Department of Economics

Working Paper No. 525 October 2004 ISSN 1473-0278




A New Method for Determining the Number of Factors
in Factor Models with Large Datasets

George Kapetanios*
Queen Mary, University of London

October 13, 2004

Abstract

The paradigm of a factor model is very appealing and has been used extensively
in economic analyses. Underlying the factor model is the idea that a large number of
economic variables can be adequately modelled by a small number of indicator vari-
ables. Throughout this extensive research activity on large dimensional factor models
a major preoccupation has been the development of tools for determining the number
of factors needed for modelling. This paper provides an alternative method to infor-
mation criteria as tools for estimating the number of factors in large dimensional factor
models. The theoretical properties of the method are explored and an extensive Monte
Carlo study is undertaken. Results are favourable for the new method and suggest
that it is a reasonable alternative to existing methods.
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1 Introduction

The paradigm of a factor model is very appealing and has been used extensively in economic
analyses. Underlying the factor model is the idea that a large number of economic variables
can be adequately modelled by a small number of indicator variables. Factor analysis has
been used fruitfully to model, among other cases, asset returns, macroeconomic aggregates

and Engel curves (see, e.g., Stock and Watson (1989), Lewbel (1991) and others).

Most analyses have traditionally been focused on small datasets meaning that the num-
ber of variables, NV, to be modelled via a factor model is finite. Recently, Stock and Watson
(2002) have put forward the case for analysing large datasets via factor analysis, where N
is allowed to tend to infinity. Stock and Watson (2002) suggest the use of principal com-

ponents for estimating factors in this context. Further work has been carried out by, e.g.,
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Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2004) in

which use of dynamic principal components has been made.

Throughout this extensive research activity on large dimensional factor models a ma-
jor preoccupation has been the development of tools for determining the number of factors
needed for modelling. The only tool for estimating the number of factors for large dimen-
sional datasets is the use of information criteria developed by Bai and Ng (2002). The criteria
developed are modifications of standard information criteria such Akaike’s information cri-
terion where the penalty terms needed for consistent estimation of the number of factors
depend both on the number of observations 7" as well as N, unlike the traditional criteria

where the penalty terms depend only on T

This paper aims to provide an alternative to information criteria as tools for estimating
the number of factors in large dimensional factor models. The reasons for proposing a new
method are two fold. Firstly, the new method seems to be a genuinely novel approach to the
determination of the number of factors and is therefore interesting on theoretical grounds.
Secondly, and perhaps more importantly, Monte Carlo evidence suggests that it is a much

more robust method than information criteria in determining the number of factors.

The basis of the method is a remarkable fact that is well known in the statistical literature
but little known in econometrics relating to the behaviour of the eigenvalues of large sample
covariance matrices. In particular, under certain regularity conditions, it can be shown that
the largest eigenvalue of the sample covariance matrix of a dataset converges almost surely
to a fixed constant as both N and T tend to infinity, if the dataset does not have a factor
structure. If on the other hand the dataset can be modelled using r factors then it is well
known that the r largest eigenvalues of the covariance matrix tend to infinity (see, e.g.,
Chamberlain and Rothschild (1991)). Using these two facts and ideas from Altissimo and

Corradi (2004), we formalise a sequential procedure for determining the number of factors.

The behaviour of the largest eigenvalue of large dimensional covariance matrices has
been fully explored for i.i.d. and cross-sectionally independent data. This implies that the
method is valid for a strict factor model. As the popularity of approximate factor models is
increasing in the literature due to the flexibility of this setup, we further extend the analysis
to moderate forms of serial and cross sectional dependence of the idiosyncratic components
of the dataset. Monte Carlo evidence suggest that the new method is more robust than the

information criteria methods and is therefore worthy of exploration as an alternative tool



for estimating the number of factors.

The paper is organised as follows: Section 2 surveys the available results on the behaviour
of the eigenvalues of large sample covariance matrices. Section 3 discusses the new method
and provides some theoretical results for strict factor models. Section 4 provides some
extensions to approximate factor models. Results from a Monte Carlo study are presented

in Section 5. Finally, Section 5.3 concludes.

2 Preliminaries

The factor model we consider for a given dataset for cross sectional unit ¢ at time ¢, is given
by
Yig = [ihi + €y (1)

where f; is an r-dimensional vector of factors at time ¢, \; is an r-dimensional vector of
factor loadings for cross sectional unit 7 and ¢, is the idiosyncratic part of y;,. For the time
being we will assume that €;; are i.i.d. across both ¢ and ¢. This assumption will be relaxed

at a later section.

Rewriting the above model in matrix notation gives
Y =FA+e (2)

where Y = (Y1,....Yn), F = (F1,...,F.), A = (M,..., n), € = (€1,...,€n), Vi =
(Yins-- s vir)s Fi = (fix,--., fir) and ¢ = (€1,...,€.n)". Following Chamberlain and
Rothschild (1991) and assuming uncorrelatedness between the factors and the idiosyncratic
components €;, it is easy to see that the variance covariance matrix of the dataset is given
by

Yy = X5+ X (3)

where X is a matrix with finite rank r and >, is the covariance matrix of the idiosyncratic
component which is assumed to have bounded eigenvalues for all N. It is obvious that, by
the rank requirement on X, the largest r eigenvalues of ¥; will tend to infinity at rate IV

whereas the rest will be equal to zero.

Before outlining in intuitive terms the new methodology we quote some results on large
dimensional covariance matrices. Let ¢ = [g;;] denote a T'x N matrix of i.i.d. mean zero and
unit variance random variables. Let Y. denote the sample covariance matrix given by %5’ £.

Then, the largest eigenvalue of 3. denoted Umaz converges almost surely to (1+ +/c)? where
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c = limy7roo % The result is remarkable in its simplicity. For example, for N = T the
largest eigenvalue converges almost surely to 4. This result has been proven repeatedly under
successively weaker conditions culminating in the work of Yin, Bai, and Krishnaiah (1988)
who proved the result showing that a necessary and sufficient condition is that £ (5;&) < 00.
In this context it has also been shown that the minimum eigenvalue of 5. converges almost
surely to (1 —+/c)? as long as N < T and, obviously, zero otherwise. We note that the
condition E(e},) < oo is crucial. If this condition does not hold the maximum eigenvalue

tends to infinity.

The result has been extended to more complicated setups. To appreciate the following
result we note that in the case of large dimensional matrices, where the dimension of the
matrix tends to infinity, focus has been placed on the limit of the empirical distribution of
the eigenvalues of the matrix. Thus, it has been shown, among other things, by Bai and
Silverstein (1998), for a N x N nonnegative definite symmetric matrix @y, that the limit
as N, T — oo of the empirical distribution of the eigenvalues of %Q%Qg’ 5@%2 has a support
which is almost surely contained in the support of the limit of the empirical distribution of
the eigenvalues of Q. The latter support, of course, depends on c¢. This result may form

the basis for extensions of the method that will be suggested below.

We now outline the suggested estimation method for the number of factors. The method
starts by checking whether a factor structure is supported by the data. Thus, the maximum
eigenvalue of the sample covariance matrix of the normalised data is compared to (1 ++/c)%.
By the above discussion, if the number of factors is zero, i.e. no factor structure exists and
assuming for the time being a strict factor model setup, the maximum eigenvalue of fly
should not exceed (1 + 1/c)? almost surely. If a factor structure exists then the maximum
eigenvalue will tend to infinity. Of course, in finite samples, the maximum eigenvalue will
sometimes exceed (1+ +/c)?. Following, Altissimo and Corradi (2004) who uses similar ideas
we suggest that the bound be b = (1 + /c¢)? + d where d > 0 is chosen a priori. In fact,
setting d to the average eigenvalue of the sample covariance matrix of the normalised data
has performed very well in all our work. As the data are normalised this is simply equal to 1.
If the maximum eigenvalue is seen to exceed the almost sure bound, b, then it is concluded

that a factor structure exists.

The next step involves extracting the largest principal component from the data to give

yﬁ) =Yit — 5\1,1‘]31,15



This is the residual from a regression of the data on the first principal component. Note
that the first principal component is a consistent estimate of a linear combination of the

true factors, if more than one factor actually exist. The procedure is repeated on yﬁ), ie.

yﬁ) is normalised, the sample covariance matrix is constructed and its maximum eigenvalue
is compared to b. If the maximum eigenvalue does not exceed b, it is concluded that the
data are adequately described by a one-factor structure. Otherwise, the dataset is regressed
on the second principal component. The procedure is repeated until, for some dataset yz(] ),
j = 2,...,7™% the bound, b, is not exceeded by the maximum eigenvalue of the sample
covariance matrix of the normalised data. Note that this step-by-step sequence of regressions
on the principal components is equivalent to a single regression on the whole set of principal
components considered, since every principal component is uncorrelated, by construction,

with all the other principal components.

The idea behind our method is simple. We check for the presence of a factor structure and
if we find such evidence we keep adding factors until the residuals from the factor analysis do
not display evidence of neglected factor structure. This is similar to the use of information
criteria. The new elements relates to the method used to check for the presence of factor
structure and uses the properties of the maximum eigenvalue of the sample covariance matrix

of the data.

Note that this idea may easily be extended to the dynamic factor analysis suggested in a
number of papers by Forni, Lippi Hallin and Reichlin (see, e.g., Forni and Reichlin (1998),
Forni, Hallin, Lippi, and Reichlin (2000), and others). Their model is given by

Yig = bl,i(L>u1,t + ...+ br,i([z)ur,t + €y (4)

where b;; are lag polynomials and w;,; are white noise processes. In this case the common
component (as the term by ;(L)uis + ... + b,;(L)u,; is referred to) can be estimated for
different factor numbers. In this method, there is one more parameter of influence for factor
extraction which is the bandwidth used for the estimation of the spectral density needed
for the final estimation of the common component. A sequential search of two loops (an
outer loop of factor numbers and an inner loop for the bandwidth) can then be specified and
again a search for factor structure via the examination of the largest eigenvalue of the sample
covariance matrix can be implemented. We do not consider the theoretical properties of this
setup further but leave work on this issue for future research. However, in the Monte Carlo

section we consider an experiment which should be analysed using dynamic factors.



3 Theory

In this section we discuss the theoretical properties of the new method. For that we provide

the following set of assumptions.

Assumption 1 E||fi||* < M < oo, T7! ZtT:1 foft 2 % for some k x k positive definite

matrix 3.

Assumption 2 ||\]| <\ < 0o and ||[NA/N — D|| — 0 for some positive definite matriz D.
Assumption 3 E(e;;) =0, E(€},) = 07, Ele; s[> <M

Assumption 4 ¢;, are i...d. across i and t.

Assumption 5 f; and €;; are independent

Assumption 6 limy .. N/T — ¢, where 0 < ¢ < 0o

These assumptions are similar to Bai and Ng (2002) apart from assumption 4 which
specifies a strict factor model and is clearly restrictive and assumption 6 which governs the
relative rates for N and T'. Aspects of these assumptions will be relaxed in Section 4. Now,

we provide a formal definition of the new estimator through the following algorithm

Algorithm 1 FEstimation of number of factors

Step 1 Demean the data y;¢. Set y{t = vy;t. Normalise y{t by dividing every observation of
each series with the estimated standard deviation of that series. FEstimate the first

r™ principal components of yi{t. Denote the estimates by fS,t, s=1,...,rm Set

b=(1++/N/T)*+1, j=0 and yl(]t) = Yis-

Step 2 Normalise yfjt) by dividing every observation of each series with the estimated standard

deviation of that series. Denote the resulting dataset by gf{}

Step 3 Calculate the mazimum eigenvalue of the estimated covariance matriz of yji(i), denoted

,u%)m If u%?m < b, then set 7 = j and stop the algorithm, otherwise go to Step 4.
Step 4 Regress yfjt) for all i on fjH,t. Denote the estimated regression coefficients ’yw. Let

ygjl) = yf]t) — fyz.(j)]?j+17t. Set 1 =7+ 1. If 3 > r™* stop else go to step 2.



This algorithm will be referred to as ME (Maximum Eigenvalue). We denote the true num-
ber of factors by r7°. Note that the algorithm is equivalent to one where, in Step 4, yf? is

regressed on fig,..., fj11,+ instead.

Then, we have the following theorem.
Theorem 1 Under assumptions 1-5, and as N,T — oo, © converges in probability to r°.

The proof for this theorem is given in the Appendix.

4 Extensions

The result presented in the previous section is relevant for strict factor models where the
idiosyncratic component is i.i.d. across both N and T". As discussed in the introduction, this
setup is quite restrictive and given the results of Bai and Ng (2002) not very satisfactory.
This section provides some extensions by relaxing some of the assumptions made in the
previous section. In particular, we relax assumption 4 regarding temporal and cross sectional

dependence in the idiosyncratic component and instead assume that

Assumption 7 ¢ = (¢;1,...,€6.7) = T;/QV,; where vy is an N X 1 vector of cross sectionally
independently distributed and martingale difference random variables, E(viy) =0, E(v},) =
1, E(v},) < oo and Ty = [05]. 055 =1 and 05, i —j < M, M < oo, are i.i.d. random
variables with E(o; ;) = 0 such that the elements of the square root factorisation of Ty are
1

where 3 > 1 — —; and zero otherwise.

1

bounded between — B

1
P and

This assumption allows for non-diagonal covariances matrices for the idiosyncratic compo-

nent as long as the covariances are on average zero. In fact, M can tend to infinity with N

as long as it allows F(€?) < co. The assumption may look complicated as far as the bounds

on the elements of the square root factorisation of Ty are concerned but due to the fact that

both v;; and €;; have unit variance (the ¢;; do so by construction) these elements would be
1

of order 57 anyway. The particular specification of the bounds is needed for the particular

version of the proof of the theorem we choose to adapt from the literature. Then, we have

Theorem 2 Under assumptions 1-3 and 5-7, and as N, T — 0o, 7 converges in probability

to 0.

A variety of other specifications for ¢;; may be constructed such that results analogous to
Theorem 2 may be obtained. Clearly, assumption 7 is more restrictive than assumption C

of Bai and Ng (2002), in the sense that it only allows for significantly more restrictive forms



of temporal dependence. On the other hand, assumption refass7 and assumption C of Bai
and Ng (2002) are comparable in terms of cross-sectional dependence. Note that assumption
C of Bai and Ng (2002) is quite restrictive in allowing only for sparse covariance matrices
for the idiosyncratic component. The assumption of zero average cross-sectional covariance
is not far-fetched as any global cross sectional covariance characteristics of the dataset are

likely to be captured by the factor structure.

Another extension which seems possible but will not be pursued rigorously in this paper,
is the case ¢ — oo. The results of Yin, Bai, and Krishnaiah (1988) will go through in this
case as well and it is easily seen that fi,,., Will tend to infinity at rate c. This rate is clearly
lower than N which is the rate at which pi,,., tends to infinity when a factor structure is
present. So the method should in principle work in this context as well. Note further that
the only case where one cannot distinguish the factor structure from the no factor structure

is if T" is finite, where in any case none of the results go through.

Finally, we note that the temporal dependence structure allowed by Assumption 7 should
in principal be relaxable to a very large extent. We know that the asymptotic properties of
covariance matrix estimates are not different in the case of weakly dependent data compared
to independent data. This should imply that the results reported here could be extended to
general forms of weak temporal dependence. The Monte Carlo study reported in the next
section supports this. However, it is also clear that the method of proof used in the appendix
cannot be of use. Recent work by Bai and Silverstein (1998) suggests alternative avenues
for proofs based on Stieljes transforms that might be of use in this respect. This is clearly
an interesting topic for future research, not only aimed at improving factor analysis but at
augmenting the large literature on the theoretical properties of large dimensional sample

covariance matrices.

5 Monte Carlo Study

5.1 Monte Carlo Setup

In this section we provide a detailed Monte Carlo study of the new number of factors esti-
mator compared with the information criteria suggested by Bai and Ng (2002). We consider
two sets of experiments. The set of experiments A considers strict factor models, whereas

the set of experiments B considers approximate factor models.

The general model we consider has many similarities with Bai and Ng (2002) and is given



70
yi,tzz)\j,ifj,t+€i,t7 izl,...,N, tzl,,T

j=1

€ = Zl/Qyt

Vit = piViz + &it

Weset fj; ~ N(0,1), &, ~ N(0,0r%), \;; ~ N(0,1), N = 50, 100, 200, T = 50, 100, 200, 500, 1000.
The choice of N and T reflects the characteristics of the datasets used in empirical analysis
in conjunction with factor models. For example, the best known dataset used for factor anal-
ysis is that in Stock and Watson (2002) where N = 147 and 7' = 478. Financial datasets as
well are covered here. For example, see the work of Cipollini and Kapetanios (2004) where
the volatility characteristics of the S&P 100 with about 2000 observations are analysed via

a factor model.

One of the most important determinants of the performance of the number of factor
estimators is the proportion of variance explained by the factors. This is controlled by 6. So
for # = 1, R? is 0.5 whereas for § = 9, R? is 0.10. Evidence seems to suggest that in many
datasets this R? is quite low. Hence, it is crucial that any method works well in these cir-
cumstances. We consider § = 1,9, 19 leading to R? of 0.5, 0.1 and 0.05. The latter value may
seem extreme but it will provide an envelope for the performance of the methods for most
circumstances. Also we consider 7° = 1,5 and ™% = 8. For Experiments A, ¥ = I, p; = 0.

For experiments B, ¥ = [0, ], 0:, = 1, 0, j = 0;,; ~ U(—0.15,0.15) for |i—j| < 5and p; = 0.2.

So the approximate factor models allow for considerable cross-sectional dependence and
moderate temporal dependence even though the asymptotic analysis does not cover the
serial correlation case we consider. We also consider another set of experiments referred to

as experiments C where the setup is as before but now the model is given by

2 70
Yir = Z Niifjt+ Z)\Q,j,ifj,t—l +é€y, t=1,....N, t=1,...,T
= =1

A2ji ~ N(0,1). This is a model akin to that suggested by Forni, Hallin, Lippi, and Reichlin
(2000), where lags of the factor enter the model. Clearly, the number of static factors for
this model is 2 x 7°. Experiment C(A) is a strict factor model whereas experiment C'(B) is

an approximate factor model.



We compare the new method with the information criteria suggested by Bai and Ng
(2002). These criteria, which are minimised over r, are given below

N+T NT
_ ~2
PCy(r)=V, +ro ( NT >1H<N~|—T>

N+T
PC'Q(T):VT—H“&Q( +T )mC?VT

where

Vo= (NT)™' )]

N
=1 1

T r 2
5 (y oy Af)

7 1

and 62 = V,maz. Note that we choose to start the search at r = 0 for the ME algorithm but
at r = 1 for the information criteria. The choice for the information criteria is motivated by
comparability reasons with the results of Bai and Ng (2002). However, such a search does not
address the very interesting problem of whether a given dataset supports a factor structure
at all. Assuming the presence of at least one factor does not really seem as innocuous as

usually presumed in the literature. Hence, the task for the ME algorithm is more difficult.

5.2 Monte Carlo Results

Tables 1-6 report the average selected number of factors over 1000 replications. The MSE of
the number of factors estimator over 1000 replications, is reported in parentheses. Results
make interesting reading. We start with results in Table 1. The setup here is one where
r® = 5. For § = 1 all methods do well. In particular, the ME algorithm does particularly well
for all experiments with 7" > 100 with the estimated number of factor, practically always,
being chosen to be equal to 5. The information criteria do quite well too with some problems

being encountered at N = 50 for all values of T'.

Moving on to the case of 8 = 9 we see that the performance worsens for all methods.
Looking at ME first we note that it has serious problems for N = 50 but otherwise works
relatively well with impressive performance at N = 200 where the correct number of factors

is chosen practically always. The information criteria do less well. All criteria apart from two
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choose almost always one factor. Performance does not seem to improve for larger N or 7'
The only criteria which do marginally better are PC5 and IC3. Even they underestimate the
true number of factors considerably choosing in the best case about 3.5 factors on average.
The performance for # = 19 worsens further. The ME algorithm still chooses about 3 factors

for N =200 and 7" = 1000. All information criteria choose invariably one factor.

Moving on to Table 2 we see that both ME and the information criteria work well. There
is no underestimation for the criteria but there could not be any anyway as the true number
of factors is equal to the minimum one being considered. The ME chooses sometimes fewer
factors (< 1) but that is to be expected given that it allows for the possibility that no factor
structure exists. Moving on to the experiments B relating to approximate factor models we
get similar results. The performance of the ME does not seem to be affected . If anything
it becomes slightly better. Again for § = 5,10 ME outperforms the criteria overwhelmingly
for the case of r° = 5. Finally, we consider experiments C. Again ME does better and the
performance is not affected by cross sectional and temporal dependence. Surprisingly, the

information criteria do better although still they perform worse that ME.

To conclude, ME seems to outperform the information criteria across a variety of Monte
Carlo experiments. It seems insensitive to moderate cross sectional and temporal depen-
dence. Importantly it seems less sensitive to low R? for the factor equations compared to
the information criteria. Given that factors are likely to explain a relatively small average
proportion of the variance of empirical datasets due to the extreme parsimony of the factor
model such a property is highly prized. The performance of ME coupled with the ease of its

implementation makes the method a reasonable alternative to information criteria.

5.3 Conclusions

Factor models for large datasets have gained much prominence in empirical and theoretical
econometric work recently. Following on from the path breaking work of Stock and Watson
(2002) a series of papers by Bai and Bai and Ng (Bai and Ng (2002), Bai (2003), Bai (2004))
have provided the theoretical foundations of static factor models for large datasets. Work in
Forni, Hallin, Lippi, and Reichlin (2000) and other papers by these authors have provided
an alternative explicitly dynamic approach to factor analysis. An important issue in this
work is choosing the number of factors to be included in the factor model. The only rigorous
method for doing this has been developed in an influential paper by Bai and Ng (2002) and

uses information criteria.
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This paper suggests a new method for this problem. The method is based on a remark-
able fact concerning the behaviour of the eigenvalues of a large sample covariance matrix
when no factor structure exists. In particular there exists a large literature on the fact that
the maximum eigenvalue of such a covariance matrix tends to a constant asymptotically.
Since the behaviour of the eigenvalues of the covariance matrix tend to infinity when a fac-
tor structure exists a method for distinguishing these two cases suggests itself. The paper

develops rigorously this idea for a variety of settings.

Monte Carlo analysis indicates that the method works very well. In a majority of in-
stances of empirical interest it outperforms information criteria methods. Thus, it provides
a useful alternative to existing methods. Future research can concentrate on extending the
applicability of the method to allow for stronger forms of temporal and especially cross-
sectional dependence. Also, applications to empirical settings will provide a better test of

its potential.
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Appendix
Proof of Theorem 1

To prove the theorem, we need to show that Algorithm 1 will stop at step 3 when and

Y in probability. Before continuing we note that Lemma 2.1 of Yin, Bai,

only when j = r
and Krishnaiah (1988) also holds as ¢ — 0. Hence, the proof of Theorem 1 of Yin, Bai,
and Krishnaiah (1988) although discussed for 0 < ¢ < o0, is also valid for ¢ — 0. By
Theorem 1 of Bai (2003) we know that fiis a min{v/N,T}-consistent estimator for Pf,
where P is some nonsingular matrix. Without loss of generality we assume that P = I. By
Theorem 2 of Bai (2003) we have that A; — \; is O,(min{N,/T}). Thus, we conclude that

€it — €ip = Op(mm{\/ﬁ, VT}). These results hold for 7 > 7°. Hence, is follows that

T T
1/Tzei7t€j,t — 1/Tzéi,t€j,t = Op(].) (5)
t=1 t=1

uniformly over N. Since the maximum eigenvalue is a continuous function of the elements of
the sample covariance matrix, it follows from (5), that ,u%?m converges in probability to the
maximum eigenvalue of 1/T¢’e. Thus, by theorem 3.1 of Yin, Bai, and Krishnaiah (1988)
we have that ﬂf%zm < b for j = r% in probability as N,T — oo. This guarantees that # < r°
in probability.

We next need to show # > r® — 1 in probability. Let A\; = (A4,...,\o,)". For all
1 < j < % we have that asymptotically

U = Njerafina oo Moifrog + i ©)

Note that this is the case since Xj,i, j < Y enjoys the asymptotic properties given in the
previous paragraph even if estimated from a regression with fewer than r° factors, since every
estimated factor is orthogonal with all the other estimated factors. Thus, the population

covariance matrix of yl(]t) is given by

AT SUHDAGHD) 37 (7)
where AGHD = AUFY - AGEDY AGHD — (\ ) Ao) and £UTD s the covariance matrix
of fit14,..., fror. The maximum eigenvalue of the covariance matrix in (7) tends to infinity

at rate N as N — oo. Hence, by Corollary 1 of Bai and Silverstein (1998), the maximum
eigenvalue of the sample covariance matrix of yg? will exceed b almost surely and thus in

probability. Hence, the result is proven.
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Proof of Theorem 2

We have to prove that Theorem 3.1 of Yin, Bai, and Krishnaiah (1988) holds under assump-
tion 7. To do this it suffices to show that

= max N kN
S B (ﬂ_()) <
z
N=1
where ky = k is some sequence tending to infinity as N — oo for all z > (1 + /c)?. Note

that .
1
E (ftmaa(N))" < Etr <N6'e) = N Etr (de) =

N—* Z E¢€;, 1€ 1 €in o - - - €ig i Cirjn
This summation is taken in such a way that iy, ..., 4 run over all integers in {1,..., N} and
J1,- -+, Jk run over all integers in {1,...,7}. To show that Theorem 3.1 of Yin, Bai, and
Krishnaiah (1988) holds it suffices to show firstly that no term of the above summation which
is zero under assumption 4 is nonzero under assumption 7 and secondly that all terms which
are nonzero are bounded by the same bound in absolute value under assumption 7 and under
assumption 4. The first part follows from assumption 7 which restricts all autocovariances
to be zero and all cross sectional covariances to be, on average, zero. To examine the second

part we note that the bound used in Yin, Bai, and Krishnaiah (1988) is
El€;, € j1 €injo - - - €ig g | < ]{;t((;ﬁ)zk—zz_t

for some t > 1 and [ > 1 such that 2k —2[—t > 0. We further note that, under assumption 7,

for all ¢, , €+ is of the form

M
€it = E OsVitst
s=0

where 7, are random variables independent of v; ; and bounded between -1 and 1. This bound
arises since the data are normalised to have unit variance. Thus E|€;, j, €y j1€isjs - - - €ir.ji| 19

bounded by
1 \*
M* <W) E’Vilvjlyi%jlyim.ﬁ T Vikvjk‘
It is permissible following Yin, Bai, and Krishnaiah (1988) to have k = logT'™*, for some

a > 0. Hence, M* (ﬁ)k ~ T¢ ¢ < 1. Since E(Vgt) < 00, by simply modifying assumptions
(4) and (5) of Yin, Bai, and Krishnaiah (1988) from

E ) < (OVT)"1>2, E(y,) <c(0VT) 31> 3,

to
Ev ) < (OVT)3,1>8, E(v,) <c(0VT) 1> 8,

gives the required result.
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Table 1. Experiment A (r = 5)

PC,y

ICY

ICs

20
100
200

20
100
200

20
100
200

20
100
200

20
100
200

20
20
50
100
100
100
200
200
200
500
500
500

1000
1000
1000

5.03(0.04)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)

3.13(1.48)
4. 74(0‘24)
4.97(0.02)
4'73(0.26)
4.990.01)
5.00(0.00)
4.97(0.03)
5.00(0‘00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)
5.00(0.00)

7.99(0.02)
5.00(0.00)
5.00(0.00)
9.00(0.00)
9.13(0.14)
9.00(0.00)
9.00(0.00)
5.00(0.00)
5.00(0_00)
9.00(0.00)
9.00(0.00)
9.00(0.00)
5.00(0.00)
5.00(0_00)
9.00(0.00)

50
100
200

20
100
200

20
100
200

20
100
200

20
100
200

50

20

20
100
100
100
200
200
200
500
500
500

1000
1000
1000

1.84(0.42)
1.02(0.02)
1.00¢0.00)
1 .02(0.02)
1 .00(0.00)
1 .00(0_00)
1.00(0.00)
1.00(0.00)
1 .00(0.00)
1 .00(0.00)
1 .00(0‘00)
1. 27(0.21)
1.00(0_00)
1 .00(0.00)
1.82(0.41)

1 .00(0.00)
1.00(0.00)
1.00¢0.00)
1.00(0.00)
1.00(0.00)
1.00(0‘00)
1.00(0.00)
1.00(0,00)
1.00(0.00)
1.00(0.00)
1.00(0‘00)
1.00(0.00)
1.00(0,00)
1.00(0‘00)
1.00(0.00)

4.72(3.73)
1.00(0_00)
1.00(0.00)
1.00(0.00)
1'98(0.67)
1 O 1 (0_01)
1.00(0_00)
1.01(0.01)
4.450.36)
1.00(0.00)
1.00(0'00)
3.08(0.65)
1.00(0_00)
1.00(0.00)
2'44(0.66)

20
100
200

50
100
200

20
100
200

50
100
200

20

200

20
20
20
100
100
100
200
200
200
500
500
500

1000
100 1000
1000

129(025)
1 .00(0.00)
1 .00(0.00)
1.000.00)
1.00(0.00)
1.00(0.00)
1 .00(0.00)
1 .00(0.00)
1 .00(0‘00)
1.00(0.00)
1.00(0.00)
1 .00(0.00)
1 .00(0.00)
1 .00(0‘00)
1.00(0.00)

1.00(0,00)
1.00(0.00)
1.00(0.00)
1.000.00)
1.00(0.00)
1.00(0,00)
1.00(0.00)
1.00(0.00)
1.00(0‘00)
1.00(0.00)
1.00(0,00)
1.00(0‘00)
1.00(0.00)
1.00(0‘00)
1.00(0.00)

2.38(5.91)
1.00(0.00)
1.00(0.00)
1.00(0.00)
1.00(0_00)
1.00(0_00)
1.00(0.00)
1.00(0.00)
1 O 1 (0.01)
1.00(0_00)
1.00(()_00)
1.00(0.00)
1.00(0.00)
1.00(0.00)
1.00(0_00)




Table 2. Experiment A (r® = 1)

N T PC, PC, 1C, 1Cs

0 =
50 50 2.87(0.65) 1.26(0,22) 1.00(0.00) 7.71(1.52)
100 50 101001 1.00(0.00) 1.00(0.00  1.00(0.00)
200 50 1.00(0.00y 1.00(0.00 1.00¢0.00) 1.00(0.00)
50 100 1.15(.14y  1.00(0.00 1.00¢0.00)  1.00¢0.00)
100 100 1.00(0.00) 1.00(0.00) 1000000y 1.11(012)
200 100 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
50 200 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
100 200 1.00(0.00y 1.00(0.00) 1.00¢0.00) 1.00(0.00)
200 200 1.00(0.00y  1.00(0.00) 1.00(0.00y  1-000.00)
50 500 1.00(0.00) 1.00(0_00) 1-00(0.00) 1'00(0.00)
100 500 1.00(0.00) 1.00(0.00) 1-00(0,00) 1-00(0,00)
200 500 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
50 1000 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
100 1000 1.00¢0.00)  1.000.00) 1.00(0.00)  1.000.00)
200 1000 1.00(0.00)  1.00(0.00) 1.00(0.00)  1.00(0.00)

0=
50 50 1.570.33y  1.00(0.00) 1.00(0.00)  3-31(7.81)
100 50 1.00(0.00y 1.00(0.00) 1.00¢0.00)  1.00¢0.00)
200 50 1.00(0.00y 1.00(0.00 1.00¢0.00)  1.00(0.00)
50 100 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
100 100 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
200 100 1.000.00)  1.00(0.00) 1.00¢0.00)  1.00¢0.00)
50 200 1.00(0.00y  1.00(0.00) 1.00¢0.00) 1.00(0.00)
100 200 1.00(0.00y 1.000.00) 1.00¢0.00)  1.00(0.00)
200 200 1.00(0.00)  1.00¢0.00) 1.00¢0.00)  1.00(0.00)
50 500 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
100 500 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
200 500 1.000.00)  1.000.00) 1.00(0.00)  1.000.00)
50 1000 1.00¢0.00y  1.000.00) 1.00(0.00)  1.00¢0.00)
100 1000 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
200 1000 1.000.00y  1.00¢0.00) . 1.00¢0.00) 1.00(0.00)

f =19
50 50 1.490.32) 1.00(0.00 1.00¢0.00) 3.01(7.18)
100 50 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
200 50 1.00(0.00) 1.00(0.00) 1.00(0.00)  1.00(0.00)
50 100 1.00(0.00) 1.00(0.00) 1.00¢0.00)  1.00(0.00)
100 100 1.000.00)  1.000.00) 1.00(0.00)  1.000.00)
200 100 1.00¢0.00)  1.00¢0.00) 1.00¢0.00)  1.00(0.00)
50 200 1.00(0.00) 1.00(0.00) 1.00(0.00  1.00(0.00)
100 200 1.00(0.00)  1.00¢0.00) 1.00¢0.00)  1.00(0.00)
200 200 1.00¢0.00)  1.00¢0.00) 1.00¢0.00) 1.00(0.00)
50 500 1.00(0.00) 1.00(0.00) 1'00(0.00) 1-00(0.00)
100 500 1.00(0.00)  1.00(0.00) 1.000.00)  1.00¢0.00)
200 500 1.00(0.00)  1.00(0.00) 1.00¢0.00y  1.000.00)
50 1000 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
100 1000 1.00¢0.00)  1.000.00) 1.00¢0.00) 1.00(0.00)
200 1000 1.000.00) 1.00(0,%%2 1.00¢0.00) 1.00(0.00)




Table 3. Experiment B (r’ = 5)

N T ME PC,y PC, PCs I1Cy 1C, 1Cs
=
50 50 | 49401 532023 491010 800000 454043 3-00041) 8.00(000)
100 50 | 533030 5.00000) 499001 623035 488012 4.63056 5060006
200 50 7.61(0_65) 5.00(0.00) 5.00(0,00) 500(0 00) 4.98(0_02) 4.95(0.05) 5.00(0.00)
50 100 | 5.00001 5.00000 499001 639038 490010 466052 5.12012)
100 100 | 501001 5.00000) 500000 7-66(025 500000 499001 689113
200 100 | 5.20024) 5.00(000) 500000y 5.000.00) 5.00(000) 5-00(0.00) 5-00(0.00)
50 200 | 5.00000) 5.00000 500000 500000 498002 496005 5.00000
100 200 5.00(0.00) 5.00(0.00) 5.00(0.00) 5.00(0.00) 5.00(0.00) 5.00(0‘00) 5.00(0.00)
200 200 5.00(0_00) 5.00(0.00) 5.00(0.00) 5. 11(0 09) 5.00(0_00) 5.00(0.00) 5.00(0_00)
50 500 | 5.00000 500000 500000 500000 500000 500000 500000
100 500 | 5.00000 500000 500000 5.00000) 500000 500000 500000
200 500 | 5.0000.00) 5.00(000) 500000 500000 5.00000 500000 5000000
50 1000 | 5.00000) 5.00000) 5.000.00) 5.000.00) 5.00(000) 5-000.00) 5.000.00)
100 1000 5.00(0_00) 5.00(0.00) 5.00(0.00) 500(0 00) 5.00(0_00) 5.00(0.00) 5.00(0_00)
200 1000 | 5.000.00) 5.00(000) 500000y 5-000.00) 5.00(000) 5-000.00) 5-00(0.00)

100 500 | 3.06065) 1.000.00) 1.00(0.00
200 500 | 5.00(000 118015 1.02002
50 1000 | 0.30(026) 1.00(000) 1.00(000
100 1000 | 4.09050) 1.00000) 1.00(0.00
200 1000 | 5.00(000) 162033 1.29021) 3.24(0.38

1.00¢0.00) 1.00(0.00)
1.00 0.00) 1.00(0.00) 2.81(0_65)
1.00 0.00) 1.00(0,00) 1.00(0.00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
1.01.01) 1.000000) 2.07(0.63)

200 50 | 4.43(388) 1.01(001) 1.0000.00) 1.50(0.31) 1.00(0.00) 1.00(0.00) 1.00(0.00)
50 100 | 0.02(002) 1.14(013) 1.000.00) 4.290.46) 1.00(0.00) 1.00(0.00) 1.00(0.00)
100 100 | 0.84(0.55y 1.00¢0.00) 1.00¢0.00y 6.190.46) 1.000.00) 1.00(0.00) 2.67(1.27
200 100 | 4.13(0.72y 1.00(0.00) 1.000.00) 2.44(0.41) 1.0000.00y 1.00(0.00) 1.01¢0.01)
50 200 | 0.04( 004y 1.0000.00) 1.00¢0.00) 1.36(0.26y 1.000.00) 1.00¢0.00) 1.00(0.00)
100 200 | 1.56(0.64) 1.00¢0.00) 1.00¢0.00y 2.33(0.42) 1.00(0.00) 1.00(0.00) 1.01(0.01)
200 200 | 4.770.20) 1.00(0.00) 1.0000.00) 4.92(0.08y 1.000.00) 1.00(0.00) 4.46(0.34
50 500 | 0.11¢g.10) 1.00(0.00) 1.00¢0.00y 1.00(0.00y 1.00(0.00y 1.00(0.00y 1.00(0.00)
( ) (0.05) (0.00)
( ) (0.36) (
( ) (0.00) (
( ) (0.00) (
( (0.38) (

50 100 | 0.00¢0.00

50 50 | 0.00000 246019 105005 799001 100000 100000 7-5l@ss)

100 50 | 0.08000s) 1.00000) 1.00000) 3-93(050) 1.00000) 1.00000) 1.00(0.00)

200 50 | 1.23041) 1.00000) 1.00000) 1.00000) 1.00000) 1.00(000) 1.000.00)
)

1.01(0.01) 1 .00(0,00 1.00(0.00) 1.00(0_00)

) )

) )

) )

) )

100 100 | 0.01(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00¢0.00) 1.06(0.09)

200 100 | 0.99(046) 1.00(0.00) 1.000.00) )

50 200 | 0.00(0.00) 1.00¢0.00) 1.000.00y 1.00(0.00 )
) )
) )
)
)
)
)

(
(
(
(
(
(

100 200 | 0.0L¢p.00) 1.00¢0.00y 1.00¢0.00
(
(
(
(
(
(
(

1.00(0.00) 1.00(0.00)
1.00(0.00) 1.00(0.00)
1.00(0‘00) 1.01(0.01)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
]_00 0'00) 1.00(0‘00) 1.00(0.00)
100 0_00) 1.00(0.00) 1.00(0.00)
100 0.00) 1.00(0.00) 1.00(0.00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)

200 200 | 0.790.47 1.00000) 1.00(0.00
50 500 | 0.00000 1.00(000) 1.00(000
100 500 | 0.01001 1.00000) 1.00(0.00
200 500 | 2.00061) 1.00000) 1.000000
50 1000 | 0.00(000 1.00(000) 1.001000
100 1000 | 0.03005) 1.0000.00) 1.00(0.00) 1.00(0.00

200 1000 342 0.56) 100(000) 100(09(1)\) 100 0.00
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Table 4. Experiment B (r’ = 1)

N T ME PC,y PC, PCs ICy ICY ICs
=
50 50 | 1.000000) 399053 21104z 800000 1.00000) 1.00000 8-00(0.00)
100 50 1'08(0.08) 1.57(0.33) 1.06(0.05) 522(0 52) 1.00(0.00) 1.00(0‘00) 1.02(0.02)
200 50 2.34(2_42) 1.00(0.00) 1.00(0.00) 1.28(0.21) 1.00(0_00) 1.00(0.00) 1.00(0.00)
50 100 | 1.00000) 197045y 120018y 5.840es 1.00000) 1.00000) 1.07(0.00)
100 100 | 1.00000) 1.00000) 1.000.00) 7-23040) 1.000000) 1.000.00) 3-33(s.13)
200 100 1.04(0.05) 1.00(0.00) 1.00(0.00) 1.07(0.07) 1.00(0,00) 1.00(0.00) 1.00(0.00)
50 200 1.00(0.00) 1.05(0.05) 1.01(0.01) 2'14(0‘60) 1.00(0.00) 1.00(0.00) 1.00(0.00)
100 200 1.00(0.00) 1.00(0.00) 1.00(0_00) 1.32(0.24) 1.00(0.00) 1.00(0‘00) 1.00(0.00)
200 200 1.00(0_00) 1.00(0.00) 1.00(0.00) 283(0 54) 1.00(0_00) 1.00(0.00) 1.01(0_01)
50 500 | 1.00000) 1.00000 1.00000) 1.00000 1.00000) 1.00000 1.0000.00)
100 500 | 1.00000) 1.00000) 1.000.00) 1.000.00) 1.000000) 1.000.00) 1.00(0.00)
200 500 | 1.000.00 1.00000 1.00000 1.00000 1.00000) 1.00000) 1.0000.00)
50 1000 | 1.00.00) 1.0000.00) 1.00(000) 1.00000) 1.00000) 1.00(000) 1.00(0.00)
100 1000 | 1.000.00) 1.00000) 1.00(000) 1.00(000) 1.00000) 1.00(000) 1.00(0.00)
200 1000 | 1.00.00) 1.00000) 1.00(000) 1.00(000) 1.00(000) 1.00(0.00) 1.00(0.00)

100 500 | 1.00000) 1.00000) 1.00(0.00
200 500 | 1.0000 1.00(000) 1.00(000
50 1000 | 1.00(000 1.00(000) 1.00(000
100 1000 | 1.000.00) 1.00(000) 1.00(0.00
200 1000 | 1.00(0.00) 1.000.00) 1.00000) 1.00(0.00

1.00¢0.00) 1.00(0.00)
1.00 0.00) 1.00(0.00) 1.00(0_00)
1.00 0.00) 1.00(0,00) 1.00(0_00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)

50 50 | 0.890.10) 2.81(049) 1.28(0.22) 8.0000.00) 1.00(0.00y 1.00(0.00) 7.72(1.29)
100 50 1.07(0_07) 1.10(0.09) 1.00(0_00) 4.22(0.47) 1.00(0_00) 1.00(0.00) 1.00(0_00)
200 50 | 210062 1.00000) 1.00000) 1.04001 1.00000) 1.000.00 1.00(000)
50 100 0.98(0.01) 1.05(0.05) 1.00(0.00) 4.04(0.50) 1.00(0'00) 1.00(0.00) 1.00(0.00)
100 100 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.49(0‘44) 1.00(0.00) 1.00(0.00) 1'18(0.18)
200 100 1.04(0.04) 1.00(0_00) 1.00(0_00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0_00)
50 200 1.00(0_00) 1.00(0.00) 1.00(0.00) 1.01(0.01) 1.00(0_00) 1.00(0.00) 1.00(0_00)
100 200 | 1.00000) 1.00000) 1.00000) 1.00000) 1.00(000 1.00000) 1.00(000)
200 200 1.00(0,00) 1.00(0.00) 1.00(0.00) 1.15(0.13) 1.00(0'00) 1.00(0.00) 1.00(0.00)
50 500 1.00(0_00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

( ) (0.00) (0.00)

( ) (0.00) (

( ) (0.00) (

( ) (0.00) (

( (0.00) (

50 50 | 022018 267049 1160011y 8.00000 1.00000) 1.00000) 7-74a10
100 50 | 0.90020) 1.07006) 1.00000) 4.0604s) 1.00000) 1.000.00) 1.00(0.00)
200 50 2.03(1.33) 1.00(0.00) 1.00(0.00) 102(0 02) 1.00(0.00) 1.00(0.00) 1.00(0.00)
50 100 0.39(0_24) 1.02(0.02) 1 .00(0,00) 386(0 48) 1.00(0_00) 1.00(0.00) 1.00(0.00)
100 100 1.00(0_01) ]..00(0.()0) 1.00(0.00) 539(0 51) 1.00(0_00) 1.00(0.00) 1'14(0.16)
200 100 1.04(0'04) 1.00(0.00) 1 .00(0_00) 100(0 00) 1.00(0'00) 1.00(0,00) 1.00(0.00)
50 200 | 069021 1.00000 1.00000) 1.00000 1.00000) 1.00000 1.0000.00)
100 200 | 1.00000) 1.00000) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)
200 200 1.00(0.00) 1.00(0‘00) 1.00(0.00) 112(0 11) 1.00(0.00) 1.00(0‘00) 1.00(0.00)
50 500 | 0.92007 1.00000) 1.00000) 1.00000) 1.00000) 1.00000 1.00(0.00)
100 500 | 1.00000) 1.00000) 1.00000) 1.000.00) 1.00000) 1.0000.00) 1.00(0.00)
200 500 | 1.000.00 1.00000) 1.00000) 1.00000) 1.00000) 1.0000.00) 1.00(0.00)
50 1000 | 0.980.02) 1.00000 1.00000) 1.00000) 1.00000) 1.00000) 1.00(0.00)
100 1000 | 1.00000) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.000.00) 1.00(0.00)
( (0.00) (

1.00 0.00) 1.00(0.00) 1.00(0_00)

200 1000 ].00 0_00) 100(000) 100(0QQ) 100 0.00
ZU




Table 5. Experiment C(A) (r' = 2)

N T | ME PC, PC, PCs I, IC, ICy
0=
50 50 | 4.00000 464035 402002 800000 400000 4.00000 800000
100 50 | 4.00000) 400000 400000 52704 4.00000 400000 40100
200 50 4.01(0_01) 4.00(0.00) 4.00(0,00) 400(0 00) 4.00(0_00) 4.00(0.00) 4.00(0_00)
50 100 4.00(0_00) 4.04(0.04) 4.00(0.00) 613(0 56) 4.00(0_00) 4.00(0.00) 4.16(0_21)
100 100 | 4.000.00) 4.00000) 4.00000) 7-00045) 4.00(000 4.00000) 5.1001 32
200 100 | 4.00(000 4.00000) 400000 4.00000 4.00000) 4.000.00 4.00(.00)
50 200 | 4.00000 4.00000) 400000 422010 400000 4.000.00 4.00(.00)
100 200 | 4.000.00) 400000 4.00000 401001 4.00000 400000 400000
200 200 | 4.00000 4.00000) 400000 408008 400000 4.00(000 400000
50 500 | 4.00000 400000 400000 4.00000) 4-00000) 4.00(000 40000
100 500 | 4.000.00) 400000 4.00000) 4.00000) 4.00(000 400000 400000
200 500 | 4.00(000 4.00000) 400000 4.00000 4.00000) 4.000.00 4.00(.00)
50 1000 | 4.00000 4.000.00) 400000 4.00000) 4.00000) 4.00(0.00 4.00(.00)
100 1000 | 4.000.00) 4.00000) 4.000.00) 4-00000) 4.00(000) 400000 4-00000)
200 1000 | 4.00(000 4.00000) 400000 4.00000) 4-00000) 4.00(0.00 4-00(.00)

261072 3-82(0.16)
4.00 0.00) 4.00(0.00) 4.00(0_00)
1.050.06 1.04001 1.120013)
3410043 324052 3811017
4.00(000) 4000000y 4-00(0.00)

200 500 | 4.000000 4000000y 400000
50 1000 | 3.77(020) 2-39%043 232043
100 1000 | 4.000.00) 387012 3-82(015
200 1000 | 4.00(0.00 4.000.00) 4000000 4.00(0.00

50 50 | 0.76¢0.61) 3-10040) 1.8900.41) 7.970.03) 1.000.00) 1.000.00) 7.02¢231)
50 100 | 1.55¢0.79) 2.55(041) 1.92(041) 4.050.15 1.0000.00) 1.0000.00) 2.15¢0.76)
100 100 | 3.82(0.17) 2.79046) 1.81(039) 4.71(035) 1.140.14) 1.00(0.00) 3.98(0.02)
200 100 | 4.00(0.00) 3-30(0.41) 2.78047) 3.990.01) 1.9000.72) 1.28(0.209) 3.90(0.09)
200 200 | 4.00¢0.00) 3.96(0.04y 3.61027y 4.00(0.00) 3.75(0.22) 2.76(0.7a) 4.00(0.00)
50 500 | 3.450.40) 2.420038) 2.2900.39) 2.82(038) 1.04(0.09) 1.0200.02) 1.19¢0.15)
) (0.03) (0.65)
) (0.00) (
) (0.43) (
) (0.04) (
(0.00) (

(
(
(
(
100 500 | 4.0000.00) 3.710.21) 3.54(0.29
(
(
(
(

50 100 | 0.03(0.03

50 50 [0.0Lgony 192043 103003 793006 1.00000 1.00(000) 4-75(8.46)

100 50 | 0.430038 1.06006 1.00000) 319042 1.00000) 1.00000) 1.00(0.00)

200 50 241 0_94) 1.01(0.01) 100 0.00 133 0.26 100 0.00 1.00(0.00) 1.00(0.00)
)

)

)

)
) 1.00(0.00) 1.00(0_00)
100 100 | 0.99063) 1.01¢.01 1.00 1.00(0.00) 1.00¢0.00) 2-36(0.50)
200 100 | 3.51041) 1.01(001) 1.00(0.00 ) 100000 1.130.13)
) 1.00(0.00) 1.00(0.00)
) 1.00(0.00) 1.12(0.11)
) 1.00(0‘00) 3.95(0.05)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
1.00¢0.00y 1.00¢0.00y 1.00(0.00)
]_11 0'10) 1.01(0‘01) 3.60(0.32)
100 0_00) 1.00(0.00) 1.00(0.00)
100 0.00) 1.00(0.00) 1.00(0.00)

1.72 0.52) 1.38(0.34) 3-40(0.38)

(
(
(
(
(
(
(

200 200 | 3.98(002 112012 1.00(000
50 500 | 0.30
100 500 | 3.40
200 500 | 4.00

0.24)  1.0000.00) 1.00(0.00
039) 1.0L.01) 1.00(0.00

0.000 1.95039) 1.43(0.30
50 1000 | 0.65043 1.00000 1.00(0.00

100 1000 | 3.87012 1.01001 1.000.00
200 1000 | 4.00000) 2.70(041) 2-36(042) 3.76(0.19

( )

( )

( )

( )

( )

( )
50 200 | 0.08¢0.07y 1.00(0.00) 1.00¢0.00) 1.26¢0.20
100 200 | 2.11¢p.71) 1.00¢0.00y 1.00(0.00)

( )

( )

( )

( )

( )

( )

(




Table 6. Experiment C(B) (r’ = 2)

N T ME PC, PC, PCs IC, IC, 1Cs
0=
50 50 | 4.03(005 537030 424019 800000 40100y 3.99001 800000
100 50 | 4.34045 408007 4.00000) 642042 4.00000 400000 423027
200 50 7. 11(1.84) 4.00(0.00) 4.00(0,00) 402(0 02) 4.00(0_00) 4.00(0.00) 4.00(0_00)
50 100 4.00(0_00) 4.29(0.22) 4.03(0.03) 698(0 46) 4.00(0_00) 4.00(0.00) 4'79(1.06)
100 100 | 4.01001 4.00000) 400000 7-9300m 4.00000 400000 7-6206s)
200 100 | 4.16(020) 4.00000) 400000y 401001 4.00000) 4.00(0.00) 4.00(.00)
50 200 | 4.00000 403005 400000 471040 400000 4.00(0.00 4.00(.00)
100 200 | 4.000.00) 400000 4.00000 421017 4.00000 4.00000 400000
200 200 | 4.00000 400000 400000 539043 400000 400000 417018
50 500 | 4.00000 400000 400000 403003 4-00000) 4.00(000 40000
100 500 | 4.000.00) 400000 4.00000) 4.00000) 4.00(000 400000 4.00(000)
200 500 | 4.00(000 4.00000) 400000 4.00000 4.00000) 4.000.00 4.00(.00)
50 1000 | 4.00000 4.000.00) 400000 4.00000) 4.00000) 4.00(0.00 4.00(.00)
100 1000 | 4.000.00) 4.00000) 4.000.00) 4-00000) 4.00(000) 400000 4-00000)
200 1000 | 4.00(000 4.00000) 400000 4.00000) 4-00000) 4.00(0.00 4-00(.00)

2.38(073)  3.75(0.21)
4.00 0.00) 4.00(0.00) 4.00(0_00)
1020002y 1.02002) 1.08(0.08)
3.23051) 3-050.60) 3.67(028)
4.000000) 4000000y 4-00(0.00)

200 500 | 4.00(000 400000 4.00(000
50 1000 | 3.79018) 248042 240043
100 1000 | 4.000.00) 3-80(017) 3.72(0.21
200 1000 | 4.00(0.00 4.000.00) 4000000 4.00(0.00

50 50 | 0.88(0.70y 3.68(045) 2.20(0.44) 8.0000.00) 1.00(0.00y 1.00(0.00) 7.98(0.07)
100 50 | 3.29(0.03) 2.82(043) 2.12(047) 5.22(040) 1.010.01) 1.00(0.00) 2.23(0.01)
50 100 | 1.62(78) 2.750041) 2.0900.39) 5.02(039) 1.000.00) 1.00(0.00) 2.21(0.50)
100 100 | 3.83(0.17) 2.84(042) 1.87(042) 6.956(043) 1.140.14) 1.00(000) 4.44(0.53)
200 100 | 4.13¢0.13) 3.24(0.40) 2.68(0.44) 3.990.01) 1.71l063) 1.19021) 3.87(0.12)
100 200 | 4.00(0.00y 3-28(0.36) 2-75(0.40) 4.00(0.00) 1.67057) 1.170.18) 3.90(0.09)
200 200 | 4.00¢0.00) 3.96(0.04) 3.52(0.31) 4.00(0.00) 3.64(0.31) 2.50(0.82) 4.00(0.00)
50 500 | 3.46(0.39) 2.490042) 2.34040) 2.92(039) 1.03(0.03) 1.010.02) 1.13(0.14)
) (0.03) (0.68)
) (0.00) (
) (0.42) (
) (0.05) (
(0.00) (

(
(
(
(
100 500 | 4.00(0.00) 3.68(0.23y 3.51(0.29
(
(
(
(

50 50 | 0.06(0.06) 2.83(047) 1.22(017) 8.00(0.00) 1.0000.00) 1.00(0.00) 7-83(0.69)
100 50 | 0.78(0.65) 1.27(022) 1.02(0.02) 4.50(049) 1.00(0.00) 1.00(0.00) 1.01(0.01)
200 50 | 4.283.75y 1.02(0.02) 1.0000.00) 1.61¢0.36) 1.00(0.00y 1.00(0.00y 1.00(0.00)

50 100 | 0.06(0.06y 1.21(0.17) 1.01¢0.01) 4.33(050) 1.00(0.00y 1.00(0.00y 1.01(0.01)
100 100 | 1.21071) 1.0200.02) 1.00¢0.00) 6.13(0.50) 1.00(0.00) 1.00(0.00) 2.89(1.12)
200 100 | 3.69(042) 1.01(0.01) 1.000.00) 2.63(0.43) 1.00¢0.00y 1.00(0.00) 1.13(0.13)

50 200 | 0.100.09y 1.0L(0.01y 1.00¢0.00y 1.50¢0.33) 1.00¢0.00y 1.00(0.00) 1.00(0.00)
100 200 | 2.15¢0.73) 1.01¢0.01) 1.00¢0.00y 2.63(0.41) 1.00(0.00) 1.00(0.00) 1.11(0.10)
200 200 | 3.990.01) 1.11(0.10) 1.0000.00) 4.0000.00) 1.00¢0.00y 1.00(0.00) 3.94(0.06)

50 500 | 0.34(027y 1.0000.000 1.00¢0.00) 1.00(0.00) 1.000.00) 1.00¢0.00) 1.00(0.00)
100 500 | 3.38(0.41) 1.01¢0.01y 1.00¢0.00y 1.350.26) 1.00(0.00) 1.00(0.00) 1.00(0.00)
200 500 | 4.00¢0.00) 1.85(042) 1.32(025) 3.86(0.12) 1.06(0.06) 1.01(0.01) 3.47(0.37)

50 1000 | 0.74(0.44)y 1.0000.00) 1.00¢0.00y 1.00(0.00y 1.00(0.00y 1.00(0.00y 1.00(0.00)
100 1000 | 3.86(0.13) 1.00(0.00y 1.00(0.00y 1.10(0.09) 1.00(0.00y 1.00(0.00y 1.00(0.00)

( (0.22) (

1.46 0.36) 1'20(0.18) 3.20(0_47)

200 1000 | 4.00000) 2.54030) 217041 369022
22
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