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Abstract

The goal of this study is to measure market prices of risk and the associated foreign exchange

risk premia extending the approach proposed by Balduzzi and Robotti (2001) to an

international framework. Estimations of minimum variance stochastic discount factors

permits the determination of market prices of risk, which, in turn, in an international

framework, allow to compute foreign exchange risk premia. Market prices of risk are time-

varying and surge during financial turmoil. This may be interpreted as an increase of the

investors’ coefficient of risk aversion during turbulent financial markets. Foreign exchange

risk premia are also time-varying and they exhibit most variation from the early ‘70s onwards,

when the Bretton Wood exchange rate system collapsed.
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1. Introduction

Ex-post changes in foreign exchange rates and survey-based measures of foreign exchange

rate expectations provide evidence for the existence of foreign exchange risk premia. The

Uncovered Interest rate Parity (UIP) condition has been failing when confronted with actual

data, either because investors are not fully rational, or because they are risk averse, and, as

such, they require an exchange rate risk premium, or due to a combination of irrational

behaviour and risk aversion. A large literature has been developed over the years trying to

estimate foreign exchange risk premia (see the surveys of Hodrick (1987) and Engle (1996)).

Later on, further attempts are due to De Santis and Gerard (1998), Beakert and Gray (1998),

Cappiello (1998), Tai (1999), De Santis, Gerard, and Hillion (1999), and Cappiello, Castren,

and Jääskelä (2002), among others. Apart from Bekaert and Gray, who developed an

empirical model of exchange rates in a target zone framework, all the above pieces of

research estimate the exchange rate risk premia in the context of the International Capital

Asset Pricing Model (ICAPM) of Adler and Dumas (1983). Conditional estimates of the

ICAPM provide evidence of a significant time-varying exchange rate risk premium.

CAPM-type frameworks require a specification for the underlying stochastic discount

factor or pricing kernel (see, for instance, Cochrane, 2001). The pricing kernel is a stochastic

variable which is related to the (intertemporal) marginal utility of consumption and

determines the way investors discount future uncertain payoffs. In the absence of arbitrage,

the expected value of the product of the pricing kernel and the asset payoff returns all asset

prices. Differently to the studies mentioned above we use a general no-arbitrage model, where

the stochastic discount factor is not restricted to assume any particular form. More

specifically, the objective of our work is to estimate stochastic discount factors or pricing

kernels for several countries which, in turn, can be used to compute foreign exchange risk

premia. The use of this approach for foreign exchange risk premia has been examined by

Flesaker and Hughston (1997), Backus, Foresi and Telmer (1998), Brandt, Cochrane and

Santa-Clara (2001) and Panigirtzoglou (2003).

Our framework does not assume market completeness, that is, we allow for non-traded

(or not hedged) sources of risk. In this case, the pricing kernel is not unique. However, we

focus on one of all admissible pricing kernels, that with the minimum variance. This is

because no-arbitrage condition imposes a relationship between the minimum-variance pricing

kernels of investors in two currencies and the exchange rate changes. The currencies that we
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examine are the US dollar, the euro and pound sterling. We initially estimate the pricing

kernel from the point of view of the US dollar investor (that is, the US dollar pricing kernel)

using Generalized Method of Moments (GMM) approach described in Cochrane (1996) and

Balduzzi and Robotti (2001), among others. We then use the no-arbitrage equations that link

changes to exchange rates and pricing kernels to estimate the pricing kernels for euro and

pound sterling investors.

The estimation of the minimum variance pricing kernel in the three economies allows us

to compute the market prices of risk (that is, the volatility of the pricing kernels), which, in

turn, are related to foreign exchange risk premia. The patterns and sizes of the risk premia are

examined with respect to subsequent changes of exchange rates. The size and volatility of the

derived risk premia are small compared to the ex-post changes in the exchange rates.

The paper is organized as follows: section 2 discusses the methodology we employ,

section 3 describes the data used, section 4 reports the results and section 5 concludes.

2. Methodology

When there are no arbitrage opportunities the basic valuation equation is given by

( ) ι=++ 11 ttt mE R , (1)

where 1+tR  is a vector of N risky real asset returns, 1+tm  is the domestic investor’s pricing

kernel, ι  is an N-vector of ones, while ( )⋅tE  is the expectation operator conditional on the

information set tΩ . Equation (1) simple expresses the price of an asset as the expected

discounted value of its future payoffs. The discounting is determined by the pricing kernel,

which, in a simple representative agent framework, is related to investor’s preferences. In the

spirit of Lucas’ (1978) consumption-based asset pricing model, the pricing kernel can be

shown to be equal to the intertemporal marginal rate of substitution, ( ) ( )ttt CUCUm ′′δ= +1 ,

where δ  is the time discount factor. Campbell, Lo, and MacKinlay (1997) show that the

lower the covariance between an asset return and the stochastic discount factor, the larger the

asset expected returns. The rationale behind this finding is appealing. A security which

exhibits low covariance with tm  tends to have low returns when investor’s marginal utility of

consumption is high, that is when consumption is low. Since this asset does not deliver wealth

when the consumer needs it most, it is risky and it will command a large risk premium. In
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other words, the lower the wealth expected in a particular state, the more valuable the wealth

in this state becomes and the higher the marginal utility of consumption.

An equation similar to (1) holds for the vector 




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t
t

f
t e
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11 RR of real foreign asset

returns and a foreign investor with pricing kernel f
tm 1+  (when the N assets are traded in both

domestic and foreign currency). te  is the vector of spot real exchange rates, defined as the

price of one unit of domestic consumption good in terms of foreign consumption good:
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When markets are complete (that is, any source of uncertainty can be perfectly hedged

using existing assets) the pricing kernel is unique. Since equations (1) and (2) hold for all N

assets, the following relation should be satisfied by the two pricing kernels:

11
1

++
+ = t

f
t

t

t mm
e

e
. (3)

In scalar notation and using natural logarithms equation (3) becomes:

( ) ( )f
tt

t

t mm
e

e
11

1 lnlnln ++
+ −=







. (3’)

Equation (3’) shows that the change in the real exchange rate is given by the difference

between two pricing kernels, the domestic and the foreign. A decrease in marginal utility of

consumption, that is in the domestic pricing kernel, (e.g. because of a positive productivity

shock which in turn increases supply in the home country), leads to a depreciation in the price

of domestic consumption goods relative to foreign consumption goods.

When markets are not complete there are more than one admissible pricing kernels, that

is, different investors’ pricing kernels are not equalized. Hansen and Jagannathan (1991) show

that the set of admissible pricing kernels should satisfy some restrictions given a set of asset

returns. In particular, within the set of admissible pricing kernels, the one that exhibits

minimum variance should be equal to the maximum Sharpe ratio. The Sharpe ratio is the

expected excess return (over the risk-free rate) per unit of return volatility. It can be easily

shown that the pricing kernel volatility is related to the Sharpe ratio and, in particular, that

assets with high Sharpe ratios restrict the volatility of the pricing kernel to be high (see

Appendix A). Hansen and Jagannathan (1991) demonstrate that the minimum-variance pricing
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kernel is the projection of each individual’s pricing kernel on the space of asset payoffs, i.e. it

is a linear combination of existing asset returns.

As explained in Balduzzi and Robotti (2001), when markets are incomplete, the use of

the minimum-variance pricing kernel has an advantage over traditional multi-beta models

because it is not necessary to identify all sources of risk or to assume linearity of returns with

respect to the factors. Furthermore, the precision of risk premia estimates is higher since the

pricing kernel with the minimum variance is used. Most importantly, though, provided that

the minimum-variance pricing kernel is adopted, equation (3) still holds in the incomplete

market framework.

To see this, consider again equations (1) and (2). Equation (3) was derived based on the

assumption that the two pricing kernels 1+tm and f
tm 1+  in equations (1) and (2) are unique.

When markets are incomplete, investors’ pricing kernels may be different. For example, given

a domestic investor’s pricing kernel 1+tm , any one of the form 11 ++ + tt um , where 1+tu is a

random variable uncorrelated with available (traded) asset returns, is an admissible pricing

kernel. However, since the minimum variance price kernel is the projection of each

individual’s pricing kernel on the space of asset payoffs, it has to be unique for all individuals

(see Cochrane (2001) for further details). Therefore, the assumption of uniqueness of the two

pricing kernels (used in the derivation of equation (3)) holds for the minimum variance

pricing kernels. As a result, equation (3) holds for the minimum variance pricing kernels.

Hence, in this paper we adopt the approach of Balduzzi and Robotti (2001) and Brandt,

Cochrane and Santa-Clara (2001) and work with the minimum-variance pricing kernels.

Equation (3) implies that given an estimate of the domestic currency investor’s minimum-

variance pricing kernel and the foreign exchange rate changes, we can obtain the foreign

currency investor’s minimum-variance pricing kernel. Moreover, if we consider three bilateral

exchange rate changes, we only need to specify one pricing kernel. The other two are

determined by the foreign exchange rate changes. In particular, for the three bilateral

exchange rates, DEMUSD (value of Deutschemark in dollars), GBPUSD (value of pound

sterling in dollars) and GBPDEM (value of pound sterling in Deutschemarks) and the three

minimum-variance real pricing kernels, equation (3) reads as follows:
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where GER
t

GBP
t

USD
t P,P,P  are the price levels in United States, United Kingdom and Germany

respectively.

The variables

( )USD
t

GER
tt

real
t P/PDEMUSDDEMUSD ⋅= ,

( )USD
t

GBP
tt

real
t P/PGBPUSDGBPUSD ⋅=  and

( )GER
t

GBP
tt

real
t P/PGBPDEMGBPDEM ⋅=

correspond to the real exchange rates.

We first estimate econometrically the US dollar investor’s real pricing kernel, US
tm 1+ , and

obtain the other two pricing kernels, GER
tm 1+  and UK

tm 1+ , from equations (5) and (6). It is shown

in Appendix B that the results do not depend on the choice of the pricing kernel to be initially

estimated (the US dollar investor’s pricing kernel in our case). The results are equivalent to

estimating initially the pound sterling or Deutschemark investor’s pricing kernel and using the

system of equations (5) to (7) to derive the other two pricing kernels.1

In the spirit of Cochrane (1996) and Balduzzi and Robotti (2001), among others, we

estimate the US dollar investor’s real pricing kernel US
tm 1+  with a GMM methodology. To

derive the system of equations to be estimated we use equation (1). Pricing the risk-free asset,

whose real gross return trf  is know at time t, implies that

( ) ( ) 11 11 =⇒=⋅ ++ ttttt qEmrfE , (8)

                                                     
1 Given the restriction that differences in pricing kernels are driven by exchange rate changes, equations (5)-(7)

are equivalent. Therefore there would be no gain in efficiency in estimating the three pricing kernels

simultaneously. In fact, the simultaneous estimation of the three equations would be redundant.
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where 11 ++ ⋅= ttt mrfq is the normalized pricing kernel. By the same token, pricing a vector of

risky-assets with real gross returns 1+tR  implies that

( ) ( ) ttttttt rfqEmE ⋅=⋅⇒=⋅ ++++ ιι 1111 RR . (9)

As already mentioned if the pricing kernel is the one with the minimum variance, it will

be the projection on the space of asset returns, and hence it can be written as a linear

combination of asset returns

11 ++ ⋅′+= tttt aq Rb . (10)

By combining (9) and (10) we derive expressions for ta  and tb  as follows:

[ ] )(1  and   )( 11
1

++
− ⋅′−=⋅−Σ−= tttttttrrtt EarfE RbRb ι (10b)

Equation (10) in its general form allows for time varying coefficients ta  and tb .

However, the focus of our exercise is to estimate the average response of the pricing kernel to

asset returns over the sample period, that is, we assume that ta  and tb  are constant. The

derivation of time varying ta  and tb  is a more formidable task and it is beyond the scope of

this paper. In addition, the assumption that ta  and tb  are constant is not very restrictive when

several risky asset returns are assumed to impact on the pricing kernel.

To see this, let’s assume first that the pricing kernel is a linear function of the return of

only one risky asset. It is easy to see from restrictions (10b) that the constancy assumption for

ta  and tb implies constant return and volatility for the risky asset and thus constant market

price of risk. However, the system becomes less restrictive if we assume two risky assets. In

this case, we have five free parameters (two returns, two volatilities and a correlation

coefficient) and three restrictions from equations (10b). Increasing the number of risky assets

relaxes the restrictiveness even more. In our case we use eight risky assets, which corresponds

to 44 free parameters and only 9 restrictions.

Equations (8) to (10) are used to derive the moment conditions. If tz  represents the set

of s instruments, the sample moment conditions can be written as follows:

( ) ( )∑
=

+ −⋅′+
T

t
taT/

1
1 11 Rb ⊙ 0z =t , (8’)
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( ) ( )[ ]∑
=

++ ⋅−⋅⋅′+
T

t
ttt rfaT/

1
111 ιRRb ⊙ 0z =t , (9’)

where 0  is a s-vector of zeros. ⊙ represents the Hadamard (element by element) matrix

product.

We consider eight risky assets, that is, the vector 1+tR  has dimension eight by one.

Therefore there are nine equations in total. The risky assets used are a US equity index, the

US long-term bond, a UK equity index, the UK long-term bond, a German equity index, the

German long-term bond, and pound sterling and Deutschemark money market accounts.2 All

returns are gross returns in US dollars since we take the point of view of the US dollar

investor and are deflated by US inflation to be converted to real returns. A detailed

description of the equations used in the estimation of the US normalized pricing kernel can be

found in Appendix C.

The system of nine equations is estimated using different instruments for each equation.

Lagged values (time t information) of the following information variables are used as

instruments: the equity index dividend yield, the term spread (defined as the difference

between the long-term yield and the short rate), the one-period change in the short rate, and

equity, long-term bond and foreign exchange rate real returns for all three currencies. The

choice of instruments is motivated by the literature on equity, bond and foreign exchange

return predictability and is further discussed in the next sections.3

The estimation of the three pricing kernels allows us to compute the market prices of

risk and hence foreign exchange risk premia. Equation (A2) in Appendix A describes the

stochastic process followed by the logarithm of the pricing kernel:

( ) 1
2

1 2
1

++ ∆λ−λ−−= ttttt Wrfmln , (11)

                                                     
2 In this study we use major financial asset classes. Securities like real estate, private equities or even hedge

funds could be considered in the analysis. However, limitations due to data availability prevent us from doing so.
3 Notice that results are not sensitive to the choice of instruments.
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where ( )tt Rflnrf =  is the logarithmic return of the risk-free asset in the domestic economy,

tλ is the volatility of the domestic investor’s pricing kernel, that is, the market price of risk,

and 1+tW  is a source of uncertainty.

A similar equation holds for the pricing kernel of the foreign investor:

( ) ( ) f
t

f
t

f
t

f
t

f
t Wrfmln 1

2
1 2

1
++ ∆λ−λ−−= , (11b)

where the superscript f  denotes variables from the point of view of the foreign investor.

Combining equation (3’), (11) and (11b) we derive the following relationship:

( )[ ] ⇒∆λ+∆λ−λ−λ+−=







++

+ f
t

f
tttt

f
tt

f
t

t

t WWrfrf
e

eln 11
221

2
1

( ) ( )[ ]221

2
1

t
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f
t

t

t
t rfrf

e
elnE λ−λ+−=















 + . (12)

Equation (12) is the Uncovered Interest rate Parity (UIP) condition augmented by risk

premia. The first term on the right-hand side is the interest rate differential. If there is no

uncertainty in the economy or investors are risk neutral, the proportional change in the

exchange rate would be driven only by differences in the one-period bond (risk-free) rates in

the two currencies, i.e. ( )t
f

t rfrf − : a higher domestic risk-free rate compensates investors for

an expected depreciation of the domestic currency in terms of foreign currency. However,

when there is uncertainty in the economy and investors require compensation for that, an

exchange rate risk premium ( )[ ]22

2
1

t
f
t λ−λ  appears in the UIP equation. As explained in

Appendix A, the market price of risk tλ  is defined as the excess return (compensation for risk)

per unit of volatility (quantity of risk). Similarly to the risk-free rate differential, a higher

excess return per unit of volatility in the domestic risky assets compensates investors for an

expected depreciation of the domestic currency in terms of foreign currency. The term

( )[ ]22

2
1

t
f
t λ−λ  also includes a convexity adjustment component due to the use of the logarithm

of the real exchange rate in the UIP equation (12).

3. Data
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In this section we describe the data used in equations (8’) and (9’).  Data are observed at

monthly frequency, from September 1953 to December 2002 and were taken from the Global

Financial Data Inc. database (http://www.globalfindata.com).

For the real risk-free rate trf  we choose the one-month Treasury bill rates deflated by

the one-month change in Consumer Price Index in the three countries. The Treasury bill rate

is derived from the change in the Treasury bill total return index. The equations for the real

risk-free rates in the three currencies are given below:

US
t

US
t

US
t

US
tUS

t CPI
CPI

TB
TBrf

11 −−

= ,

UK
t

UK
t

UK
t

UK
tUK

t CPI
CPI

TB
TBrf

11 −−

= ,

GER
t

GER
t

GER
t

GER
tGER

t CPI
CPI

TB
TBrf

11 −−

=

The risky asset returns 1+tR  are the one-month gross total4 real5 returns in US dollars of:

- US S&P 500 Composite total return index, ( )tSP ;

- UK FT-Actuaries All-Share total return index, ( )tFT ;

- German CDAX total return index, ( )tDAX ;

- US ten-year government bond total return index, ( )US
tGB ;

- UK ten-year government bond total return index, ( )UK
tGB ;

- German ten-year government bond total return index, ( )GER
tGB ;

- GBPUSD returns, that is, the real return in dollars of investing in a pound sterling money

market account, where GBPUSD is the nominal exchange rate, ( )GBPUSD
tR ;

- DEMUSD returns, that is, the returns in dollars of investing in a Deutschemark money

market account, where DEMUSD is the nominal exchange rate, ( )DEMUSD
tR .

The equations for risky asset returns are given below:

US
t

US
t

t

tUS
t,eq CPI

CPI
SP
SPR

11 −−

= ,

                                                     
4 Total returns include dividend or coupon payments along with capital gains.
5 As with the risk free real rates, we deflate nominal returns by the consumer price index to convert to real

returns.
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As far as the instruments are concerned, we use lagged values of the above risky asset

returns, as defined above, along with the following variables:

- the three equity index dividend yields, SP
tDY , FT

tDY , and DAX
tDY ;

- the three currencies yield curve slopes, ( US
tCY , UK

tCY , )GER
tCY , which is the differences in

the monthly logarithmic change of the ten-year government bond total return index less the

monthly logarithmic change of the Treasury bill total return index,

- the monthly change in the one-month nominal short-rate (Treasury bill), US
tdrf , UK

tdrf ,

GER
tdrf , where the nominal short rate is based on the monthly logarithmic change of the

Treasury Bill index in the three currencies.

The equations for the last two sets of instruments are given below:
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Table 1 reports descriptive statistics of monthly returns on the stock market,

government bond, and T-bill indices for US, UK, and Germany, respectively; log changes in

DEM/USD, USD/GBP, and DEM/GBP exchange rates; and annualized inflation rates for US,

UK, and Germany, respectively.6 There is strong evidence of excess skewness and

leptokurtosis, a clear sign of non-normality, which is confirmed by the Jarque-Bera normality

test. Table 2 contains summary statistics of instruments and Table 3 the unconditional

correlations. As expected, correlation tend to increase among instruments belonging to the

same class.

4. Results

The system of the nine pricing equations (8) and (9) is estimated with GMM. The

instrumental variables which are used differ across equations. In the equity index pricing

equations, the term spread, the dividend yield and the change in the short rate have been

found to be significant in the literature on equity return predictability; the lagged equity return

variables capture potential momentum effects; the lagged value of same currency long-term

bond index return captures potential links between bond and equity markets. In the case of

UK and German equity index returns, lagged values of the US equity index returns are also

included to capture international equity market linkages. In the long-term bond index pricing

equations, the term spread, the change in the short rate have been found to be significant in

the bond risk premia determination; the lagged value of the bond index return is included to

capture potential momentum effects; the lagged value of same currency equity index return

captures potential links between the bond and equity markets; the lagged value of the bond

index return is included to capture potential momentum effects; lagged values of other

currency bond index returns are incorporated to capture international bond market linkages. In

                                                     
6 Returns are continuously compounded, while (annualised) inflation rates are computed as log changes of

Consumer Price Indices.
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the pricing equations of both bond and equity index returns, exchange rate changes are

additionally used as instruments to capture the potential information that exchange rates can

contain for relative (across countries) equity or bond price movements. Finally, the

instruments used in the pricing equations for pound sterling and Deutschemark money market

accounts are relative returns in the corresponding currencies equity and bond indices as well

as yield curve slopes and short rate changes. Appendix C provides a detailed description of

the instruments used for each pricing equation.

Since nine instruments are used for each equation (including a constant), apart from the

pricing equations for pound sterling and Deutschemark money market accounts where five

instruments are used, there are 73 moment conditions for nine parameters, that is, 64

overidentifying restrictions in total. The p-value of the GMM J-statistic is 0.15. Therefore the

null hypothesis that the sample moments are as close to zero as would be expected if the

corresponding population moments were truly zero cannot be rejected.

The results along with the Newey-West (heteroskedasticity and autocorrelation robust)

standard errors are shown in Table B1 in Appendix B. Since the pricing kernel is a linear

combination of the eight risky asset returns we consider, each of them serves as a risk factor.

Therefore, the coefficients reported in Table B1 provide the sensitivities of the expected

return of an asset to these risk factors. All the coefficients are significantly different from zero

and negative. This means that positive exposure or covariation to each of the risk factors

generates a positive contribution to the risk premium required to hold that risky asset. The

three long-term bond index return factors make an exception: they are insignificant for the US

dollar and Deutschemark and significant but positive for the pound sterling. This means that

exposure to the US dollar and Deutschemark long-term bond return factors is not priced and

that a positive exposure to pound sterling long-term bond return factor makes a negative

contribution to the risk premium.

The computation of the Deutschemark and pound sterling investors’ pricing kernels is

carried out with equations (5) and (6) respectively. A one-year moving average of squared

logarithmic changes in the pricing kernels is then used to derive a volatility measure of all

three pricing kernels, that is, the market price of risk. The produced market prices of risk are

shown in Chart 1.
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The averages for the Deutschemark, the pound sterling and the US dollar investor’s market

price of risk are 0.16, 0.17 and 0.19, respectively. The three market prices of risk are seen to

increase in correspondence of financial turmoil, that is during the contraction caused by the

first oil shock in 1973, at the time of stock market crashes in 1987 and 1989, during the

1997/1998 Asian-Russian-Latin-American crisis, and finally after the terrorist attacks in 2001.

The increase in the value of market prices of risks between 1979 and 1982 could be due to the

Federal Reserve policy which deviated from its usual practice of targeting interest rates

preferring to control non-borrowed reserves. In asset pricing theory, and in particular in

Consumption CAPM (CCAPM) -type models, it is shown that the market price of risk is

closely related to investor’s coefficient of risk aversion. Therefore, the time evolution

assumed by the market prices of risk in figure 1 may have the appealing intuition that

investors become more risk averse when financial markets are more turbulent. These results

need to be interpreted with caution. As we mentioned earlier, the market prices of risk can

depend on investors’ risk preferences or macro-economic uncertainty. It is definitely difficult

to disentangle the two. Therefore the episodes of a sharp rise in the market price of risk can be

associated with both heightened macro-economic uncertainty and increase of risk aversion.

Once market prices of risk are estimated, it is straightforward to compute foreign

exchange risk premia through equation (12). Chart 2 reports these premia, which are seen to

be quite flat and close to zero until the beginning of the ‘70s. Not surprisingly this coincides

with the collapse of the Bretton Woods adjustable peg exchange rate system. Thereafter, US

investors have required, on average, a positive premium to hold Deutschemark and pound

Chart 1: market prices of risk 
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sterling, while, when the point of view of a Deutschemark investor is assumed, she will

demand a positive average premium to hold pound sterling.7 The positive premium required

by US investors to hold the two European currencies during the early to mid 1980s could be

due to the strong and chronic overvaluation of the US dollar. After the Plaza Agreement

(September 1985), during the late 1980s the US dollar declined, which may explain the

troughs seen in the foreign exchange rate premia demanded by the US investors. The Louvre

Agreement (February 1987) reverted somehow the pattern.

5. Conclusions

The goal of this paper is to measure market prices of risk and the associated foreign exchange

risk premia extending to an international framework the approach proposed by Balduzzi and

Robotti (2001) for a domestic economy. A general no-arbitrage model where the stochastic

discount factor does not have to take on any specific form is considered. Although markets

are not assumed to be complete, among the set of possible pricing kernels, we choose the one

with minimum variance. This turns out to be the projection of each investor’s pricing kernel

on the space of asset payoffs. The estimation of stochastic discount factors permits to

determine market prices of risk, which, in turn, in an international framework, allow

                                                     
7 Notice that since market prices of risk are annualised, the resulted foreign exchange risk premia are per annum.

Interestingly, excluding the 1954-1973 period, on average US investors approximately require a 2% premium

per year to hold Deutschemarks.

Chart 2: foreign exchange risk premia 
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computing foreign exchange risk premia. Market prices of risk are time-varying and increase

during financial turmoil. In CCAPM-type models, market prices of risk are proportionally

related to investor’s coefficient of risk aversion. Therefore, it seems that investors become

more risk averse during turbulent financial markets. Foreign exchange risk premia are also

time-varying and they exhibit most variation from the early ‘70s onwards, when the Bretton

Wood exchange rate system collapsed.
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APPENDIX A

The goal of this appendix is to show that the standard deviation of the pricing kernel equals

the Sharpe ratio corrected for the Jensen’s inequality of a security perfectly negatively

correlated with the pricing kernel itself.

Consider a one-period risk-free bond with gross return ( )tt rfexpRf = . Since its payoff at

time 1+t  is certain and equal to £1 in all states of the world, according to equation (1) it will

satisfy

( )1
1

+= tt
t

mE
Rf

, (A1)

that is, the pricing kernel is expected to fall according to the risk-free rate. If we take the

logarithm of both sides of equation (A1) we get the following approximation

( ) ( )[ ]11 2
1

++ −−= ttttt mlnVarrfmlnE .

The stochastic process of the pricing kernel can then be written as

( ) 1
2

1 2
1

++ ∆λ−λ−−= ttttt Wrfmln , (A2)

where 1tW + is the source of uncertainty (negatively related to the pricing kernel) and the

quantity ( )[ ]1+=λ ttt mlnStdev  is the volatility of the pricing kernel, commonly referred to as

the market price of risk. The market price of risk is the excess return per unit of volatility (or

unit of quantity of “risk”) of an asset that is perfectly correlated with the source of uncertainty

tW (that is, perfectly negatively correlated with the pricing kernel). To see this, consider

equation (1) for the gross return ( )11 ++ = tt rexpR  of a risky asset:

( ) ( ) ( )[ ] ( ) ( )[ ]⇒+++=⇒⋅= ++++++ 111111 2
101 ttttttttt RlnmlnVarRlnmlnERmE

⇒++++−−= ++++++ )),(ln()(
2
1))(ln(

2
1)())(ln(

2
10 111111 tttttttttttt rmCovrVarmVarrEmVarrf

( ) ( ) ( )[ ]1111 2
1

++++ −=−+ tttttttt r,mlnCovrfrVarrE . (A3)

The left hand side of equation (A3) is the excess return of the risky asset (including the

convexity adjustment8). Consider an asset that is perfectly negatively correlated with the

pricing kernel. The above equation then implies

                                                     
8 See Campbell (1998) for the Jensen’s inequality adjustment in the excess logarithmic returns.
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( ) ( ) ( )[ ] ( )⇒⋅=−+ ++++ 1111 2
1

ttttttttt rStdevmlnStdevrfrVarrE

( )[ ]
( ) ( )

( )1

11

1
2
1

+

++

+

+−
=

tt

ttttt

tt rStdev

rVarrfrE
mlnStdev , (A4)

that is, the standard deviation of the of the pricing kernel (the volatility parameter tλ ) is equal

to the excess return per unit of volatility of an asset perfectly negatively correlated with the

pricing kernel. Since the pricing kernel is related to marginal utility of consumption, which is

then negatively related to consumption itself, this asset will be positively correlated to

consumption growth. This asset has a positive risk premium since it delivers wealth when

consumption if high (that is, when it is less valuable). So the market price of risk is positive.
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APPENDIX B

The following system of nine equations is estimated for the US dollar investor’s real pricing

kernel US
tq 1+ :

11 −+
US
tq (B1)

US
t

US
t

US
t,eq rfqR −⋅ ++ 11 (B2)

US
t

US
t

UK
t,eq rfqR −⋅ ++ 11 (B3)

US
t

US
t

GER
t,eq rfqR −⋅ ++ 11 (B4)

US
t

US
t

UK
t,gb rfqR −⋅ ++ 11 (B5)

US
t

US
t

GER
t,gb rfqR −⋅ ++ 11 (B6)

US
t

US
t

US
t,gb rfqR −⋅ ++ 11 (B7)

US
t

US
t

GBPUSD
t rfqR −⋅ ++ 11 (B8)

US
t

US
t

DEMUSD
t rfqR −⋅ ++ 11 (B9)

where

(
)GER

t,eq
UK

t,eq
GER

t,gb
UK

t,gb

t
DEMUSD
t

GBPUSD
t

US
t,gb

US
t,eq

US
t

US
t

RcRcRcRc

RcRcRcRccrfq

19181716

11514131211

                   ++++

++++++

⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅=
(B10)

is the US dollar investor’s normalized pricing kernels and
US

trf  is the one-month gross real US dollar risk-free rate;

US
t,eqR 1+  is the one-month gross real return on the US equity total return index;

UK
t,eqR 1+  is the one-month gross real return on the UK equity total return index in US dollars;
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GER
t,eqR 1+  is the one-month gross real return on the German equity total return index in US

dollars;
US

t,gbR 1+  is the one-month gross real return on the US ten-year government bond total return

index;
UK

t,gbR 1+  is the one-month gross real return on the UK ten-year government bond total return

index in US dollars;
GER

t,gbR 1+  is the one-month gross real return on the German ten-year government bond total return

index in US dollars;
GBPUSD
tR 1+  is the one-month gross real return on the pound sterling money market account in US

dollars;
DEMUSD
tR 1+  is the one-month gross real return on the Deutschemark money market account in

US dollars;

where real
t

real
tUK

t
GBPUSD
t GBPUSD

GBPUSDrfR 1
1

+
+ = , real

t

real
tGER

t
DEMUSD
t DEMUSD

DEMUSDrfR 1
1

+
+ = ,

UK
trf  is the one-month gross real pound sterling risk-free rate and GER

trf  is the one-month

gross real Deutschemark risk-free rate.

The GMM results along with the Newey-West standard errors are shown in Table B1:

Table B1

Coefficient Std. Error p-value

1c 2.35 0.14 0.00

2c -0.53 0.22 0.02

3c 0.18 0.17 0.30

4c -0.39 0.16 0.02

5c -0.58 0.19 0.00

6c 0.27 0.13 0.03

7c 0.14 0.17 0.42

8c -0.31 0.08 0.00

9c -0.11 0.03 0.00
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The pound sterling and Deutschemark investor’s normalized pricing kernels, denoted as
UK
tq 1+  and GER

tq 1+  respectively, can then be estimated, according to equations (5) to (7):

US
tUS

t

UK
t

real
t

real
tUK

t q
rf
rf

GBPUSD
GBPUSD

q 1
1

1 +
+

+ = (B11)

US
tUS

t

GER
t

real
t

real
tGER

t q
rf
rf

DEMUSD
DEMUSDq 1

1
1 +

+
+ = (B12)

The results do not depend on the choice of the pricing kernel that is initially estimated.

We could initially estimate the pound sterling or Deutschemark investor’s pricing kernel and

the system of equations would be equivalent to B(1) to B(9).

For example, consider the estimation of the pound sterling investor’s pricing kernel
UK
tq 1+ . The following system of equations would be required to be estimated:

11 −+
UK
tq (B1’)

UK
t

UK
treal

t

real
tUS

t,eq rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B2’)

UK
t

UK
treal

t

real
tUK

t,eq rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B3’)

UK
t

UK
treal

t

real
tGER

t,eq rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B4’)

UK
t

UK
treal

t

real
tGER

t,gb rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B5’)

UK
t

UK
treal

t

real
tGER

t,gb rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B6’)

UK
t

UK
treal

t

real
tUS

t,gb rfq
GBPUSD
GBPUSDR −⋅ +

+
+ 1

1
1 (B7’)
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UK
t

UK
t

US
treal

t

real
t rfqrf

GBPUSD
GBPUSD

−⋅ +
+

1
1

(B8’)

UK
t

UK
t

GER
treal

t

real
t rfqrf

GBPDEM
GBPDEM

−⋅ +
+

1
1

(B9’)

where US
treal

t

real
t rf

GBPUSD
GBPUSD

1+

and GER
treal

t

real
t rf

GBPDEM
GBPDEM

1+

 represent the one-month gross real return on

the US dollar and Deutschemark money market account in pound sterling;

The US dollar and Deutschemark investor’s pricing kernels would then be estimated

using equations (B11) and (B12).

However, it is easy to show that system of equation (B1’) to (B9’) is equivalent to the

system of equations (B1) to (B9). Equation (B1’) is equivalent to equation (B8) by using

equation (B11). Equations (B2’) to (B7’) and equation (B9’) are equivalent to equations (B2)

to (B7) and equation (B9) respectively by using equation (B11). Finally equation (B8’) is

equivalent to equation (B1) by using equation (B11).
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APPENDIX C

Equation (8), pricing the risk free asset US
trf : instruments are a constant and the variables

US
t,eqR 1− , US

t,gbR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , UK
t,gbR 1− , GER

t,gbR 1− , UK
t,eqR 1− , and GER

t,eqR 1− .

Equation (9), pricing returns on the US equity index US
t,eqR : instruments are a constant and the

variables US
tCY 1− , SP

tDY 1− , US
tdrf 1− , UK

t,eqR 1− , US
t,gbR 1− , GBPUSD

tR 1− , DEMUSD
tR 1− , and US

t,eqR 2− .

Equation (9), pricing returns on the UK equity index UK
t,eqR : instruments are a constant and the

variables UK
tCY 1− , FT

tDY 1− , UK
tdrf 1− , US

t,eqR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , UK
t,gbR 1− , and UK

t,eqR 1− .

Equation (9), pricing returns on the German equity index GER
t,eqR : instruments are a constant

and the variables GER
tCY 1− , DAX

tDY 1− , GER
tdrf 1− , US

t,eqR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , GER
t,gbR 1− , and GER

t,eqR 1− .

Equation (9), pricing returns on the US long-term bond index US
t,gbR : instruments are a constant

and the variables US
tCY 1− , US

tdrf 1− , US
t,eqR 1− , US

t,gbR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , UK
t,gbR 1− , and GER

t,gbR 1− .

Equation (9), pricing returns on the UK long-term bond index UK
t,gbR : instruments are a

constant and the variables UK
tCY 1− , UK

tdrf 1− , UK
t,eqR 1− , US

t,gbR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , UK
t,gbR 1− , and GER

t,gbR 1− .

Equation (9), pricing returns on the German long-term bond index GER
t,gbR : instruments are a

constant and the variables GER
tCY 1− , GER

tdrf 1− , GER
t,eqR 1− , US

t,gbR 1− , GBPUSD
tR 1− , DEMUSD

tR 1− , UK
t,gbR 1− , and

GER
t,gbR 1− .

Equation (9), pricing returns on the pound sterling money market account GBPUSD
tR :

instruments are a constant and the variables UK
t

US
t CYCY 11 −− − , UK

t
US

t drfdrf 11 −− − , UK
t,eq

US
t,eq RR 11 −− − , and

UK
t,gb

US
t,gb RR 11 −− − .
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Equation (9), pricing returns on the Deutschemark money market account DEMUSD
tR :

instruments are a constant and the variables GER
t

US
t CYCY 11 −− − , GER

t
US

t drfdrf 11 −− − , GER
t,eq

US
t,eq RR 11 −− − ,

and GER
t,gb

US
t,gb RR 11 −− − .
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Table 1
Descriptive statistics of: returns on stock market, government bond, and T-bill indices; log

changes in exchange rates; and inflation rates
This table reports the summary statistics of: monthly returns on the stock market, government bond, and T-bill
indices for US, UK, and Germany, respectively; log changes in DEM/USD, USD/GBP, and DEM/GBP
exchange rates; and annualized inflation rates for US, UK, and Germany, respectively. Returns are continuously
compounded and inflation rates are computed as log changes of Consumer Price Indices (CPIs). Mean, min.,
max and standard deviation are in %. The Jarque-Bera (J-B) test for normality combines excess skewness and
kurtosis, and is asymptotically distributed as 2

mχ  with m=2 degrees of freedom. ** denotes 1% significance
level.

S&P500 UK FT DAX US Bond UK Bond Ger Bond

Mean 0.901 1.032 0.765 0.545 0.704 0.585

Min. -24.253 -30.049 -27.241 -9.479 -5.109 -7.682

Max. 15.537 43.244 13.918 13.406 8.019 6.676

Std. Dev. 4.261 5.437 4.962 2.265 1.411 1.590

Skew. -0.586 0.116 -0.831 0.584 0.912 -0.619

Kurt. 5.347 11.387 6.607 6.730 6.874 6.142

J-B 169.749** 1736.310** 389.055** 376.845** 452.328** 281.403**

Table 1 – Continued
US T-bills UK T-bills Ger T-bills DEM/USD USD/GBP DEM/GBP

Mean 0.444 0.623 0.386 -0.212 -0.094 -0.282

Min. 0.048 0.131 0.156 -14.288 -13.980 -14.420

Max. 1.285 1.339 0.999 10.831 13.585 7.164

Std. Dev. 0.229 0.276 0.160 2.845 2.471 2.388

Skew. 1.036 0.604 1.034 -0.372 -0.506 -1.160

Kurt. 4.461 2.462 3.663 6.269 8.732 8.165

J-B 158.460** 43.095** 116.296** 277.267** 835.656** 789.498**

Table 1 – Continued
US CPI UK CPI Ger CPI

Mean 3.548 5.276 2.534

Min. -0.746 -0.545 -2.765

Max. 12.625 23.316 6.978

Std. Dev. 2.631 4.329 1.720

Skew. 1.298 1.645 0.323

Kurt. 4.504 5.661 3.071

J-B 222.084** 441.802** 10.471**
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Table 2
Descriptive statistics of instruments: equity index dividend yields; currency yield curve

slopes; and changes in the one-month nominal short rates
This table reports the summary statistics of: equity index dividend yields for US (S&P500 DY), UK (UK FT
DY), and Germany (DAX DY), respectively; currency yield curve slopes, which are the differences in the
monthly log change of the ten-year government bond total return index less the monthly log change of the
Treasury bill total return index for US (Slope US), UK (Slope UK), and Germany (Slope Ger), respectively; and
the monthly change in the nominal short-rate for US ( )USdrf , UK ( )UKdrf , and Germany ( )GERdrf , respectively.
Mean, min., max and standard deviation are in %. The Jarque-Bera (J-B) test for normality combines excess
skewness and kurtosis, and is asymptotically distributed as 2

mχ  with m=2 degrees of freedom. ** denotes 1%
significance level.

S&P500 DY UK FT DY DAX DY Slope US Slope UK Slope Ger

Mean 3.408 4.672 3.434 0.101 0.081 0.199

Min. 1.060 2.060 1.500 -10.639 -6.378 -8.114

Max. 6.400 12.040 6.120 12.544 7.199 5.978

Std. Dev. 1.106 1.269 0.951 2.276 1.401 1.587

Skew. 0.040 0.742 0.531 0.327 0.569 -0.792

Kurt. 2.911 6.166 3.125 6.588 6.837 6.367

J-B 0.352 301.560** 28.251** 328.075** 395.183** 341.618**

Table 2 – Continued
USdrf UKdrf GERdrf

Mean -1.07e-04 2.20e-04 -1.68e-05

Min. -0.318 -0.141 -0.138

Max. 0.198 0.218 0.123

Std. Dev. 0.041 0.041 0.025

Skew. -1.414 1.001 0.618

Kurt. 15.781 8.140 9.111

J-B 4226.702** 750.534** 958.889**
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Table 3
Unconditional correlation of instruments

This table reports unconditional correlations among instruments: equity index dividend yields for US (S&P500
DY), UK (UK FT DY), and Germany (DAX DY), respectively; currency yield curve slopes, which are the
differences in the monthly log change of the ten-year government bond total return index less the monthly log
change of the Treasury bill total return index for US (Slope US), UK (Slope UK), and Germany (Slope Ger),
respectively; and the monthly change in the nominal short-rate for US ( )USdrf , UK ( )UKdrf , and Germany
( )GERdrf , respectively.

S&P500 DY UK FT DY DAX DY Slope US Slope UK Slope Ger
S&P500 DY 1.000 0.752 0.717 -0.013 0.024 0.004 -0.033 0.012 -0.007
UK FT DY 1.000 0.629 0.002 -0.003 0.097 -0.061 -0.012 -0.032
DAX DY 1.000 -0.026 0.024 0.006 -0.024 -0.027 -0.040
Slope US 1.000 0.194 0.424 -0.573 -0.031 -0.060
Slope UK 1.000 0.291 -0.126 -0.568 -0.143
Slope Ger 1.000 -0.301 -0.139 -0.284

1.000 0.065 0.025
1.000 0.157

1.000

USdrf UKdrf GERdrf

USdrf
USdrf
GERdrf
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