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Abstract

It is well known that instrumental variables (IV) estimation is sensitive to the choice
of instruments both in small samples and asymptotically. Recently, Donald and Newey
(2001) suggested a simple method for choosing the instrument set. The method in-
volves minimising the approximate mean square error (MSE) of a given IV estimator
where the MSE is obtained using refined asymptotic theory. An issue with the work
of Donald and Newey (2001) is the fact that when considering large sets of valid in-
struments, it is not clear how to order the instruments in order to choose which ones
ought to be included in the estimation. The present paper provides a possible solution
to the problem using nonstandard optimisation algorithms. The properties of the algo-
rithms are discussed. A Monte Carlo study illustrates the potential of the new method.
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1 Introduction

It is well known that instrumental variables (IV) estimation is sensitive to the choice of

instruments both in small samples and asymptotically. Asymptotic efficiency is obtained by

using all valid available instruments but finite sample performance of IV estimation need not

be optimal for this choice. (see, e.g., Morimune (1983) or Bound, Jaeger, and Baker (1996)).

Recently, Donald and Newey (2001) suggested a simple method for choosing the instru-

ment set. The method involves minimising the approximate mean square error (MSE) of a

given IV estimator where the MSE is obtained using refined asymptotic theory. In particular,

Donald and Newey (2001) use expansions similar to those suggested by, e.g., Nagar (1959)
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and Rothenberg (1983), to provide expressions for the approximate MSE of standard IV esti-

mators such as two-stage least squares (2SLS) and limited information maximum likelihood

(LIML). The expansions are provided for the case where the number of instruments grows

with the sample size, n, but at a slower rate than n. The problem addressed by Donald and

Newey (2001) is one of two separate but related problems concerned with instrument selec-

tion. It relates to choosing a subset of valid instruments that minimises MSE for a particular

IV estimator and is therefore designed to improve the performance of a consistent estimator.

A related problem is that addressed by Andrews (1999) where criteria, similar in spirit to

information criteria, are used to select the largest possible set of valid instruments (or more

generally moment conditions) among a set of possibly valid instruments. The methods we

discuss in this paper may be easily adapted to this distinct problem.

An issue with the work of Donald and Newey (2001) is the fact that when consider-

ing large sets of valid instruments, it is not clear how to order the instruments in order to

choose which ones ought to be included in the estimation. When a researcher has N poten-

tial instruments, then there exist 2N possible sets of instruments to be considered. Strictly

speaking, one needs to compute the MSE of all these sets before choosing the optimal one

than minimises MSE. Clearly, even for moderate N such as, say, N = 20 or N = 30, this is a

formidable computational task. Furthermore, as Donald and Newey (2001, pp. 1164) point

out such a search is not recommended as it is likely to lead to an estimator of the optimal

set which is too variable.

In some cases an ordering of the instruments may be possible following economic theory.

But in a large number of cases no such ordering may be possible. Even if some instrument

is more useful in estimation than some other instrument, one needs to know the identity of

the instrument a priori. It seems that there is no general natural metric for the usefulness of

an instrument unlike other model selection problems such as , e.g., lag selection where such

a metric is available.

The present paper provides a possible solution to the problem. If one views the set of 2N

possible sets of instruments as a space over which to minimise MSE for a given estimator

then the problem becomes one of nonstandard minimisation of a function. The problem

is nonstandard since the space over which minimisation occurs is discrete rather than con-

tinuous. A number of algorithms exist in the numerical analysis literature which suitably

modified can be useful in this context. We focus on two distinct algorithms which provide a
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theoretically valid and computationally tractable solution. One is simulated annealing and

the second is genetic optimisation. Either of these two approaches can be used to minimise

a function over a discrete domain and under suitable conditions is guaranteed to find the

global minimum.

The paper is organised as follows: Section 2 sets out in detail the problem we would like

to address. Section 3 presents details on the maximisation algorithms we consider. Section 4

presents a Monte Carlo exercise. Finally, Section 5 concludes.

2 Setup

This section presents the setup of the problem. The model considered is standard in the

literature and given by

yi = z′iα + x1,iβ + εi (1)

zi = Πxi + ηi (2)

for i = 1, . . . , n, where yi is a scalar, zi is a vector of variables possibly correlated with εi, xi is

a vector of exogenous variables uncorrelated with εi and ηi and x1,i is a d1-dimensional subset

of xi. The aim is to estimate β. It is assumed that there exists a set of N instruments, denoted

φN
i = (φ1,i, . . . , φN,i)

′ which are (functions of) the xi. We denote subsets of φN
i using binary

notation. The reason for this will be made clear below. Thus, J N
j = {J 1,j, . . . , J N,j},

where J k,j ∈ {0, 1}, denotes the subset of instruments which contains the instruments φk,i

for which J k,j = 1. Of course, j = 1, . . . , 2N and J N
j ∈ {0, 1}N . The vector of instruments

contained in J N
j is denoted by φ

J N
j

i .

For a given subset of instruments, generically denoted J , we follow Donald and Newey

(2001) and consider three well known IV estimators. To describe the estimators we define

the following matrices: ΦJ = (φJ
1 , . . . , φJ

n )′, PJ = ΦJ (ΦJ ′
ΦJ )−ΦJ ′

, y = (y1, . . . , yn)′,

Z = (z1, . . . , zn)′, X1 = (x1,1, . . . , x1,n)′, δ = (α′, β′)′ and W = (Y, X1). A− denotes an

unspecified generalised inverse of A. Define also Λ̂ to be the minimum of (y −Wδ)′PJ (y −
Wδ)/(y −Wδ)′(y −Wδ) and Λ̄ = (

∑N
j=1 J j − d1 − 2)/n. The three estimators considered

are:

2SLS : δ̂ = (W ′PJ W )−1W ′PJ y

LIML : δ̂ = (W ′PJ W − Λ̂W ′W )−1(W ′PJ y − Λ̂W ′y)

B2SLS : δ̂ = (W ′PJ W − Λ̄W ′W )−1(W ′PJ y − Λ̄W ′y)
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where B2SLS denotes a bias adjusted version of 2SLS.

Under certain regularity conditions1, Donald and Newey (2001), derive approximate esti-

mators of the MSE of the three estimators of δ. For simplicity we will report these estimators

for the case of a single right-hand side endogenous variable. These are given by:

2SLS : Ŝ(J ) = σ2
1,ε

(
∑N

j=1 J j)
2

n
+ σ2

ε

(
R̂(J )− σ2

1

∑N
j=1 J j

n

)

LIML : Ŝ(J ) = σ2
ε

(
R̂(J )− σ2

1,ε

σ2
ε

∑N
j=1 J j

n

)

B2SLS : Ŝ(J ) = σ2
ε

(
R̂(J ) +

σ2
1,ε

σε

∑N
j=1 J j

n

)

where σ2
ε = ε̃′ε̃/n, σ2

1 = ũ′1ũ1/n, σ1,ε = ũ′1ε̃/n, ũ1 = ũH̃−1, H̃ = W ′P J̃ W/n, ũ = (I−P J̃ )W ,

ε̃ = y−Wδ̃, R̂ = 1
n

∑n
i=1

û1,i,
2

1−P J
ii

, û = (I−PJ )W , û1 = ûH̃−1, J denotes a generic instrument

subset being evaluated and J̃ denotes some initially chosen instrument subset which is fixed

across the minimisation of the MSE function over the instrument subsets. Given these MSE

estimators Donald and Newey (2001) suggest that the appropriate number of instruments

is chosen by minimising the estimated MSE. Monte Carlo evidence supports the suggested

method.

The main problem with the minimisation of the estimated MSE concerns the choice of

the search path over possible instrument subsets. As pointed out in the introduction, given

a set of N instruments over which to choose a subset for inclusion in the estimation there

exist 2N possible subsets that can be considered. Inspecting all of them by estimating their

asymptotic MSE is a computationally intractable task. To give an idea of the problem when

N = 50 and optimistically assuming that 100000 instruments subsets can be evaluated per

second, we still need about 357 years for an evaluation of all subsets. Furthermore, Donald

and Newey (2001, pp. 1164) claim that not all subsets should be inspected as this will lead

to a variable estimator of the chosen subset.

One solution is simply to use some economic theory to rank the instruments in order

of relevance, sequentially augment the instrument set until all available instruments are

consider and choose the subset that minimises estimated MSE. Symbolically, this is equiva-

lent to searching over the following set of instrument subsets:
{J N

1:j |j = 1, . . . , N
}
, where

1These conditions are Assumptions 1-3 of Donald and Newey (2001) plus restrictions on the rate of growth
of N relative to n, satisfied if N2/n → 0.
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J N
1:j = {1, . . . , 1︸ ︷︷ ︸

j

, 0, . . . , 0︸ ︷︷ ︸
N−j

}. This is analogous to the standard information criterion search

for the appropriate lag order in time series analysis. However, such an approach is more

questionable in the IV estimator context, since there is a natural ordering of lags to be in-

cluded in a time series model which is lacking in the IV estimator context.

Perhaps, a more appropriate analogy is with the literature focussing on variable selection

for regression models (see, e.g., Hoover and Perez (1999) and references cited therein). In the

variable selection problem, economic theory provides some guidance on the choice of variables

to be included in a regression. This guidance, however, is deemed inadequate to provide a

full specification of regression models and therefore variable selection methods such as the

widely used ‘general-to-specific’ approach, developed and popularised in a number of papers

by David Hendry and his co-authors, such as Krolzig and Hendry (2001), have appeared in

the literature. In fact, the problem in the IV estimator case is more acute. Whereas, in the

variable selection problem economic theory is essentially asked to provide a list of variables

whose coefficients are different from zero in a regression model, in the IV estimation problem

the question is altogether more vague. Clearly, for an instrument to be useful its coefficient

in the reduced form model (2) should be nonzero. But all valid instruments are assumed

to have this property. Economic theory in this case, must have something to say on, e.g.,

the relative magnitude of such coefficients. Clearly such demands are unlikely to be met by

current economic theory.

We suggest that the estimated approximate MSE functions of IV estimators be min-

imised in a similar way to other continuous objective functions such as the log-likelihood.

Clearly, since the space, over which the function is to be minimised, is discrete, standard

optimisation algorithms are not useful. However, there exist classes of algorithms, referred to

as combinatorial algorithms, that can be used to minimise functions over discrete domains.

The canonical domain for functions to be minimised using these algorithms is {0, 1}N . This

makes clear the need for restating the problem in binary notation, as we did earlier in this

section. These algorithms essentially provide a data dependent search path in {0, 1}N which,

under certain conditions, is guaranteed to contain the minimum without searching over all

the elements of the domain.
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3 Nonstandard Optimisation Algorithms

In the previous section we saw how the problem of choosing an instrument subset for IV

estimation can be translated to a problem of minimising an estimate approximate MSE

function. On the one hand the space where the MSE function is defined is discrete and

hence standard optimisation methods cannot be applied. On the other hand, standard grid

search which is usually implemented to minimise discrete functions, as in, e.g., lag selection,

is clearly infeasible due to the computational burden of the problem. One alternative is to

resort to nonstandard optimisation algorithms that do not require neither smoothness nor

continuity for the algorithm to converge.

3.1 Simulated Annealing

Simulated annealing is a generic term used to refer to a family of powerful optimisation

algorithms. In essence, it is a method that uses the objective function to create a non-

homogeneous Markov chain that asymptotically converges to the optimum of the objective

function. It is especially well suited for functions defined in discrete spaces like the MSE

functions considered here. Below, we give a description of the algorithm together with the

necessary arguments that illustrate its validity in our context. We describe the operation of

the algorithm when the domain of the function (MSE function) is the set of binary strings

i.e. {J = (J 1, . . . , J N)′|J i ∈ {0, 1}}.

Each step of the algorithm works as follows starting from an initial string J 0.

1. Using J i choose a neighboring string at random, denoted J ∗
i+1. We discuss the defi-

nition of a neighborhood below.

2. If Ŝ(J i) > Ŝ(J ∗
i+1), set J i+1 = J ∗

i+1. Else, set J i+1 = J ∗
i+1 with probability

e−(Ŝ(J ∗
i+1)−Ŝ(J i))/Ti or set J i+1 = J i with probability 1− e−(Ŝ(J ∗

i+1)−Ŝ(J i))/Ti .

Heuristically, the term Ti gets smaller making it more difficult, as the algorithm proceeds, to

choose a point that does not decrease Ŝ(.). The issue of the neighborhood is extremely rel-

evant. What is the neighborhood? Intuitively, the neighborhood could be the set of strings

that differ from the current string by one element of the string. But this may be too restric-

tive. We can allow the algorithm to choose at random, up to some maximum integer (say

h), the number of string elements at which the string at steps i and i + 1 will differ. So the

neighborhood is all strings with up to h different bits from the current string. Another issue

is when to stop the algorithm. There are a number of alternatives in the literature. We have
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chosen to stop the algorithm if it has not visited a string with lower Ŝ(.) than the current

minimum for a prespecified number of steps (Bv) (Steps which stay at the same string do

not count) or if the number of overall steps exceeds some other prespecified number (Bs).

All strings visited by the algorithm are stored and the best chosen at the end rather than

the final one.

The simulated annealing algorithm has been proven by Hajek (1988) (see also Del Moral

and Miclo (1999)) to converge asymptotically, i.e. as i →∞, to the minimum of the function

almost surely as long as Ti = T0/ln(i) for some T0 for sufficiently large T0. In particular,

for almost sure convergence to the minimum it is required that T0 > d∗. d∗ denotes the

maximum depth of all local minima of the function Ŝ(.). Heuristically, the depth of a local

minimum, J 1, is defined as the smallest number E > 0, over all trajectories, such that the

function never exceeds Ŝ(J 1)+E during a trajectory from2 this minimum to any other local

minimum, J 2, for which Ŝ(J 1) > Ŝ(J 2).

3.2 The genetic algorithm (GA)

Once again, we describe the operation of the algorithm when the domain of the function

is the set of binary strings. The motivating idea of genetic algorithms is to start with a

population of binary strings which then evolve and recombine to produce new populations

with ‘better’ characteristics, i.e. lower values for the MSE function. We start with an initial

population represented by a N×m matrix made up of 0’s and 1’s. Columns represent strings.

m is the chosen size of the population. Denote this population (matrix) by P0. The genetic

algorithm involves defining a transition from Pi to Pi+1. The algorithm has the following

steps:

1. For Pi create a m × 1 ‘fitness’ vector, pi, by calculating for each column of Pi its

‘fitness’. The choice of the ‘fitness’ function is completely open and depends on the

problem. For our purposes it is the opposite of the MSE function. Normalise pi, such

that its elements lie in (0, 1) and add up to 1. Denote this vector by p∗i . Treat p∗i as

a vector of probabilities and resample m times out of Pi with replacement, using the

vector p∗i as the probabilities with which each string with be sampled. So ‘fit’ strings

are more likely to be chosen. Denote the resampled population matrix by P1
i+1.

2A trajectory from J 1 to J 2 is a set of strings, J 11,J 12, . . . , J 1p, such that (i) J 11 ∈ N(J 1), (ii)
J 1p ∈ N(J 2) and (iii) J 1i+1 ∈ N(J 1i) for all i = 1, . . . , p, where N(J ) denotes the set of strings that
make up the neighborhood of J .
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2. Perform cross over on P1
i+1. For cross over we do the following: Arrange all strings

in P1
i+1, in pairs (assume that m is even). Denote a generic pair by (aα

1 , aα
2 , . . . , aα

n),

(aβ
1 , a

β
2 , . . . , a

β
n). Choose a random integer between 2 and n− 1. Denote this by j. Re-

place the pair by the following pair: (aα
1 , aα

2 , . . . , aα
j , aβ

j+1, . . . , a
β
n), (aβ

1 , a
β
2 , . . . , a

β
j , aα

j+1, . . . , a
α
n).

Perform cross over on each pair with probability pc. Denote the new population by

P2
i+1. Usually pc is set to some number around 0.5-0.6.

3. Perform mutation on P2
i+1. This amounts to flipping the bits (0 or 1) of P2

i+1 with

probability pm. pm is usually set to a small number, say 0.01. After mutation the

resulting population is Pi+1.

These steps are repeated a prespecified number of times (Bg). Each set of steps is referred

to as generation in the genetic literature. If a string is to be chosen this is the one with

maximum fitness. For every generation we store the identity of the string with maximum

‘fitness’. At the end of the algorithm the string with the lowest MSE value over all members

of the populations and all generations is chosen. One can think of the transition from

one string of maximum fitness to another as a Markov Chain. So this is a Markov Chain

algorithm. In fact, the Markov chain defined over all possible strings is time invariant but

not irreducible as at least the m − 1 least fit strings will never be picked. To see this note

that in any population there will be a string with more fitness than that of the m− 1 worst

strings. There has been considerable work on the theoretical properties of genetic algorithms.

Hartl and Belew (1990) and Del Moral and Miclo (1999) have shown that with probability

approaching one, the population at the B-th generation will contain the global maximum as

B →∞. For more details see also Del Moral, Kallel, and Rowe (2001).

4 Monte Carlo Study

4.1 Monte Carlo Setup

In order to illustrate the potential of the new methods we carry out a Monte Carlo study. The

study follows elements of the setup of Donald and Newey (2001) for comparability purposes.

The model is given by

yi = αzi + εi (3)

zi = x′iπ + ηi (4)

We set α = 0.1 and consider n = 100, 500. We also set N = 20. Important parameters for

the performance of the estimators are the covariance of εi and ηi denoted ση,ε which is set to
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ση,ε ∈ {0.1, 0.5, 0.9} and the R2 of model (4) which we set to 0.01 or 0.1. Following Donald

and Newey (2001), one way for setting R2 in (4) is to use the formula

πk =

√
R2

N(1−R2)
, k = 1, . . . , N

where π = (π1, . . . , πN)′.

In this Monte Carlo study we concentrate on the simulated annealing algorithm. The

reasons for this are computational tractability and prior experience with the two algorithms.

Kapetanios (2004b) and Kapetanios (2004a) analyse the performance of the algorithms in

other problems in econometrics3. In both cases it is found that simulated annealing outper-

forms the genetic algorithm in terms of finding the optimum for the function being optimised.

Further, reasonable choices for the parameters of the search algorithms indicate that simu-

lated annealing maybe computable cheaper than the genetic algorithm by a factor of about

10. To see this note that setting Bs = 2000, Bv = 500 and h = 1 for the simulated annealing

algorithm (which are the choices of parameters we make) leads to 2000 separate IV estima-

tions. By comparison setting m = 200 and Bg = 100 for the genetic algorithm, which are

reasonable choices relative to the literature we have 20000 IV estimations.

Note that although 2000 evaluations may appear high for the n, N combinations we

consider, there is no need for Bg to grow with N as prior experience suggests limited sensi-

tivity of the algorithm to Bg as long as it is reasonably large to begin with. We carry out

1000 Monte Carlo replications. Again anything significantly more than that is prohibitively

expensive. Note that the results reported here took more than 1/2 months of computer time

on a personal computer with 3 Ghz processor speed.

4.2 Results

We present the following statistics on the estimated coefficients: Firstly, we present the

mean square error of the estimators over the replications. Secondly we present the median

bias, thirdly we present the median absolute deviation from the true value and finally the

range between the 90% and 10% quantiles. We choose to present results on MSE, unlike

Donald and Newey (2001), as it seems to be the natural choice for a reporting medium on

the performance of a method designed to minimise MSE. We consider the estimators B2SLS

(denoted BSLS in the Tables), 2SLS and LIML and three ways of choosing the instruments.

3Kapetanios (2004b) looks at variable selection in regression models whereas Kapetanios (2004a) looks
at cluster analysis for panel datasets.
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The first includes all available instruments and is denoted by the subscript a, the second

chooses the order of instruments according to Donald and Newey (2001) (denoted by the

subscript o) and the third uses simulated annealing to minimise MSE and is denoted by the

subscript s. Results are presented in Tables 1 and 2.

Table 1 presents results for n = 100. Results, as expected, have a tendency to get worse

for all estimators when R2 falls and ση,ε rises in absolute value. Looking at B2SLS first we

note that BSLSo seems to improve on BSLSa overall with bias results being more mixed

than for other performance indicators. BSLSs provides clear further improvement on BSLSo

for most cases and most indicators. Moving on the 2SLS we see that 2SLSo is usually doing

worse than BSLSa and in some cases much worse. 2SLSs improves greatly on 2SLSo but

not on BSLSa where the comparison is more mixed. Looking at LIML we see that LIMLa

is comparable to LIMLo with LIMLs performing better. Clearly, minimising MSE using a

optimisation algorithm is helpful for the performance of all estimators at this sample size.

Table 2 looks at the performance of the estimators for a sample size of n = 500. Clearly

all estimators do better for this sample size as expected. Again BSLSo improves drastically

on BSLSa in a majority of cases with BSLSs providing further improvement. For 2SLS

instrument selection does not appear to be that helpful with 2SLSs dominating BSLSo

in most cases. Finally, for LIML LIMLs improves greatly upon both LIMLo and LIMLa.

Overall, a clear conclusion emerges for the superiority of selecting instruments by minimising

MSE via simulated annealing.

5 Conclusion

Estimation by Instrumental Variables is extremely common in the econometric literature.

A major preoccupation concerns the choice of the instruments used in the estimation. This

choice has two related components. Firstly, one must choose a set of valid instruments among

all possible instruments and secondly one must choose among all valid instruments so as to

optimise the performance of a given estimator. This paper addresses the second component.

Clearly, an obvious method for guiding the selection involves using economic theory. Nev-

ertheless this is likely to be of little help in general. Donald and Newey (2001) has suggested

a method for choosing the number of instruments used so as to minimise the MSE of the

estimator. Nevertheless, the ordering of the instruments used in choosing the number of
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instruments to include is an issue. We suggest using nonstandard optimisation algorithms

to optimise the search for the subset of instruments that minimises the MSE of a given IV

estimator.

After discussing the optimisation algorithms we suggest, we present a Monte Carlo study

similar to that in Donald and Newey (2001) which illustrates the potential of the new meth-

ods. Further research should concentrate on an empirical evaluation of the new methods as

well as exploring their potential when applied to other IV estimators.
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Table 1: n = 100

MSE
Med.

Bias
Med.

AD
Dec.

Rge MSE
Med.

Bias
Med.

AD
Dec.

Rge
R2 = 0.1 R2 = 0.01

BSLSa 1.277 0.016 0.328 1.523 3.388 0.124 0.583 3.225
BSLSo 1.135 0.041 0.312 1.481 2.376 0.098 0.520 2.447
BSLSs 1.109 0.027 0.311 1.271 2.203 0.119 0.460 2.082
2SLSa 0.040 0.061 0.132 0.477 0.065 0.110 0.165 0.571

0.1 2SLSo 0.205 0.077 0.174 0.688 1.723 0.088 0.503 2.265
2SLSs 0.078 0.066 0.168 0.636 0.889 0.128 0.374 1.550
LIMLa 1.669 0.006 0.352 1.713 5.421 0.133 0.778 4.271
LIMLo 3.819 0.082 0.658 3.510 5.955 0.140 0.861 4.728
LIMLs 1.393 0.024 0.319 1.423 3.352 0.119 0.544 2.900
BSLSa 1.449 0.137 0.348 1.515 4.171 0.493 0.768 3.400
BSLSo 1.302 0.142 0.346 1.431 2.232 0.437 0.650 2.490
BSLSs 1.047 0.180 0.326 1.197 1.931 0.424 0.583 1.972
2SLSa 0.133 0.324 0.324 0.428 0.256 0.474 0.474 0.531

0.5 2SLSo 0.615 0.315 0.377 1.104 1.618 0.487 0.631 2.051
2SLSs 0.163 0.301 0.315 0.664 0.886 0.454 0.528 1.428
LIMLa 1.091 0.058 0.315 1.496 4.233 0.307 0.823 3.874
LIMLo 3.979 0.271 0.758 3.482 5.641 0.424 0.923 4.344
LIMLs 1.115 0.117 0.317 1.283 2.849 0.330 0.628 2.617
BSLSa 2.073 0.188 0.360 1.587 2.239 0.814 0.864 1.776
BSLSo 1.785 0.220 0.360 1.440 1.687 0.821 0.847 1.253
BSLSs 0.927 0.279 0.359 1.064 1.879 0.775 0.796 1.070
2SLSa 0.346 0.580 0.580 0.287 0.743 0.850 0.850 0.281

0.9 2SLSo 0.831 0.521 0.570 1.284 1.358 0.842 0.851 1.159
2SLSs 0.359 0.516 0.522 0.568 0.817 0.798 0.804 0.711
LIMLa 0.797 0.000 0.244 1.137 3.542 0.623 0.767 2.664
LIMLo 3.316 0.472 0.688 3.183 3.124 0.809 0.916 2.340
LIMLs 0.583 0.154 0.259 0.929 2.021 0.690 0.747 1.572
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Table 1: n = 500

MSE
Med.

Bias
Med.

AD
Dec.

Rge MSE
Med.

Bias
Med.

AD
Dec.

Rge
R2 = 0.1 R2 = 0.01

BSLSa 0.029 -0.006 0.100 0.407 2.721 0.019 0.499 2.672
BSLSo 0.027 -0.003 0.104 0.406 1.160 0.097 0.390 1.729
BSLSs 0.024 0.014 0.102 0.378 0.102 0.081 0.200 0.771
2SLSa 0.014 0.022 0.077 0.295 0.052 0.054 0.148 0.549

0.1 2SLSo 0.062 0.037 0.096 0.401 1.423 0.089 0.416 2.083
2SLSs 0.020 0.032 0.091 0.334 0.115 0.074 0.200 0.783
LIMLa 0.030 -0.008 0.105 0.415 3.035 -0.049 0.538 2.787
LIMLo 1.930 0.019 0.371 1.881 5.318 0.085 0.764 4.188
LIMLs 0.025 0.009 0.104 0.395 0.277 0.078 0.232 0.883
BSLSa 0.031 0.010 0.103 0.400 2.610 0.242 0.468 2.541
BSLSo 0.027 0.036 0.104 0.398 0.906 0.389 0.466 1.442
BSLSs 0.029 0.107 0.124 0.340 0.218 0.378 0.379 0.663
2SLSa 0.028 0.132 0.135 0.273 0.184 0.393 0.393 0.449

0.5 2SLSo 0.199 0.165 0.221 0.651 1.311 0.425 0.556 1.806
2SLSs 0.055 0.202 0.204 0.327 0.280 0.391 0.395 0.691
LIMLa 0.026 0.005 0.098 0.389 3.343 0.095 0.453 2.513
LIMLo 2.154 0.045 0.428 2.031 5.058 0.354 0.839 4.096
LIMLs 0.028 0.093 0.118 0.352 0.304 0.350 0.363 0.734
BSLSa 0.033 0.026 0.110 0.425 2.803 0.454 0.581 2.418
BSLSo 0.027 0.064 0.119 0.391 0.828 0.660 0.669 0.980
BSLSs 0.045 0.191 0.191 0.277 0.509 0.683 0.683 0.411
2SLSa 0.060 0.233 0.233 0.223 0.529 0.718 0.718 0.288

0.9 2SLSo 0.325 0.240 0.312 0.902 1.071 0.706 0.727 1.297
2SLSs 0.145 0.373 0.373 0.257 0.560 0.718 0.718 0.439
LIMLa 0.022 0.004 0.095 0.365 2.537 0.092 0.367 1.873
LIMLo 2.410 0.055 0.401 1.987 3.313 0.679 0.833 2.876
LIMLs 0.033 0.152 0.153 0.261 0.671 0.607 0.610 0.522
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