Information Sales and Insider Trading with Long-lived Information

GIOVANNI CESPA

ABSTRACT

Fundamental information resembles in many respects a durable good. Hence, the effects of its incorporation into stock prices depend on who is the agent controlling its flow. Like a durable goods monopolist, a monopolistic analyst selling information intertemporally competes against herself. This forces her to partially relinquish control over the information flow to traders. Conversely, an insider solves the intertemporal competition problem through vertical integration, thus exerting tighter control over the information flow. Comparing market patterns I show that a dynamic market where information is provided by an analyst is thicker and more informative than one where an insider trades.

Keywords: Information Sales, Analysts, Insider Trading, Durable Goods Monopolist.

JEL Classification Numbers: G100, G120, G140, L120.
Organized stock markets facilitate the exchange of assets among traders thereby allowing a firm’s fundamental information to be impounded into prices. There are mainly two ways by which this occurs: Either traders acquire information from a specialized provider (e.g., an analyst), or they obtain it thanks to a particular relationship they have with the firm (i.e. they are insiders). Far from being irrelevant, the way information is gathered to the market dramatically affects the characteristics of stock prices. This paper shows that the dynamic properties of a market closely depend on who is the agent exerting control over the flow of information.

In many respects, fundamental information resembles a durable good. Indeed, a trader holding a signal on a firm’s payoff can use this information during several trading rounds. Further, the value of such a signal depreciates as a result of its use, due to price information transmission. Differently from a durable good, however, information cannot be rented. Therefore, the ability of its provider (be it an analyst or an insider) to overcome the traditional self-competition problem (see Bulow (1982, 1986), Coase (1972), and Waldman (1993)) directly impacts the properties of the underlying asset market.

Consider an analyst selling information. As the durable goods monopolist may artificially shorten the life of the product she sells in order to extract consumer surplus, after distributing a signal of a given quality the analyst is tempted to increase the quality of the signals she sells in the periods to come. In particular, in a two-period market, I show that once the first signal has been sold to competitive traders, the analyst distributes a new signal, which, in order to be palatable to potential buyers, must render partially “obsolete” the signal sold in the first period. The seller therefore impairs the quality of the first period information she sells (to reduce its durability and weaken future self-competition), while enhancing the quality of the information
sold in the second period (to force the first period signal’s obsolescence). This, in turn, attenuates the severity of the market makers’ adverse selection problem across the two periods, implying a pattern of increasing market depth.

Consider now the case of an insider. Being the end-user of the information he possesses enables him to choose the rate at which the market learns this information. In particular, as he directly exploits his informational advantage, he avoids the effect of intertemporal self-competition, fully internalizes the negative effect of aggressive speculation, and trades less intensely.

To summarize thus far, the behavior of the analyst is much like that of the durable goods monopolist who, being forced to sell rather than rent, handles her intertemporal self-competition problem strategically by choosing the quality of the goods she markets; the insider, in contrast, attenuates competition through vertical integration as in his case the producer and the final user of the information good coincide.\(^1\) Comparing market patterns, in the second period the insider’s tighter control over the information flow makes the market **thinner** and prices **less** informative than those that obtain in the analyst’s market. In a dynamic market, therefore, trading by an insider worsens stock price accuracy and impairs market depth compared to a market where information is provided by an analyst.

Several papers in the literature analyze dynamic trading in markets with asymmetric information and assess the relevance of information flows in determining the behavior of market patterns. In all this work the information flow is either **exogenously given**, as if traders were born endowed with their private signals, or **determined** by traders’ endogenous decisions to acquire signals of a given constant precision.\(^2\) However, as information is a valuable good, its distribution is likely to depend on the decisions of agents who, given traders’ time-varying desire to become informed, optimally set the quality of the signals they release. To the extent that this is the case,
the dynamic properties of a market should be analyzed by explicitly modeling such decisions.

In this paper I take a first step toward addressing this issue by studying a dynamic asset market with risk-averse competitive agents in which control over the information flow is exerted by a monopolistic analyst selling long-lived information. In every period the analyst optimally chooses the quality of the information she distributes to the agents in the asset market. Within this framework, I characterize the optimal solution to the analyst’s intertemporal profit maximization problem and investigate how this affects agents’ trading behavior and the dynamic properties of the asset market. This is of independent interest since, to the best of my knowledge, this is the first paper to provide such an analysis within a discrete-time dynamic rational expectations equilibrium model. In a two-period setup, I show that optimality on the side of the analyst calls for an increasing pattern of signal quality. This, in turn, implies an increasing pattern of market depth and a rapid devaluation of the information sold.³

The paper contributes to the literature on insider trading that, starting with the pioneering work of Kyle (1985), seeks to gauge the impact of trading by a strategic agent on price efficiency. Leland (1992) shows that insider trading accelerates the resolution of fundamental uncertainty. Fishman and Hagerty (1992), who consider a model in which the insider is not the only agent possessing fundamental information, argue that the presence of a better informed insider may discourage costly research from market professionals and, under some parameter configurations, lead to a less informative stock price.⁴ The present work complements this argument by questioning – in the case of long-lived information – whether trading by an insider allows information to be impounded into asset prices in the most “effective” way.

The paper also has important empirical and policy implications. First, it predicts
that insiders should base their trading activity on long-lived information. Indeed, as argued above, thanks to his superior ability to control the flow of such information, an insider is likely to face a lower number of (potentially) competing agents and enjoy the possibility of slowly exploiting his informational advantage. This suggests that insider trading should be based on information that can be repeatedly exploited before it becomes publicly known.\(^5\)

Second, the paper strengthens the case against insider trading, showing that in contrast to what most of the literature on the subject traditionally maintains (see for example, Carlton and Fischel (1983), Leland (1992), and Manne (1966)), in a dynamic context insider trading, far from \textit{accelerating} the resolution of uncertainty, may actually \textit{slow} the impounding of information into prices, yielding a thinner market. This adds to the standard arguments calling for strict insider trading regulation. Indeed, just as the durable goods monopolist manages to raise the price of the good he supplies, extracting a higher surplus from consumers by renting, an insider manages to raise market thinness extracting higher rents from liquidity traders by exerting a tighter control over the information flow.\(^6\) Legislation designed to effectively curb insider trading may therefore facilitate the transmission of fundamental information into prices. This, in turn, may eventually enhance the efficiency of the market and reduce the market impact of trades, implying lower trading costs and improved market liquidity.

Finally, this work also contributes to the literature on financial markets’ information sales. This literature mainly focuses on the static problem faced by a monopolistic information provider selling signals either directly, as in the case of an investment advisor, or indirectly, as in the case of a mutual fund (see Admati and Pfleiderer (1986, 1988a, 1990)). Fishman and Hagerty (1995) show that a strategic agent can use information sales as a commitment device to trade aggressively against a sym-
metrically informed peer. Allen (1990) shows that the credibility problem faced by an information seller needing to prove his access to superior information may leave room for financial intermediaries to appropriate part of the seller’s information value. Simonov (1999) studies the effect of competition among analysts in the Admati and Pfleiderer (1986)’s context, showing that externalities in information transmission may lead to counterintuitive results. Little attention has been devoted, however, to the dynamics of the analyst’s information sales problem. A notable exception is Naik (1997), who studies the single-shot problem of an analyst selling a flow of information in a continuous time model. However, as in Naik the analyst’s decision is made “once-and-for-all,” no intertemporal competition problem arises there.

The paper is organized as follows. In the next section I present the static benchmark, where I review the results of Admati and Pfleiderer (1986) and prove that in a static setup a market in which information is sold by a monopolistic analyst generates the same patterns of depth and price informativeness as a market in which an insider trades. In Section II, I present the two-period model with long-lived information and in Section III, I study the analyst’s optimal sales policy. In Section IV, I compare patterns of depth and price informativeness across the two markets and analyze numerically the properties of the general $N > 2$-period model. Finally, in Section V, I discuss the effects of market segmentation and public announcements on the analyst’s control of the information flow. A final section contains concluding remarks. Most of the proofs are provided in an Appendix.

I. The Static Benchmark

Consider a market in which a single risky asset with liquidation value $v \sim N(\bar{v}, \tau_v^{-1})$ and a riskless asset with unitary return are traded. In this market competitive speculators or an insider trade along with noise traders against a competitive, risk-neutral
market making sector.

In the former case there is a continuum of informed traders in the interval $[0, 1]$. Every informed trader $i$ (potentially) receives a signal $s_i = v + \epsilon_i$, where $\epsilon_i \sim N(0, \tau_i^{-1})$, $v$ and $\epsilon_i$ are independent, and errors are also independent across agents. Let the informed traders’ preferences over final wealth $W_i$ be represented by a CARA utility function $U(W_i) = -\exp\{-W_i/\gamma\}$, where $\gamma > 0$ denotes the coefficient of constant absolute risk tolerance and $W_i = (v - p)x_i$ indicates the profit of buying $x_i$ units of the asset at price $p$.

In the market with the insider, a risk-neutral strategic agent holds a perfect signal about the liquidation value $v$ and trades a quantity $x_I$ to maximize his expected final wealth.

In both markets noise traders submit a random demand $u$ (independent of all other random variables in the model), with $u \sim N(0, \tau_u^{-1})$. Finally, assume that in the competitive market, given $v$, the average signal $\int_0^1 s_i di$ equals $v$ almost surely (i.e., errors cancel out in the aggregate: $\int_0^1 \epsilon_i di = 0$).

A. The Equilibrium in the Competitive Market

In this section I present a version of the traditional large-market noisy rational expectations equilibrium market, as studied by Admati (1985), Grossman and Stiglitz (1980), Hellwig (1980), and Vives (1995a).

To find the equilibrium in this market, assume that each informed trader submits a price contingent order $X(s_i, p)$ specifying the desired position in the risky asset at any price $p$ and restrict attention to linear equilibria in which $X(s_i, p) = as_i - bp$. Competitive risk-neutral market makers observe the aggregate order flow $L(p) = \int_0^1 x_i di + u = av + u - bp$ and set a semi-strong efficient price. If we let $z_C = av + u$ denote the informational content of the order flow, then the following result applies:

PROPOSITION 1: In the competitive market there exists a unique linear equilibrium.
It is symmetric and given by $X(s_i, p) = a(s_i - p)$ and $p = E[v|z_C] = \lambda_C z_C + (1 - \lambda_C a) \bar{v}$, where $a = \gamma \tau, \lambda_C = a\tau_u/\tau_C$, and $\tau_C = (\text{Var}[v|z_C])^{-1} = \tau_v + a^2 \tau_u$.


Intuitively, an informed speculator’s trading aggressiveness $a$ increases in the precision of his private signal and in the risk tolerance coefficient. Market makers’ reaction to the presence of informed speculators $\lambda_C = a\tau_u/\tau_C$ is captured by the OLS regression coefficient of the unknown payoff value on the order flow. As is common in this literature, $\lambda_C$ measures the reciprocal of market depth (see for example, Kyle (1985) and Vives (1995a)), and its value determines the extent of noise traders’ expected losses: $E[(v - p)u] = -\lambda_C \tau_u^{-1}$. The informativeness of the equilibrium price is measured by the reciprocal of the payoff conditional variance given the order flow: $(\text{Var}[v|z_C])^{-1} = \tau_C$. The higher $\tau_C$, the smaller the uncertainty on the true payoff value once the orderflow has been observed.

B. The Equilibrium in the Strategic Market

The linear equilibrium of the strategic market is given by the well-known result due to Kyle (1985). Assume the insider submits a linear market order $X_I(v) = \alpha + \beta v$ to the market making sector indicating the desired position in the risky asset. Upon observing the aggregate order flow $z_I = x_I + u$, market makers set the semi-strong efficient equilibrium price. Restricting attention to linear equilibria, the following result holds:

PROPOSITION 2: In the strategic market there exists a unique linear equilibrium given by $X_I(v) = \beta(v - \bar{v})$ and $p = E[v|z_I] = \lambda_I z_I + \bar{v}$, where $\beta = \sqrt{\tau_v/\tau_u}$, $\lambda_I = (1/2)\sqrt{\tau_u/\tau_v}$, and $\tau_I = (\text{Var}[v|z_I])^{-1} = 2\tau_v$.

Proof: See Kyle (1985). QED

Owing to camouflage opportunities, the insider’s aggressiveness $\beta$ is larger (smaller) the more (less) dispersed is the distribution of noise traders’ demand. Conversely,
market makers’ reaction to the presence of the insider ($\lambda_I$) is stronger (weaker) the more concentrated is the demand of noise traders. A noisier market therefore spurs more aggressive insider trading; owing to the insider’s risk-neutrality, these two countervailing effects exactly cancel out. As a consequence, price informativeness does not depend on $\tau_u$ and is given by $\tau_I = 2\tau_v$.10

C. The Information Market

Suppose now, as in Admati and Pfleiderer (1986), that the private signal each trader observes in the competitive asset market is sold by a monopolistic buy-side analyst who has a perfect knowledge of the asset pay-off realization.11 Furthermore, assume that (i) the analyst does not trade on the information she sells, and (ii) she truthfully provides the information she promises to traders. The last assumption clearly simplifies the analysis. Indeed, recent research highlights the tendency displayed by sell-side analysts to provide biased information. However, differently from their sell-side counterparts, buy-side analysts privately provide investment advice services to their clients (mutual funds and pension funds). Therefore, absent the need to preserve privileged access to companies’ information, they are unlikely to feel the pressure to issue public investment recommendations that please firms’ managers. Furthermore, their firms do not perform investment banking or brokerage services. Hence, their research output is likely to be less biased than that provided by sell-side analysts.12

The error affecting each trader’s signal can be thought as an interpretation mistake that the trader commits when processing the information he receives (see Admati and Pfleiderer (1986)). An analyst providing vague predictions embeds low precision $\tau_\varepsilon$ in the signal she sells. The lower (higher) is $\tau_\varepsilon$, the more (less) vague is the analyst’s information release, and the more (less) each trader’s information is likely to be incorrectly interpreted. Given that the analyst holds all the bargaining power, in
order to receive information each trader $i$ pays a price that makes him indifferent between observing or not observing the signal $s_i$. Denoting by $\phi$ such a price, we have

$$E[E[U(W_i - \phi)|\{s_i, p\}] = E[E[U(W_i)|p]].$$

Standard normal calculations give that

$$\phi = \frac{\gamma}{2} \ln \frac{\tau_{ic}}{\tau_C},$$

(1)

where $\tau_{ic} = (\text{Var}[v|s_i, p])^{-1} = \tau_C + \tau_\epsilon$. Thus, each trader pays a price that is a monotone transformation of the informational advantage he acquires over market makers by observing the signal. The analyst faces a tradeoff: On the one hand she would like to make each trader’s informational advantage as large as possible, increasing $\tau_\epsilon$ and thus $\tau_{ic}$; on the other hand, as each trader’s speculative aggressiveness is directly related to his signal’s precision, increasing $\tau_\epsilon$ enhances price efficiency ($\tau_C$) and thus reduces the signal’s value. Maximizing (1) with respect to $\tau_\epsilon$ the analyst finds the precision that optimally balances the above offsetting effects:

$$\hat{\tau}_\epsilon = \frac{1}{\gamma} \sqrt{\frac{\tau_\epsilon}{\tau_u}}.$$

(2)

Hence, the analyst sells a signal that is more (less) informative the higher (lower) is the unconditional noise-to-signal ratio and the more risk-averse the traders are – poorer ex-ante information and/or noisier markets allow the analyst to release less vague predictions.

Note that $\hat{\tau}_\epsilon$ minimizes $\lambda^{-1}$. The intuition is straightforward: The analyst seeks to extract the maximum aggregate surplus from informed traders. Such surplus, in turn, increases in the informational advantage traders have vis-à-vis market makers.
When such advantage is maximal, market depth is at its minimum and traders are willing to pay the highest price.

Furthermore, according to (2), the equilibrium market parameters replicate those obtained in the strategic market of the previous section. Indeed, the aggregate trading aggressiveness \( a = \int_0^1 a \, di = \sqrt{\tau_v/\tau_u} \); thus, price informativeness \( \tau_C = \tau_v + a^2 \tau_u = 2\tau_v = \tau_I \), and the reciprocal of market depth \( \lambda_C = (1/2)\sqrt{\tau_u/\tau_v} = \lambda_I \). Summarizing:

**Proposition 3:** In the static information market, the analyst sells a signal with precision \( \dot{\tau}_c = (1/\gamma)\sqrt{\tau_v/\tau_u} \); such information quality minimizes market depth replicating the equilibrium properties of an asset market with a single, risk-neutral insider.

The equivalence between the analyst’s and the insider’s problems can be best understood by rewriting (1) as follows:

\[
\phi = \frac{\gamma}{2} \ln \left( 1 + \frac{\lambda_C}{\gamma \tau_u} \right).
\]

The analyst who wishes to maximize her expected profits chooses a signal quality \( \dot{\tau}_c \) such that the stock market is as thin as possible. In this way she maximizes the aggregate rents she extracts from competitive traders which, given the “zero-sum” nature of the market game, are just the flip side of noise traders’ expected losses. However, this is the same result obtained in a market with a risk-neutral insider that in equilibrium sees his ex-ante profits (i.e., the expected losses of noise traders) maximized when the impact of his trades (as measured by \( \lambda_I \)) is as large as possible.\(^{13}\) Therefore, in a static information market, the way in which a perfectly informed agent conveys fundamental information to the market does not matter.\(^{14}\)
II. A Dynamic Asset Market with Long-lived Information

Consider now a two-period extension of the market analyzed in the previous section. In particular, assume that assets are traded for two periods and that in period 3 the risky asset is liquidated and the value $v$ collected (thus, $p_3 = v$).

In the competitive market, every informed trader $i$ in each period $n = 1, 2$ (potentially) receives a private signal $s_{in} = v + \epsilon_{in}$, where $\epsilon_{in} \sim N(0, \tau^{-1}_{en})$, $v$ and $\epsilon_{in}$ are independent, and errors are also independent across agents and periods (therefore, private information is “long-lived”). Assume that a trader $i$’s preferences over final wealth $W_{i2}$ are represented by the CARA utility function $U(W_{i2}) = -\exp\{-W_{i2}/\gamma\}$, where $W_{i2} = (p_2 - p_1)x_i1 + (v - p_2)x_{i2}$ denotes the trader’s second period wealth.

In the strategic market, before the first period, the insider observes $v$. He then chooses $X_{In}$ in every period $n$ to maximize his expected final wealth.

In both markets the demand of noise traders follows an independently and identically normally distributed process $\{u_n\}^2_{n=1}$ (independent of all other random variables in the model), with $u_n \sim N(0, \tau^{-1}_u)$ in every period $n$. Finally, assume that in the competitive market, given $v$ and for every $n$, the average signal $\int_0^1 s_{in} di$ equals $v$ almost surely (i.e., errors cancel out in the aggregate: $\int_0^1 \epsilon_{in} di = 0$).

A. The Equilibrium in the Dynamic Competitive Market

Let us denote by $s_i^n$ and $p^n$, respectively, the sequence of private signals and prices a trader has observed up to period $n$. In every period $n = 1, 2$ an informed trader submits a price contingent order $X_n(s_i^n, p^{n-1}, \cdot)$, indicating the position desired in the risky asset at every price $p_n$. Restricting attention to linear equilibria it is possible to show that the strategy of an agent $i$ in period $n$ depends on the sufficient statistic $\hat{s}_n = (\sum_{t=1}^n \tau_{et})^{-1}(\sum_{t=1}^n \tau_{et}s_{it})$ and on the sequence of equilibrium prices:
\( X_n(\tilde{s}_n, p^n) = a_n \tilde{s}_n - \varphi_n(p^n) \), where \( \varphi_n(p^n) \) is a linear function of the sequence \( p^n \). In every period \( n \) market makers observe the net aggregate order flow \( L_n(\cdot) = \int_0^1 x_i \, di - \int_0^1 x_{i-1} \, di + u_n = z_{Cn} + \varphi_n(p^n) - \varphi_{n-1}(p^{n-1}) \), where \( z_{Cn} = \Delta a_n v + u_n \) represents the informational content of period \( n \) net order flow, and set a semi-strong efficient equilibrium price conditional on past and current information \( p_n = E \left[ v \mid z_{C}^{n-1}, z_{Cn} \right] \).

**PROPOSITION 4:** In the two-period competitive market, there exists a unique linear equilibrium. The equilibrium is symmetric and given by \( X_n(\tilde{s}_n, p^n) = a_n (\tilde{s}_n - p_n) \), and \( p_n = \lambda_{Cn} z_{Cn} + (1 - \lambda_{Cn} \Delta a_n) p_{n-1} \), \( n = 1, 2 \), where \( a_n = \gamma (\sum_{t=1}^{n} \tau_{\epsilon_{t}}) \), \( \tilde{s}_n = (\sum_{t=1}^{n} \tau_{\epsilon_{t}})^{-1} (\sum_{t=1}^{n} \tau_{\epsilon_{t}} s_{it}) \), \( z_{Cn} = \Delta a_n v + u_n \), \( \lambda_{Cn} = \Delta a_n \tau_{u}/\tau_{Cn} \), and \( \tau_{Cn} = (\text{Var}[v|p^n])^{-1} = \tau_{v} + \tau_{u} \sum_{t=1}^{n} (\Delta a_{n_{t}})^2 \). 

**Proof:** See Vives (1995a). QED

In every period \( n \) an informed trader speculates according to the sum of the precisions of his private signals weighted by the risk tolerance coefficient; market makers observe the (net) aggregate order flow \( z_{In} = x_{In} + u_n(\tilde{z}_{In}^{n}) \) and set the semi-strong efficient price \( p_n \) attributing weight \( \lambda_{Cn} = \Delta a_n \tau_{u}/\tau_{Cn} \) to its informational content \( z_{Cn} = \Delta a_n v + u_n \). The information impounded in the equilibrium price is thus reflected in the public precision \( \tau_{Cn} = (\text{Var}[v|z_{C}^{n}])^{-1} = \tau_{v} + \tau_{u} \sum_{t=1}^{n} (\Delta a_{n_{t}})^2 \).

**B. The Equilibrium in the Dynamic Strategic Market**

Assume that in every period \( n \) the insider submits a linear market order \( X_{In}(v, p^{n-1}) = \beta_{n} v + \delta_{n}(p^{n-1}) \), where \( \delta_{n}(p^{n-1}) \) denotes a function of the sequence of prices \( p^{n-1} \). Market makers observe the (sequence of) aggregate order flow(s) \( z_{In} = x_{In} + u_n(\tilde{z}_{In}^{n}) \) and set the semi-strong efficient equilibrium price \( p_n = E [v|z_{I}^{n-1}, z_{In}] \). In this setup the following result holds:

**PROPOSITION 5:** In the two-period strategic market there exists a unique linear equilibrium given by \( X_{In}(v, p_{n-1}) = \beta_{n}(v - p_{n-1}) \) and \( p_n = \lambda_{In} z_{In} + p_{n-1} \), \( n = 1, 2 \),
where \( z_{In} = x_{In} + u_n \)

\[
\beta_1 = \frac{2K - 1}{\lambda_{I1}(4K - 1)}, \quad \beta_2 = \frac{1}{2\lambda_{I2}},
\]

\[
\lambda_{I1} = \frac{1}{4K - 1} \sqrt{\frac{2\tau_u K(2K - 1)}{\tau_v}}, \quad \lambda_{I2} = \frac{1}{2} \sqrt{\frac{\tau_u}{\tau_{I1}}},
\]

\( \tau_{I1} = (\text{Var}[v|z_{I1}])^{-1} = (4K - 1)\tau_v/2K, \quad \tau_{I2} = (\text{Var}[v|z_{I1}, z_{I2}])^{-1} = 2\tau_{I1} \)

\[
\frac{\lambda_{I2}}{\lambda_{I1}} \equiv K = \frac{1}{6} \left\{ 1 + 2\sqrt{7} \cos \left( \frac{1}{3} \left( \pi - \arctan \left( 3\sqrt{3} \right) \right) \right) \right\} \approx 0.901.
\]

**Proof:** See Huddart, Hughes, and Levine (2001). QED

As more information is impounded into prices, the severity of the adverse selection problem decreases, and market makers set a less steep price schedule: \( \lambda_{I2} < \lambda_{I1} \). As a consequence, profit opportunities decline and the insider turns to more aggressive trading behavior: \( \beta_2 > \beta_1 \).

### III. A Dynamic Market for Information

In this section I use the results of section I.A to determine the optimal policy of the information provider. This is done in two steps: First, I obtain a trader \( i \)'s value for the sequence of signals \( \{s_{i1}, s_{i2}\} \); second, I solve for the analyst’s optimal information sales policy.

#### A. The Value of Long-lived Information

As done in Section I.C, assume now that the signal each trader receives in every period \( n = 1, 2 \) is sold by a monopolistic analyst who has perfect knowledge of the asset payoff realization \( v \) and does not trade on such information. Furthermore,
assume the analyst truthfully provides the information she promises to each trader. As in every period \( n \) the analyst extracts all the surplus, she sets the price \( (\phi_n) \) for the signal \( (s_n) \) equal to value that leaves the trader indifferent between acquiring or not acquiring the signal:

**PROPOSITION 6:** In the two-period information market, the maximum price a trader \( i \) is willing to pay to buy a signal \( s_n \) in each period \( n = 1, 2 \) is given by \( \phi_1, \phi_2 \), where

\[
\phi_1 = \phi(s_{i1}||p_1) + \phi(s_{i1}||p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{iC1}}{\tau_C} + \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{\epsilon1}}{\tau_{C2}},
\]

\[
\phi_2 = \frac{\gamma}{2} \ln \frac{\tau_{iC2}}{\tau_{C2} + \tau_{\epsilon1}},
\]

and \( \tau_{iCn} = (\text{Var}[v|s^n, p^n])^{-1} = \tau_{Cn} + \sum_{t=1}^{n} \tau_{\epsilon t} \).

**Proof:** See the Appendix. QED

The first period signal price is the sum of two components capturing the trader’s informational advantage vis-à-vis market makers that the signal allows in both the first and the second period. The intuition is as follows. In period 1 a trader buys \( s_{i1} \) and establishes a position in the risky asset \( X_1(s_{i1}, p_1) \). The expected utility of his final wealth then depends on the position \( X_1(\cdot) \) (times the return from buying/selling the asset at \( p_1 \) and liquidating it at \( v \)) plus the change in the first period position he will eventually make at period 2 (times the return from changing the position at \( p_2 \) and liquidating such change at \( v \)). However, the latter component depends on the change in price that depends in turn on the arrival of private information in period 2. As the trader cannot anticipate such “new” information in period 1, his expected
utility from acquiring $s_{i1}$ depends only on the informational advantage the signal gives him in that period:\(^{16}\)

$$E[U((v - p_1)x_{i1} + (v - p_2)\Delta x_{i2})] = -\left(\frac{\tau C_1}{\tau C_1}\right)^{1/2}.$$ 

The price the trader is willing to pay to use $s_{i1}$ in period 1 is thus the one that makes him indifferent between having and not having the signal:

$$\phi(s_{i1}||p_1) = \frac{\gamma}{2} \ln \frac{\tau C_1}{\tau C_1}.$$ 

The signal $s_{i1}$ has an added value, however, as it allows the trader to keep an informational advantage in the second period when the analyst sells the second signal (without having to buy a second signal). Such added value is given by the price the trader would be ready to pay in order to have $s_{i1}$ and observe $\{p_1, p_2\}$:

$$\phi(s_{i1}||p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau C_2 + \tau e_1}{\tau C_2}.$$ 

In the second period, as a signal has already been sold, the trader compares the precision of the forecast he obtains from buying one additional signal to the one he gets from not buying it and using instead both periods’ prices and the first period signal.\(^{17}\)

**B. The Analyst’s Optimal Policy**

As argued in Section I.C, in order to make information sales profitable, the analyst “adds” some noise to the information she possesses. Thus, in a dynamic setup, in every period $n$ the analyst chooses the precision $\tau_{e_n}$ of the normal random variable $\epsilon_n$ from which the error term is drawn.

Using the expressions for the price of information obtained in Proposition 6 and
starting from the second period, given any $\tau_{e_1}$,

$$\tau_{e_2}^* \in \arg \max_{\tau_{e_2}} \int_0^1 \phi_2 di,$$

which gives as a unique positive solution

$$\tau_{e_2}^* = \frac{1}{\gamma} \sqrt{\frac{\tau_{iC1}}{\tau_u}}$$

Note that $\tau_{e_2}^*$ has the same functional form as $\hat{\tau}_e$. However, $\tau_{e_2}^* > \hat{\tau}_e$. Indeed, given any $\tau_{e_1}$, the analyst’s second period profit maximization problem is similar to the one she faces in the static market. However, as the precision of the information traders hold before buying the second period signal (i.e., $\tau_{iC1}$) is strictly higher than that of the information they hold prior to acquiring information in a static market (i.e., $\tau_v$), the signal quality the analyst chooses in the former case must be strictly higher than the quality she sets in the latter.

In the first period the analyst therefore chooses $\tau_{e_1}$ to solve

$$\max_{\tau_{e_1}} \int_0^1 \frac{\gamma}{2} \left( \ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{\tau_{iC2}(\tau_{e_2}^*) + \tau_{e_1}}{\tau_{C2}(\tau_{e_2}^*) + \tau_{e_1}} \right) di$$

$$= \max_{\tau_{e_1}} \int_0^1 \frac{\gamma}{2} \left( \ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{2\tau_{iC1} + \tau_{e_2}^*}{\tau_{C1} + \tau_{iC1}} \right) di. \quad (5)$$

The next proposition characterizes the solution to (5), comparing it with the static benchmark.

**PROPOSITION 7:** In the two-period information market, there exists a unique sequence of optimal signal precisions $\{\tau_{e_1}^*, \tau_{e_2}^*\}$ that solves the analyst’s profit maximization problem, where

1. $\tau_{e_1}^*$ is the unique positive solution to (5), $\tau_{e_2}^* = (1/\gamma) \sqrt{\tau_{iC1}/\tau_u}$, and $\tau_{iC1} =$
\[ \tau_{C1}(\tau^*_e); \]

2. \( \tau^*_e < \hat{\tau}_e < \tau^*_e. \)

Proof: See the Appendix. QED

In a dynamic market an analyst faces two problems: First, and similar to the one-shot information sales case, she needs to take into account the negative effect that the price externality induced by the sale of information has on both periods' profits.\(^{18}\) Second, and different from the one-shot case, she faces an intertemporal self-competition problem. As a durable goods monopolist (Bulow (1982, 1986), and Coase (1972)) once the first signal has been sold to informed traders, in order to make a new signal palatable to potential buyers, she must render partially obsolete the first period signal. The analyst therefore scales down the quality of the first period information, and increases the quality of the information sold in the second period.

To describe this more formally, when the analyst chooses the second period signal quality, she solves

\[
\max_{\tau^*_2} \int_0^1 \frac{\gamma}{2} \ln \left( \frac{\tau^*_2}{\tau_{C2} + \tau^*_e} \right) di \leftrightarrow \max_{\tau^*_2} \int_0^1 \frac{\gamma}{2} \left( \ln \frac{\tau^*_2}{\tau_{C2}} - \ln \frac{\tau_{C2} + \tau^*_e}{\tau_{C2}} \right) di,
\]

for any given first period signal quality \( \tau^*_e \). Thus, the price traders are willing to pay in order to get \( s_{i2} \) captures the informational advantage they have in the second period vis-à-vis market makers net of the informational advantage they would have by holding \( s_{i1} \) and observing the equilibrium prices of both periods \( \{p_1, p_2\} \).\(^{19}\) To maximize her profit, the analyst has therefore an incentive to market a signal that “kills off” the second-hand market for the first period signal.\(^{20}\) She does so by selling a signal whose precision \( \tau^*_e \) is strictly higher than the precision of the first period signal.
Going back to period 1, the analyst now faces the following problem:

\[
\max_{\tau_1} \int_0^1 \frac{\gamma}{2} \left( \ln \frac{\tau_i C_1}{\tau C_1} + \ln \frac{2\tau_i C_1 + \tau^*_2}{\tau C_1 + \tau_i C_1} \right) \, di
\]

\[
\Leftrightarrow \max_{\tau_1} \int_0^1 \frac{\gamma}{2} \left( \ln \left( 1 + \frac{\lambda C_1}{\gamma \tau_u} \right) + \ln \left( 1 + \frac{1}{\gamma \tau_u} \frac{\lambda C_2}{\tau C_2} + \frac{1}{\gamma \tau_u} \frac{\lambda C_2}{\tau C_2} \right) \right) \, di.
\]

As in the static case, she is interested in choosing a signal that makes the first period market as thin as possible. However, she must now take into account two additional contrasting effects. On the one hand, increasing the first period signal precision allows traders to grab a higher share of second period noise traders’ losses and this, in turn, increases the price they are willing to pay to get \( s_{i1} \). On the other hand, a higher first period signal precision inevitably increases second period market depth, thus reducing the size of the second period rents the analyst can extract from traders. As the second effect is stronger than the first, the analyst chooses \( \tau^*_1 < \hat{\tau}_e \).

Therefore, the analyst sells a pair of signals that impairs first period information quality while enhancing second period private information. As long-lived information is a durable good that cannot be rented, the analyst needs to force the obsolescence of her first period signal. She does so by combining low first period signal quality (reducing product durability as in Bulow (1986)) with high second period signal quality (marketing a new product that makes the old one obsolete as in Waldman (1993)).

Denote by \( \phi_1(\tau^*_1) \) and \( \phi_2(\tau^*_1) \), respectively, the optimal price of the first and second period signals and by \( \phi(\hat{\tau}_e) \) the optimal price in the static market. The next proposition derives the implications of the optimal solution for the price of information and the depth of the market.

PROPOSITION 8: The information allocation chosen by the analyst prescribes that
1. $\phi_1(\tau_{e_1}^*) > \phi(\hat{\tau}_e) > \phi_2(\tau_{e_1}^*);$

2. $\lambda_C(\hat{\tau}_e) > \lambda_{C1}(\tau_{e_1}^*) > \lambda_{C2}(\tau_{e_1}^*).$

Therefore, while the price of private information decreases across trading periods, depth increases.

Proof: See the Appendix. QED

As the analyst kills off the second-hand market for the first period signal, traders’ net informational advantage vis-à-vis market makers decreases and the price they are willing to pay to buy $s_{i2}$ ends up being lower than the one they pay to get $s_{i1}$. The flip side is that the adverse selection problem faced by market makers becomes less severe and market depth increases.

Increasing patterns of market depth have been documented at the inter daily level by the empirical finance literature (see Foster and Viswanathan (1993b)). Extant theoretical explanations of this phenomenon relate to the strategic trading of insiders facing some form of competitive pressure, that speeds-up the market makers’ learning process. For example, Foster and Viswanathan (1990) show that a single insider is forced to spend his informational advantage at a faster pace than he would otherwise do owing to the presence of impending public information. Holden and Subrahmanyam (1992) consider a market in which the competition among symmetrically informed insiders forces more aggressive trading and a faster resolution of the underlying uncertainty. According to Proposition 8, in contrast, increasing levels of depth may be entirely compatible with an asset market in which no trader has market power, and forthcoming public information poses no threat to informed traders’ speculative abilities. In such a market, the information flow is controlled instead by a monopolistically informed agent who, owing to the nature of the information she sells, intertemporally competes against herself.23
IV. Insider Trading and Information Sales

We are now ready to contrast the dynamic properties of the competitive market in which information is sold with those of the market with a strategic trader. An immediate consequence of Proposition 5 is the following:

PROPOSITION 9: In the 2-period asset market:

1. \( \beta_2 < \gamma \tau_c^n \);
2. \( \lambda_{I_2} > \lambda_{C_2} \);
3. \( \tau_{I_2} < \tau_{C_2} \).

Proof: See the Appendix. QED

Therefore, as opposed to the static market result, in a dynamic market an insider induces different patterns for second period depth and price informativeness. In particular, as he directly uses his informational advantage, he avoids the effect of intertemporal self-competition, fully internalizes the negative effect of aggressive speculation, and trades less intensely. This, in turn, makes the second period market thinner and its price less informative.\(^{24}\)

The insider’s second period problem is akin to the problem he faces in the static market. The equilibrium solution prescribes that he trades in a way to minimize second period market depth. The information monopolist, in contrast, chooses second period information quality not only to minimize second period depth, but also to minimize the second period value competitive traders attach to their first period signal. To see this, rewrite (4) as follows

\[
\phi_2 = \frac{\gamma}{2} \ln \left( 1 + \frac{\tau_{C_2} \cdot \frac{1}{\gamma} \frac{\lambda_{C_2}}{\tau_u}}{\tau_{C_2} + \tau_{I_1} \cdot \frac{\lambda_{C_2}}{\tau_u}} \right).
\]
Therefore, $\tau_{\epsilon_2}$ must make noise traders’ second period expected losses as large as possible while slashing the information advantage traders have in the second period thanks to the signal they bought in period 1. As $(\tau_{C2}/(\tau_{C2} + \tau_{\epsilon_1}))$ is strictly decreasing in $\tau_{\epsilon_1}$, this forces the analyst to sell a signal whose precision is strictly higher than the one minimizing $(1/\lambda_{C2})$.

According to Proposition 9 and different from Proposition 3, in a dynamic market the way a monopolistically informed agent conveys information about fundamentals to the market does matter. In particular, whether such information is exploited directly or sold to competitive traders changes the patterns of depth and price efficiency. In contrast to the view according to which insider trading improves the accuracy of stock prices (see, for example, Carlton and Fischel (1983) and Manne (1966)), the above result shows that a single insider can exploit his monopolistic position in such a way as to choose the rate at which the market learns the fundamentals, in this way impairing second period liquidity and price efficiency.

Conversely, owing to intertemporal competition, a monopolistic analyst loses control over the information flow and speeds up the market learning process. In the spirit of the durable goods monopolist interpretation, the insider therefore acts in a way that is much akin to the monopolistic producer that rents instead of selling her product. Indeed, the monopolistic renter fully internalizes the negative effect of overproduction by keeping the ownership of the goods he markets and thus cuts back on the quantities he releases. On the other hand, by holding on to his informational advantage, the insider directly bears the negative effects of an excessively aggressive behavior, and speculates less intensely.\textsuperscript{25}

\section*{A. The General N-Period Information Market}

The intuition gained in the previous section shows that in a dynamic market an insider is able to retain strong control over the information leakage produced by his
trades. Conversely, an analyst facing intertemporal competition is forced to give up most of such control to information buyers. If that is the case, as the number of trading rounds increases this lack of control should be exacerbated.

In this section, I compare the multiperiod versions of the two-period market of Section II. As is well known, both the results in Propositions 4 and 5 can be generalized to an arbitrary number of periods $N > 2$ (see, respectively, Vives (1995a) and Kyle (1985)). Building on these extensions, consider now the general $N \geq 2$-period case and suppose that in every period $n$ the analyst sells a signal of a different (conditional) precision $\tau_{en}$, charging a price $\phi_n$. The next proposition gives an explicit expression for $\phi_n$, generalizing Proposition 6

**PROPOSITION 10:** In the $N \geq 2$-period information market, the maximum price $\phi_n$ an agent $i$ is willing to pay to buy a signal $s_{in}$ in each period $n$ is given by

$$
\phi_n = \frac{\gamma}{2} \left( \ln \frac{\tau_{iCn}}{\tau_{Cn}} + \sum_{t=1}^{n-1} \tau_{et} \right) + \frac{\gamma}{2} \left( \sum_{n+1 \leq t \leq N} \frac{\tau_{et}}{\tau_{Ct}} \right) - \ln \left( \frac{\tau_{Ct} + \sum_{k=1}^{n} \tau_{ek}}{\tau_{Ct}} \right)
$$

where $\tau_{Cn} = (\text{Var}[v|p^n])^{-1} = \tau_v + \tau_u \sum_{t=1}^{n} (\Delta a_n)^2$, and $\tau_{iCn} = (\text{Var}[v|s^n_i,p^n])^{-1} = \tau_{Cn} + \sum_{t=1}^{n} \tau_{et}$.

**Proof:** See the Appendix. QED

According to (6), $\phi_n$ can be decomposed as follows:

$$
\phi_n = \frac{\gamma}{2} \left( \ln \frac{\tau_{iCn}}{\tau_{Cn}} - \ln \frac{\tau_{Cn} + \sum_{t=1}^{n-1} \tau_{et}}{\tau_{Cn}} \right) + \frac{\gamma}{2} \left( \sum_{n+1 \leq t \leq N} \frac{\tau_{et}}{\tau_{Ct}} \right) - \ln \left( \frac{\tau_{Ct} + \sum_{k=1}^{n} \tau_{ek}}{\tau_{Ct}} \right).
$$

Thus, in the $N$-period market, in every period $n$ a signal is useful both because of the
increase in informational advantage it allows a trader to hold in the same period $n$ (the first term in the above expression) and because of the increase in the informational advantage it determines in every future period $k = n+1, n+2, \ldots, N$ (the second term).

Given any trading length $N$, the last period’s optimal precision is thus given by

$$
\tau_{\epsilon_n}^* = \left(\frac{1}{\gamma}\right)\sqrt{\tau_{C_n-1}/\tau_u}.
$$

Recursive substitution of $\tau_{\epsilon_n}^*$ into every period $n$’s profit function shows that the analyst solves a sequence of maximization problems such that at every time $n = 1, 2, \ldots, N-1$, she chooses

$$
\tau_{\epsilon_n}^* \in \arg \max_{\tau_{\epsilon_n}} \left(\sum_{t=n}^{N-1} \phi_t + \phi_N^*\right)
$$

$$
= \frac{\gamma}{2} \left(\sum_{k=n}^{N-1} \ln \frac{\tau_{C_k}}{\sum_{j=1}^{n-1} \tau_{\epsilon_j}} + \ln \frac{2\tau_{CN-1} + \tau_{\epsilon_n}^*}{\tau_{CN-1} + \sum_{j=1}^{N-1} \tau_{\epsilon_j} + \tau_{Cn-1}}\right),
$$
given the sequence $\{\tau_{\epsilon_k}^*\}_{k=n+1}^{N-1}$.

Using the above expression for the value of information I run numerical simulations for the case $N = 4$. The aim is to verify whether the results obtained in Proposition 9 still hold when the number of trading rounds increases. Letting $\tau_v, \tau_u, \gamma \in \{0.2, 0.4, 0.6, 0.8, 1, 4, 6\}$, in all of the simulations the analyst induces a more aggressive traders’ behavior than that displayed by the insider. Hence, the effect of intertemporal competition leads the analyst to lose control over the information flow, whereas the insider, lacking competitive pressure, can trade less aggressively. As a result from the second trading round onwards, the competitive market is more liquid than the strategic market (see Figure 1).

[Figure 1 about here.]

Turning to price informativeness, the numerical simulations show that the competitive market leads to a more rapid resolution of the fundamentals’ uncertainty than
the strategic market starting from the first trading round. The intuition is straightforward: As the number of trading rounds increases, traders are willing to pay a higher price for the first period signal. This, in turn, shifts the information quality supplied by the analyst upwards, thereby increasing competitive traders’ aggressiveness (see Figure 2).

V. Extensions

In order to increase her grip over the information flow, the analyst may want to consider two different strategies. She may try to segment the first period information market, so as to reduce the fraction of traders that already possess a signal in the second period. Also, she may want to publicly release some information at the beginning of period two in order to reduce the informational advantage that traders acquire in period one. Both strategies attempt to reduce the competitive pressure the analyst faces in the second period. However, as shown in this section, neither of them can increase the analyst’s profit.

A. Market Segmentation

Consider an extension of the two-period market analyzed in Section II in which every informed trader $i$ in each period $n$ (potentially) receives a private signal $s_{in} = v + \epsilon_{in}$, where $\epsilon_{in} \sim N(0, \tau_{in}^{-1})$. All the remaining assumptions are the same as in Section II. Under these conditions, the following result holds:26

**PROPOSITION 11:** In the 2-period competitive market, there exists a unique linear equilibrium. The equilibrium is given by $X_{in}(s^n, p^n) = a_{in}(\tilde{s}_{in} - p_n)$, and $p_n = \lambda Cn z_{Cn} + (1 - \lambda Cn \Delta a_n)p_{n-1}$, $n = 1, 2$, where $a_{in} = \gamma(\sum_{l=1}^{n} \tau_{il}), \tilde{s}_{in} = (\sum_{l=1}^{n} \tau_{il})^{-1} \times
Therefore, the heterogeneity of signals’ precisions is reflected in traders’ speculative aggressiveness. In the above market the analyst may decide to provide each trader a signal of a different precision. The following proposition shows that this is never optimal:27

**PROPOSITION 12:** In the 2-period information market with heterogeneous signal precision, in every period \( n = 1, 2 \) the analyst sells to all traders a signal of the same precision.

**Proof:** See the Appendix. QED

The proof is based on two arguments. First, notice that in every period \( n = 1, 2 \) price informativeness \( \tau_{Cn} \) depends only on informed agents’ average signal precision. Thus, \( \tau_{Cn} \) is invariant with respect to a distribution of signal precisions that leaves its average unchanged. Next, in the first period the analyst’s objective function is concave in the informational advantage each trader holds over market makers in every period \( n \) \((\tau_{iCn}/\tau_{Cn})\). Thus, owing to Jensen’s inequality, given two information allocations yielding the same average total precision, in every period \( n \) the analyst obtains a higher profit when she sells to all traders a signal with the same precision (thus providing all traders with the same private precision) than when she sells signals with diverse precisions. It then follows that in every optimal information allocation, \( \tau_{iC1} \) is the same across all traders, and \( \tau_{iC1}^* (\tau_{iC1}) = \tau_{iC1}^* \) for every trader \( i \in [0, 1] \).

A direct implication of the above argument, is that the analyst never finds it profitable to segment the market – that is to sell information of precision \( \tau_{iC1}^* > 0 \) \((\tau_{iC1}^* = 0)\) to a fraction \( 0 < \mu < 1 \) \((1 - \mu)\) of traders in the first period. Indeed, such information allocation is dominated by one in which all traders in the first period receive a signal of precision \( \mu \tau_{iC1}^* \). Intuitively, market segmentation yields two
contrasting effects. On the one hand, by reducing the fraction of traders that receive information in the first period, the analyst faces reduced pressure to sell a better signal in the second period, as part of the population that buys information in the second period holds no previous signal. This, in turn, slows information devaluation, increasing the analyst’s profit. On the other hand, since equilibrium prices reflect fundamental information, the value that each trader assigns to a signal in the second period – after having observed the price sequence – is lower. This, in turn, limits the price that the analyst can extract from those traders that did not receive a signal in the first period. As the second effect is always stronger than the first, market segmentation never pays.

B. Public Disclosure

In a large market with differential information, disclosing to each trader \(i\) the signal each trader \(j\) has received \((j \neq i)\) is practically unfeasible. A possible way out is for the analyst to reveal the aggregate signal she sold to traders in the first period (namely \(\bar{s}_1 = \int_0^1 s_{1i} \, di\)). Notice, however, that given the analyst’s perfect knowledge of the fundamental \(v\), such a strategy leads to complete information revelation, preventing the sale of a new signal in period 2.\(^{28}\)

Based on these considerations, I address the issue of information disclosure in the following way: Suppose that at the beginning of period 2 the analyst discloses one of the signals she sold in period 1, say \(s_{j1} = v + \epsilon_{j1}\) (i.e., the analyst chooses at random which signal to communicate to the market). In a large market each trader assigns zero probability to the event that his signal will be made public. Therefore, in order to determine the price of information in this setup we can focus on the equilibrium in which each trader \(i \in [0, 1]\) anticipates observing a (public) signal \(s_{j1}, j \neq i\) at the beginning of period 2.

PROPOSITION 13: In the 2-period competitive market with disclosure, there exists
a unique linear equilibrium. The equilibrium is symmetric and given by
\[ X_1(s_1, p_1) = a_1(s_1 - p_1), \]
\[ X_2(s_2, p_2; s_{j1}) = a_2(s_2 - p_2), \]
where \( a_n = \gamma(\sum_{t=1}^n \tau_{t}), \) \( E[v|z^2] = \) \( \lambda C_2 z + (1 - \lambda C_2) p_1, \)
\( \hat{s}_n = \sum_{t=1}^n (\Delta a_t)^2, \) \( \alpha = \tau_{C2} / \hat{\tau}_{C2}, \) and \( \hat{\tau}_{C2} = (\text{Var}[v|z^2; s_{j1}])^{-1} = \tau_{C2} + \tau_{e_1}. \)

**Proof:** See the Appendix. QED

Information disclosure does not change the nature of the strategies that traders adopt in the no-disclosure equilibrium. However, it improves the market maker’s estimation. While in the no-disclosure model second period public precision is given by
\[ \text{Var}[v|z^2]^{-1} = \tau_{C2} = \tau_v + \tau_u \sum_{t=1}^2 (\Delta a_t)^2, \]
in the model with disclosure \( \text{Var}[v|z^2; s_{j1}]^{-1} = \hat{\tau}_{C2} = \tau_{C2} + \tau_{e_1}. \) The precision incorporated in the public signal increases the quality of the public forecast. This, in turn, affects the price each trader is willing to pay in order to buy both signals:
\[ \hat{\phi}_1 = \frac{\gamma}{2} \ln \frac{\tau_{C1}}{\tau_{C1}} + \frac{\gamma}{2} \ln \frac{\hat{\tau}_{C2} + \tau_{e_1}}{\hat{\tau}_{C2}}, \]
\[ \hat{\phi}_2 = \frac{\gamma}{2} \ln \frac{\hat{\tau}_{C2}}{\hat{\tau}_{C2} + \tau_{e_1}}, \]
where \( \hat{\tau}_{C2} = \hat{\tau}_{C2} + \tau_{e_1} + \tau_{e_2}. \) A straightforward calculation shows that \( \hat{\phi}_n < \phi_n, \)
\( n = 1, 2. \) Therefore,

**PROPOSITION 14:** The analyst never finds it profitable to publicly disclose information in the second period.

The intuition is as follows: Second period information disclosure has two effects. First, it reduces the added value that the first period signal has in the second period, making the acquisition of further information in the second period more desirable:
\[ \hat{\phi}(s_{i1}||p_1, p_2; s_{j1}) = \frac{\gamma}{2} \ln \frac{\hat{\tau}_{C2} + \tau_{e_1}}{\hat{\tau}_{C2}} < \phi(s_{i1}||p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{e_1}}{\tau_{C2}}. \]
However, it also reduces the uncertainty over the asset value $v$, and hence the gross informational advantage that traders acquire when they buy a new signal.\(^\text{30}\) This, in turn, reduces traders’ value for new information:

$$\frac{\gamma}{2} \ln \frac{\hat{\tau}_{iC2}}{\hat{\tau}_{C2}} < \frac{\gamma}{2} \ln \frac{\tau_{iC2}}{\tau_{C2}}.$$ 

The latter effect is always stronger than the former. Thus, with information disclosure the maximum price the analyst can extract for $s_{i2}$ is lower.\(^\text{31}\)

Propositions 8, 9, and 14 show that while the problems of the analyst and the durable goods monopolist share various common features, they also display a number of differences. First, note that as opposed to the durable goods producer, the analyst does not produce the fundamental information on which the signals she sells are based. In other words, she only transforms a raw material whose production is located at the upstream level. As a consequence, the strategy of accelerating the first period signal decay also impacts her ability to sell further signals in the future. This, implies that a policy of increasing such a rate of decay through public disclosure is never profitable.\(^\text{32}\)

Also, different from a durable goods monopolist, the analyst finds it optimal to serve the whole market in both periods. Indeed, segmenting the first period information market relaxes second period competition but also reduces the profits the analyst reaps from first period traders. According to Proposition 12 the latter effect is always stronger than the former.

### VI. Discussion and Concluding Remarks

In this paper I argue that as fundamental information resembles a durable good in many respects, the effects of its incorporation into stock prices depend on who is the
agent controlling its flow. A monopolistic analyst selling information in a dynamic market faces an intertemporal self-competition problem that leads her to partially release the control over the information flow to traders. Conversely, an insider acts “as if” he would rent the information he possesses to the market, thereby securing tighter control over the information flow. As a result, for a given piece of information, a market in which information is provided by an analyst is deeper and more efficient than one in which information is transmitted by an insider.

A number of issues are left for future research. Among these, competition between different analysts deserves special consideration. Indeed, in a static market, competition among analysts may lower the pressure to provide signals of better quality (Simonov (1999)). To be sure, when signals are correlated, traders may place higher value in holding the signal bundle. This, in turn, relaxes competition, allowing the analysts to reduce the precision they embed in their signals. As a consequence, traders base their strategies on information of lower quality, potentially negatively affecting the properties of the underlying stock market. In a dynamic market, on the other hand, the intertemporal competition effect I uncover remains, accelerating the resolution of the underlying uncertainty. Therefore, the overall impact of competition on market quality will depend on the interplay between the competition-stifling effect due to signal complementarity, and the competition-enhancing effect due to the long-lived nature of information.

A related issue refers to the properties of a market in which either competing analysts or multiple insiders provide information. In the latter case the existing literature has shown that the effect of competition on market quality depends on the correlation structure of insiders’ information and on the possibility of coordination. This suggests that the comparison between the properties of a market in which competing analysts provide information and one with multiple insiders should depend heavily
on the posited information structure.

Also, in this paper I have assumed that the decision to trade on or sell privileged information is exogenous. However, the paper’s main result raises the issue of why information sales occur at all in financial markets. In other words, one may wonder why the analyst does not find a way to internalize the negative effect of excessive speculation so as to exploit her information more efficiently. For example, she could choose either to directly act as an insider, or (for instance, if faced with a capital constraint) to indirectly sell her information by setting up a mutual fund. In addressing this issue, however, one may want to consider the benefits of direct information sales brought up by the literature. Indeed, Fishman and Hagerty (1995) argue that faced with informed competitors, an agent may use information sales as a commitment device to trade aggressively in the stock market. This strategy secures the analyst a larger share of the reduced total market profits. Also, Admati and Pfleiderer (1990) show that direct sales of information allow better surplus extraction vis-à-vis the set up of a mutual fund, and thus may be preferred as a means to distribute information. A formal analysis of the conditions under which the cost of direct information sales that arises in my model is offset either by their strategic benefit, or by the enhanced surplus-extraction ability they allow, is beyond the scope of this paper and is left for future research.

Finally, the paper focuses on the single asset case. As traders typically hold portfolios of assets, a natural application of the present work is to the analysis of the multi-security case. I leave this and other extensions for further investigation.
Appendix

Proof of Proposition 6: Start from the second period. Owing to the assumption of a CARA utility function and the normality of the random variables, a trader’s expected utility from using the signal she bought in period 1 (together with the information obtained from the equilibrium price) is given by

$$E[U((v-p_2)x_{i2})|\{s_{i1},p_1,p_2\}] = -\exp\{-a_1^2(s_{i1}-p_2)^2/(2\gamma^2(\tau C_2+\tau _1))\}.$$  

If the trader chooses to acquire the second period signal as well, her expected utility is given by

$$E[U((v-p_2)x_{i2})|\{s_{i1},s_{i2},p_1,p_2\}] = -\exp\{-a_2^2(s_{i2}-p_2)^2/(2\gamma^2\tau C_2)\}.$$  

Using a standard result from normal theory (see, for example, Danthine and Moresi (1992)), prior to deciding whether or not to buy $s_{i2}$, the expected utility the trader earns in the first case is given by

$$E[E[U((v-p_2)x_{i2})|\{s_{i1},p_1,p_2\}] = -(\tau C_2/(\tau C_2+\tau _1))^{1/2},$$  

whereas in the second case it is given by

$$E[U((v-p_2)x_{i2})] = E\left[E\left[U((v-p_2)x_{i2})|\{s_{i2},p_1,p_2\}\right]\right] = -\left(\frac{\tau C_2}{\tau C_2+\tau _1}\right)^{1/2}.$$

Therefore, denoting by $\phi_2(s_{i2}|s_{i1},p_1,p_2)$ the maximum price the trader is willing to pay in order to acquire $s_{i2}$ once she has already acquired the first signal, the trader’s certainty equivalent for the second period signal is given by the solution of

$$\exp\{\phi_2(s_{i2}|s_{i1},p_1,p_2)/\gamma\}(\tau C_2/\tau C_2)^{1/2} = (\tau C_2/(\tau C_2+\tau _1))^{1/2},$$  

or

$$\phi_2 = \phi(s_{i2}|s_{i1},p_1,p_2) = \frac{\gamma}{2} \ln \frac{\tau C_2}{\tau C_2+\tau _1}.$$

In the first period a trader that buys $s_{i1}$, uses it in both periods 1 and 2, and plans
to buy $s_{i2}$ earns expected utility

$$
E[U(W_{i2})] = E\left[ E\left[ U\left( (p_2 - p_1)x_{i1} + \frac{a_2^2}{2\gamma\tau_{C2}}(s_{i2} - p_2)^2\right) \mid \{s_{i1}, p_1\} \right] \right] \\
= E\left[ U\left( \frac{a_2^2}{2\gamma\tau_{C2}}(s_{i1} - p_1)^2\right) \right] \\
= -\left( \frac{\tau_{C1}}{\rho_{C1}} \right)^{1/2},
$$

whereas a trader that plans to buy no signal makes zero expected profits (as the information she ends up holding coincides with that of the market makers who, under the competitive assumption, earn zero profits). Therefore, the maximum price a trader is willing to pay for using the first period signal in period 1 is given by

$$
\phi(s_{i1} \mid p_1) = \frac{\gamma}{2} \ln \frac{\tau_{C1}}{\rho_{C1}}.
$$

However, the trader can also use the same signal in period 2, insofar as it allows him to have an informational advantage vis-à-vis market makers independently from buying the second signal. The expected utility the trader expects to earn from observing $\{s_{i1}, p_1, p_2\}$ is given by $E[U((v - p_2)x_{i2})] = -(\tau_{C2}/(\tau_{C2} + \tau_{C1}))^{1/2}$, which compared with the expected utility he earns only observing equilibrium prices gives

$$
\phi(s_{i1} \mid p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{C1}}{\tau_{C2}}.
$$

QED

Proof of proposition 7: Given traders’ willingness to pay, the analyst faces the problem of choosing the optimal sequence of signal precisions $\{\tau_{\epsilon_1}^*, \tau_{\epsilon_2}^*\}$. Starting
from the second period he solves

\[
\max_{\tau_{e2}} \int_0^1 \phi(s_i2 || s_{i1}, p_1, p_2) di.
\]

The first-order condition for the second period signal precision is given by

\[
\frac{\gamma (\tau_{e1} + \gamma^2 \tau_{e1}^2 \tau_u + \tau_v - \gamma^2 \tau_{e2} \tau_u)}{2\tau_{iC1}\tau_{iC2}} = 0,
\]

and its unique positive solution gives \(\tau_{e2}^* = (1/\gamma)\sqrt{\tau_{iC1}/\tau_u}\). To see that this solution is a maximum, let \(F_1(\tau_{e2}) = \tau_{C2} + \tau_{e1}\). Then (A1) can be rewritten as: \(\psi(\tau_{e2}) = (F_1(\tau_{e2})(\tau_{e2} + F_1(\tau_{e2})))^{-1} \gamma (F_1(\tau_{e2}) - 2\gamma\tau_{e2}^* \tau_u)\). Differentiating the previous expression with respect to \(\tau_{e2}\) gives

\[
\frac{\partial \psi(\cdot)}{\partial \tau_{e2}} \propto (F_1'(\tau_{e2}) - 4\gamma^2\tau_{e2}^2 \tau_u)F_1(\tau_{e2})(\tau_{e2} + F_1(\tau_{e2}))
\]

\[
-(F_1(\tau_{e2}) - 2\gamma^2\tau_{e2}^2 \tau_u)(F_1'(\tau_{e2})(\tau_{e2} + F_1(\tau_{e2}))) + F_1(\tau_{e2})(1 + F_1'(\tau_{e2})),
\]

and evaluating it at the optimum yields \(\left.\frac{\partial \psi(\cdot)}{\partial \tau_{e2}}\right|_{\tau_{e2} = \tau_{e2}^*} \propto (F_1'(\tau_{e2}^*) - 4\gamma^2\tau_{e2}^* \tau_u)F_1(\tau_{e2}^*)(\tau_{e2}^* + F_1(\tau_{e2}^*))\). As one can verify, the sign of the above expression is always negative, and the proposed solution is indeed a maximum.

Consider now the first period. Using \(\tau_{e2}^*\) the analyst’s objective function becomes

\[
\int_0^1 \phi_1 + \phi_2 di = \int_0^1 \frac{\gamma}{2} \left( \ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{2\tau_{iC1} + \tau_{e2}^*}{\tau_{C1} + \tau_{iC1}} \right) di.
\]

Let

\[
F(\tau_{e1}) = \frac{\partial(\phi_1 + \phi_2)}{\partial \tau_{e1}}
\]

\[
= \frac{\gamma}{2} \left( \frac{\tau_v - \gamma^2\tau_{e1}^2 \tau_u}{\tau_{C1}\tau_{iC1}} - \frac{2\gamma^2\tau_{e1}^2 \tau_u (3 + 2\gamma(\gamma\tau_{e1} \tau_u + \sqrt{\tau_u \tau_{iC1}})) + \tau_{e1}(1 + 4\gamma^2\tau_{u} \tau_{e1}) - 4\gamma\tau_{u} \sqrt{\tau_u \tau_{iC1}})}{2\tau_u \tau_{e2}^* (\tau_{iC1} + \tau_{C1})(2\tau_{iC1} + \tau_{e2}^*)} \right).
\]
Then, as one can verify, \( F(0) = (\tau_0 + 2\gamma\sqrt{\tau_u/\tau_0})^{-1}(1 + 3\gamma\sqrt{\tau_u/\tau_0}) > 0 \) and \( F(\hat{\tau}_e) < 0 \). Hence, as \( F(\tau_{e_i}) \) is continuous in \( \tau_{e_i} \), there exists a \( \tau_{e_i}^{*} \in (0, \hat{\tau}_{e_i}) \) such that \( F(\tau_{e_i}^*) = 0 \) and \( F'(\tau_{e_i}^*) < 0 \). To see that such a point is unique, let \( F(\tau_{e_i}) = (\gamma/2)(\partial \ln(\tau_{C1}/\tau_{e1})/\partial \tau_{e_1}) \) and \( F(\tau_{e_i}) = (\gamma/2)(\partial \ln((\tau_{C1} + \tau_{e1})/\partial \tau_{e_1}) \). Hence, \( F(\tau_{e_i}) = F_1(\tau_{e_i}) + F_2(\tau_{e_i}) \). Now, both \( (\gamma/2)\ln(\tau_{C1}/\tau_{e1}) + (\gamma/2)\ln(\tau_{C1} + \tau_{e1}) \) are unimodal in \( \tau_{e_1} \); in particular, \( F(\tau_{e_i}) > 0 \iff \tau_{e_1} < (1/\gamma)\sqrt{\tau_u/\tau_0} \), while \( F(\tau_{e_i}) > 0 \iff \tau_{e_1} < (1/\gamma)\sqrt{\tau_u/\tau_0} \). Thus, as \( \tau_{e_1}^* \in (0, (1/\gamma)\sqrt{\tau_u/\tau_0}) \), then for any \( \eta > 0 \), there is a \( \tilde{\tau}_{e_1} \in (\tau_{e_1}^*, \tau_{e_1} + \eta) \) such that \( F_1(\tau_{e_1}^*) > F_1(\tilde{\tau}_{e_1}) \) for \( i = 1, 2 \). Hence, \( 0 = F_1(\tau_{e_1}^*) + F_2(\tau_{e_1}^*) > F_1(\tilde{\tau}_{e_1}) + F_2(\tilde{\tau}_{e_1}) \) and the latter inequality implies that \( \tau_{e_1}^* \) is unique.

The second part of the proposition is immediate as \( (\gamma\tau_{e_1}^*)^2\tau_u < \tau_{iC1}^* \).

QED

Proof of Proposition 8: For the first part, notice that \( \phi_1 - \phi_2 \geq 0 \iff G(\tau_{e_1}) \equiv 4\tau_{C1}^3 - \tau_{C1}(\tau_{C1} + \tau_{e1})(2\tau_{C1} + \tau_{e1}^*) \geq 0 \). Evaluating \( G(0) = -(2\tau_{C1}^2/\gamma)\sqrt{\tau_u/\tau_0} < 0 \) while \( G((1/\gamma)\sqrt{\tau_u/(3\tau_u)}) > 0 \). Hence, as \( G(\cdot) \) is continuous in \( \tau_{e_1} \), there is a \( \tilde{\tau}_{e_1} \in (0, (1/\gamma)\sqrt{\tau_u/(3\tau_u)}) \) such that \( G(\tilde{\tau}_{e_1}) = 0 \) and \( G'(%(\tilde{\tau}_{e_1}) > 0 \). Furthermore as one can verify \( G(\tau_{e_1}) = \tau_{e1}^*(\tau_{C1} + \tau_{C1})(2\gamma\tau_{e1}\sqrt{\tau_u/\tau_{iC1}} - \tau_{C1}) + 2\gamma\tau_{iC1}^2\tau_{e1} \) and as all of the terms of the previous expression are increasing in \( \tau_{e_1} \), the point \( \tilde{\tau}_{e_1} \) is unique. Now, evaluating \( F((1/\gamma)\sqrt{\tau_u/(3\tau_u)}) > 0 \), it must be that \( \tilde{\tau}_{e_1} < (1/\gamma)\sqrt{\tau_u/(3\tau_u)} < \tau_{e1}^* \) and as for any \( \tau_{e_1} > \tilde{\tau}_{e_1} , G(\tau_{e_1}) > 0 \), the result follows.

To see that \( \phi_1(\tau_{e1}^*) > \phi(\hat{\tau}_e) \), notice that

\[
\phi_1 = \frac{\gamma}{2} \left( \ln \frac{\tau_{C1}}{\tau_{C1}^*} + \ln \frac{2\tau_{C1}}{\tau_{C1}^* + \tau_{iC1}} \right),
\]

and its unique maximum coincides with the one of the static information market, i.e. \( \hat{\tau}_e = (1/\gamma)\sqrt{\tau_u/\tau_0} \). Now, \( (1/\gamma)\sqrt{\tau_u/3\tau_u} < \tau_{e1}^* < \hat{\tau}_e \). Hence, to prove \( \phi_1(\tau_{e1}^*) > \)
\( \phi(\hat{\tau}) \), it is sufficient to show that \( \phi(\hat{\tau}) < \phi_1((1/\gamma)\sqrt{\tau_v/3\tau_u}) \). Evaluating, \( \phi(\hat{\tau}) < \phi_1((1/\gamma)\sqrt{\tau_v/3\tau_u}) \) if and only if

\[
\frac{2\gamma\tau_v(3\sqrt{3} - 4) + \sqrt{\tau_v/\tau_u}(3 - \sqrt{3})}{2\gamma\tau_v(\sqrt{3} + 8\sqrt{\tau_u/\tau_v})} > 0,
\]

a condition that is always satisfied. Next, to see that \( \phi_2(\tau^*_{(1)}) < \phi(\hat{\tau}) \), notice that

\[
\phi_2(\tau^*_{(1)}) = \frac{\gamma}{2} \ln \left( 1 + \frac{1}{2\gamma\sqrt{\tau_v\tau_u}(\tau^*_{(1)})} \right).
\]

A direct comparison with \( \phi(\hat{\tau}) \) gives the desired result.

For the second part, notice that \( \lambda_{C1}(\tau^*_{(1)}) > \lambda_{C2}(\tau^*_{(1)}) \) if and only if \( a_1\tau_{C2} > \Delta a_2\tau_{C1} \iff a_1^2\tau_u(\tau_{C1} + \tau_{C1})^2 > \tau_{C1}^2\tau_{C1} \). Define \( H(\tau_{(1)}) = a_1^2\tau_u(\tau_{C1} + \tau_{C1})^2 - \tau_{C1}^2\tau_{C1} \), and notice that \( H(0) = -\tau_v^3 \), and \( \lim_{\tau_{(1)} \to \infty} H(\tau_{(1)}) = \infty \). Hence, there is a \( \hat{\tau}_{(1)} \) such that \( H(\hat{\tau}_{(1)}) = 0 \). Furthermore, \( H(\hat{\tau}_{(1)}) = 0 \Rightarrow H'(\hat{\tau}_{(1)}) > 0 \), and as \( H'(\tau_{(1)}) = \gamma a_1\tau_u(18a_1^2\tau_v^2 + 2\tau_v^2 + 4\tau_v^2 + 15a_1^2\tau_u\tau_v + 20a_1^2\tau_u\tau_v + 6\tau_u\tau_v) - \tau_v^2 \), \( \hat{\tau}_{(1)} \) is unique. Consider then the point \( \hat{\tau}_{(1)} = (1/\gamma)\sqrt{\tau_v/3\tau_u} \) and notice that \( F(\hat{\tau}_{(1)}) > 0 \), which implies \( \tau^*_{(1)} > \hat{\tau}_{(1)} \). Evaluating \( H(\hat{\tau}_{(1)}) = \tau_v^2/(9\gamma^2\tau_u) \), which implies that \( \hat{\tau}_{(1)} < \hat{\tau}_{(1)} < \tau^*_{(1)} \) or, equivalently, \( \lambda_{C1}(\tau^*_{(1)}) > \lambda_{C2}(\tau^*_{(1)}) \).

To see that \( \lambda_{C}(\hat{\tau}) > \lambda_{C1}(\tau^*_{(1)}) \), notice that \( \hat{\tau} > \tau^*_{(1)} \). Thus, for \( \tau \leq \hat{\tau} \), \( \lambda_{C1}(\cdot) \) increases in \( \tau \), and the result follows.

QED

Proof of Proposition 9: Given the expressions for the equilibrium parameters, start from the second part of the claim. To see that \( \lambda_{I_2} > \lambda_{C2}(\tau^*_{(1)}) \), notice that given \( \tau^*_{(2)} \), \( \lambda_{C2} = (\tau_{C1} + \tau_{C1})^{-1}(\tau_u\tau_{C1})^{1/2} \), hence \( (\partial\lambda_{C2}/\partial\tau_{(1)}) < 0 \) and \( \lambda_{C2}(\tau^*_{(1)}) < \lambda_{C2}((1/\gamma)(\tau_v/3\tau_u)) \). Thus, as one can verify, \( \lambda_{C2}((1/\gamma)(\tau_v/3\tau_u)) < \lambda_{I_2} \). Next, \( \beta_2 = (1/2\lambda_{I_2}) < (1/2\lambda_{C2}) \), while \( \gamma \tau^*_{(2)} > (1/2\lambda_{C2}) \). Therefore, \( \gamma \tau^*_{(2)} > \beta_2 \). Finally, as
\[ \lambda_{I2} > \lambda_{C2}(\tau_{t1}^*) \] and \[ \lambda_{I2} = \beta_2 \tau_u \tau_{I2}^{-1} \], we have that \[ \beta_2 \tau_u \tau_{I2}^{-1} > \Delta a_2 \tau_u \tau_{C2}^{-1}(\tau_{t1}^*) \]. However, as \( \beta_2 < \Delta a_2 \), then it must be that \( \tau_{I2}^{-1} > \tau_{C2}^{-1}(\tau_{t1}^*) \) or \( \tau_{I2} < \tau_{C2}(\tau_{t1}^*) \).

\[ \text{QED} \]

**Proof of Proposition 10:** Without loss of generality, the proof is given for the case \( N = 3 \). Starting from \( n = 3 \), an information buyer that has already observed \( \{s_i1, s_i2\} \) has to decide whether to acquire \( s_i3 \). If he does so, then according to Proposition 4, \( X_{i3}(\tilde{s}_{i3}, p_3) = a_3(\tilde{s}_{i3} - p_3) \), with \( a_3 = \gamma \sum_{t=1}^{3} \tau_{\epsilon t} \), \( E[U((v - p_3)x_{i3})|\tilde{s}_{i3}, p^3] = -\exp\{-a_3^2 / 2\gamma^2 \tau_{C3}(\tilde{s}_{i3} - p_3)^2 \} \), and

\[
E \left[ E \left[ U((v - p_3)x_{i3}) \right| \{\tilde{s}_{i3}, p^3\} \right] \right] = - \left( \frac{\tau_{C3}}{\tau_{iC3}} \right)^{1/2}.
\]

On the other hand, if the trader does not buy \( s_{i3} \), then it is easy to see that \( X_{i3}(\tilde{s}_{i2}, p_3) = a_2(\tilde{s}_{i2} - p_3) \),

\[
E \left[ U((v - p_3)x_{i3}) \right| \{\tilde{s}_{i2}, p^3\} \right] \right] = - \exp \left\{ - \left( \frac{a_2^2}{2\gamma^2 (\tau_{C3} + \sum_{t=1}^{2} \tau_{\epsilon t})} \right) (\tilde{s}_{i2} - p_3)^2 \right\}, \tag{A2}
\]

and

\[
E \left[ E \left[ U((v - p_3)x_{i3}) \right| \{\tilde{s}_{i2}, p^3\} \right] \right] = - \left( \frac{\tau_{C3}}{\tau_{C3} + \sum_{t=1}^{2} \tau_{\epsilon t}} \right)^{1/2}. \tag{A3}
\]

Therefore, indicating by \( \phi_3(s_{i3}||s_{i1}^2, p^3) \) the maximum price the trader is willing to pay in order to acquire \( s_{i3} \) once he has already acquired the first and second period signals, his certainty equivalent for the third period signal is given by the solution to

\[
\exp \{\phi_2(s_{i3}||s_{i1}^2, p^3)/\gamma\} (\tau_{C3}/\tau_{C3} + \sum_{t=1}^{2} \tau_{\epsilon t})^{1/2} = (\tau_{C3}/(\tau_{C3} + \sum_{t=1}^{2} \tau_{\epsilon t}))^{1/2}, \text{ or}
\]

\[
\phi_3 = \phi \left( s_{i3}||s_{i1}^2, p^3 \right) = \frac{\gamma}{2} \ln \left( \frac{\tau_{iC3}}{\tau_{C3} + \sum_{t=1}^{2} \tau_{\epsilon t}} \right).
\]
Stepping back to period 2, the price a trader is willing to pay to acquire $s_i^2$ is the sum of the price he would pay to exploit the informational advantage in (i) period two and (ii) period three. Starting from (ii), as shown above if the trader possesses $s_i^2$, then his expected utility from trading in period 3 is given by (A3). If the trader only has $s_i^1$, then it is easy to see that $X_{i3}(s_i^1, p^3) = a_1(s_i^1 - p_3)$ and computing the ex-ante expected utility in this case,

$$E \left[ E \left[ U((v - p_3)x_i^3) \mid \{ s_i^1, p^3 \} \right] \right] = -\left( \frac{\tau_{C3}}{\tau_{C3} + \tau_{e1}} \right)^{1/2}.$$

Therefore, the value of $s_i^2$ in period 3 is given by

$$\phi (s_i^2 \mid| s_i^1, p^3) = \frac{\gamma}{2} \ln \frac{\tau_{C3} + \sum_{t=1}^{2} \tau_{e_t}}{\tau_{C3} + \tau_{e1}}. \quad (A4)$$

To address point (i), we first need to find the trader’s second period strategy if he observes $\{s_i^1, s_i^2\}$ and if he only observes $s_i^1$. Start from $X_{i2}(\tilde{s}_i^2, p^2)$, that by dynamic optimality is the maximizer of

$$E[U((p_3 - p_2)x_i^2 + (v - p_3)x_i^3) \mid \{ \tilde{s}_i^2, p^2 \}] \quad (A5)$$

$$= E \left[ -\exp \left\{ -\frac{1}{\gamma} \left( (p_3 - p_2)x_i^2 + \frac{a_2^2(\tilde{s}_i^2 - p_3)^2}{2\gamma(\tau_{C3} + \sum_{t=1}^{2} \tau_{e_t})} \right) \right\} \mid \{ \tilde{s}_i^2, p^2 \} \right].$$

Letting $F = (2\gamma(\tau_{C3} + \sum_{t=1}^{2} \tau_{e_t}))^{-1}a_2^2$, the argument in the above exponential can be rewritten as follows:

$$F(p_3 - \mu)^2 + ((x_i^2/\gamma) + 2F(\mu - \tilde{s}_i^2))(p_3 - \mu)$$

$$+ ((x_i^2/\gamma) + F(2\tilde{s}_i^2 - \mu))\mu + F\tilde{s}_i^2 - (x_i^2/\gamma)p_2,$$

where $p_3 - \mu$ is normally distributed (conditionally on $\{\tilde{s}_i^2, p^2\}$) with mean zero and
variance $\Sigma$ (i.e. $\mu = E[p_3|\bar{s}_{i2}, p^2]$), where

$$
\mu = \frac{\Delta \tau C_3 (\sum_{t=1}^2 \tau_t) \bar{s}_{i2} + \tau C_2 (\tau C_3 + \sum_{t=1}^2 \tau_t) p_2}{\tau C_3 \tau C_2}, \quad \Sigma = \frac{\Delta \tau C_3 (\tau C_3 + \sum_{t=1}^2 \tau_t)}{\tau C_2 \tau C_2^2}.
$$

Using a standard property of normal random variables, it can be shown that (A5) is equal to $(\Sigma^{-1} + 2F)^{-1/2} \Sigma^{-1/2}$ times

$$
- \exp \left\{ - \left( (\mu^2 F + ((x_{i2}/2) - 2F \bar{s}_{i2})\mu + F \bar{s}_{i2}^2 - (x_{i2}/\gamma)p_2) 
- (1/2)((x_{i2}/\gamma) - 2F(\bar{s}_{i2} - \mu))^2 (\Sigma^{-1} + 2F)^{-1} \right) \right\}.
$$

The first order condition to maximize (A5) with respect to $x_{i2}$ yields

$$
X_{i2}(\bar{s}_{i2}, p^2) = \gamma \left( (\mu - p_2) \left( \Sigma^{-1} + 2F \right) + 2F(\bar{s}_{i2} - \mu) \right),
$$

and using the above expressions for $\mu$ and $\Sigma$ one finds that

$$
X_{i2}(\bar{s}_{i2}, p_2) = a_2(\bar{s}_{i2} - p_2).
$$

Substituting (A7) in (A6), rearranging and using (A8),

$$
E[U((p_3 - p_2)x_{i2} + (v - p_3)x_{i3})|\{\bar{s}_{i2}, p^2\}]
\begin{align*}
\quad &= - \left( (\Sigma^{-1} + 2F)^{-1/2} \Sigma^{-1/2} \right) \exp \left\{ - \left( (1/2)(\mu - p_2)^2 (\Sigma^{-1} + 2F) 
+ 2F(\bar{s}_{i2} - \mu)(\mu - p_2) + F(\bar{s}_{i2} - \mu)^2 \right) \right\} \\
\quad &= - \left( (\Sigma^{-1} + 2F)^{-1/2} \Sigma^{-1/2} \right) \exp \left\{ - \frac{a_2^2}{2\gamma^2 \tau C_2} (\bar{s}_{i2} - p_2)^2 \right\}.
\end{align*}
$$
Finally, computing the ex-ante expected utility yields

\[
E \left[ E \left[ U \left( (p_3 - p_2)x_{t2} + (v - p_3)x_{t3} \right) \left\{ \hat{s}_{t2}, p^2 \right\} \right] \right] = -\left( \frac{\tau_{C2}}{\tau_{C2}^2} \right)^{1/2}.
\]

Analogously one can find that \( X_{t2}(s_{t1}, p_2) = a_1(s_{t1} - p_2) \) and that

\[
E \left[ E \left[ U \left( (p_3 - p_2)x_{t2} + (v - p_3)x_{t3} \right) \left\{ s_{t1}, p^2 \right\} \right] \right] = -\left( \frac{\tau_{C2}}{\tau_{C2} + \tau_{t1}} \right)^{1/2}.
\]

Therefore, the value of \( s_{t2} \) in period 2 is given by

\[
\phi(s_{t2}|s_{t1}, p^2) = \frac{\gamma}{2} \ln \frac{\tau_{tC2}}{\tau_{C2} + \tau_{t1}}.
\]

The price of the second period signal is then obtained by summing (A4) and (A9):

\[
\phi_2 = \frac{\gamma}{2} \left( \ln \frac{\tau_{C3} + \sum_{t=1}^{2} \tau_{t1}}{\tau_{C3} + \tau_{t1}} + \ln \frac{\tau_{tC2}}{\tau_{C2} + \tau_{t1}} \right).
\]

Along the same lines of what done for \( \phi_2 \) one finds that

\[
\phi_1 = \frac{\gamma}{2} \left( \ln \frac{\tau_{C1}}{\tau_{C1}} + \ln \frac{\tau_{C2} + \tau_{t1}}{\tau_{C2}} + \ln \frac{\tau_{C3} + \tau_{t1}}{\tau_{C3}} \right).
\]

QED

**Proof of Proposition 12:** Starting from the second period, the analyst solves

\[
\max_{\tau_{t2}} \ln \frac{\tau_{tC2}}{\tau_{C2} + \tau_{t1}},
\]

for every trader in the market, where \( \tau_{C2} = \tau_v + \left( \int_0^1 a_{i1} \right)^2 \tau_u + \left( \int_0^1 (a_{i2} - a_{i1}) \right)^2 \tau_u \) and \( \tau_{tC2} = \tau_{C2} + \sum_{t=1}^{2} \tau_{t1} \). Solving the maximization problem yields \( \tau_{t2}^* = \left( 1/\gamma \right) \sqrt{\tau_{tC1}/\tau_u} \).
Therefore, the second period optimal precision depends on the distribution of the first period signal precision across traders. In particular, if $\tau_{iC1}$ is the same for every $i \in [0, 1]$, then $\tau^*_{i1} = \tau^*_{i2}$ for every trader $i \in [0, 1]$.

Consider now the analyst’s first period objective function:

$$\int_0^1 \ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{\tau_{iC2}}{\tau_{C2}} di.$$ 

Notice that for $\tau_{i1} = \tau^*_{i2}$, the above is a function of $\tau_{i1}$. Also, given that $\tau_{C1} = \tau_v + (\int_0^1 a_idi)^2 \tau_u$, both the first and second period public precisions only depend on informed agents’ average signal precision; hence, they are invariant to a distribution of signal precisions that leaves its average unchanged. Let $\bar{\tau}_{iCn} = \int_0^1 \tau_{iCn} di$ for some given distribution of first period signal precisions. Then, for such information allocation owing to Jensen’s inequality, the following holds:

$$\int_0^1 \ln \frac{\tau_{iCn}}{\tau_{Cn}} di \leq \ln \int_0^1 \frac{\tau_{iCn}}{\tau_{Cn}} di = \ln \bar{\tau}_{iCn} / \tau_{Cn},$$

for $n = 1, 2$. In words: Given two information allocations yielding the same average total precision, the analyst obtains a higher profit when she sells to all traders a signal with the same precision (providing all traders the same private precision) than when she sells signals with diverse precisions. It then follows that in every optimal information allocation, $\tau_{iC1}$ is the same across all traders and $\tau^*_{i1} = \tau^*_{i2}$ for every trader $i \in [0, 1]$.

QED

Proof of Proposition 13: Let $W_{i2} = (p_2 - p_1)x_{i1} + (v - p_2)x_{i2}$ denote the final wealth of an agent $i$. The agent chooses $x_{i1}, x_{i2}$ to maximize $E[U(W_{i2})] = -E[\exp{-\gamma^{-1}W_{i2}}]$. 

41
Using backward induction, at time 2 trader $i$ chooses $x_{i2}$ to maximize

$$-\exp\{-\gamma^{-1}(p_2 - p_1)x_{i1}\} E[\exp\{\gamma^{-1}(v - p_2)x_{i2}\}|\hat{s}_{i2}, p_2; s_{j1}],$$
given $x_{i1}$. Normality of the random variables and negative exponential utility yield

$$X_{i2}(\hat{s}_{i2}, p^2) = a_2(\hat{s}_{i2} - p_2),$$
where $a_2 = \gamma(\sum_{t=1}^2 \tau_{e_t})$. Substituting the optimal period 2 strategy in the second period objective function and simplifying,

$$E[\exp\{-\gamma^{-1}(v - p_2)x_{i2}\}|\hat{s}_{i2}, p_2; s_{j1}] = \exp\left\{-\frac{a_2^2}{2\gamma^2 \hat{\tau}_{iC2}}(\hat{s}_{i2} - p_2)^2\right\},$$

where $\hat{\tau}_{iC2} \equiv (\text{Var}[v|\hat{s}_{i2}, z^2_2; s_{j1}])^{-1} = \hat{\tau}_2 + \tau_{e_1} + \tau_{e_2}$ and $\hat{\tau}_2 \equiv (\text{Var}[v|z^2; s_{j1}])^{-1} = \tau_v + \tau_a \sum_{t=1}^2 (\Delta a_t)^2 + \tau_{e_1}$. In the first period, the agent chooses $x_{i1}$ to maximize

$$-E[E[\exp\{-\gamma^{-1}(p_2 - p_1)x_{i1}\} \exp\{-\gamma^{-1}(v - p_2)x_{i2}\}|\hat{s}_{i2}, p_2; s_{j1}]|s_{i1}, p_1]$$

$$= -E\left[\exp\left\{-\gamma^{-1}\left((p_2 - p_1)x_{i1} + \frac{a_2^2}{2\gamma^2 \hat{\tau}_{iC2}}(\hat{s}_{i2} - p_2)^2\right)\right\}|s_{i1}, p_1\right].$$

The expression in the curly braces of the latter formula is a quadratic form of the bivariate vector $\psi = (\hat{s}_{i2} - p_2 - \mu_1, p_2 - \mu_2)'$, which is normally distributed conditional on $\{s_{i1}, p_1\}$ with zero mean and variance-covariance matrix $\Sigma$:

$$\left((p_2 - p_1)x_{i1} + \frac{a_2^2}{2\gamma^2 \hat{\tau}_{iC2}}(\hat{s}_{i2} - p_2)^2\right) = c + b'\psi + \psi'A\psi,$$

where

$$\Sigma = \begin{pmatrix}
\frac{\tau_{e_2}(\tau_{e_2} + \Delta \hat{\tau}_{12} - \tau_{12})}{\sum_{t=1}^2 \tau_{1t}} & -\frac{\tau_{12}}{\gamma \hat{\tau}_{iC2}}
\\
-\frac{\tau_{12}}{\gamma \hat{\tau}_{iC2}} & \frac{\tau_{12} \Delta \hat{\tau}_{12}}{\gamma \hat{\tau}_{iC2}}
\end{pmatrix},$$

$$c = (\mu_2 - p_1)x_{i1} + (a_2\mu_1)^2/(2\gamma \hat{\tau}_{iC2}), \ b = (a_2^2\mu_1/(\gamma \hat{\tau}_{iC2}), x_{i1})', \text{ and } A \text{ is a } 2 \times 2 \text{ matrix}$$
with $a_{11} = a^2_2/(2\gamma \hat{\tau}_{iC2})$ and the rest zeroes. It then follows that

$$-E\left\{ \exp \left\{ -\gamma^{-1} \left[ (p_2 - p_1)x_{i1} + \frac{a^2_2}{2\gamma^2 \hat{\tau}_{iC2}} \left( \hat{s}_{i1} - p_2 \right)^2 \right] \right\} \mid s_{i1}, p_1 \right\}$$

$$= -|\Sigma|^{-1/2} \mid \Sigma^{-1} + 2\gamma^{-1} A \mid^{-1/2} \exp \left\{ -\gamma^{-1} \left( c - \frac{1}{2\gamma} b' (\Sigma^{-1} + 2\gamma^{-1} A)^{-1} b \right) \right\}.$$

Maximizing the above function with respect to $x_{i1}$ and denoting by $h_{ij}$ the elements of $H \equiv (\Sigma^{-1} + 2\gamma^{-1} A)^{-1}$ yields

$$X_{i1} = \gamma \left( \frac{\mu_2 - p_1}{h_{22}} - \frac{h_{12}a_2\mu_1}{h_{22}h_{22}} \right). \quad \text{(A10)}$$

Standard normal calculations yield

$$\mu_1 = \left( \frac{\tau_{iC1} \hat{\tau}_{iC2} \tau_{i1}}{\hat{\tau}_{iC2} \tau_{iC1} \left( \sum_{t=1}^2 \tau_{ti} \right)} \right) (s_{i1} - p_1),$$

$$\mu_2 - p_1 = \left( \frac{(\Delta \hat{\tau}_{C2}) \tau_{i1}}{\hat{\tau}_{iC2} \tau_{iC1}} \right) (s_{i1} - p_1),$$

$$h_{22} = \left( \frac{\left( \sum_{t=1}^2 \tau_{ti} \right)^2}{\tau_{i2}} \right) \mid \Sigma^{-1} + 2\gamma^{-1} A \mid^{-1},$$

$$h_{12} = -\left( \frac{\tau_{i1} \sum_{t=1}^2 \tau_{ti}}{\tau_{i2}} \right) \mid \Sigma^{-1} + 2\gamma^{-1} A \mid^{-1},$$

and

$$\mid \Sigma^{-1} + 2\gamma^{-1} A \mid = \frac{(\hat{\tau}_{iC2} \tau_{iC1} - \tau_{C1} \tau_{i1}) \left( \sum_{t=1}^2 \tau_{ti} \right)^2}{(\Delta \hat{\tau}_{C2}) \tau_{i2}},$$

where $(\Delta \hat{\tau}_{C2}) \equiv \hat{\tau}_{C2} - \tau_{C1} = (\Delta a_2)^2 \tau_{a} + \tau_{i1}$. Using these expressions in (A10) and simplifying yields $X_{i1}(s_{i1}, p_1) = a_1(s_{i1} - p_1)$, where $a_1 = \gamma \tau_{i1}$.

As to equilibrium prices, in the first period market makers observe the aggregate order flow, extract its informational content $z_{C1} = a_1 v + u_1$, and set $p_1 = E[v \mid z_1]$. In the second period, besides the aggregate order flow, the public signal $s_{j1}$ becomes available. Thus, market makers set the equilibrium price equal to $E[v \mid z_{C1}^2; s_{j1}] = \ldots$
\[
\alpha E[v|z_C^2] + (1 - \alpha) s_{j1}, \text{ where } \alpha = \tau_{C2}/\hat{\tau}_{C2}.
\]

QED
Notes

1 Alternatively, it may be useful to think of the insider as a monopolistic producer that rents instead of selling her product. Indeed, by keeping the ownership of the goods she markets the monopolistic renter, fully internalizes the negative effect of overproduction and thus cuts back on the quantities she releases; similarly, by holding on to his informational advantage, the insider directly bears the negative effects of an excessively aggressive behavior and speculates less intensely. Other authors have adopted the durable goods monopolist paradigm to explore traditional finance problems (see for example Cestone and White (2003), and DeMarzo and Urošević (2006)).


3 Numerical simulations show that the result carries over to the general $N > 2$-period market.

4 Other authors emphasize the effects that insider trading has on the welfare of market participants (see for example, Bhattacharya and Nicodano (2001) and Medrano and Vives (2004)).

5 The evidence on insider trading patterns provides some support for this prediction. Surveying the empirical literature on insider trading, Huddart, Ke and Petroni (2003) observe that “...insiders know of price-relevant events months and even years before public disclosure of the event” and further that “...abnormal trade by insiders generally is found to concentrate in the two quarters prior to the disclosure.” Furthermore, in their study of insider trading patterns in the Milan stock exchange in the years from 1991 to 1999, Bagliano, Favero, and Nicodano (2001) conclude that insider...
trading episodes started taking place on average 39.3 days before the resolution of the relevant uncertainty. Finally, Cornell and Sirri (1992) in their detailed analysis of the Anheuser-Busch’s 1982 tender offer for Campbell Taggart, document how insider trading episodes repeatedly took place during a month before information about the merger was made public.

Incidentally, this argument provides a formalization to Carlton and Fischel’s (1983) intuition that an insider is better able to control the flow of information generated within the firm. Furthermore, it shows that such control comes at the cost of a thinner and less efficient market.

Recently, García and Vanden (2005) analyze competition among mutual funds.


As shown by Rochet and Vila (1994), assuming that the insider submits a price contingent order does not change the equilibrium result.

Subrahmaniam (1991) shows that if the insider is risk-averse, this result does not hold.

Admati and Pfleiderer (1986) also consider the case in which the analyst is not perfectly informed. While the static case can be handled under such assumption, the dynamic extension I consider in Section III quickly becomes intractable.

Sell-side analysts working at investment banks and brokerage firms are likely to face a conflict of interests mainly for three reasons. First, they may tip investors towards buying stock of a current or potential investment banking client. Also, they may provide over optimistic research results to boost brokerage commissions. Finally, as their access to relevant information often depends on contacts with firms’ insiders, they may be unwilling to provide negative information on a firm in order not to compromise such contacts. See Cheng, Liu, and Qian (2004) and Groysberg, Healy,

13 This is immediate as in any linear equilibrium noise traders’ ex-ante expected losses are given by $E[(v - p)u] = -\lambda_I \tau_u^{-1}$, and, owing to the semi-strong efficiency of the market, when the insider trades with aggressiveness $\beta$, $\lambda_I = \beta \tau_u / (\beta^2 \tau_u + \tau_v)$. The insider, thus, sees his equilibrium ex-ante profits (i.e. the losses of noise traders) maximized when choosing $\beta$ such that $\lambda_I$ is as large as possible.

14 This provides a different interpretation to Admati and Pfleiderer’s (1986) result showing the superiority of “personalized” information allocations over “newsletters.” Indeed, it is only by selling diverse signals that the information provider exerts the same control over the information leakage obtained by an insider.

15 It can easily be shown that in every linear equilibrium, the sequences $p^n$ and $z^n_C$ are observationally equivalent.

16 Indeed, absent a price change that informed traders cannot anticipate in period 1, it would be suboptimal to establish a position $x_{i1}$ and already plan to change it in period 2.

17 The solution proposed in Proposition 6 generalizes Admati and Pfleiderer (1986). In particular, if $\tau_{e2} = 0$, then $\phi_1 = \phi$ as no new information is released by the analyst in period 2, and thus the first period signal has no “added” value.

18 In this case the problem is actually worsened by the compound negative effects that the first period signal sale has on first and second period profits.

19 We can interpret the term $(\gamma/2) \ln(\tau_{C2}/\tau_{C1})$ as the gross informational advantage traders have in the second period vis-à-vis market makers.

20 The expression “second-hand” market here is used by way of analogy with the durable goods monopolist literature. Actually, traders do not resell their signals. However, we can always interpret the fact that traders are able to use in period 2 the signal they acquired in period 1, as a second-hand market in which each trader
resells to himself the signal previously acquired.

21 An alternative intuition for this result is the following. When setting $\tau^*_1$, the analyst tries to extract as much surplus as possible from traders while at the same time trying to limit the competition she expects to face in the second period owing to the information traders bought in period 1. As a result, she scales down the quality of the first period signal.

22 The signal durability here refers to the need that traders have to acquire additional information over time. To be sure, a fully revealing signal is infinitely durable (as it kills traders’ need to receive further information in the future), while an infinitely noisy signal is infinitely perishable (as it does not affect traders’ demand for additional information).

23 Therefore, as in the literature on vertical control (Tirole (1988)), where consumers may face a competitive industry controlled by a monopolistic supplier of the intermediate good influencing the price of the final good, here we can think of liquidity traders as facing a sector of competitive traders whose behavior is controlled by a monopolistic supplier of information exerting (partial) control over market depth.

24 A simple intuition for this result – although only partially correct since trading aggressiveness differs across the equilibria in the two markets – is as follows. Owing to intertemporal competition, the informativeness of the second period price induced by the analyst is given by $\tau^*_{C2} = 2\tau^*_{C1} + \tau^*_{1}$ while, according to Proposition 5, an insider trades in a way that second period public precision is “only” twice as high as in the first period.

25 As noted in Proposition 7 in the first period the analyst reduces the quality of the information she sells. It is easy to show that this makes first period depth and price informativeness in the competitive market lower than in the strategic market. As I will argue in the next section, this result only affects the first period: When
$N > 2$ numerical simulations show that starting from the second round of trade, the competitive market is always deeper than the strategic market; furthermore, price informativeness in the competitive market is always higher than in the strategic market for all $n = 1, 2, \ldots N$.

Proposition 11 extends the dynamic equilibrium result in Vives (1995a) to the case in which traders hold signals of different precisions. Its proof is available from the author upon request.

This result therefore strengthens Admati and Pfleiderer’s (1986) conclusion that in a single period information market vertical differentiation is never profitable.

Assuming a richer information structure does not help. Suppose the analyst knew $v + w$, with $w \sim N(0, \tau_w^{-1})$ and independent from all the other random variables in the model. Then, first period signals would take the form $s_{i1} = v + w + \epsilon_{i1}$. The analyst could therefore disclose the average signal at interim (i.e., $\bar{s}_1 = \int_0^1 s_{i1} di = v + w$) without making the equilibrium fully revealing. Such a strategy would, however, again prevent the sale of any further signal, since $s_{i2} = v + w + \epsilon_{i2}$ would be a noisier signal than the one the analyst disclosed. As a consequence, no trader would be willing to buy it.

Notice that this effect reduces the price a trader is willing to pay to buy the first signal.

See Footnote 19.

The result in Proposition 14 is robust to a different information structure. Assuming that traders receive the same signal in every period (using Admati and Pfleiderer’s (1986) terminology, considering the dynamic “newsletters” model) leads exactly to the same conclusion. In this model the case against information disclosure is even stronger, for the anticipation of a useless first period signal in the second period makes traders unwilling to pay any extra amount in order to buy it. Computations
for this case are available upon request.

Keeping the analogy with the durable-goods monopolist literature, publicly disclosing a signal is akin to the strategy of an artist who, to convince buyers that future production will be limited, makes a litograph and destroys the plates (see Bulow (1982)). Notice, however, that by doing so the artist does not affect the value of the durable good. Conversely, as argued above, information disclosure reduces the value of the “good” the analyst can sell in the future.

Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993a) show that increasing the number of strategic, informed traders accelerates price discovery in a Kyle (1985) market. However, competition can be dampened both when insiders hold different, correlated signals (Foster and Viswanathan (1996) and when the coordination properties of public disclosure are exploited (Huddart, Hughes, and Levine (2005)).

According to my model, dynamic sales should strengthen this competitive effect, potentially providing a further reason for information sales to occur. I am grateful to an anonymous referee for suggesting this interpretation of my analysis.

Kane and Marks (1990) also compare direct sales of information to the establishment of a mutual fund, proving that the existence of a borrowing constraint makes the analyst always prefer the former way to deliver information to the latter. In their framework, however, information sales do not affect the value of the analyst’s signal.

See Admati (1985), Caballé and Krishnan (1992), and Cespa (2004) for static models of stock markets in which traders exchange vectors of assets.

Owing to the presence of risk-neutral market makers, prices are semi-strong efficient. Hence, in the second period $p_2$ is sufficient for the sequence $\{p_1, p_2\}$ in the estimation of the liquidation value. The dependence of a trader’s strategy on all equilibrium prices is thus highlighted only to stress the composition of his information
set.
References


García, Diego, and Joel M. Vanden, 2005, Information acquisition and mutual funds, Working paper, Tuck School of Business.


Simonov, Andrei, 1999, Competition in markets for information, Working paper, INSEAD.


Figure 1: Comparing depth with a single, risk-neutral insider (continuous line) and with a monopolistic information seller (dotted line), when $\tau_v = \tau_u = \gamma = 1$ and $N = 4$. 
Figure 2: Comparing price informativeness with a single, risk-neutral insider (continuous line) and with a monopolistic information seller (dotted line), when $\tau_v = \tau_u = \gamma = 1$ and $N = 4$. 