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Abstract

The aim of this paper is to consider multivariate stochastic volatil-
ity models for large dimensional datasets. We suggest use of the prin-
cipal component methodology of Stock and Watson (2002) for the
stochastic volatility factor model discussed by Harvey, Ruiz, and Shep-
hard (1994). The method is simple and computationally tractable for
very large datasets. We provide theoretical results on this method and
apply it to S&P data.
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1 Introduction

The aim of this paper is to consider multivariate stochastic volatility models
for large dimensional datasets. It is by now a well known fact that many
financial time series exhibit time varying volatilities and cross correlations.
Serial correlation in these changes is a well known feature and has been stud-
ied extensively starting with the work of Engle (1982) on ARCH models and
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their extension to GARCH models by Bollerslev (1986). Following these sem-
inal papers, a huge numbers of alternative models have been suggested in the
literature. A review of them is well beyond the scope of a single paper. The
main characteristic of these models is the dependence of current volatility on
past model errors and volatilities.

Within the GARCH framework, increasing attention has been devoted to
model multivariate volatility models for large dimensional dataset. The mod-
els suggested by Diebold and Nerlove (1989), King, Sentana, and Wadhwani
(1994) and more recently by Dungey, Martin, and Pagan (2000) to retrieve
latent factor which exhibit GARCH behaviour are intractable when applied
to large datasets. This is due to the large number of parameters to be esti-
mated and the complicated constraints on the parameter space. The recent
studies of Alexander (2000) and Engle (2002) allow for modelling large di-
mensional conditional heteroscedastic asset returns. Specifically, Alexander
(op. cit.) proposes to split the analysis in two stages by, first, modelling the
asset returns as a linear combination of few of their orthogonal principal com-
ponents. In the second stage it is possible to obtain time varying conditional
covariances of the original series modelling the conditional variances of the
principal components as time varying (for instance, using a GARCH(1,1)
process). In his study, Engle (op. cit) suggests to estimate consistently
the parameters of a large dimensional multivariate GARCH model in two
stages. First, the estimation of univariate GARCH process allows to retrieve
the conditional volatilities of each return. In the second stage, the remaining
two coefficients (indexing the time varying correlation matrix) are estimated.
For a recent application of the Engle methodology, see Engle and Sheppard
(2001) who focus on 132 asset returns.

A large class of models, alternative to the GARCH framework, considers
volatilities to depend on unobserved processes which can be modelled in a
variety of ways. These models are collectively known as stochastic volatility
models. A seminal paper on the modelling of stochastic volatility models
is Harvey, Ruiz, and Shephard (1994). This paper provides a first attempt
at modelling the volatility of multivariate time series. The current paper
follows directly from their work. The state space approach advocated in
Harvey, Ruiz, and Shephard (1994) is powerful and intuitive but not able to
deal with very large datasets due to computational constraints.
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Recently, Chib, Nardari, and Shephard (2002) have suggested a Bayesian
estimation methodology (which relies on Markov Chain Monte Carlo) to es-
timate a large dimensional multivariate stochastic volatility model (the per-
formance of their method is based upon the simulation of 40 series and for an
application of their method, see Nardari and Scruggs (2003) who focus on 17
asset returns). We argue that possible computational alternatives, such as
this, based on Bayesian methods require specialist knowledge both of compu-
tational algorithms such as Markov Chain Monte Carlo and entail selecting a
number of parameters such as prior distributions which may be controversial.

An alternative to state space factor models that by now is well established
for modelling the first moments of large datasets is the approach advocated
by Stock and Watson (2002) based on principal components. We suggest use
of this methodology for the problem analysed using state space models by
Harvey, Ruiz, and Shephard (1994). The method is simple and computation-
ally tractable for very large datasets as we will also show in the empirical
application which is based on S&P data.

The paper is structured as follows: Section 2 discusses the stochastic
volatility model. Section 3 gives details of, and theoretical justification for,
the application of principal components to the problem at hand. Section 4
discusses our empirical application. Finally, Section 5 concludes.

2 The Stochastic Volatility Factor Model

Let yt = (y1,t, . . . , yN,t)
′ be an n-dimensional vector of observations, at time

t, with elements given by

yi,t = εi,t(e
hi,t)

1/2
(1)

where εt = (ε1,t, . . . , εN,t)
′ is a multivariate noise vector with mean zero and

covariance matrix Σ where Σ has diagonal elements equal to unity. hi,t

is an unobserved random process whose properties we will specify in what
follows. Denote ht = (h1,t, . . . , hN,t)

′. Then, using the standard logarithmic
transformation we have that wt = (ln(y2

1,t), . . . , ln(y2
N,t))

′ can be written as

wt = µ + ht + ξt (2)

3



where

ξt = (ξ1,t, . . . , ξN,t)
′ = (ln(ε2

1,t)− E(ln(ε2
1,t)), . . . , ln(ε2

N,t)− E(ln(ε2
N,t))

′

and
µ = (E(ln(ε2

1,t)), . . . , E(ln(ε2
N,t)))

′

This forms a general class of models for studying time varying volatilities.
The properties of particular models depend on the assumptions made about
ht. Harvey, Ruiz, and Shephard (1994) have made two suggestions. The first
is simply to consider

ht = ht−1 + ηt (3)

i.e. ht is a multivariate random walk. The second suggestion is the one we
consider in more detail in the current paper. They suggest that

ht = Aft (4)

and
ft = ft−1 + ηt (5)

where ft is a k dimensional multivariate random walk where k < N . This is a
factor model in volatilities. The first thing to note about the model is the na-
ture of the factor representation. This representation may appear restrictive
but by appropriate redefinition of the factor vector more complicated dy-
namic processes may be accommodated. Harvey, Ruiz, and Shephard (1994)
estimate this model using the Kalman filter and assuming normality for εt.
We use this setup as a platform for discussing the application of principal
components in the next section.

3 Principal Components and Factors in Stochas-

tic Volatility Models

In a seminal paper Stock and Watson (2002) have introduced a new method
of analysing large datasets and sparked a large literature on empirical and
theoretical work on factor extraction, (see e.g. Forni and Reichlin (1996,
1998), Forni, Hallin, Lippi, and Reichlin (2000, 2004) and Kapetanios and
Marcellino (2003)). The canonical model for factor analysis used by Stock
and Watson (2002) is

xt = Aft + vt (6)
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where xt = (x1,t, . . . , xN,t)
′ is a multivariate series, ft is a k × 1 factor vector

and vt = (v1,t, . . . , vN,t)
′ is a vector of idiosyncratic errors. Clearly, this model

is suitable for analysing stochastic volatility data. Principal components
minimise

V (r) = min
A,f

(NT )−1

N∑
i=1

T∑
t=1

(xi,t − a′ift)
2

where f = (f1, . . . , fT )′, to obtain estimates of the factors and factor load-
ings. Note that extra restrictions are needed to identify the factors and factor
loadings separately since, for any nonsingular matrix, H, a′ift = a′iHH−1ft =
a∗
′

i f ∗t . Defining X = (x1, . . . , xT )′, it can be shown that, under the implicit
restriction f ′f/T = I, the estimate of f , denoted f̂ is given by the eigen-
vectors corresponding to the largest k eigenvalues of the matrix XX ′. Bai
(2003) has shown that application of principal components leads to consistent
estimation of f in the sense that for each t

||f̂t −Hft|| = Op(min{
√

N,
√

T}) (7)

where ||.|| denotes matrix norm and H denotes a nonsingular matrix. Note
that since ft cannot be identified without further restrictions, consistency
holds only up to all k × k nonsigular transformations.

For this result to hold a number of mild conditions on ft and vt need to
be applied: In particular the following set of assumptions are sufficient for
consistency to hold.

Assumption 1 E||ft||4 ≤ M < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σ for some k × k
positive definite matrix Σ.

Assumption 2 ||ai|| ≤ ā < ∞

Assumption 3 E(vi,t) = 0, E|vi,t|8 ≤ M

Assumption 4 For τi,j,t,s ≡ E(vi,tvj,s) the following hold

• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ M

• |∑N
i=1 τi,i,s,s| ≤ M for all s

• N−1
∑N

i=1

∑N
j=1 τi,j,s,s| ≤ M
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• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ M

• For every (t, s), E|(N)−1/2
∑N

i=1(vi,svi,t − τi,i,s,t)|4 ≤ M

Assumption 5 ft and vi,t are independent

Similar results are shown to hold in Bai (2004) if the factor is a random
walk process. In fact, as we see from (7), these assumptions are sufficient
not only for consistency but also for determining rates of convergence for
f̂t. Anticipating the analysis of the empirical section we provide a small
extension of the results of Bai (2003) in the following theorem

Theorem 1 The results of Bai (2003) on consistency of factor estimates
using principal components are valid if the factor processes are stationary
long memory ARFIMA(p, d, q) processes driven by shocks with finite fourth
moment.

Long memory processes form a large class of time series processes charac-
terised by the slow decline of the autocorrelation function which asymptoti-
cally declines hyperbolically rather than exponentially as in the more usual
case of short memory processes such as ARMA processes. A large class of the
processes can be characterised by the Fractional ARIMA (ARFIMA) model

(1− L)dft = ut (8)

where ut is a finite ARMA process, d is a real number and (1−L)d is defined
in terms of its binomial expansion as

(1− L)d =
∞∑
i=0

Γ(i− d)

Γ(i + 1)Γ(−d)
Li =

∞∑
i=0

biL
i

For 0 < d < 0.5, ft is stationary with
∑∞

i=0 b2
i < ∞. As long as the fourth

moment of ut exists it then follows that the fourth moment of ft exists. We
assume that the process driving the ARMA process, ut, has a finite fourth
moment and hence ut has a finite fourth moment. Further, Hosking (1982)
has shown that a law of large numbers holds for 1/T

∑T
t=1 f 2

t which converges
to its expected value. These results combined provide Assumption 1 of the
sufficient list of assumptions given above for consistency of factor estimates
and hence factor estimation is consistent when the factors are stationary long
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memory processes.

Our study is in line with the findings of long memory in volatility in
the financial instruments returns. Specifically, using a parallel with ARMA
and ARFIMA processes Baillie, Bollerslev, and Mikkelsen (1996) suggested
a Fractionally Integrated GARCH process (FIGARCH) for the asset return
conditional variance, allowing the integration coefficient to vary in the range
[0,1].

From the above discussion it is clear that our model is a generalisation of
the model suggested by Harvey, Ruiz, and Shephard (1994), given by (2), (4)
and (5) since we entertain a much more general process for ft than (5). We
simply require that ft satisfies Assumption 1 and ξi,t satisfies Assumptions
3-4. Once ft has been estimated one can model it using a variety of models.
Following Bai (2003), the error that arises, in modelling, from the fact that
ft is estimated rather than known is negligible if

√
T/N → 0. Such models

can then provide forecasts for ft and hence for wi,t.

However, the factor model is still not general enough to capture important
aspects of the data as reported in various empirical studies. For example,
time varying correlations are not captured by this model. Nevertheless, a
number of extensions can be envisaged to enable modelling of such features.
We suggest the following extension to (5)

hi,t = a′ift + ui,t (9)

Then

wi,t = µi + a′ift + ui,t + ξi,t = µi + a′ift + ζi,t (10)

where ζi,t = ui,t + ξi,t. As long as ζi,t satisfies Assumptions 3-4, the
factor can be still estimated consistently. Then, one can model the estimate
of ζi,t using univariate stochastic volatility representations. This two step
approach is very flexible and can capture a wide variety of volatility features.
For example, the proportion of wi,t explained by a′ift and ui,t respectively,
conditioning on the past, can vary over time giving rise to time varying
correlations.
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4 Empirical Application

We apply our suggested method of analysing stochastic volatility data to
two large datasets. These are the S&P500 and S&P100 datasets. Data, ob-
tained from Datastream are daily returns and span the period 01/01/1995-
13/01/2004 comprising 2356 observations. We choose to consider only com-
panies for which data are available throughout the period leading us to have
N = 412 for the S&P500 dataset and N = 93 for the S&P100 dataset.
Once all periods when markets were closed are dropped from the dataset the
number of observations is 2275.

We first demean daily returns, denoted yt, to get ỹt = yt − 1/T
∑T

t=1 yt.
Then, we transform the data to get wi,t = ln(ỹ2

i,t). Finally, we demean the

transformed data to get w̃t = wt − 1/T
∑T

t=1 wt. We apply principal compo-
nents to w̃t.

The exponent of the first factor for both datasets is plotted in Figure 1.
The two factors are highly correlated with correlation equal to 0.956. We
then calculate the average R2 across all w̃t and report it, cumulatively, for
the first 10 factors in Table 1. It is clear that whereas the first factor explains
10% and 11% of the variation in the two datasets respectively, further factors
can add only marginally to the explanatory power of the set of factors. We
therefore conclude that one factor captures a large common component of
the stochastic volatility of the two datasets. It is worth noting that although
10% may appear to be a small part of the variation, it is one series that can
explain on average 10% for 412 series which is a considerable achievement.
We concentrate our analysis on the first factor of the two datasets. We leave
to future work a full analysis of the volatilities of the dataset with common
and idiosyncratic components as suggested in the previous section. We sim-
ply wish to provide an illustrative example of the new method.

Next, we examine the dynamic properties of the factors. Firstly we apply
an AR model to them using the Akaike information criterion with maximum
lag order equal to 24. For both factors a lag order of 11 is chosen. Coefficient
estimates, t-statistics and the maximum absolute eigenvalue of the AR poly-
nomial are reported in Table 2. Clearly, both factors are highly persistent
and only admit an AR representation with long lags. We carry out the Lee,
White, and Granger (1993) nonlinearity test on our chosen AR specification.
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Probability values of 0.12 and 0.37 for the two factors respectively indicates
little evidence for neglected nonlinearity in the specification.

Further insight is obtained by plotting the autocorrelation functions of
the factors. This is done in Figure 2. We also plot the upper 95% bound of
the confidence interval of the null hypothesis that the process is white noise.
Clearly, the autocorrelation function declines very slowly. Even after 400-500
periods the autocorrelations are positive and significant. This points towards
long memory models whose autocorrelation function declines hyperbolically.

We therefore fit ARFI(p, d) to the factors. As we only allow for an AR
component in the model we choose a large maximum lag order of 24 lags.
We choose the lag order by minimising the Akaike information criterion. As
Theorem 1 states, factor estimation is still valid in the presence of stationary
long memory. Table 3 reports the results. Clearly there is evidence of long
memory as the estimated long memory parameter is significantly different
from zero. Nevertheless, both factors appear to be stationary since d̂ in both
cases is around 0.45.

Further insight into the factor may be obtained by looking at the im-
pulse responses of the fitted long memory model. The impulses responses
up to horizon 30 are plotted in Figure 3. Clearly they decline much more
slowly than the exponential rate of short memory ARMA processes. Further
analysis of the persistence of the process can be had by looking at its half
life. This is defined as the time it takes for half the effect of the shock to
disappear. There is a large literature on measures of half life in macroe-
conometrics. Usually these measures are obtained from fitted AR(1) models.
Clearly this is not appropriate here and would lead to incorrect conclusions.
Recently, Chortareas and Kapetanios (2004) have provided a new half life
measure which defines half life as the point at which half the cumulative
impulse response effect has been experienced. This measure juxtaposes itself
from the usual measure which is defined as the point in time at which the
instantaneous response to the shock is half compared to the instantaneous
response when the shock impacts on the process. More details may be found
in Chortareas and Kapetanios (2004). Using this new measure we get that,
for the S&P 500 dataset, the half life of a shock is 23 days compared to
22 days for the S&P 100 dataset. Interestingly, according to the standard
definition of half life both series have a rather short half life of one day.
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5 Conclusion

In the past twenty years there has been an explosion of research interest in
univariate and multivariate volatility modelling. Out of many approaches a
factor based modelling approach seems to have a large numbers of desirable
characteristics chief among which is parsimony. However, existing methods
are mostly based on the state space representation of factor models and the
need to use iterative techniques for estimation may be problematic in large
datasets.

This paper has suggested the use of principal components as advocated
by Stock and Watson (2002) to complement stochastic volatility modelling
of multivariate time series. The theoretical properties of the new approach
have been discussed. The method has been extended to highly persistent
stationary data which exhibit long memory behaviour. The method has been
applied to the S&P 100 and S&P 500 datasets with interesting results. More
specifically, we have found that a single factor can explain a large proportion
of volatility in the datasets. This factor is highly persistent and exhibits long
memory. A fruitful avenue for future research appears to be the combination
of our multivariate factor methodology with univariate stochastic volatility
representations for individual idiosyncratic components.
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Table 1: Cumulative Explained Variation
No. of Factors S&P500 S&P100

1 0.096 0.112
2 0.109 0.132
3 0.122 0.150
4 0.131 0.166
5 0.139 0.181
6 0.143 0.195
7 0.147 0.208
8 0.151 0.224
9 0.156 0.237
10 0.161 0.250
11 0.166 0.264
12 0.169 0.277
13 0.173 0.290
14 0.177 0.302
15 0.181 0.314
16 0.184 0.327
17 0.188 0.338
18 0.192 0.350
19 0.195 0.362
20 0.199 0.374
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Table 2: AR specification for Factor Estimate
S&P500 S&P100

Coeff t-stat Coeff t-stat
AR(1) 0.181 8.581 0.172 8.174
AR(2) 0.160 7.497 0.151 7.084
AR(3) 0.107 4.966 0.091 4.198
AR(4) 0.094 4.341 0.084 3.868
AR(5) 0.085 3.932 0.080 3.688
AR(6) 0.036 1.651 0.027 1.249
AR(7) 0.077 3.555 0.089 4.128
AR(8) 0.041 1.881 0.040 1.851
AR(9) 0.023 1.064 0.031 1.415
AR(10) 0.050 2.332 0.047 2.199
AR(11) 0.060 2.866 0.054 2.500
max|λi| 0.98 0 0.98 0

Table 3: Long Memory Model Statistics
S&P500 S&P100

p 1 1

d̂ 0.416 0.398

std(d̂) 0.0197 0.0198

95%CI(d̂) 0.456 0.437

5%CI(d̂) 0.376 0.358
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