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1 Introduction

In the past two decades long run relationships between economic time series,

and in particular integrated time series, have been the focus of extensive

theoretical and empirical analysis. In most of this work the assumption of

linearity has been maintained. Recently, there has been increasing interest in

the possibility that nonlinear models may be a fruitful avenue for further in-

vestigation. Nevertheless, so far the assumption of linearity has been relaxed

only in the context of investigating convergence to long run linear relation-

ships. So, for example, nonlinear specifications for the speed of adjustment

to cointegrating relationships in vector error correction models have been

repeatedly suggested in the empirical literature. By contrast, little work has

been carried out to investigate the possibility that the actual cointegrating

relationships themselves are nonlinear. On the other hand, a firm under-

standing of the econometric underpinnings of such a specification for a single

cointegrating relationship has been achieved through the work of Park and

Phillips (1999, 2001).

It is, of course, an open question whether such nonlinearity exists in

observed data. Currently, a researcher would need to assume a particular

functional form for any nonlinear cointegrating relationships. However, as-

suming a particular functional form may be problematic if economic theory

does not provide any guidance in this respect. This paper proposes a pure

significance test for the absence of nonlinearity in cointegrating relationships.

No assumption on the functional form of the nonlinearity is made. It is envis-

aged that such a test would form the first step towards specifying a nonlinear

cointegrating relationship for empirical modelling.

The test is based on neural networks and mirrors similar work done by

the authors and others using neural networks in a stationary framework.1

The paper is structured as follows: Section 2 describes and provides the

1See, in particular, Lee, White, and Granger (1993), Teräsvirta, Lin, and Granger
(1993) and Blake and Kapetanios (2003b).
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theoretical underpinnings for our tests. Section 3 discusses their asymptotic

properties. Section 4 provides a Monte Carlo study. Section 5 concludes.

2 The Setup

We propose the following general model following Chang, Park, and Phillips

(2001):

yt = α′xt + γ ′wt + f(β, xt) + εt (1)

where xt is a vector of integrated regressors generated by:

xt = xt−1 + vt (2)

and wt is a vector of stationary regressors. We specify wt and vt as general

linear processes given by:

wt = φ(L)ut =
∞∑
i=1

φiut−i (3)

vt = ψ(L)zt =
∞∑
i=1

ψizt−i (4)

and make the following assumptions:

Assumption 1. (i) φ(1) is nonsingular. (ii)
∑∞

k=0 kb||φk|| < ∞, b > 1.

Assumption 2. ut is i.i.d. with E||ut||r < ∞ for some r > 8 and its distri-

bution is absolutely continuous w.r.t. Lebesgue measure and has characteristic

function φ(λ) = o(||λ||−δ), δ > 0.

Assumption 3. ξt = (εt,u
′
t+1,z

′
t+1)

′ is a stationary and ergodic martingale

difference sequence with finite second moments Σ and supt≥1 E(||ξt||r|Ft−1) <

∞, r > 4, where Ft−1 is the σ-field generated by ξt.
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We wish to test the null hypothesis that:

P{E(yt|xt, wt) = α′xt + γ ′wt} = 1 (5)

for some constant vector (α′,γ ′)′. The alternative is then defined as:

P{E(yt|xt, wt) = α′xt + γ ′wt} < 1 (6)

for all (α′, γ ′)′. Before proceeding with our analysis it is worth distinguishing

between two classes of functions f(·). The first class is the class of integrable

functions and the second is the class of asymptotically homogeneous functions

as discussed in Park and Phillips (2001). For the purposes of empirical

analysis these two classes of functions have very distinct implications. For

example it is clear that when f(·) is an integrable function its effect will only

be of relevance for periods where the processes xt are in the activation area

of the function. These periods will be of order T 1/2. On the other hand

asymptotically homogeneous functions will be of relevance for much longer

periods.

For any aspect of nonlinearity testing the usefulness of neural networks

arises out of their potential to approximate arbitrary nonlinear functions.

The generic form of a neural network approximation applied in this context

is given by:

yt = α′xt + γ ′wt +

q∑
j=1

βjϕ(δj,xt) (7)

Clearly, a test of β1 = . . . = βq = 0 in:

yt = α′xt + γ ′wt +

q∑
j=1

βjϕ(δj, xt) + εt (8)

provides a test for neglected nonlinearity.

Artificial neural networks can approximate arbitrary continuous functions

arbitrarily well. More specifically, a continuous function f(z) can be arbitrar-

ily well approximated in the supremum norm by
∑q

i=1 g(z′i) for finite q and
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z′i = ai,0 + a′i,1z if either (i) g(·) is sigmoidal, i.e. g(·) is non-decreasing with

limz→−∞ g(z) = 0 and limz→∞ g(z) = 1 (Condition C1) or (ii) g(·) has non-

zero Lebesgue measure expectation and is Lp bounded for some p ≥ 1 (Con-

dition C2). For more details see Hornik, Stinchcombe, and White (1989),

Stinchcombe and White (1989) and Cybenko (1989).2 These results are only

a small subset of the available results in the literature on the approximation

properties of artificial neural networks.

We need to choose a suitable function ϕ(δj,xt). Note that the param-

eters, δj, are not identified under the null hypothesis. The most widely

used neural network nonlinearity test suggested by Lee, White, and Granger

(1993) specifies that ϕ(·, ·) in (8) is given by ϕ(δ′xt) where ϕ(λ) is the logistic

function {1 + e−λ}−1. This is a monotonic function, with output bounded

between 0 and 1. The elements of the coefficient vector δj are randomly

generated from a uniform distribution over (δl, δh). This procedure addresses

the problem of identifiability of the neural network model under the null

hypothesis.

A number of other functions have been proposed and used in the literature

to construct neural networks (see, e.g., Blake and Kapetanios, 2003b). The

most common alternative is a radial basis function. In contrast to the logistic

function a radial basis function (RBF) is a function which is monotonic about

some centre. Define q centres by cj and a radius vector τ . We interest

ourselves only in those functions that are monotonically decreasing about cj.

For example, the Gaussian RBF is:

ϕ{(c′j, τ)′,xt} = e−‖xt−cj‖2/τ2

. (9)

2More accurately, Hornik, Stinchcombe, and White (1989) show that an artificial neural
network based on a function g(·) satisfying Condition C1 will approximate any continuous
function uniformly on compacta, whereas Stinchcombe and White (1989) show the equiv-
alent result for artificial neural networks based on functions g(·), satisfying Condition C2.
The definition of approximation uniformly on compacta is as follows. A sequence of func-
tions fn converges to a function f uniformly on compacta if for all compact sets K ⊂ Rr,
supK |fn(x)− f(x)| → 0.
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By the monotonicity property, each RBF has maximum activation (of unity)

when the input vector coincides with the jth centre independent of τ . Con-

versely, if the input vector is far enough away for the centre the activation

is zero, controlled by τ . Other functional forms, such as the multiquadratic,

have the same properties and can be used instead. See Campbell, Lo, and

MacKinlay (1997) for an introduction to artificial neural networks in general

which covers RBF networks or Bishop (1995) for a more thorough account.

RBFs have been used in the econometric literature to test for neglected non-

linearity by Blake and Kapetanios (2003b). We suggest the use of an RBF

neural network to test for neglected nonlinearity in long run relationships.

Of course, an identification problem, similar to that faced by Lee, White,

and Granger (1993) arises when an RBF neural network is considered. Prob-

lems arise as we need to determine the centres (c) and radii (τ) for each

RBF, and the number of ‘hidden units’ used. The problem arises since these

parameters are not identified under the null hypothesis. We propose the use

of data-based procedures. Several rules could be used for choosing the radii.

It is common practice in the artificial neural network literature to use a fixed

multiple of the maximum change from period t to period t+1, t = 1, . . . , T

of each input as the radius for that input (see Orr, 1995). Another option

is to normalise the data and use unity for the radius. The centres are natu-

rally determined. We allow T candidate hidden units by using all available

observations themselves as possible centres to RBFs. Following Orr (1995),

we rank the T RBFs in order of maximum reduction of the residual sum of

squares in (8). To do that we estimate T regressions of the form (8) where

each regression contains one RBF hidden unit. Then, we obtain the residual

sum of squares from each regression and use these to rank the RBFs. Then,

we successively add the ranked RBFs in (8) until we minimise an information

criterion, where we choose one from those proposed by Akaike (1976) (AIC)

and Schwarz (1978) (BIC). This determines q. In the Monte Carlo study we

will use BIC.
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We then test for the significance of the included hidden units. Note that

the test cannot be carried out if no hidden units are chosen by the information

criterion. We therefore do not consider the case of no hidden units and start

with a minimum of one hidden unit. For consistent information criteria (i.e.

criteria which pick the order of the model correctly in probability such as

BIC) exactly one hidden unit will be chosen asymptotically in probability

under the null hypothesis of linearity. If the information criterion search

included the case of no hidden units then, asymptotically, consistent criteria

would pick no hidden units with probability approaching one. We further

note that, asymptotically, AIC, being inconsistent in model order selection

in general, will pick more than one hidden units with non-zero probability

under the null hypothesis.

We use a standard Wald test statistic to test the null hypothesis that

β1 = . . . = βq = 0. This takes the form:

1

σ̂2
β̂′{R′(W ′W )−1R}−1β̂ (10)

where W is the matrix of regressors of (8) and a constant, R is the selector

matrix for the coefficients of the hidden units, β = (β1, . . . , βq)
′ and σ̂2

is the estimated variance of the residuals in (8). The test is asymptotically

distributed as a χ2
q.

As an alternative to the Lee, White, and Granger (1993) test, Teräsvirta,

Lin, and Granger (1993) (TLG) suggested an array of Lagrange Multiplier

(LM) tests for linearity motivated from alternative hypotheses of neural net-

work models. These tests which are similar to the test against STAR type

nonlinearity were shown to have superior power properties to the neural net-

work test of the Lee, White, and Granger (1993) test using Monte Carlo

methods. The authors suggest that a procedure which tests for the signif-

icance of the squares, cubes and cross products of the original regressors

should be powerful against a wide variety of departures from linearity. As an

example, in a model with two regressors, x1,t and x2,t, the joint significance of

the following terms is tested: x2
1,t, x2

2,t, x3
1,t, x3

2,t, x2
1,tx2,t, x1,tx

2
2,t and x1,tx2,t.

7



The choice of the regressors used in the TLG test is motivated as a third

order Taylor expansion of the logistic artificial neural network model. As we

do not wish to arbitrarily restrict analysis to third order Taylor expansions

we also consider a second and a fourth order Taylor expansion. In particu-

lar, we consider a test where the order of the Taylor expansion is chosen by

an information criterion which in our case is BIC. For more details on this

approach see also Blake and Kapetanios (2003b).

3 Asymptotic Properties

We now discuss the asymptotic distribution of the tests. At this point we will

provide a rigorous treatment of the asymptotic distribution for a bivariate

model only. The regression used to construct the RBF test statistic is given

by:

yt = βxt +
m∑

i=1

ζie
−((xt−ci)/τ)2 + εt (11)

where ci are assumed finite and τ 6= 0. Then, this regression falls under

the framework discussed by Park and Phillips (1999, 2001). We have the

following theorem:

Theorem 1. Under assumptions 1-3, for a bivariate model and assuming

that m, ci and τ are known in (11) the asymptotic distribution of the RBF

test statistic is χ2
m.

Proof. The function
∑m

i=1 ζie
−((.−ci)/τ)2 is I-regular as defined by Park and

Phillips (2001) since it is bounded, integrable and satisfies the Lipschitz

condition (b) of definition 3.3 of Park and Phillips (2001). Define:

z̃t =
m∑

i=1

ζie
−(xt−ci)/τ)2
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for fixed τ and ci. Using Theorem 3.2 of Park and Phillips (2001) we have

that:

1√
T

T∑
t=1

z̃2
t

p→



∫ ∞

−∞

(
m∑

i=1

ζie
−((s−ci)/τ)2

)2

ds


 L(1, 0) (12)

and:

1
4
√

T

T∑
t=1

z̃tεt
d→







∫ ∞

−∞

(
m∑

i=1

ζie
−((s−ci)/τ)2

)2

ds


 L(1, 0)




1
2

Wi(1)(13)

where Wi(r) is an independent set of Brownian motions which are also in-

dependent of those generated by the error processes εt and ut, and L(t, s)

is the standardised local time for a Brownian motion. The local time for a

Brownian motion W (r) with variance σ2 is defined as:

LW (t, s) = lim
ε→0

∫ t

0

1{s ≤ W (r) < s + ε}σ2 dr

and:

L(t, s) =
1

σ2
LW (t, s).

The probability density of L(t, s) for σ2 = 1 is given by:

Prob(L(t, s) ∈ dy) =
√

2/
√

πte−(y+|s|)2/2t dy

so that:

Prob(L(1, 0) ∈ dy) =
√

2/
√

πe−y2/2 dy.

From the above it follows that:

4
√

T ζ̂2
d→

((∫ ∞

−∞

(
e−((s−c)/τ)2

)2

ds

)
L(1, 0)

)−1/2

W (1).

It easily follows from the above, using corrolary 5.4 of Park and Phillips

(2001) and Theorem 7 of Chang, Park, and Phillips (2001) that the Wald

test of the hypothesis ζi = 0 is asymptotically distributed as χ2
m.
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However, a basic problem, with application of the above asymptotic the-

ory is the fact that the RBF model parameters ci and τ are neither known

nor estimated by nonlinear least squares (NLS). Rather, the parameters ci

and τ are obtained by ad hoc methods to simplify the application of the

test. If these parameters were known then the asymptotic distribution of β

is straightforward as indicated by Theorem 1. If instead the parameters c and

τ were estimated by NLS then the asymptotics would again be straightfor-

ward, but only under the alternative hypothesis. Under the null hypothesis,

these parameters are not identified, leading to a Davies-type problem, named

after the seminal work of Davies (1977) on underidentified parameters. We

face a further difficulty. The method we use—with good reason—is neither

of the above estimation cases. The parameter estimates are random variables

but with unknown properties and unknown covariance matrix. Viewed over

all parameters, the estimation is not NLS. However, it is clear that all param-

eter estimates are continuous functionals of the relevant Brownian motions.

Moreover, the theory does not extend to multivariate models since in that

case the additivity of the functions in the regression model is violated and

the theory of Chang, Park, and Phillips (2001) does not go through. Our

Monte Carlo simulations will clearly illustrate the first of these underlying

problems.

Things are simpler for the TLG test. We can easily see that we do not

need such complicated theory to deal with the bivariate model. We have the

following theorem:

Theorem 2. Under assumptions 1-3, for a bivariate model the asymptotic

distribution of the TLG test statistic is given by (14) under the restriction

that εt is uncorrelated with (u′t+1,z
′
t+1)

′.

Proof. In the bivariate case the test statistics W (i),ECM can be written:

W (i),ECM = σ−2y′Mx(i)(x(i)′Mx(i))−1x(i)My

= σ−2ε′Mx(i)(x(i)′Mx(i))−1x(i)Mε
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where the second equality follows from the null hypothesis, x(i) = (x2, . . . , xi),

xi = (xi
1, . . . , x

i
T )′, y = (y1, . . . , yT )′, ε = (ε1, . . . , εT )′ and M is the projec-

tion matrix of the stationary regressors and x. We also define Mx to be the

projection matrix on x only.

Anticipating the required rates of convergence, we need to obtain the

asymptotic distribution of the two terms A(i)x(i)′Mx(i)A(i) and A(i)x(i)′Mε

where:

A(4) =




T−3/2 0 0
0 T−2 0
0 0 T−5/2




and A(i), i = 2, 3 are the i − 1 × i − 1 top left hand corner submatri-

ces of A(4). Note that A(i)x(i)′Mxx
(i)A(i) has the same probability limit

as A(i)x(i)′Mx(i)A(i) and similarly for A(i)x(i)′Mxε, since the nonlinear re-

gressors require faster rates for their asymptotics than the linear stationary

regressors.

Then, by the continuous mapping theorem, we have that:

T−i−1

[Tr]∑
t=1

x2i
t−1 ⇒ σ2i

∫ 1

0

B(r)2idr.

where B(r) is a Brownian motion independent of the one generated by εt.

Further, by the martingale difference property of εt and by Theorem 2.1 of

Kurtz and Protter (1991) we have that:

T−(i+1)/2

[Tr]∑
t=1

xi
t−1εt ⇒ σi

∫ 1

0

B(r)idW (r).

Therefore:

W (i),ECM = σ−2y′Mxx
(i)A(i)(A(i)x(i)′Mxx

(i)A(i))−1A(i)x(i)Mxy

⇒ W (i)′
1 W(i)

2

−1W(i)
1 ≡ W (i),ECM (14)
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where:

W(4)
1 =




ω2,2 ω2,3 ω2,4

ω2,3 ω3,3 ω3,4

ω2,4 ω3,4 ω4,4


 , W(4)

2 =




ω′2
ω′3
ω′4




ω′i =

∫ 1

0

B(r)idW (r)−
∫ 1

0

B(r)i+1dr(

∫ 1

0

B(r)2dr)−1

∫ 1

0

B(r)dW (r)

ωi,j =

∫ 1

0

B(r)i+jdr −
∫ 1

0

B(r)i+1dr(

∫ 1

0

B(r)2dr)−1

∫ 1

0

B(r)j+1dr

and W(i)
1 , i = 2, 3 is the top left hand i × i submatrix of W(4)

1 and W(i)
2 ,

i = 2, 3 is the i× 1 top subvector of W(4)
2 .

However, when a multivariate model is considered with more than one

nonstationary regressor or if εt is correlated with (u′t+1,z
′
t+1)

′, the analysis of

this theorem breaks down. For the multivariate case, cross products of the

regressors appear and the fact that vt is cross correlated causes problems.

Specifically, the covariances of the vt do not cancel out to give an asymptotic

distribution that is free of nuisance parameters. We therefore do not explore

the asymptotic distribution discussed above.

To overcome these issues for both tests we use the bootstrap. In what fol-

lows we explain the bootstrap method adopted and justify its use. Following

many others in the literature, we use the sieve bootstrap. This essentially

involves fitting a long autoregression to the estimated residuals ε̂t, vt = ∆xt

and, if present, to the stationary regressors. Define q̂t = (v′t, w
′
t, ε̂t)

′. The

vector autoregression then takes the form:

q̂t =

pT∑
i=1

Qiq̂t−i + εt.

We assume that the true model is given by:

qt =
∞∑
i=1

Qiqt−i + εt

with the property that:
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Assumption 4.
∑∞

k=0 Qk is nonsingular and
∑∞

k=0 kb||Qk|| < ∞, b > 1.

Given this, pT can be chosen by an information criterion which will guarantee

that pT → ∞ at a rate of lnT as discussed in, e.g., Ng and Perron (1995);

Chang and Park (2003). Note that we do not impose any of the restrictions

made earlier on the cross correlation structure of the errors. This does not

affect the validity of our analysis. Once estimates of Qi are obtained then

the estimated residuals ε̂t may be resampled as usual and combined with

the estimated VAR model to provide bootstrap samples for qt denoted by

q∗t . Cumulating v∗t gives bootstrap samples for xt which are used in y∗t =

β̂x∗t + γ̂w∗
t + ε∗t to construct bootstrap samples for yt.

We have the following theorem concerning the validity of the bootstrap:

Theorem 3. Under assumptions 1-4, the sieve bootstrap can estimate con-

sistently the asymptotic distribution of the TLG and, assuming knowledge of

m, ci and τ , of the RBF test statistic.

Proof. It is proven in Theorem 3.3 of Chang and Park (2003) following the

work of Einmahl (1987) that:
(

y∗t
x∗t

)
≡

(
W ∗

1,T (r)
W ∗

1,T (r)

)
d∗→

(
W1(r)
W 1(r)

)
(15)

in probability, where the notation d∗ denotes that the convergence in dis-

tribution is conditional on the observed data realisation with respect to the

conditional probability measure. The statement ‘in probability’ made above

then reflects that the distributional result in (15) occurs with probability

approaching one (in probability) with respect to the probability measure

underlying the observed data. This result is referred to as the bootstrap

invariance principle.

This result has been established for the case γ = 0. But it readily extends

to our case once we define ε̃t = γ̂ ′wt + εt. The T 1/2 consistency of γ̂, under
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the null hypothesis, established in Theorem 7 of Chang, Park, and Phillips

(2001) leads to the following result for ε̃∗t :

E∗|ε̃∗t |a = Op(1)

for some a > 2, via Lemma A.1 of Chang and Park (2003). This then

straightforwardly leads to the following result by equation (1.3) of Einmahl

(1987):

P

(
sup

0≤r≤1
|W T (r)−W (r)| > 0

)
= o(1)

where W = (W1, W
′
1)
′, proving the bootstrap invariance principle in our

case.

By our assumptions this invariance principle satisfies Assumption 2.1 of

Park and Phillips (2001) leading to the required result of the validity of

the bootstrap in nonliner regressions in the context of the analysis of Park

and Phillips (2001). The analysis of TLG again follows straightforwardly

given the bootstrap invariance principle, the continuous mapping theorem

and Theorem 2.1 of Kurtz and Protter (1991).

Nevertheless, we have made clear that the neural network framework

is not strictly speaking covered by the results of Park and Phillips (2001).

Therefore, we have not proved rigorously that the application of the boot-

strap is valid for our nonlinear regressions. There are two missing links

related to the behaviour of the nonlinear functions of multiple integrated

regressors. This behaviour (as explained by Park and Phillips (2001)) will

depend crucially on the dimension of the regressor space because the spatial

behaviour of a multivariate Brownian motion is dependent on its dimension.

By the bootstrap invariance principle, however, this behaviour will be cap-

tured by the bootstrap. Further, the presence of any identifiable nuisance

parameters will be taken into account by the bootstrap if they are consis-

tently estimated. Finally, by the continuity of the parameter estimates ci

and τ with respect to the Brownian motions involved, we conjecture that the
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bootstrap will accommodate this departure from the standard framework as

well.

To sumarise our results we have a full asymptotic theory for (i) the TLG

test with a single xt and (ii) the RBF test when estimated by NLS for a

single xt. Nuisance parameters appear in the asymptotic distribution of the

TLG test when two or more xt’s are considered. Further, the asymptotic dis-

tribution of the RBF test cannot be obtained when the centres and radii are

determined by ad hoc methods rather than by a formal estimation procedure.

Nevertheless, we should point out that these ad hoc methods enable a much

faster and more robust application of the test without the need for iterative

methods and, further, a number of studies have shown that they provide the

basis for very powerful tests (see Blake and Kapetanios, 2000, 2003a,b). For

all the above reasons we advocate the use of the bootstrap which we show to

be valid for the TLG test and for the RBF test when estimated by NLS. We

conjecture the validity of the bootstrap for the RBF test when implemented

using ad hoc methods.

4 Monte Carlo experiments

In this section we carry out a Monte Carlo investigation of the properties of

our proposed procedures. We concentrate on the following nonlinear cointe-

grating model:

yt = β′xt + f(θ,xt) + εt (16)

where εt ∼ N(0, σ2). We consider three possible functional forms for f(·, ·).
These are:

f1(θ,xt) =
m∑

j=1

θje
−∑m

i=1 θm+ix
2
i,txj,t, θi > 0, i = m + 1, . . . , 2m

f2(θ,xt) =
m∑

j=1

θj
1

1 + e−
∑m

i=1 θm+ixi,t
xj,t, θi > 0, i = m + 1, . . . , 2m
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f3(θ,xt) =
m∑

j=1

θjI(
m∑

i=1

θm+ixi,t > 0)xj,t.

These three functions provide an approximate span of the space of functions

that have been considered most often in the empirical analysis of nonlinearity

in econometrics. The first function is integrable and therefore the system

will have a different behaviour when all x’s are close to zero compared to the

case when one or more x’s are large. The second function is a logistic-type

function and results in a system which behaves differently for large and large

negative x’s. Finally, the third function is similar to the logistic but provides

abrupt adjustment.

We consider the following values for the parameters. m is set to either

1 or 2. The case m = 1 can be dealt with using the existing asymptotic

theory (abstracting from the issue of how ci, and τ are chosen). m = 2

provides information on whether the bootstrap can deal with multivariate

cointegrating relationships. We set βi = θm+i = 1, i = 1, . . . , m and σ2 = 1

throughout. θi = b, i = 1, . . . , m with b = 0, 1, 5 or 10. This parameter

controls the magnitude of the nonlinear effect. The value b = 0 is used to

obtain the empirical size of the test. We consider samples of T = 100, 200

and 400. We set the number of bootstrap replications to 99. The number of

Monte Carlo replications is set to 1000. All test are carried out at the 95%

significance level. All random walks have zero as an initial value. Tables 1

and 2 provide estimated rejection frequencies.

The results make very interesting reading. Given the discussion in the

previous section, the asymptotic RBF test is significantly overrejecting as

expected. The degree of overrejection increases with the number of observa-

tions indicating that χ2 asymptotics are not appropriate for this test. On the

other hand, the size of the bootstrap tests is well behaved for all sample sizes

considered. This result extends to multivariate models (m = 2). Indeed, the

sizes are as well behaved in this case as in the case m = 1. This supports

our argument that the bootstrap can deal both with multivariate models and
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Table 1: Empirical Rejection Frequencies: m = 1

RBF (boot) RBF (asym) TLG
Obs 100 200 400 100 200 400 100 200 400

f1 0.072 0.043 0.050 0.204 0.192 0.238 0.089 0.070 0.060
b = 0 f2 0.038 0.064 0.044 0.153 0.212 0.247 0.052 0.067 0.053

f3 0.050 0.050 0.043 0.179 0.204 0.253 0.058 0.066 0.056
f1 0.068 0.060 0.048 0.221 0.234 0.265 0.080 0.076 0.072

b = 1 f2 0.634 0.685 0.783 0.731 0.781 0.866 0.657 0.715 0.801
f3 0.614 0.725 0.773 0.707 0.795 0.836 0.636 0.751 0.780
f1 0.503 0.400 0.358 0.683 0.620 0.647 0.461 0.349 0.232

b = 5 f2 0.935 0.939 0.950 0.962 0.970 0.977 0.948 0.941 0.951
f3 0.803 0.844 0.879 0.844 0.876 0.909 0.821 0.855 0.881
f1 0.775 0.689 0.693 0.865 0.835 0.854 0.619 0.472 0.382

b = 10 f2 0.983 0.991 0.991 0.993 0.997 0.996 0.984 0.990 0.982
f3 0.854 0.886 0.925 0.883 0.912 0.942 0.861 0.892 0.923

Table 2: Empirical Rejection Frequencies: m = 2

RBF (boot) RBF (asym) TLG
Obs 100 200 400 100 200 400 100 200 400

f1 0.044 0.044 0.047 0.136 0.144 0.178 0.084 0.059 0.058
b = 0 f2 0.057 0.049 0.051 0.145 0.175 0.171 0.077 0.057 0.059

f3 0.052 0.048 0.039 0.150 0.159 0.156 0.065 0.064 0.045
f1 0.061 0.059 0.042 0.144 0.151 0.169 0.079 0.060 0.050

b = 1 f2 0.506 0.637 0.735 0.591 0.723 0.791 0.602 0.710 0.779
f3 0.546 0.676 0.779 0.629 0.762 0.833 0.649 0.737 0.820
f1 0.103 0.083 0.065 0.225 0.222 0.232 0.151 0.125 0.091

b = 5 f2 0.737 0.799 0.862 0.822 0.865 0.910 0.866 0.886 0.914
f3 0.771 0.814 0.878 0.819 0.866 0.915 0.835 0.854 0.899
f1 0.225 0.157 0.136 0.371 0.325 0.306 0.279 0.200 0.151

b = 10 f2 0.801 0.855 0.912 0.897 0.932 0.958 0.945 0.953 0.960
f3 0.810 0.841 0.876 0.862 0.883 0.916 0.860 0.878 0.900
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with the data dependence of the parameter values used for ci and τ .

Moving on to the power of the tests, we observe some interesting patterns.

Overall, the TLG test appears more powerful. It sometimes has higher re-

jection probabilities compared to the asymptotic RBF test whose empirical

size is wrong, as we know. So from a first look this might be the preferred

test of nonlinearity in cointegrating relationships.

However, this conclusion is undermined by the results obtained for f1.

There we see that for the sample sizes we consider although the TLG test is

more powerful, its power is reduced as the sample size grows. A slight reduc-

tion also appears for the RBF test. We have carried out further experiments

with the asymptotic versions of these tests. In particular, for m = 1 the TLG

test has a nuisance parameter free distribution discussed in the previous sec-

tion. For the RBF test, the asymptotic distribution will depend on the ad

hoc method used to obtain ci and τ . For the particular method we use we

have obtained the critical values under the null hypothesis and used these

for our work. To evaluate the power patterns we have increased the sample

size, up to 2000 observations. Such an increase, makes the evaluation of the

bootstrap through Monte Carlo computationally expensive. In any case, our

work illustrates the relevant points without resorting to the bootstrap. The

results are surprising. The TLG test keeps losing power as the sample size

increases. The RBF has a dip in power but eventually the power increases

as the sample size grows. This pattern for RBF is discernible, for example,

in Table 1 for m = 1 and b = 10.

Why is this happening for f1? Note that the TLG test is not actually

based on a neural network per se but on a Taylor approximation of a logistic

neural network. Therefore, the universal approximation properties of neural

networks do not extend straightforwardly to the TLG formulation. The

explanation of what is happening is relatively simple. The nonlinearity for

f1 appears only for a small part of the state space, since f1 is integrable.

In particular, the nonlinearity is activated for Op(
√

T ) observations only,
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i.e. those for which the random walk in xt resides in the area of the state

space that activates f1. For all the other observations—which form the vast

majority of the sample—there is no nonlinearity and the coefficients of xi
t are

zero. Given the predominance of such observations, it is not surprising that

the TLG method has no power asymptotically. On the other hand the RBF

test is based on an integrable functional form (which in our case coincides,

as well, with f1). Therefore, the constructed variables are zero for large

xt, unlike TLG. Therefore the coefficients of the constructed variables are

consistently estimated and different from zero. The low power of the test is

easily explained by the fact that the constructed variables are activated only

for a short time in the sample. In other words as we mentioned above there

are only Op(
√

T ) effective observations with which to detect nonlinearity.

Formally, this is reflected by the rate of convergence obtained for coefficients

of integrable functions which is T 1/4 =
√√

T , as discussed in Park and

Phillips (2001). Finally, we note that the above provides a further reason

to prefer of the RBF over the logistic function (which is not integrable) to

construct neural network neglected nonlinearity tests in this context.

It seems apparent that the TLG test is more powerful in small samples

than the RBF test. But it is not consistent for the class of nonlinearities gen-

erated by integrable functions. Even so, in small samples TLG may be more

powerful than RBF even for such functions as seen from the Monte Carlo.

In practise, we suggest that either TLG is used, or a combination of the two

tests perhaps formalised through the use of the Bonferonni inequality.3 More

specifically, we know that for some events in a probability space, E1, . . . , En,

the probability of their union is smaller than or equal to the sum of the indi-

vidual probabilities of each event, i.e. P (E1∪. . .∪En) ≤ P (E1)+. . .+P (En).

This implies that P (∩n
i=1Ei) ≥ 1−∑n

i=1 P (Ēi) where Ēi denotes the comple-

ment of Ei. If we define a new procedure which rejects the null of linearity

if either the RBF test or the TLG test rejects the null then we can use the

3See Blake and Kapetanios (2003a) for an application of this to unit root testing.
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Bonferroni inequality to put an upper bound on the Type I error of the new

procedure. We will not investigate this procedure further.

5 Conclusion

In the past two decades, considerable effort has been placed on the investi-

gation of nonstationary and nonlinear processes. Nevertheless the interplay

of nonlinearity and nonstationarity has not been widely explored. In the

context of investigating long run economic relationships there has been no

empirical work on the exploration of the possibility that such relationships

may have nonlinear characteristics despite plenty of evidence in favour of

nonlinearity in the adjustment process towards these long run relationships.

On a theoretical level, work by Phillips and his co-authors in a series of

papers headed by Park and Phillips (2001) has made such an investigation

feasible.

In this paper we propose two new tests for the presence of neglected

nonlinearity in long run relationships. We investigate a number of issues

concerning the asymptotic properties of these test and conclude that the use

of the bootstrap provides the necessary flexibility for applying this test to a

wide variety of settings. We therefore provide a theoretical justification for

the use of bootstrap in this context. A Monte Carlo study clearly shows the

usefulness of the new tests and the trade-offs involved in choosing one or the

other. Further research is needed mainly at an empirical level to illustrate

the relevance of this work in practice.
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