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1 Introduction

During the last two decades the unit root hypothesis has underlain the in-

vestigation of persistence in economic phenomena. Following the work of

Perron (1989) in which the author provided evidence against the unit root

hypothesis and in favour of structural breaks using the Nelson and Plosser

(1982) annual macroeconomic series, considerable work has concentrated on

investigated Perron’s claims. Perron suggested than a structural break may

account for the inability to reject the unit root hypothesis from the data.

He specified the Great Depression as the time when the structural break oc-

cured. Subsequent research concentrated on providing evidence for or against

the unit root hypothesis without assuming a known break point. Work by

Banerjee, Lumsdaine, and Stock (1992) and Zivot and Andrews (1992) pro-

vided tests that allowed for a single break as an alternative to the unit root

hypothesis. Lumsdaine and Papell (1997) extended part of their results to

allow for two breaks.

In this paper we further extend previous results by providing tests for the

unit root hypothesis against an unspecified number of breaks which may be

larger than 2 but smaller than or equal to the maximum allowed number of

breaks m. The advocated procedure is computationally less intensive than

that suggested by Lumsdaine and Papell (1997). Additionally, it moves away

from testing the null of a unit root against a specified number of structural

breaks, which is a narrow consideration as Lumsdaine and Papell (1997) point

out, and towards model selection strategies which are less dependent on an

assumed number of breaks. We further provide critical values for the tests,

consider their small sample properties through Monte Carlo experiments and

apply them to the Nelson and Plosser macroeconomic series.

The paper is organised as follows: Section 2 presents the test and its

theoretical properties. Section 3 provides a Monte Carlo study of its small
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sample properties. The test is applied to the Nelson and Plosser series in

Section 4. Section 5 concludes.

2 Unit root test against a m break alternative

hypothesis

A test of the unit root hypothesis against the alternative of one or more struc-

tural breaks when the break dates are unknown is a nonstandard test both

because it involves nonstationarity under the null hypothesis and because

nuisance parameters, i.e. the break dates, are not identified under the null

hypothesis. The problem of unidentifiability under the null hypothesis was

first discussed by Davies (1977) where a general solution was proposed. This

and many subsequent solutions proposed in the literature essentially involve

integrating out the nuisance parameters (e.g. see Hansen (1996)). This is

achieved by constructing appropriate test statistics for each of a set of values

for the nuisance parameters and then choosing a summary statistic from the

set of test statistics such as the maximum, minimum or average. The main

difficulty in this approach is that the null distribution of the summary statis-

tic is difficult to obtain analytically and therefore researchers usually resort

to simulation methods.

The test we propose follows from the sequential DF t-statistics proposed

by Banerjee, Lumsdaine, and Stock (1992) and Zivot and Andrews (1992)

for the case of a single break. The following model forms the basis of our

investigation.

yt = µ0 + µ1t+ αyt−1 +
k∑

i=1

γi∆yt−i +
m∑

i=1

φiDUi,t +
m∑

i=1

ψiDTi,t + εt (1)

1−γ(L) has all its roots outside the unit circle, where γ(L) = γ1L+. . .+γkL
k.

We denote the probability limit of the estimated covariance matrix of the

vector (∆yt−1, . . . ,∆yt−k) by Σ. DUi,t and DTi,t are intercept and trend
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break dummy variables respectively defined by :

DUi,t = 1(t > Tb,i), DTi,t = 1(t > Tb,i)(t− Tb,i)

where Tb,i + 1 denotes the date of the i-th structural break and 1(.) is the

indicator function taking the value of 1 if the argument of the function is

true and 0 otherwise.

To facilitate the analysis we follow Banerjee, Lumsdaine, and Stock (1992)

and Lumsdaine and Papell (1997) and define the following vector of regres-

sors: zt = (1, t+1, yt− µ̄t,DU1,t+1, . . . , DUm,t+1, DT1,t+1, . . . , DTm,t+1,∆yt−
µ̄, . . . ,∆yt−k+1 − µ̄)′, where µ̄ = E(∆yt). Then, yt = z′

t−1θ where θ =

(µ0 + (γ(1) − α)µ̄, µ1 + αµ̄, α, φ1, . . . , φm, ψ1, . . . , ψm, γ1, . . . , γk)
′. The se-

quence of errors is assumed to be a martingale difference sequence with finite

conditional 4 + ξ, ξ > 0, moments. The second conditional moment is de-

noted by σ2. Denoting the number of observations for model (1) by T , we

rewrite the break dates as Tδ1, . . . , T δm where 0 < δi < 1, i = 1, . . . ,m are

the break fractions. We also define the scaling matrix

ΞT = diag(T 1/2, T 3/2, T, T 1/2, . . . , T 1/2︸ ︷︷ ︸
m

T 3/2, . . . , T 3/2︸ ︷︷ ︸
m

, T 1/2, . . . , T 1/2︸ ︷︷ ︸
k

)

partitioned conformably to zt. We define the OLS estimator for model (1)

and given break dates as

θ̂(δ1, . . . , δm) = ΨT (δ1, . . . , δm)−1ζT (δ1, . . . , δm)

where ζT (δ1, . . . , δm) = Ξ−1
T

∑T
i=1 zt−1(δ1, . . . , δm)yt and ΨT (δ1, . . . , δm) =

Ξ−1
T

∑T
i=1 zt−1(δ1, . . . , δm)zt−1(δ1, . . . , δm)′Ξ−1

T . We also define ϕT (δ1, . . . , δm) =

Ξ−1
T

∑T
i=1 zt−1(δ1, . . . , δm)εt

The following proposition follows directly from the results in Banerjee,

Lumsdaine, and Stock (1992) and provides asymptotic representations for

the coefficients for given break fractions (δ1, . . . , δm).
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Proposition 1 Suppose that yt is generated according to (1) with µ1 = φ1 =

. . . = φm = ψ1 = . . . = ψm = 0 and α = 1. Let W (.) and B(.) denote

a scalar standard Brownian motion and a k-dimensional Brownian motion

independent of W (.), respectively. Then, under the specification of the error

sequence {εt}, given above the following result holds

ΨT (δ1, . . . , δm)−1ϕT (δ1, . . . , δm) ⇒ Ψ(δ1, . . . , δm)−1ϕ(δ1, . . . , δm)

uniformly over (δ1, . . . , δm), where

ϕ(δ1, . . . , δm) = σ

(
W (1),

∫ 1

0

rdW (r),

∫ 1

0

H(r)dW (r),W (1)−W (δi), . . . ,

W (1)−W (δm),

∫ 0

δ1

(r − δ1)dW (r), . . . ,

∫ 0

δm

(r − δm)dW (r),B(1)

)

Ψ(δ1, . . . , δm) =

(
Λ O
O′ Σ

)

H(.) = σ(1 − γ(1))−1W (.), O denotes a 2m + 3 × k matrix of zeros. Λ is

defined in the appendix.

From the above proposition it is straightforward to obtain the asymptotic

distribution of the t-statistic on the coefficient of α for given δ1, . . . , δm. How-

ever, extending the grid search scheme proposed by Lumsdaine and Papell

(1997) to m breaks is clearly computationally very demanding. Additionally,

obtaining the critical values of the minimum t-statistic over the proposed

m-dimensional grid by simulation would be prohibitive for m > 3. A further

drawback of such an approach is that a given m has to be assumed. In order

to construct our test we define the following alternative hypotheses:

Hi : α < 1, φi+1 = . . . = φm = ψi+1 = . . . = ψm = 0, i = 1, . . . ,m− 1

Hm : α < 1

As usual, we denote the null hypothesis α = 1, µ1 = φ1 = . . . = φm = ψ1 =

. . . = ψm = 0 by H0. Clearly, previous testing procedures concentrated on
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testing H0 against H1 or H2. Our aim is to construct a test of H0 against

∪m
i=1Hi. The most straightforward method involves constructing the relevant

t-statistics on the estimate of α for all possible break partitions for a given

break number and all break numbers from 1 to m and taking the infimum

of the set of these t-test statitics. Let us denote the set of all possible break

partitions for a given number of breaks by Ti, i = 1, . . . ,m and their union

over i by T . The distribution under the null hypothesis for a t-test statistic

given the number of breaks and the break fractions follows from Proposition

1 and Remark 1 of Lumsdaine and Papell (1997). The distribution of the

infimum of the t-test statistics, over T , under the null hypothesis follows

directly from Lemma A.4 of Zivot and Andrews (1992). The consistency

of the test is guaranteed by the consistent estimation of the break fractions

and the other coefficients under the alternative of structural breaks proven

by, among others, Bai and Perron (1998). Note that the results of Bai and

Perron (1998) concerning consistency of the estimated coefficients allows for

deterministic trends. Nevertheless, such an approach is unnecessarily com-

putationally intensive1. By Bai and Perron (1998, pp. 64) we have that a

sequential procedure would allow consistent estimation of break fractions,

and therefore consistent estimation of the whole model under the alternative

hypothesis, with only O(T ) least squares operations for any given number

of breaks. We can therefore construct a consistent and less computationally

intensive test using the t-statistics from these least squares operations.

We therefore propose constructing a test using the following grid search

scheme following Bai and Perron (1998).

1. For a given maximum number of breaks, m, start by searching for

a single break and store the t-statistics of the hypothesis α = 1 for

all possible partitions over the sample. Denote the set of all possible

partitions as T a
1 . Also, denote the set of t-test statistics by τ 1.

1An alternative procedure to estimate multiple breaks with reduced computational
burden has recently been suggested by Bai and Perron (2000). This procedure could be
used instead of the sequential procedure we suggest in this context.
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2. Choose the break date associated with the minimum sum of squared

residuals (SSR) given by

SSR =
T∑

t=k+2

(yt − µ̂0 − µ̂1t+ α̂yt−1 +
k∑

i=1

γ̂i∆yt−i + φ̂1DU1,t + ψ̂1DT1,t)
2

where k is assumed known.

3. Imposing the estimated break date on the sample, start looking for

the next break over all possible partitions in the resulting subsamples.

Denote the set of all possible partitions by T a
2 . Obtain the set of t-

statistics of the hypothesis α = 1 over all possible partitions and denote

this by τ 2. Append τ 2 to τ 1 to obtain τ 2
1 = τ 1 ∪ τ 2.

4. Choose the break with the minimum SSR as the next estimated break.

5. Repeat steps 3 and 4 until m break dates have been estimated. Denote

the resulting sets of all possible partitions as T a
i , i = 3, . . . ,m.

6. Adopt as the test statistic, τm
min, the minimum t-statistic over the set

τm
1 = τ 1 ∪ τ 2 ∪ . . . ∪ τm.

Before we discuss the asymptotic distribution of this test statistic we note

that we do not look for consecutive breaks or for breaks at the end or be-

ginning of the sample. Each estimated break is assumed to lie between two

subsamples whose size goes to infinity with rate T as the sample size in-

creases. In other words we impose a nonzero trimming parameter, ε on each

break search. Under the null hypothesis of a unit root, the test statistic

will have a well defined distribution which will be the same as that of the

minimum of
∫ 1

0
W ∗

i (δ̂i, r)dW (r)/
(∫ 1

0
W ∗

i (δ̂i, r)dr
)1/2

over δ̂i where δ̂1 = δ̂1,

δ̂i = (δ̂1, . . . , δ̂i−1, δi), i = 2, . . . ,m and W ∗
i (δi, r), δ1 = δ1, δi = (δ1, . . . , δi),

i = 2, . . . ,m, is the continuous time residual from the projection of a Brow-

nian motion onto the functions [1, r, 1(r > δ1), (r − δ1)1(r > δ1), . . . , 1(r >

δi), (r−δi)1(r > δi)]. Note that in δ̂i the only parameter that varies with the
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minimization is δi. The rest of the break fractions are given and have been

estimated from previous SSR minimisations. This distribution merits further

discussion. We firstly note that obviously the set over which we take the in-

fimum, T a ≡ ∪m
i=1T a

i , is a subset of the set T , over which the infimum would

have been taken had we simply extended the method used by Lumsdaine and

Papell (1997) to more than two breaks. Therefore, the uniform convergence

in distribution of the test statistics over T a follow straightforwardly from ex-

tending the results of Zivot and Andrews (1992) and Lumsdaine and Papell

(1997). The asymptotic behaviour of the estimates δ̂i depend crucially on

whether ε = 0 or not. If ε = 0, δ̂1 = 0 or 1 with equal probability. Otherwise,

δ̂1 converges to some random variable. For more details see Nunes, Kuan, and

Newbold (1995) and Bai (1998). It is clear that the conditional distribution

of δ̂i given δ̂1, . . . , δ̂i−1 is the same as that of δ̂1. The marginal distribution is

however clearly not the same. In any case the distribution of break fractions

and the test statistic is likely to depend on the trimming parameter, ε. In

conclusion, the asymptotic distribution is quite complex and will be approx-

imated by simulation similarly to previous work in the literature. Under the

alternative hypothesis of up to m structural breaks, the break fractions and

therefore the coefficients of the model are estimated consistently according

to Bai and Perron (1998) and consequently the statistic goes off to minus

infinity providing a consistent test.

We note the following. Firstly, we distinguish between three cases. The

first assumes that ψ1 = . . . = ψm = 0 under both the null and the alter-

native. This case will be denoted as case A. The second assumes the same

for φ1, . . . , φm. This will be denoted as B. The third considers the general

model (1) under the alternative and will be denoted as C. Secondly, we as-

sume that k is known. This assumption is not crucial to the analysis and

may easily be dropped if the results of Ng and Perron (1995) are taken into

account. Their work assumes that the error term in the unit roor model fol-
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lows an ARMA process but that ADF tests are used. Then, it is shown that

if a data dependent procedure is used to determine k and this data dependent

procedure allows k to rise within specified rates then the distribution of the

ADF tests do not change. Both standard information criteria (AIC, BIC)

and sequential testing procedures are shown to satisfy the required condi-

tions.

The critical values of the test for cases A,B and C are presented in Ta-

ble 1 for up to m = 5 and ε = 0.05. For higher m, results are available upon

request. The critical values have been computed by simulation where stan-

dard random walks are generated and used to estimate the relevant model for

each case. The errors are standard normal and generated using the GAUSS

pseudo-random number generator. For all simulations the number of obser-

vations for the random walks is set to 250 and the number of replications to

1000.

Table 1: Critical values for τm
min for models A, B and C.

Model m Significance Level
0.10 0.05 0.025 0.01

1 -4.661 -4.938 -5.173 -5.338
2 -5.467 -5.685 -5.965 -6.162

A 3 -6.265 -6.529 -6.757 -6.991
4 -6.832 -7.104 -7.361 -7.560
5 -7.398 -7.636 -7.963 -8.248
1 -4.144 -4.495 -4.696 -5.014
2 -4.784 -5.096 -5.333 -5.616

B 3 -5.429 -5.726 -6.010 -6.286
4 -5.999 -6.305 -6.497 -6.856
5 -6.417 -6.717 -6.998 -7.395
1 -4.820 -5.081 -5.297 -5.704
2 -5.847 -6.113 -6.344 -6.587

C 3 -6.686 -7.006 -7.216 -7.401
4 -7.426 -7.736 -7.998 -8.243
5 -8.016 -8.343 -8.593 -9.039
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3 Monte Carlo study

In this Section we investigate the small sample properties of the new tests.

Both the size and power properties are investigated. To retain the brevity

of the analysis we concentrate on model A. Results for models B and C are

similar. The size properties are investigated by simulating standard random

walks. We undertake four data generation processes (DGP) to investigate the

power properties. These processes are stable AR(1) processes with intercept

and trend. Breaks occur in the intercept, µ0. µ1 is set to 0.2 for all DGPs.

We impose 1,2 and 3 breaks to the processes. The coefficients are given in

Table 2.

Table 2: Coefficients for DGPs using model A.

DGP α µ0 φ1 φ2 φ3

1 0.9 0.5 0.5 0.5 0.5
2 0.9 0.5 1 1 1
3 0.7 0.5 0.5 0.5 0.5
4 0.7 0.5 1 1 1

The disturbances for all simulated processes are drawn from the standard

normal distribution. Samples of sizes 50,100,150 and 200 are examined for

the investigation of the size properties and samples of size 50,150 and 250 are

examined for the investigation of the power properties. For the stable AR

processes, the effect of initial conditions which are set to 0 is minimised by

rejecting the first 200 observations of the simulated sample. For all experi-

ments 1000 replications are carried out. m takes values from 1 to 5. For these

size experiments and the power experiments that follow we assume that k is

known and equal to 0. The estimated sizes for all tests are given in Table 3.

As expected, given that simulated critical values are used, all tests have

good size properties. The finite sample power for the tests is presented in

Figure 1. Each row of graphs presents the power of the tests for a given GDP.

Each column presents the power for DGPs with 1,2 and 3 breaks respectively.
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Table 3: Estimated Size of τm
min, m = 1, . . . , 5.

m Sample size
50 100 150 200

1 0.068 0.067 0.068 0.071
2 0.073 0.050 0.060 0.056
3 0.079 0.058 0.064 0.048
4 0.088 0.061 0.061 0.045
5 0.095 0.070 0.080 0.057

Each graph presents the power of τm
min for different sample sizes.

The power properties of the tests are in accord with expectations. The

further away the alternative is from the unit root null, in terms of coefficient

values, the higher the power of the tests. The same holds for larger numbers

of observations. It is interesting to note that the higher the maximum number

of breaks, m the lower the power of the test in general. The reduction in

power with m is more pronounced for larger sample sizes. Clearly, as we

successively allow for alternative models closer to the null hypothesis, as is

the case when more breaks are allowed, the lower the power of the test. This

phenomenon is not apparent for samples of 50 observations. Finally, we note

the reduction in power when more breaks are introduced into the DGPs.

We carry out a final and crucial simulation experiment to determine the

size properties of the tests when k is not assumed known but is determined

by sequential testing as in Zivot and Andrews (1992) and with maximum

possible k = 4. The rest of the experiment design is as before. Estimated

sizes are presented in Table 4. Clearly, although there is considerable over-

rejection in small samples, the test improves its performance rapidly as the

number of observations increases.
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Table 4: Estimated Size of τm
min, m = 1, . . . , 5 using sequential testing

to determine k.

m Sample size
50 100 150 200

1 0.151 0.138 0.113 0.094
2 0.149 0.121 0.104 0.066
3 0.144 0.113 0.097 0.063
4 0.148 0.126 0.104 0.059
5 0.150 0.132 0.118 0.056

4 Application

We apply the new tests to the extended Nelson and Plosser series2. In doing

so, we follow Zivot and Andrews (1992) and Lumsdaine and Papell (1997)

who applied their tests of unit root tests to the original Nelson and Plosser

data. The tests for models A and C are applied. We also apply the tests by

Zivot and Andrews (1992) and Lumsdaine and Papell (1997) to the series so

as to compare the outcomes of the tests. For all tests and series we use a

maximum of k = 8 for the order of the polynomial of the lagged differences

of the series entering the models. Then, the lag is chosen by successively

decreasing the order of the polynomial as long as the t-statistic of the last

lag is insignificant. The critical value for the sequential tests is 1.6. The

results are presented in Tables 5 and 6.

Broadly speaking the ZA, LP, and τ 2
min produce similar results. However

as m increases the rejection of the null becomes more difficult. This is in

accordance with the results of the Monte Carlo exercise. More specifically

for model A we note that τ 2
min rejects the null of a unit root for 8 series.

All other tests reject the null hypothesis for a smaller number of series. The

situation changes slightly for model C where allowing for more breaks leads

to fewer rejections.

2The data have been obtained from Ramsey and Rothman (1996).
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Table 5: τm
min for model A on extended Nelson and Plosser series

Seriesa ZAb LPc τ 2
min τ 3

min τ 4
min

Real GNP −5.026∗∗ −7.549∗∗∗ −7.549∗∗∗ −7.700∗∗∗ −7.700∗∗∗

Nominal GNP −5.422∗∗∗ −6.696∗∗ −6.696∗∗∗ −6.943∗∗ −6.943∗

Real Per capita GNP −4.728∗ −7.459∗∗∗ −7.459∗∗∗ −7.724∗∗∗ −7.724∗∗∗

Industrial Production -4.363 −6.234∗ −5.583∗ -5.583 -5.583
Employment −5.620∗∗∗ −7.449∗∗∗ −7.449∗∗∗ −7.730∗∗∗ −7.730∗∗∗

Unemployment −5.416∗∗∗ −7.374∗∗∗ −7.034∗∗∗ −8.449∗∗∗ −8.842∗∗∗

GNP deflator -3.258 -4.560 -4.024 -5.534 -5.891
CPI -2.861 -3.664 -3.038 -3.038 -3.658

Nominal wage −5.633∗∗∗ −6.144∗ −6.144∗∗ -6.144 -6.144
Real wage -3.158 -4.810 -4.159 -4.159 -4.159

Money supply −4.739∗ -5.591 −5.591∗ -5.889 -5.889
Velocity -2.810 -3.757 -3.308 -3.308 -3.308

Bond yields -3.439 -4.244 -4.244 -4.585 -4.792
S&P 500 -3.554 -4.962 -4.613 -5.463 -5.463
Number of 7 7 8 5 5
Rejections

aSingle, double and triple starred entries indicate rejection of the unit root null
hypothesis at the 10%, 5% and 1% significance level

bZivot and Andrews (1992) statistic
cLumsdaine and Papell (1997) statistic

5 Conclusions

In this paper we provide a new computationally efficient test for the null

hypothesis of a unit root against the alternative hypothesis of an unspecified

number of structural breaks. Critical values are provided and a Monte Carlo

study of the small sample properties of the test is carried out.

The new test provides a substantial extension of existing techniques.

As Lumsdaine and Papell (1997) point out, testing the null of a unit root

against a specified number of structural breaks is a narrow consideration

which should be abandoned in favour of model selection strategies which are

less dependent on an assumed number of breaks. The present test fills this

need. Of course, as the study of the power properties of the test indicate
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Table 6: τm
min for model C on extended Nelson and Plosser series

Seriesa ZAb LPc τ 2
min τ 3

min τ 4
min

Real GNP −5.548∗∗ −7.023∗∗ −6.694∗∗∗ −7.148∗ -7.148
Nominal GNP −5.831∗∗∗ −7.358∗∗∗ −7.358∗∗∗ −7.366∗∗ -7.366

Real Per capita GNP −6.1046∗∗∗ −7.463∗∗∗ −6.531∗∗ -6.668 -7.310
Industrial Production −4.835∗ −7.071∗∗ −6.448∗∗ -6.448 -7.133

Employment −5.606∗∗∗ −7.028∗∗ −7.028∗∗∗ −7.028∗∗ -7.028
Unemployment −5.502∗∗ −7.234∗∗ −7.167∗∗∗ −7.439∗∗∗ −7.439∗

GNP deflator -3.633 -4.824 -4.561 -5.833 −8.177∗∗

CPI -3.183 -4.889 -3.686 -5.549 -5.549
Nominal wage −5.498∗∗ -6.308 -5.751 -5.751 -5.751
Real wage -3.229 -6.145 -5.513 -5.513 -5.513

Money supply -4.542 -6.168 -5.764 -5.764 -5.764
Velocity -4.540 −6.898∗∗ -4.825 -6.030 −8.224∗∗

Bond yields -3.917 -5.002 -4.408 -4.513 -4.513
S&P 500 −5.098∗∗ -5.719 -5.719 -5.719 -5.719
Number of 8 7 6 4 3
Rejections

aSingle, double and triple starred entries indicate rejection of the unit root null
hypothesis at the 10%, 5% and 1% significance level

bZivot and Andrews (1992) statistic
cLumsdaine and Papell (1997) statistic

the maximum number of breaks still has a significant impact on the test out-

come. Nevertheless, this simply reflects the fact that the distance between

the null and the alternative hypotheses depends on the number of maximum

breaks. Clearly no statistical technique can provide a valid analysis of the

data without proper consideration of the underlying economic phenomena.

Such consideration should provide an indication of the appropriate maximum

number of breaks to use in the statistical analysis.

6 Appendix

For a matrix A, let v(A) be defined by the relation D2m+3v(A) = vec(A)

where Dn is the n2 × 1/2n(n + 1) duplication matrix as defined in Magnus
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and Neudecker (1988, pp. 49). Let δi,j = max(δi, δj), i, j = 1, . . . ,m. Then

v(Λ) =

(
1,

1

2
,

∫ 1

0

H(r)dr, 1− δ1, . . . , 1− δm,
(1− δ1)

2

2
, . . . ,

(1− δm)2

2
,

1

3
,

∫ 1

0

rH(r)dr,
1− δ2

1

2
, . . . ,

1− δ2
m

2
,
δ3
1 − 3δ1 + 2

6
, . . . ,

δ3
m − 3δm + 2

6
,

∫ 1

0

H(r)2dr,

∫ 1

δ1

H(r)dr, . . . ,

∫ 1

δm

H(r)dr,

∫ 1

δ1

(r−δ1)H(r)dr, . . . ,

∫ 1

δm

(r−δm)H(r)dr,

1−δ1, 1−δ1,2 . . . , 1−δ1,m,
(1− δ1)

2

2
,
1− δ2

1,2

2
−δ1(1−δ1,2), . . . ,

1− δ2
1,m

2
−δ1(1−δ1,m),

1−δ2, 1−δ2,3 . . . , 1−δ2,m,
1− δ2

2,1

2
−δ2(1−δ2,1),

(1− δ2)
2

2
, . . . ,

1− δ2
2,m

2
−δ2(1−δ2,m),

. . . ,

1−δm−1, 1−δm−1,m

1− δ2
m−1,1

2
−δm−1(1−δm−1,1), . . . ,

1− δ2
m−1,m

2
−δm−1(1−δm−1,m),

1− δm

1− δ2
m,1

2
− δm(1− δm,1), . . . ,

(1− δm)2

2
,

(1− δ1)
3

3
,
1− δ3

1,2

3
−

(δ1 + δ2)(1− δ2
1,2)

2
+ δ1δ2(1− δ1,2), . . . ,

1− δ3
1,m

3
−

(δ1 + δm)(1− δ2
1,m)

2
+ δ1δm(1− δ1,m),

. . . ,

(1− δm−1)
3

3
,
1− δ3

m−1,m

3
−

(δm−1 + δm)(1− δ2
m−1,m)

2
+ δm−1δm(1− δm−1,m),

(1− δm)3

3

)
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