changes in the predictive

ability of a predictor that is sampled at the same frequency as the dependent variable.

Assuming that m = 1 in equation (4), one has the smooth transition specification of (2),

that is,

yt+h = β0,h + β1,hxt [1−Gt(xt; γ, c)] + β2,hxt [Gt(xt; γ, c)] + εt+h. (7)

The test of the null of no changes in the predictive ability of xt for yt+h has this latter

regression as alternative hypothesis. The auxiliary regression for testing no changes in

predictive content is:

yt+h = π0,h + π1,hxt + π2,h (xt)
2 + εt+h. (8)

I expect that the test for changes in predictive ability using regression (6) is more

powerful than using regression (8). Ghysels et al. (2004) have shown that, based on a

Hannan feasible estimator for regressions of same dependent variable but with predictors

of low and high frequencies, the estimator for the impact is asymptotically more efficient

with MIDAS regressions (1) than with the traditional regressions (2). The intuition of the

validity of this result for testing changes in predictive ability is that because var(π̂(m)2,h ) is

inversely related to the variation of x(m)t , the disaggregation of the information from the

regressor implies that the variation of x(m)t is computed using mT observations instead of

T . Because it is expected that var(π̂2,h) ≥ var(π̂
(m)
2,h ), tests for measuring the predictive

ability with the MIDAS approach might be more powerful.

2.2.2 Inclusion of an autoregressive term

Specifications (2), (1) and (4) can be extended for allowing for autoregressive behaviour.

If there is some weak memory in yt, it is likely that the results of in-sample tests of

no predictive ability of x(m)t for yt+h do no change with the inclusion of an autoregres-

sive term. However, when forecasting yt+h out-of-sample, the autoregressive term may

improve forecasts. Yet, the results by Ang et al. (2006) suggest that an autoregressive
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term improves forecasts in short horizons (h = 1), while it does not change the measure-

ment of the predictive ability of the yield curve. Therefore, I also consider a STMIDAS

specification with autoregressive term:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(κ,m)

h
1−Gt(x

(m)
t(κ,m); γ, c)

i
+ β

(m)
2,h x

(m)
t(κ,m)

h
Gt(x

(m)
t(κ,m); γ, c)

i
+ρhyt + εt+h.

Clements and Galvão (2006) discuss the problem of including an autoregressive term

in MIDAS modelling. Because of the polynomial in L1/m, the lag structure with the

inclusion of a lag dependent variable generates a “seasonal” behaviour on the effect of

x
(m)
t for yt+h with stronger peaks at the end of each quarter. The solution proposed was

to use a common factor structure. However, when measuring changing predictive ability,

K is equal to m, so that the lag structure of x(m)t does not go beyond a quarter. As a

consequence, there is no problem in the inclusion of yt on the left-hand side.

2.2.3 Combining High Frequency Predictors

The STMIDAS regressions (4) can be extended to incorporate two predictors x(m)1,t and

x
(m)
2,t :

yt+h = β
(m)
0,h + β

(m)
11,hx

(m)
1,t(κ1,m)

h
1−G1,t(x

(m)
1,t(κ1,m)

; γ1, c1)
i

(9)

+β
(m)
12,hx

(m)
1,t(κ1,m)

h
G1,t(x

(m)
1,t(κ1,m)

; γ1, c1)
i

+β
(m)
21,hx

(m)
2,t(κ2,m)

h
1−G2,t(x

(m)
2,t(κ2,m)

; γ2, c2)
i

+β
(m)
22,hx

(m)
2,t(κ2,m)

h
G2,t(x

(m)
2,t(κ2,m)

; γ2, c2)
i
+ εt+h.

Each predictor is able to have a different type of switching behaviour over time, because

two transition functions are estimated. This specification is useful for testing whether

variable x2t has predictive power for yt+h in addition to x1t. Appendix A describes a boot-

strap procedure for computing p-values of a Wald test for testing additional predictive

ability.

The test for changes in the predictive ability of both x1t and x2t employs an auxiliary

regression based on a first-order Taylor approximation (Luukkonen et al., 1988):

yt+h = π
(m)
0,h + π

(m)
1,h x

(m)
1,t(κ̂,m) + π

(m)
2,h

³
x
(m)
1,t(κ̂,m)

´2
+ (10)

π
(m)
3,h x

(m)
2,t(κ̂,m) + π

(m)
4,h

³
x
(m)
2,t(κ̂,m)

´2
+ εt+h.

The restrictions in this auxiliary regression for testing the null hypothesis of no changes

in the impact of the predictors x1t and x2t for yt+h are:

π
(m)
2,h = π

(m)
4,h = 0.
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The Wald statistic is calculated using a estimator for the variance that is robust to

autocorrelation and heteroscedasticity. This approach also allows for testing whether

there is change in predictability of x2t for yt+h without imposing any restriction on the

measurement of predictive content of x1t. Using the auxiliary regression (eq. 10), the

null of the test is π(m)4,h = 0.

Specifications similar to (9) and (10) can be also written for aggregated data (set

m = 1). A competitor with constant parameters (R) is:

yt+h = β0,h + β11,hx1,t + β21,hx2,t + εt+h, (11)

where β11,h measures the impact of variable x1 in predicting y at horizon h .

2.3 Monte Carlo Evaluation

The objective of this Monte Carlo evaluation is to analyse the properties of nonlinear

least squares (NLS) in the estimation of MIDAS regressions. Moreover, I check whether

there is any gain from using high frequency data for testing changes in the predictive

ability of the predictor for the dependent variable. I use data generating processes that

are similar to the empirical relations between spread and output growth.

The process for x(m)t is an AR(1) with a large autoregressive coefficient (0.98) and a

small drift (0.05). The value of m is set to 13 (weekly data), so at least mT observations

of x(m)t are generated assuming that the disturbances are N(0, 1). The persistence of the

process of x(m)t decreases when aggregating the simulated values by averaging over blocks

of m observations.

2.3.1 Evaluation of NLS for estimating the parameters of STMIDAS regres-

sion

I specify parameters for the data generating processes (DGPs) with changing parameters

such that in the first regime x(m)t has a stronger impact in predicting yt+h than in the

second regime, but x(m)t has some predictive content in both regimes. The values of the

βs are the same using both aggregated and disaggregated data, that is, β0,h = β
(m)
0,h = 0.4

and β1,h = β
(m)
1,h = 0.50. The difference between the second and the first regime of the

impact of the predictor for the dependent variable is δh = δ
(m)
h = −0.30. The threshold c

is set to 2.3, which is near the unconditional mean of the x(m)t process.3 The coefficients

of the exponential function that defines the weights of each lag of the high frequency

predictor are set such that the information of lag t− 5/13 has higher weight.
3The parameter σ̂x normally included in the logistic function to make γ scale free is assumed to be

equal the square-root of unconditional variance of x(m)t , that is, σ̂x = 5.
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Data are generated from the DGPs for forecasting horizons h = 1 and 4. For h = 1,

an autoregressive term is added (ρ = 0.20); for h = 4, the autoregressive term is not

included, but an MA(3) process is assumed for εt+4. These specifications are supported

empirically. Because the MA terms are not estimated, the results for h = 4 indicate the

effect of this type of mispecification in the estimation. Finally, the disturbances of the

yt+h equation are standard normal.

Table 1 presents the average biases of the NLS estimates of STMIDAS regressions

computed with different samples sizes under no autocorrelation (h = 1) and an MA in

the errors (h = 4). The description of the NLS procedure is in Appendix B. Even in

samples as small as 100, the estimates of the βhs and δ are not significantly biased. The

biases in the estimation of κ and γ only disappear for large T (1000), and they shrink

slower for h = 4. These biases do not affect the measurement of the impact of x(m)t for

yt+h. However, it is likely that the estimates of κ and γ will be highly imprecise in small

samples.

Figures 1 and 2 can help us to understand why large biases in κ and γ do not imply

large biases in β1,h and δh. Figure 1 shows that differences in the values of κ̂1 and

κ̂2 do not imply that the functions w(m, κ̂) are dramatically different if the proportion

κ̂1/κ̂2 is kept constant. The values of κ1 and κ2 used in the Figure 1 are based on the

average estimates computed in the Monte Carlo for T = 100, 200, 500. Figure 2 shows

that differences in γ, for a given value of threshold c, imply changes in the number of

observations with values between 0 and 1. For small samples (120 in the Figure 2), it is

unlikely that this makes a large difference in the estimates of β1,h and δh.

2.3.2 Evaluation of the Test for Changing Predictive Ability

I simulate data from linear and smooth transition specifications using aggregated and

disaggregated data. The non-linear DGPs were described in the previous subsection.

The linear DGPs have β0,h = β
(m)
0,h = 0.4, and β1,h = β

(m)
1,h = 0.25. The value of β1,h

is such that it is not equal to the average of β1,h and β2,h in the smooth transition

specifications, which is 0.20.

Table 2 presents the rejection rates of the test for changes in predictive ability with

MIDAS (6) and traditional regressions (8) under the alternative. The rejection rates are

computed for data simulated from DGPs with constant and switching-regime parameters.

In addition to the horizons h = 1, 4, I also check the properties of the test for h = 8,

which assumes an MA(7) in the disturbances of the DGPs. The tests are computed using

a Wald statistic for π2,h = 0 in the auxiliary regressions. The Newey-West estimator is

employed for computing the variance-covariance matrix. Therefore, this Monte Carlo
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evaluation investigates whether the proposed test is able to choose correctly between

constancy and changes in predictive ability of xt for yt+h depending on the size of xt,

under the presence of autocorrelation in the residuals of the auxiliary regression.

The autocorrelation on the residuals strongly affects the properties of the test when

the sample is small (100 observations). When the sample is large, there is some evidence

that the test is over-sized. This is also common in tests for no predictive content of

xt for yt+h (Ang and Bekaert, 2007). There is a clear trade-off between size and power

when using a consistent estimator robust to heteroscedasticity and autocorrelation in the

context of forecasting regressions with small samples. However, the results indicate that

the test can be still used for detecting changes in predictive ability if it is done carefully

in small samples.

The direct use of the high frequency observations of the predictor improves slightly

the power of the test. The small gain in power is found for all h. Because the gain is

small, one may argue that there is no advantage in using MIDAS regressions instead of

traditional regressions for testing changes in the ability of a high frequency predictor in

forecasting a low frequency dependent variable. However, if the weight function w(m, κ̂)

that maximises the predictive content of a given predictor for yt+h is significantly dif-

ferent from equal weighting, the use of MIDAS regressions may be still advantageous

for detecting changing predictive ability. In the next section, the empirical exercise will

confirm that this is the case in some situations.

3 Measurement of In-Sample Predictive Ability

In this section, STMIDAS regressions are employed for measuring the ability of financial

variables in predicting output growth. Following the literature that starts with Estrella

and Hardouvelis (1991), the dependent variable is yt+h = (400/h) [zt+h − zt], where zt
is the log of real GDP in dollars. The predictors are two factors of the yield curve and

stock prices. The slope of the yield curve is measured using the spread: xt = r
(20)
t − r

(1)
t ,

where r(20)t is the interest rate of a bond with maturity 20 quarters. The results do not

change if the long-rate is the 10-year interest rate. The spread of the 10-year interest

rate has been considered by Estrella and Hardouvelis (1991), while the one of the 5-year

rate is employed by Ang et al. (2006). The stock returns are computed using the annual

difference of the price index, that is, srt = 100(ln(pt)− ln(pt−4)) with quarterly data.
The quarterly data on real GDP growth are from the 2005:Q3 vintage and I use data

since 1970:Q1.4 The regressors are sampled weekly (m = 13). The interest rate data

4The data is from the real-time dataset of the Philadelphia Fed:
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are obtained from the FRED database in weekly frequencies.5 The stock prices are the

SP500 index obtained daily from Bloomberg. Weekly data is obtained by using the value

of the last day of the week, while monthly data is obtained by averaging weekly data.

Note that the stock returns are computed as sr(13)t = 100(ln(p
(13)
t )− ln(p(13)t−52)) when data

is weekly. The quarterly aggregated data are computed by averaging monthly data of a

given quarter. The estimation uses values of h up to 12. As a consequence, the number

in-sample observations is T = 123 (almost 31 years of data) to be able to keep constant

the number of observations for each forecast horizon.

Figure 3 presents quarterly data. The growth rate is computed as

(100) [log(zt)− log(zt−4)]. Negative spread and high interest rates lead negative growth,
but the association with the short-rate is more evident only for the last two recessions

(1991 and 2001). Large positive stock returns lead strong output growth. There are

more periods of negative stock returns than recessions, consequently, stock returns may

generate false alarms. From the financial variables analysed, the most popular indicator

is the spread (Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002), the short-rate

has been suggested recently (Ang et al., 2006) and stock returns have not been popular

but the results by Estrella and Mishkin (1998) indicate that they are good for forecasting

short horizons.

Although section 2.2.2 describes how to add an autoregressive term to MIDAS and

STMIDAS regressions, this section will only present results with regressions without the

autoregressive term. The qualitative results do not change with the inclusion of the

autoregressive term.

3.1 The Disaggregation effect

Table 3 presents the results of the estimation of predictive regressions (R, eq. 2) and MI-

DAS regressions (eq. 1) with m = 13 using the three predictors described for predicting

output growth. Inoue and Kilian (2006) argue that the Schwarz information criterion is a

powerful way of discriminating between forecasting models. Hence, Table 3 also presents

the value of the Schwarz information criterion. P-values for the test of no predictive

content of the predictors for the dependent variable are also shown in table 3. They are

computed with t-distribution for regressions and bootstrapping for MIDAS regressions

(see Appendix A). In both cases, the Newey-West estimator with truncation lag (h− 1)
is employed to compute the standard errors.

The best predictor is the slope. Short-term interest rate and stock returns have pre-

http://www.phil.frb.org/econ/forecast/reaindex.html.
5The address is http://research.stlouisfed.org/fred2/.
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dictive power only up to h = 4. Therefore, these in-sample results based on specifications

with constant parameters do not support the finding of Ang et al. (2006) that the short-

rate has a larger predictive power than the spread when the horizons are equal to 8 and

12. In addition, they confirm the results of Estrella and Mishkin (1998) that the stock

returns only have predictive power for economic activity at short horizons.

The use of the exponential function to optimally weight weekly information inside

the quarter increases the variation of output growth that is explained by the slope at

h = 1: the R2 raises from 0.11 to 0.22. Moreover, a comparison of the information criteria

(SIC) suggests the choice the MIDAS regression. There is no evidence of gains of using

short-rate and stock returns sampled more frequently. Figure 4 presents the estimated

weight functions w(m, κ̂) for h = 1. The weights are generally significant different from

weighting equally each lag. The larger weights are normally given to the observations

earlier in the quarter, suggesting that just released information on the financial variables

does not have important contribution for forecasting next quarter output growth. The

weight function of the short-term rate and the slope are similar, but the weights only

imply significant gains in measuring the predictive content of the slope.

3.2 The Changing effect

Table 4 presents the estimates of the smooth transition (7) and the smooth transition

MIDAS regression (4) for using the three financial variables for predicting output growth.

The p-values of the tests for changes in predictive ability are also indicated. The Schwarz

information criteria allow the comparison with the values of Table 3, so they help the

inference on the existence of changes in predictive ability. Table 4 also shows Wald

statistics and their p-values for testing the null that x(m)t has no ability in predicting

yt+h. The p-values for the Wald statistic computed with the STMIDAS regressions are

obtained with the bootstrap procedure described in Appendix A.

The slope and the stock returns present changes in their ability in forecasting output

at, respectively, horizons 1 and 4, and horizons 8 and 12. The information criterion

chooses the STMIDAS regression (comparing also with estimates in Table 3) for capturing

the predictive content of the slope at h = 1 and of the stock returns at h = 12. The

identified changes in the ability of the slope for forecasting output growth is not crucial

for detecting its predictive power. However, when measuring the ability of stock returns

for forecasting output growth at h = 8, the null of no predictive content is only rejected

when changes in predictive ability are allowed for.

Another result from Table 4 is that the test of no predictive ability of x(m)t for yt+h
using STMIDAS regressions is more conservative than using smooth transition regressions
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(STR). An explanation is that the use of standard distributions for the Wald statistic

implies oversized tests in the case of STR. Because it is not clear this is the reason of

this result, I will compare the out-of-sample performance of these models with an AR(1)

benchmark in section 4.

3.3 Combining Indicators

The results in the previous subsections indicate that the spread is powerful predictor of

future output growth while the short-term interest rate and stock returns have predic-

tive power only at short horizons. Because STMIDAS regressions allow us to combine

information of predictors with different timing of changes on their ability in predicting

a variable, I combine the information on spread with each additional predictor – short-

rate and the stock returns–at a time. The results in Ang et al. (2006) indicate that

the combination of short-rate and spread generates good forecasts, while the results of

Estrella and Mishkin (1998) indicate that the stock returns have additional predictive

ability to the spread at short horizons.

Table 5 presents test statistics to verify whether the short-rate and the stock returns

have additional predictive content when included in a regression that has already the

spread as predictor. In addition, p-values of the test for no changes in the predictive

power of the additional regressor are presented, assuming that the spread has a changing

effect for output growth. There is now evidence of changes in the predictive ability of

the short-rate and stock returns for output growth at all horizons. The shifts in the

predictive ability over time are decisive for identifying the additional predictive content

of the short-rate and the stock returns for output growth at long horizons. Therefore,

the use of STMIDAS regressions improves the measurement of predictive content of these

variables. However, the effect of switching-regimes on the measurement of the predictive

content is larger than the effect of the direct use of high frequency data.

The information criteria suggest that it is better to combine the spread with the stock

returns than combine it with the short-rate. Thus while it is true that the short-rate

has additional information to the spread for forecasting output growth (as indicated by

Ang et al. (2006)), the information in the stock returns is even more original. A deeper

evaluation of the estimates is presented in the next section to understand the economic

meaning of these results.

I checked whether the combination of information of the spread with the short-rate

in the STMIDAS regression could be substituted by the use of the long-term interest

rate as predictor, but the results (not shown) indicate a large increase of the information

criterion.
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3.4 Economic regimes and changes in the predictive ability over time

Figure 5 presents the estimates of the coefficient of each predictor over time us-

ing the STMIDAS regressions for different forecast horizons. The plots present

β̂
(13)

1,h

h
1−Gt(x

(13)
t(13,κ̂); γ̂, ĉ)

i
+ β̂

(13)

2,h

h
Gt(x

(13)
t(13,κ̂); γ̂, ĉ)

i
on the left axis and the aggregated

predictor x(13)t(13κ̂),h on the right axis for a set of forecast horizons. In general there are no

differences in the estimates of the thresholds across horizons, but the smoothness of the

transition function and the amplitude of shifts across regimes may change with h. The

amplitude of changes increases with the horizon for the stock returns, but decreases with

the horizon for the slope. This is in agreement with the tests for changes in ability in

forecasting output growth for these predictors.

Specifically, the chronology of regime changes of using the slope as predictor indicates

periods of low and high predictive ability. The regime of lower predictive ability has

a higher frequency after 1980, so this is in agreement with the literature that finds

instability in the predictive ability of the spread with data up to 1998 (Estrella et al.,

2003). However, periods of low predictive ability can be identified as the high-growth

recovery periods that occur after recessions. This association with business cycle regimes

suggests that recurrent changes in predictive ability over time are more adequate to model

the predictive ability of the spread than are structural breaks. The plot also indicates

that the aggregation weights of the slope are changing across horizons. The estimates

for the weights for forecasting one-year ahead are different than for forecasting 2-3 years.

These differences in aggregation weights may improve the use of the slope as leading

indicator for specific horizons.

The estimates of the impact of stock returns and short-rates on future output growth

cross zero in some periods of time. This means that the sign of the impact of these

predictors may change over time. In the case of the short-rate, there is a clear difference

on the predictive content after 1991 because the regime with high/positive predictive

power starts to be more frequent at long horizons (h = 8, 12). Before 1991, the largest

predictive power is at h = 4 and the short-rate has a negative impact on future output

growth. This shift in predictive ability may help to explain the novel result of Ang et al.

(2006) on the predictive content of the short-rate using data up to 2001. I identify regimes

that are related with inflationary cycles and monetary policy regimes. In the period of

high inflation, short-term interest rates have a negative impact on next year output

growth. In the period of low inflation (in general after 1991, but also the beginning of

1970’s), short-term interest rates have a positive impact for growth in three years. These

differences of sign and horizon imply that interest rates are strongly related with business

cycles for the later part of the sample. Sims and Zha (2006) have also argued in favour
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of a regime-switching model to characterize changes in the effect of monetary policy in

the US. Their four-regime model has shifting dates similar to the ones in the second plot

of Figure 5.

The impact of stock returns on future output growth is generally positive when the

stock returns are large, and it is negative when they are small or negative. This implies

that bear markets have a limited impact on future growth while bull markets have a

stronger effect. The argument of Harvey (1988) on the use stock returns as leading

indicators is based on the fact that a bear market should predict recessions. My results

with no shifts in predictive ability suggest that the stock returns have no predictive

content for growth at horizons longer than one year, but when changes in the impact are

allowed for, I find that stock returns have strong power for forecasting growth when the

stock market is booming. This is an interesting novel result because it recognises the

instability of asset returns as leading indicator as argued by Stock and Watson (2003),

but it shows that it has information for forecasting growth at long horizons, including

the 90’s economic boom.

4 Evaluation of Real-Time GDP growth forecasts

Results in the previous section indicate that the spread has predictive content for fore-

casting output growth at all horizons, and that the short-rates and the stock returns have

some additional predictive content at long-horizons, when their impact in future output

growth is allowed to change. The use of regressions for measuring the ability of a predic-

tor for forecasting a variable at long horizons may be questioned because a persistence

predictor may be spuriously correlated with the cumulated regressand (Valkanov, 2003).

Another problem is that the tests for no predictive content of xt on yt+h may be oversized

because of the properties of Newey-West estimator (Ang and Bekaert, 2007). Predictive

regressions have some weakness as tools of the measurement of predictive ability. These

criticisms are less of a problem with the MIDAS specification because the aggregation

scheme may reduce the persistence of the predictor. Moreover, a bootstrap procedure is

used to compute the p-values of the tests of no-predictability. The results of Inoue and

Kilian (2004) and (2006) suggest that in-sample evidence of changes in predictive ability

does not necessary imply gains in terms of out-of-sample forecasting. An explanation for

that is the reduced power of out-of-sample tests of predictive ability due to the typically

small out-of-sample periods. The sample size of my real-time forecasting exercise is of

13 years. Therefore, a warning on the results of the exercise that follows is that any

break towards no predictive content in the end-of-sample will imply less power for the
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out-of-sample evaluation in detecting any predictive content of a given regressor (Clark

and McCracken, 2005b).

In this section, I evaluate the real-time forecasting performance of regressions and

MIDAS models with and without changes in the parameters in similar fashion to the

previous in-sample analysis. The benchmark in the comparison is an AR(1) model for

output growth. The benchmark model is estimated for each h such that it can be used

for direct forecasting. Because the autocorrelation in output growth may be important

for getting significant reductions on forecasting errors at short horizons, I will also con-

sider regression specifications with an autoregressive term. Data vintages of US real

GDP growth from 1991:Q4 to 2004:Q3 (52 vintages) are applied to evaluate forecasts for

horizons up to 4, and vintages up to 2002:Q4 (44 vintages) are used for forecasts with

horizons 8 and 12. The forecast errors are computed using the 2005:Q3 vintage.

I employ two methods to compute forecasts. The first one is called “rolling”. This

method keeps constant the window size (T = 90), so that at each time a new vintage

is used, it excludes the required observations from the beginning of the sample. The

second method is called “recursive”: at each new vintage, a new observation is included,

increasing the sample size. In this application, the sample size is T = 90 using the first

data-vintage but it is T = 142 using the last vintage. “Rolling” is a forecasting method

that is more robust to structural breaks when the regressors are exogenous. This is so

because an increase in the number of observations before the break raises the bias in the

estimation. However, when there is an autoregressive term, the shorter sample used with

“rolling” methods will increase the parameter bias; thus, even with a break, “rolling” may

not be the most adequate method (Pesaran and Timmermann, 2005). An advantage of

“recursive” forecasting is the requirement of a large sample size to be able to find a

strong evidence of changes in predictive ability such that it matters for out-of-sample

forecasting. Previous out-of-sample measurements of the predictive ability of the yield

curve for output growth are based on “rolling” forecasting (Ang et al., 2006) and also

on “recursive” forecasting (Stock and Watson, 2003). In this paper, large differences in

terms of root mean squared forecast errors between "rolling" and "recursive" methods

are only detected at long horizons. This is explained by the use of direct forecasts since

the estimates of the coefficients of the regressions are more sensitive to changes from

inclusion of new information in longer than in shorter horizons. Therefore, I will only

show the results of "rolling" forecasts at h = 8, 12.
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4.1 Measurement of comparative performance of forecasts

Forecasts of the regression models are compared with an AR(1) benchmark, implying

that, under the null, the regressor has no predictive ability. The comparison of the ac-

curacy of the benchmark forecaster (BF) with the performance from different regression

specifications (RF) uses a quadratic loss function. It follows that the average differen-

tial of h-step-ahead forecasters is n−1
Pn

t=1

¡
ê2h,BF,t − ê2h,RF,t

¢
, where ê is the forecast

error. Using this differential, a t-statistic, computed with a HAC estimator of the vari-

ance, is applied for testing the null (Diebold and Mariano, 1995). In the case of non-

nested models, such as the case that the RF forecaster has no autoregressive term, this

statistic has normal distribution. Similar testing is employed for evaluating whether

RF forecast encompasses BF, implying that the predictor has information in addition

to the autoregressive term. The average differential of the forecasting encompassing

test is n−1
Pn

t=1

¡
ê2h,BF,t − êh,BF,têh,RF,t

¢
(Harvey, Leybourne and Newbold, 1998). The

t-statistic with this differential is also normally distributed when the models are non-

nested.

In the case of comparing regressions with the benchmark when they include an AR

term , the competitor forecasters are nested under the null. Clark andMcCracken (2005a)

show how to compare direct forecasts of nested regressions with an F version of the usual

accuracy and encompassing tests. The distributions of the statistics are data-dependent,

and they show that a bootstrap procedure to compute p-values gives powerful tests with

correct size. As a consequence, I use the following statistics to evaluate forecast accuracy

and forecasting encompassing of regression specifications with AR term in comparison to

an AR(1):

MSE-Fh = n

µ
MSEh,BF −MSEh,RF

MSEh,RF

¶
and

ENC-Fh = n

Ã
n−1

Pn
t=1

¡
ê2h,BF,t − êh,BF,têh,RF,t

¢
MSEh,RF

!
,

where MSEh,M is the mean squared forecast error of the model M at h-steps ahead.

The p-values of these statistics are computed by bootstrap as described in Clark and

McCracken (2005a). In the first step, the estimates of an AR(1) for yt are used to simulate

a sample of size T of yt+h by bootstrapping the residuals of the AR(1) model. In the

second step, the sample is divided to mimic in-sample and out-of-sample sizes employed

in the computation of the statistic. Then the benchmark and the regression model are

estimated either recursively or rolling over the artificial "out-of-sample period", forecasts
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are computed, and the forecast accuracy and encompassing F statistics are calculated.

In the third step, the empirical distributions of the statistics are used to compute the

p-value of the tests.

4.2 MIDAS X R

Table 6 presents root mean squared forecast errors (RMSFE) of single regressions for

predicting output growth with the indicated predictors as a ratio of AR(1), except for

the "AR" column that has RMSFEs. The results are presented with and without au-

toregressive terms in the first and the second panels. The first value in brackets is the

p-value for the test that the indicated regression model is more accurate than the AR(1).

The second value in brackets is the p-value for the test that the indicated regression has

additional information (encompass) for forecasting output growth with respect to the

AR(1).

In contrast with the in-sample results obtained with the predictive regression (R), the

regression with the slope is only more accurate than the AR(1) for forecasting output

growth at h = 1. This disagreement between in-sample and out-of-sample results of the

use of the slope as predictor is not detected when applying MIDAS regressions. When the

latter regressions are employed for extracting the predictive content of the slope, there

are significant gains of accuracy in comparison to the AR(1) for h = 4, 8 and 12. The

out-of-sample results also confirm the in-sample gains from the estimation of aggregation

weights for the spread when forecasting output growth. Similarly, the results when using

the stock returns as predictor also confirm in-sample evidence that the estimation of

aggregation weights reduces forecast accuracy.

A surprising result in comparison with the ones obtained in-sample is the evidence

of predictive content of the short-rate for output growth of the next two and three years

(h = 8, 12). Looking at the second plot of Figure 5, the coincidence of the out-of-sample

period (after 1991) with the period with larger frequency of the regime that the short-rate

has predictive power for output growth at long horizons explains those results. This is

an interesting evidence because it shows how the use of full-sample models that allow for

changes in predictive ability may help us to understand disagreements between in-sample

and out-of-sample results. Similar evidence is also obtained when using the stock returns

for forecasting at h = 12.

4.3 STMIDAS X STR

Table 7 has the same structure as Table 6, but it presents the results of smooth transition

regressions and STMIDAS regressions in comparison to the AR(1) benchmark. Compar-
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ing the indications of the tests of equal accuracy with Table 6, the gains of allowing

changes in predictive ability for forecasting output growth are small, but they are more

important for the spread at h = 1 (with MIDAS) and the stock returns at h = 1, 4 (with

R). Small gains of non-linearity in out-of-sample forecasting are broadly reported in the

literature (Terasvirta, Medeiros and Van Dijk, 2005). Nonlinear models require a larger

sample to be well estimated (explains why recursive is better than rolling) and some

regimes may not occur in a short out-of-sample period

In contrast, if the only concern is the measurement of the predictive content of a

candidate predictor for predicting a variable, the STMIDAS is recommended because it

helps to better understand incompatibilities between in-sample and out-of-sample results.

4.4 Additional predictive content

The RMSFE ratios presented in Table 8 allow us to check whether the evidence in Table

5 that the stock returns have strong additional predictive content with respect to the

slope for forecasting output growth is repeated in real-time. The ratios in Table 8 are

not computed using the AR(1) as benchmark. They use a regression with the described

specification for the each column but only with the spread as predictor instead of the

combination.

There are gains up to 35% in terms of RMSFE from the inclusion of stock returns

for forecasting next quarter output growth. The gains of adding stock returns are larger

than adding the short-rate. In agreement with the in-sample results, both predictors only

have additional information for predicting growth at long horizons if the specification

has shifting parameters. These results confirm the potential of using stock returns for

predicting output growth of next 2-3 years. Recall that the third plot of Figure 5 indicates

that only when the coefficient on the stock returns is allowed to shift, large returns imply

strong growth in the future.

5 Concluding Remarks

The smooth transition MIxed Data Sampling (STMIDAS) regression improves the mea-

surement of the predictive content of high frequency predictors on low frequency variables.

I propose simple tests for detecting changes in ability of the high frequency predictor in

predicting the low frequency variable. The estimation of the weights to aggregate the

high frequency variable improves the extraction of the predictive content of the slope

for output growth. The approach is also flexible enough to detect the predictive content

of stock returns for forecasting output growth next two and three years. An important
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advantage of the STMIDAS regressions is that their estimates help our understanding on

the disagreements between in-sample and out-of-sample evidences of predictive ability.

The implication of this new modelling for the use of financial variables as leading

indicators is that they have more predictive content than normally found. Even if there

is instability on the predictive power (Stock and Watson, 2003), financial variables do

have useful information for forecasting economic growth at long horizons.

The approach proposed in this paper could be also applied to measure predictive

ability of fundamentals on exchange rates (Kilian and Taylor, 2003) and of dividends

on stock returns (Ang and Bekaert, 2007). The advantage of allowing for changes in

the predictive ability can help to identify periods in which the predictor has superior

predictive content.
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A Testing Predictive Ability with MIDAS

The MIDAS regression to measure the predictive ability of a high frequency variable x

for a low frequency variable y is:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(κ,m) + εt+h, (12)

with the notation described in equation (3). The null hypothesis of a test of no predictive

content of x(m)t(κ,m) for yt+h is β
(m)
1,h = 0. The problem is that under this null the parameters

of the weight function, κ, are unidentified. The effect on the properties of the test is that

it is severely oversized. Similar problem is found when testing for changes in predictive

ability, that is, for non-linearity (Granger and Teräsvirta, 1993). Instead of using a LM

test with an auxiliary regression obtained using the Taylor approximation of the non-

linear regression model, I will use a bootstrap procedure. The bootstrap procedure is

based on the procedure of Kilian (1999) applied for testing predictability in Kilian and

Taylor (2003) and considered as a procedure robust to mispecification by Corradi and

Swanson (2007).

The bootstrap procedure is employed to simulate data under the null in order to

compute an empirical distribution for the test statistic. In the case of the MIDAS regres-

sion, I am interested in the data-dependent distribution of a t-statistic. The bootstrap

procedure has also some similarities with the one employed for computing the empirical

distribution of the Hansen sup-test for threshold non-linearity (Hansen, 2000).

Under the null, the data generating process for yt is:

yt = (zt − zt−1) = µ+ ρ(zt−1 − zt−2) + �t, . (13)

where zt is the log of real GDP in dollars. Data on zt are used to estimate the con-

ditional mean and obtain the residuals �̂t,which are then used to bootstrap B sam-

ples of size T + h of zt in order to compute a sample of T observations of yt+h (recall

yt+h = (400/h) [zt+h − zt]). It is also required to simulate data of the predictor. Kilian

and Taylor (2003) use a non-linear specification for xt, and include past values of y as

regressors. Because of the difference of frequencies between x and y, and the findings of

non-linearities in financial time series, I use a threshold autoregressive model to gener-

ate x(m)t . Models with switching regimes have been employed previously for modelling

interest rates (Ang and Bekaert, 2002). The two-regime threshold autoregressive model
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is estimated for the weekly data using p = 2m, that is,

x
(m)
t =

Ã
φ
(1)
0 +

pX
i=1

φ
(1)
i x

(m)
t−i + η

(1)
t

!
I(xt−d ≤ c)+ (14)Ã

φ
(2)
0 +

pX
i=1

φ
(2)
i x

(m)
t−i + η

(2)
t

!
I(xt−d > c),

where c is threshold and d is the delay. The parameters are estimated by conditional least

squares (Tsay, 1989) using a grid search for the threshold and the delay. The grid for the

threshold has 100 points with the limits given by cL and cU defined such that there are

at least 15% of the observations in each regime. The limits for the delay are dL = 1 and

dU = p. Using the estimates to simulate high frequency data on x
(m)
t , I bootstrap from

the residuals η̂(1)t and η̂
(2)
t separately. This takes into account heteroscedasticity in the

residuals of the threshold model.

Using each of the simulated sequences {yt+h,i}i=Ti=1 and {x(m)i }i=mT
i=1 , the model under

the alternative hypothesis (eq. 12) is estimated and the t-statistic β̂
(m)
1,h

var(β̂
(m)
1,h )

is computed.

Note that the Newey-West estimator with truncation lag h− 1 is employed to compute
the variance. The B replications allow us to compute the p-value for the t-statistic.

Similar procedure is employed for testing no predictive content of x(m)t(κ,m) for yt+h using

the STMIDAS. The specification under the alternative is:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(κ,K)

h
1−Gt(x

(m)
t(κ,K); γ, c)

i
+ β

(m)
2,h x

(m)
t(κ,K)

h
Gt(x

(m)
t(κ,K); γ, c)

i
+ εt+h.

A Wald statistic is employed for the null that β(m)1,h = β
(m)
2,h = 0. Using the same data

generating process described before, a STMIDAS regression is estimated in each replica-

tion and a Wald statistic is computed. The empirical distribution of the Wald statistic

is used to compute p-values.

The testing of no predictive ability with the STMIDAS specification could be ques-

tioned on the grounds that if there is evidence of changes in predictive ability, there is

also evidence of predictive ability because the test of no predictive content only adds an

additional restriction on STMIDAS regression in comparison to the test for no changes in

predictive ability. However, the test for changes in predictive ability presented in section

2.2.1 is based on an auxiliary regression. Although the results of the Monte Carlo evalu-

ation in section 2.3.2 indicate that the testing procedure has power for smooth shifts in

the predictive parameters, it does not require the computation of the model under the

alternative. The proposed test for no predictive content requires the computation of the

STMIDAS regression, while it assumes that a regime-switching specification is adequate

to capture the predictive ability of x(m)t(κ,m) for yt+h.
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In the case of testing whether x(m)2t has predictive ability for yt+h in a regression

that has x(m)1t , I use also the two-regime TAR for x1t under the null. However, the data

generating process for yt+h is a MIDAS with only x
(m)
1t as regressor. The specification

under the alternative is the combining STMIDAS described in eq(9), as a consequence

the restrictions under the null are β
(m)
21,h = β

(m)
22,h = 0. I assume that x(m)2t also follows

a two-regime TAR, so values of the second high frequency regressor are also simulated

using estimates of equation (14). One more time, the bootstrap procedure allows the

computation of the distribution of the Wald statistic. Similar procedure is employed for

testing whether x(m)2t has additional predictive ability with a combining MIDAS under

the alternative, that is,

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
1,t(κr,m)

+ β
(m)
2,h x

(m)
2,t(κ,K) + εt+h.

B Estimation of STMIDAS

The parameters of the STMIDAS are collected in the vector θh =
h
β
(m)
0,h , β

(m)
1,h , β

(m)
2,h , ρh, κ1, κ2, γ, c

i0
.

So that the nonlinear regression is written as:

yt+h = m(x
(m)
t , θh) + εt+h.

The parameters of this regression can be consistently estimated by minimizing the sum

of squared residuals:

QT (θh) = T−1
TX
t=1

(yt+h −m(x
(m)
t , θh))

2,

because the function m(x
(m)
t , θh) satisfies the identification and regularity conditions de-

scribed in Hayashi (2000), ch. 7, proposition 7.4. Under additional conditions regarding

the differentiability of m(x(m)t , θh) and the behaviour of the Hessian h
³
θ̂
´
, the NLS es-

timator θ̂h is asymptotically normal, so that
√
n(θ̂h − θh) −→d N(0, h (θh)

−1Σh (θh)
−1).

The computation of the estimates can be simplified by concentrating the sum of

squared residuals function with respected to κ, γ, c, so that the parameters in the vector

βh =
h
β
(m)
0,h β

(m)
1,h β

(m)
2,h ρh

i0
can be computed with the least squares formula:

β̂h =

Ã
TX
t=1

x
(m)
t(κ̂,γ̂,ĉ)x

(m)0
t(κ̂,γ̂,ĉ)

!−1 TX
t=1

x
(m)
t(κ̂,γ̂,ĉ)yt.

In practice, STMIDAS regressions use the estimates of MIDAS regressions as initial values

for κ. Initial values for κ in MIDAS regression are obtained by a search over a grid of
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values for κ1, κ2 such that they imply different shapes for the weight function w(j, κ).

The initial values for γ and c in the STMIDAS regressions are also computed in a grid

search. The optimisation procedure (with BFGS) imposes constraints in γ such that it is

not too large or negative and in c such that it is not smaller (larger) than the 5% (95%)

quantile of the empirical distribution of the weight high frequency predictor x(m)t(κ).

The variance-covariance matrix of the estimates var(θ̂h) is computed using the deriv-

atives of the nonlinear function with respect to the parameters:

δm(x
(m)
t , θh)

δθ0h
= x

(m)
t (θh).

This is so because under asymptotic linearity (conditions given in section 8.9.3 of Mit-

telhammer, Judge and Miller (2000)), I can compute the variance-covariance matrix as:

\var(θ̂h) =

"
TX
t=1

x
(m)
t (θ̂h)x

(m)
t (θ̂h)

0
#−1

Σ

"
TX
t=1

x
(m)
t (θ̂h)x

(m)
t (θ̂h)

0
#−1

.

An important comment on this formula is that \var(θ̂h) is computed using the variation
of xt across Tm. When computing the same formula using xt aggregated in time instead

of x(m)t , the variation across T observations is used.

An estimator for Σ that is consistent under autocorrelation and heteroscedasticity is

the one by Newey and West (1987). The formula for the specific case of STMIDAS is

written as:

Σ̂ = Γ̂(0) +

pX
j=1

µ
1− j

p+ 1

¶
(Γ̂(j) + Γ̂0(j)) (15)

Γ̂(j) =
1

T

TX
t=j+1

ε̂t+hε̂t+h−j
³
x
(m)
t (θ̂)x

(m)
t (θ̂)0

´
.

Nonlinear least squares is also employed to estimate the MIDAS regression (equation

1) and the smooth transition regression (equation 7), while OLS is applied to the regres-

sion (2). In both cases, the estimator (15) is used to make the variance of the estimator

robust to autocorrelation and heteroscedasticity.
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Figure 1: Weight Functions for different values of κ1 and κ2 and similar (κ1/κ2).  
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Figure 2: Exponential function for different values of γ (6, 15, 60) with T = 140.  
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Figure 3: Output growth ( ))log()(log(*100 4−− tt yy  and quarterly predictors: short-rate ( 1
tr ) in the first 

panel, spread ( 12020 tt rrs −= ) in the second panel, and stock returns (100(ln(pt)-ln(pt-4)) in the third panel.  
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Figure 5: Estimates of ability in predicting US GDP growth using STMIDAS regressions (m=13) 
for h=4, 8 and 12: slope in first panel, short-rate in the second panel and stock returns in the 
third panel. Weekly data aggregated by w(j,κ̂ ) estimated for each h is plotted in the secondary 
axis.  
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Table 1: Biases of NLS estimates of STMIDAS 
H = 1 

T β0,h β1,h δh γ c κ1 κ2 
100 -0.029 0.014 -0.073 202.220 -0.211 43.279 -2.216 
200 -0.013 0.007 -0.005 159.790 -0.320 22.048 -1.114 
500 -0.009 0.001 -0.001 50.125 -0.071 3.166 -0.159 
1000 -0.007 0.000 0.001 8.068 -0.017 0.050 -0.002 

h = 4 
T β0,h β1,h δh γ c κ1 κ2 

100 -0.070 0.016 -0.077 204.298 0.286 67.390 -3.779 
200 -0.051 0.019 -0.027 197.580 -0.153 41.664 -2.139 
500 -0.026 0.017 -0.023 118.185 -0.429 12.594 -0.633 
1000 -0.015 0.004 -0.007 43.823 -0.103 2.637 -0.135 

yth  0,h
m  1,h

mxt,K
m  h

mxt,K
m Gtxt,K

m ;,c   th  
;5.0;10;3.2;6;3.0;5.0;4.0 21

)13(
,2

)13(
,1

)13(
,0 −====−=== κκγβββ chhh  

The biases are computed using 1000 replications for different sample sizes T. The 
frequency of x is 13 times the frequency of y. When h = 1, there is an additional 
autoregressive term (=0.2). When h = 4, there is an MA(3) in the DGP 
disturbances.   
 
 
 

Table 2: Rejection Rates of Test of Changing Predictive Ability 
 DGP with  

Constant Parameters
DGP with  
Changing Parameters 

 STR STMIDAS STR STMIDAS 
T h = 1 

100 0.076 0.076 0.902 0.913 
200 0.072 0.070 0.988 0.991 
500 0.068 0.073 1 1 

 h = 4 
100 0.165 0.148 0.547 0.565 
200 0.141 0.139 0.734 0.776 
500 0.108 0.105 0.957 0.973 

 h = 8 
100 0.178 0.174 0.472 0.479 
200 0.167 0.136 0.634 0.678 
500 0.084 0.097 0.892 0.921 

The rejection rates are computed using 1000 replications for different sample sizes 
T. The STMIDAS DGP is described in the notes of Table 1. The DGP for STR 
(smooth transition regression) is equal to the STMIDAS DGP with m=1 and 
κ1=κ2=0. The linear DGPs have .3.0;4.0 )13(

,1
)13(

,0 == hh ββ  When h = 4(8), there is an 

MA(3)(7) in the DGP disturbances. The indicated models are the ones under 
alternative hypothesis. The test is the one based on equation (5).  
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Table 3: In-sample results with predictive and MIDAS regressions 

Predictor Slope Short-rate Stock Returns 
Model β1 β1=0 R2 SIC2 β1 β1=0 R2 SIC2 β1 β1=0 R2 SIC2

h = 1 
R 1.069 

(.278) 
[0.00] 0.11 2.421 -0.383 

(.142)
[0.01] 0.09 2.446 0.093 

(0.021)
[0.00] 0.16 2.370

MIDAS (m=13) 1.334 
(.242) 

[0.00] 0.22 2.364 -0.454 
(.118)

[0.02] 0.14 2.471 0.072 
(0.019)

[0.04] 0.11 2.497

h = 4 
R 1.211 

(.222) 
[0.00] 0.33 1.300 -0.344 

(.111)
[0.00] 0.17 1.519 0.047 

(0.018)
[0.01] 0.09 1.603

MIDAS (m=13) 1.185 
(.217) 

[0.02] 0.35 1.357 -0.314 
(.140)

[0.12] 0.15 1.622 0.031 
(0.018)

[0.22] 0.05 1.728

h = 8 
R 0.937 

(.158) 
[0.00] 0.38 0.584 -0.185 

(.111)
[0.10] 0.09 0.960 0.018 

(0.012)
[0.13] 0.03 1.030

MIDAS (m=13) 0.786 
(.149)]

[0.00] 0.31 0.761 -0.144 
(.124)

[0.38] 0.06 1.075 0.015 
(0.012)

[0.32] 0.02 1.113

h = 12 
R 0.622 

(.127) 
[0.00] 0.29 0.164 -0.063 

(.096)
[0.51] 0.02 0.485 0.013 

(0.009)
[0.15] 0.02 0.481

MIDAS (m=13) 0.544 
(.114) 

[0.00] 0.25 0.292 -0.041 
(.104)

[0.68] 0.01 0.574 0.008 
(0.009)

[0.44] 0.01 0.569

The sample size is kept constant across horizons with an effective sample from 1970:Q3 to 2002:Q1 (T = 123). R is a single regression model (eq. 2) and 
MIDAS with m=13 uses interest rates sampled weekly (eq. 1). β1 measures the impact of the predictor for yt+h. Robust standard errors are between 
parentheses. The value in brackets in the β1=0 column is the p-value of the test with the indicated null hypothesis. The p-value is computed using the t-
distribution for regressions (R) and by the bootstrap procedure of Appendix A for MIDAS regressions. SIC2 is the Schwarz information criterion computed 
counting also the parameters of the MIDAS weight function. 
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Table 4: In-sample results with smooth transition regressions and smooth transition MIDAS regressions 
Predictor Slope Short-rate Stock returns 

Model Lin 
Test 

β1 β2, β1=0; 
β2=0;

R2 SIC2 Lin 
Test 

β1 β2 β1=0; 
β2=0;

R2 SIC2 Lin 
Test 

β1 β2 β1=0; 
β2=0;

R2 SIC2 

h = 1 
STR [.049] 1.787 

(0.546) 
0.122 

(0.479) 
7.61 
[.02] 

0.16 2.479 [.325] -0.926 
(0.361)

-0.469 
(0.155) 

7.89 
[.01] 

0.15 2.456 [.950] 0.065 
(0.054)

0.106 
(0.031)

19.87 
[.00] 

0.16 2.483 

STMIDAS  
(m=13) 

[.002] 2.504 
(0.495) 

0.870 
(0.2342) 

27.92 
[0.03] 

0.31 2.357 [.046] -1.567 
(0.399)

-0.571 
(0.126) 

21.26 
[0.05] 

0.18 2.538 [.529] 0.112 
(0.030)

0.050 
(0.033)

17.24 
[.02] 

0.12 2.604 

h = 4 
STR [.002] 1.999 

(0.262) 
0.868 

(0.220) 
62.85 
[.00] 

0.44 1.235 [.146] -1.507 
(0.749)

-0.426 
(0.104) 

16.45 
[.00] 

0.20 1.593 [.134] -0.002 
(0.034)

0.077 
(0.027)

8.26 
[.02] 

0.12 1.594 

STMIDAS 
(m=13) 

[.016] 1.788 
(0.227) 

0.838 
(0.156) 

61.96 
[.02] 

0.47 1.261 [.275] 0.063 
(0.305)

-0.185 
(0.161) 

8.42 
[0.12] 

0.18 1.703 [.068] -0.010 
(0.071)

0.116 
(0.351)

0.14 
[.94] 

0.07 1.819 

h = 8 
STR [.047] 1.287 

(0.149) 
0.742 

(0.201) 
82.29 
[.00] 

0.42 0.628 [.461] 0.134 
(0.139)

-0.071 
(0.106) 

5.01 
[0.08] 

0.14 1.108 [.004] -0.026 
(0.016)

0.090 
(0.050)

6.49 
[.04] 

0.10 1.063 

STMIDAS 
 (m=13) 

[.245[ 1.006 
(0.145) 

0.638 
(0.161) 

52.36 
[.02] 

0.34 0.838 [.590] 0.246 
(0.136)

-0.005 
(0.099) 

8.11 
[0.16] 

0.13 1.113 [.000] -0.042 
(0.019)

0.065 
(0.018)

15.37 
[.09] 

0.12 1.129 

h = 12 
STR [.502] 0.796 

(0.149) 
0.585 

(0.118) 
42.32 
[.00] 

0.30 0.258 [.750] 0.188 
(0.096)

0.026 
(0.079) 

2.27 
[0.32] 

0.08 0.543 [.001] -0.033 
(0.018)

0.041 
(0.012)

11.58 
[.00] 

0.17 0.436 

STMIDAS 
 (m=13) 

[.701] 0.646 
(0.152) 

0.475 
(0.111) 

26.36 
[.06] 

0.26 0.394 [.605] 0.236 
(0.119)

0.056 
(0.065) 

3.93 
[0.29] 

0.07 0.632 [.002] -0.028 
(0.014)

0.036 
(0.012)

9.84 
[0.19] 

0.16 0.529 

The sample size is kept constant across horizons with an effective sample from 1970:Q3-2002:Q1 (T = 123). STR is a smooth transition model using quarterly 
predictors (eq. 7). The smooth transition MIDAS (STMIDAS) with m=13 uses the predictors sampled weekly (eq. 5). The column ‘lin test’ has the p-value of 
the test of no changes in the ability of the predictor in forecasting output growth at h-steps ahead, computed using auxiliary regressions (eq. 6 and 8). β1,h 
measures the impact of the predictor for yt+h in the first regime. β2,h is the equivalent measure of the second regime. Robust standard errors are between 
parentheses. The column “β1=0; β2=0” has the Wald statistic for the indicated null hypothesis. P-values in brackets are computed using the chi-squared 
distribution for the STR and a bootstrapped distribution for the STMIDAS, as described in Appendix A. SIC2 is the Schwarz information criterion computed 
taking into account the parameters of transition function and of MIDAS weight function.  
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Table 5: In-sample results on Additional predictors in regressions with the 
slope. 
 

Additional Predictor: Short-rate Stock Returns 
Model Lin Test β21=0; 

β22=0;

SIC2 Lin Test β21=0; 
β22=0; 

SIC2 

h = 1 
R  -1.66 

[0.10] 
2.423  4.910 

[.00] 
2.267 

MIDAS (m=13)  -1.756 
[0.08] 

2.442  3.431 
[.03] 

2.353 

STR [0.040] 7.64 
[.02] 

2.628 [0.211] 22.96 
[.00] 

2.429 

STMIDAS (m=13) [0.094] 3.73 
[.74] 

2.563 [0.031] 15.77 
[.07] 

2.463 

h = 4 
R  -1.528 

[.13] 
1.280  2.889 

[.00] 
1.189 

MIDAS (m=13)  -1.163 
[.32] 

1.437  1.417 
[.20] 

1.423 

STR [0.028] 4.34 
[.11] 

1.315 [0.000] 13.48 
[.00] 

1.184 

STMIDAS (m=13) [0.030] 6.91 
[.30] 

1.388 [0.000] 7.65 
[.15] 

1.305 

h = 8 
R  -0.500 

[0.62] 
0.617  1.329 

[0.19] 
0.580 

MIDAS (m=13)  -0.119 
[.92] 

0.878  0.957 
[.24] 

0.853 

STR [0.007] 11.37 
[.01] 

0.699 [0.000] 44.35 
[.00] 

0.534 

STMIDAS (m=13) [0.026] 15.18 
[.09] 

0.938 [0.000] 30.82 
[.01] 

0.883 

h = 12 
R  0.579 

[.44] 
0.193  1.022 

[.31] 
0.170 

MIDAS (m=13)  0.869 
[.34] 

0.382  .688 
[.60] 

0.393 

STR [0.035] 12.56 
[.00] 

0.291 [0.000] 18.93 
[.00] 

0.418 

STMIDAS (m=13) [0.005] 23.38 
[.07] 

0.443 [0.000] 24.47 
[.02] 

0.322 

The sample size is kept constant across horizons with an effective sample from 1970:Q3 to 
2002:Q1 (T = 123). R is a linear regression model (eq. 11) with quarterly predictors. MIDAS 
with m=13 uses predictors sampled weekly. STR is the smooth transition version of R. 
STMIDAS is the smooth transition version of MIDAS with two predictors (eq. 9). The entries 
labeled with “lin test” are p-values for tests of changing predictive ability based on auxiliary 
regression (eq. 10) for the additional predictor, assuming that there are changes in the 
coefficient of the slope. The column “β21=0; β22=0” has the t(Wald) statistic for the null that 
the additional predictor has no predictive power. P-values in brackets are computed using the 
t (chi-squared) distribution for the R(STR) and bootstrapped distributions for the MIDAS 
and STMIDAS, as described in Appendix A. SIC2 is the Schwarz information criterion 
computed taking into account the parameters of transition function and of MIDAS weight 
function. 
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Table 6: Real-Time Forecasting: Predictive regressions and Midas regressions 
against AR 
 

   Slope Short-rate Stock returns 
 Roll AR R MIDAS R MIDAS R MIDAS 
h = 1  1.121 1.251 1.430 1.302 1.227 0.865 1.319 

   [.97] [.02] [1.0] [.07] [.96] [.02] [.95] [.03] [.12] [.00] [1.0] [.11]
h = 4  1.388 1.297 0.943 1.197 1.068 0.881 1.096 

   [.94] [.36] [.20] [.04] [.85] [.03] [1.0] [.99] [.11] [.01] [.85] [.64]
h = 8  1.538 0.946 1.096 0.967 1.304 1.057 1.023 

   [.23] [.06] [.90] [.74] [.34] [.18] [.99] [.98] [.87] [.66] [.68] [.44]
h = 8  1.615 0.984 0.920 0.998 0.969 1.044 1.127 

   [.44] [.16] [.00] [.00] [.49] [.13] [.06] [.01] [.85] [.67] [.79] [.51]
h= 12  1.447 1.072 1.268 1.409 1.442 1.038 0.990 

   [.81] [.58] [1.0] [.98] [.99] [.99] [.98] [.97] [.70] [.46] [.43] [.23]
h= 12  1.398 1.028 0.925 1.406 1.050  1.121  0.845  

   [.67] [.41] [.34] [.17] [.99] [.99] [.76] [.57] [.77] [.43] [.17] [.09]
with AR term 

h = 1  1.121 0.948 1.001 0.975 1.035 0.835 1.100 
   [.01] [.01] [.26] [.37] [.01] [.00] [.89] [.94] [.12] [.00] [.98] [.99]

h = 4  1.388 1.295 0.948 1.204 1.122 0.885 1.090 
   [.99] [.14] [.05] [.01] [.95] [.02] [.89] [.94] [.11] [.01] [.84] [.64]

h = 8  1.538 1.013 0.930 0.955 1.239 1.033 1.046 
   [.53] [.05] [.05] [.06] [.09] [.11] [.92] [.97] [.87] [.82] [.73] [.83]

h = 8  1.615 1.046 1.046 0.981 0.993 1.077 1.167 
   [.70] [.16] [.67] [.77] [.22] [.28] [.28] [.47] [.81] [.88] [.91] [.72]

h= 12  1.447 1.018 1.170 1.307 1.322 1.017 0.994 
   [.54] [.66] [.93] [.97] [.95] [.99] [.95] [1.0] [.70] [.67] [.36] [.44]

h= 12  1.398 0.993 0.881 1.306 1.023 1.074 0.939 
   [.28] [.42] [.03] [.04] [.95] [.99] [.34] [.60] [.78] [.39] [.08] [.17]

The forecasts are computed using increasing sample sizes (recursive forecasts) except when 
indicated in the column labelled with “roll”, which indicates rolling windows of same size. 
Q3The entries for h=1 and h=4 are computed with data vintages from 1991:Q4 to 2004:Q3. 
The entries for h=8 and h=12 are computed only with vintages from 1991:Q4-2002:Q3. The 
entries for the AR(1) are RMSFEs. The entries for the regressions are ratios to the AR(1) 
RMSFE. R is a linear regression model with quarterly predictors (eq. 2). MIDAS with uses 
predictors sampled weekly (eq. 1). “with AR term” means that an autoregressive term was also 
include in the regression (section 2.2.1). The values in brackets are p-values for the test of 
equal forecast accuracy and forecasting encompassing with the AR(1) under the null. The p-
values for the regressions with no AR term were computed using the t-distribution. The p-
values for the regressions with AR term were computed by bootstrap for an F statistic (see 
section 4.1).  
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Table 7: Real-Time Forecasting: smooth transition regressions and smooth 
transition MIDAS against AR 
 

   Slope Short-rate Stock returns 
 Roll AR STR STMIDAS STR STMIDAS STR STMIDAS 

h = 1  1.121 1.333 1.332 1.325 1.242 0.957 1.239 
   [.99] [.03] [.99] [.05] [.96] [.00] [.95] [.02] [.36] [.00] [.98] [.11]

h = 4  1.388 1.153 0.933 1.559 1.188 0.847 1.121 
   [.78] [.16] [.10] [.01] [.96] [.04] [.95] [.84] [.02] [.01] [.93] [.23]

h = 8  1.538 1.097 1.144 0.953 1.701 1.119 1.132 
   [.75] [.33] [.97] [.87] [.39] [.14] [.97] [.96] [.82] [.55] [.96] [.64]

h = 8  1.615 1.105 1.024 1.108 0.888 1.176 1.129 
   [.80] [.38] [.80] [.38] [.69] [.19] [.12] [.02] [.91] [.66] [.84] [.43]

h= 12  1.447 1.180 1.212 2.366 1.262 1.231 0.934 
   [.96] [.70] [1.0] [.97] [.95] [.94] [.94] [.42] [.95] [.72] [.30] [.04]

h= 12  1.398 1.144 1.145 2.508 0.870 1.338 0.979 
   [.92] [.76] [.56] [.25] [.94] [.95] [.20] [.03] [.97] [.56] [.43] [.20]

With AR term 
h = 1  1.121 0.998 0.967 0.933 1.033 0.847 1.105 

   [.02] [.01] [.03] [.17] [.00] [.01 [.42] [.33] [.00] [.00] [.95] [.91]
h = 4  1.388 0.882 0.944 1.593 1.362 0.815 1.156 

   [.78] [.05] [.03] [.04] [.97] [.03] [.94] [.94] [.00] [.01] [.82] [.29]
h = 8  1.538 1.185 0.942 0.954 1.697 1.087 1.263 

   [.85] [.41] [.07] [.11] [.10] [.04] [.98] [.99] [.74] [.55] [.96] [.96]
h = 8  1.615 1.171 1.012 0.956 0.961 1.172 1.156 

   [.80] [.54] [.71] [.91] [.13] [.11] [.14] [.18] [.87] [.77] [.85] [.59]
h= 12  1.447 1.116 1.134 2.447 1.050 1.196 0.859 

   [.78] [.78] [.70] [.66] [.99] [.93] [.29] [.10] [.89] [.80] [.01] [.01]
h= 12  1.398 1.122 0.995 2.643 0.986 1.356 1.041 

   [.58] [.73] [.14] [.25] [.99] [.95] [.13] [.16] [.92] [.66] [.43] [.57]
The forecasts are computed using increasing sample sizes (recursive forecasts) except when 
indicated in the column labelled with “roll”, which indicates rolling windows of same size. 
Q3The entries for h=1 and h=4 are computed with data vintages from 1991:Q4 to 2004:Q3. 
The entries for h=8 and h=12 are computed only with vintages from 1991:Q4-2002:Q3. The 
entries for the AR(1) are RMSFEs. The entries for the regressions are ratios to the AR(1) 
RMSFE. STR is a smooth transition regression model with quarterly predictors (eq. 7). 
STMIDAS is a smooth transition model with predictors sampled weekly (eq. 4). “with AR 
term” means that an autoregressive term was also include in the regression (section 2.2.1). The 
values in brackets are p-values for the test of equal forecast accuracy and forecasting 
encompassing with the AR(1) under the null. The p-values for the regressions with no AR term 
were computed using the t-distribution. The p-values for the regressions with AR term were 
computed by bootstrap for an F statistic (see section 4.1).  
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Table 8: Real-Time Forecasting: Regressions combining the slope and an 
additional predictor against regressions with only the slope.  
 

  Slope + Short-rate Slope + Stock Returns 
 Roll R MIDAS STR STMIDAS R MIDAS STR STMIDAS 

h = 1  1.052 0.901 1.125 1.108 0.647 0.646 0.692 0.835 
h = 4  1.060 1.478 1.171 1.324 0.893 1.017 1.156 1.303 
h = 8  1.099 1.065 1.007 0.931 1.129 1.096 0.979 0.999 
h = 8  1.193 1.618 0.911 0.920 1.105 1.594 -- -- 
h = 12  1.310 1.823 1.207 1.587 1.008 1.125 0.968 1.074 
h = 12  1.425 2.471 1.091 1.312 1.091 2.054 0.998 1.086 

     With AR     
h = 1  1.000 0.915 1.019 0.999 0.780 0.722 0.810 0.843 
h = 4  0.938 1.346 1.097 1.300 0.898 1.006 1.173 1.303 
h = 8  1.054 1.245 0.963 1.317 1.054 1.291 0.894 1.214 
h = 8  1.144 1.043 0.831 0.806 1.095 1.493 0.791 0.852 
h = 12  1.282 1.889 1.127 1.664 1.062 1.219 1.005 1.148 
h = 12  1.405 3.054 1.066 1.222 1.070 2.044 0.802 0.915 

The forecasts are computed using increasing sample sizes (recursive forecasts) except when 
indicated in the column labelled with “roll”, which indicates rolling windows of same size. 
Q3The entries for h=1 and h=4 are computed with data vintages from 1991:Q4 to 2004:Q3. 
The entries for h=8 and h=12 are computed only with vintages from 1991:Q4-2002:Q3. R is a 
linear regression model with quarterly predictors. MIDAS with uses predictors sampled 
weekly. STR is a smooth transition regression model with quarterly predictors. STMIDAS is a 
smooth transition model with predictors sampled weekly. For combining specifications see 
section 2.2.3. “with AR term” means that an autoregressive term was also include in the 
regression. The entries are ratios of the RMSFE of the combining regression to a regression 
with only the slope. Ratios that imply a gain larger than 5% in favour of the combination are 
emboldened.  
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