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Abstract

Datasets in a variety of disciplines require methods where both the sample size
and the dataset dimensionality are allowed to be large. This framework is drastically
different from the classical asymptotic framework where the number of observations is
allowed to be large but the dimensionality of the dataset remains fixed. This paper
proposes a new test of diagonality for large dimensional covariance matrices. The test
is based on the work of John (1971) and Ledoit and Wolf (2002) among others. The
theoretical properties of the test are discussed. A Monte Carlo study of the small
sample properties of the test indicate that it behaves well under the null hypothesis
and has superior power properties compared to an existing test of diagonality for large
datasets.
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1 Introduction

The emergence of large multivariate datasets in a variety of disciplines necessitates the use

of statistical methods appropriate for an asymptotic framework where both the number of

variables and the number of observations tend to infinity. Examples of such large datasets

emerge in disciplines as diverse as finance and molecular biology.

A problem that arises frequently in statistical analysis of multivariate datasets concerns

the diagonality of covariance matrices. For example, the analysis of panel data in econo-

metrics usually assumes that the error terms of the regression models of every unit in the

panel are not contemporaneously correlated. Whereas, the problem of testing whether a

covariance matrix is either equal or proportional to the identity matrix has received some

attention in the case where the dimensionality of the covariance matrix is large (see Ledoit
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and Wolf (2002)) , the problem of testing for diagonality has not. Clearly this is an equally

relevant problem for empirical work. Only under quite restrictive conditions is it reasonable

to hypothesise that every series in a dataset has the same variance.

This note aims to address this issue. We adapt the framework adopted by Ledoit and

Wolf (2002) to construct a new test of diagonality of large dimensional covariance matrices.

The note is organised as follows: Section 2 discusses the new test. Section 3 presents results

on a Monte Carlo study. Finally, Section 4 concludes.

2 Theory

Let XN = [xij] be a T×N matrix of i.i.d. random variables that are normally distributed with

mean vector µN and covariance matrix ΣN = [σij] . Let λ1,N , . . . λN,N denote the eigenvalues

of ΣN . The dimensionality, N , and sample size, T , are increasing integer functions of some

index k such that limk→∞ N(k) = ∞ , limk→∞ T (k) = ∞ and limk→∞ N(k)/T (k) = c ∈
(0,∞). Dependence of N and T on k will be suppressed in what follows. It is assumed

that the average eigenvalue given by α = 1/N
∑N

i=1 λi,N and the variance of the eigenvalues

δ2 =
∑N

i=1(λi,N−α)2/N are independent of the index k, where, α > 0. Further, it is assumed

that
N∑

i=1

λj
i,N

N
→ dj < ∞

for j = 3, 4. Corresponding to the population covariance, the sample covariance matrix is

denoted by SN = [sij,N ] whose elements are given by

sij,N =
1

T

T∑
i=1

(xij −mj,N)2

where mj,N = 1/T
∑T

i=1 xij. The test we suggest is derived from a test of sphericity of ΣN

as discussed in Muirhead (1982), Anderson (1982), John (1971) and Ledoit and Wolf (2002).

The test statistic for the sphericity test is given by

U =
1

N
tr

[(
SN

(1/N)tr(SN)
− I

)2
]

Using results on the eigenvalues of large dimensional covariance matrices Ledoit and Wolf

(2002) show that

TU −N
d→ N(1, 4) (1)

as N, T jointly tend to infinity.
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As we mentioned in the introduction, testing for sphericity may be restrictive in some

empirical applications where there is no reason to hypothesise that different variables have

equal variances. To circumvent this problem we suggest a new hypothesis given by

H0 : σij = 0, i 6= j

A first step towards a test of this hypothesis is to normalise all variables such that they

have unit variance by dividing every observation by the estimated standard deviation of the

variable to which it pertains. This amounts to restricting all the diagonal elements of SN to

be equal to one. Then, the test based on the test statistic U is applied on the transformed

data. We denote the test statistic when applied to transformed data as U∗. In what follows

we analyse the asymptotic distribution of U∗.

It is easy to see that

U =
1

N

N∑
i=1

N∑
j=1

(
sij

1
N

∑N
i=1 sii

− δij

)2

(2)

where δij = I({i = j}) and I({.}) is the indicator function taking the value 1 if the event

{.} occurs and zero otherwise. Normalising the data to have variance equal to 1, does not

affect the asymptotic behaviour of the terms in the summation in (2) for which i 6= j. But,

clearly all terms for which i = j, will be equal to zero. We need to determine the effect of

the lack of those terms to the behaviour of U∗. To do this we examine

1

N

N∑
i=1

(
sii

1
N

∑N
i=1 sii

− 1

)2

where sii are obtained from unnormalised data assuming that σii = 1. We first note that

(
sii

1
N

∑N
i=1 sii

− 1

)
− (sii − 1) = op(1)

and hence we can examine
1

N

N∑
i=1

(sii − 1)2

instead. Under the assumption of normality we know that

√
T (sii − 1)

d→ N (0, 2)

Thus, by the law of large number for i.i.d. observations we have that

T

N

N∑
i=1

(sii − 1)2 p→ 2
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Table 1: Experiments A
N/T 50 100 200 500 1000 50 100 200 500 1000

U∗ CD
50 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.06 0.05
100 0.04 0.03 0.04 0.05 0.06 0.05 0.06 0.05 0.05 0.06
200 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.06

By Proposition 3 of Ledoit and Wolf (2002) we know that (1) holds. Hence, it also follows

that

TU∗ −N
d→ N(−1, 4)

A few remarks are in order. Firstly, we note that only the expectation of the asymptotic

distribution changes and not its variance. Secondly, we note that the denominator of the

main argument of U , given by (1/N)tr(SN) disappears after the transformation. This result

in the test statistic being the same as the statistic V in Ledoit and Wolf (2002). Ledoit and

Wolf (2002) diagnose a power problem for this statistic in the case where a = 1−c
1+c

. However,

this is not problem in our case since in our case α = 1, and hence the problem occurs only

for c = 0. which is not a permissible value in the setup we consider. We examine the small

sample properties of this new test in the next section.

3 Monte Carlo Study

3.1 Monte Carlo Design

We wish to investigate the size and power of the new test. For the size experiments we let

xij be i.i.d. N(0, 1) random variables independent across N and T . We consider a variety

of values for N, T . These are N = 50, 100, 200 and T = 50, 100, 200, 500, 1000. We consider

all possible combinations of these values. We put more emphasis on larger values of T as

these might be more relevant for some applications in macroeconomic panel data where the

problem of diagonality has been repeatedly encountered, (see e.g., Chang (2002) for work

that addresses the problem in the context of panel unit root test). These are referred to as

Experiments A. Results are reported in Table 1. As is clear, the new test is well behaved

under the null hypothesis.

A major issue concerns the power of the test. Given the fact that U is the locally

most powerful invariance test for sphericity as proven by Ledoit and Wolf (2002) one would

expect good power properties for this test. As a comparison, we consider the test proposed by

Pesaran (2004) for testing for diagonality. The test statistic and its asymptotic distribution
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for this test are given by

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂ij

)
d→ N(0, 1)

where ρ̂ij is the estimated correlation between the i-th and j-th variables. This test will be

referred to as CD. The above asymptotic result is obtained under joint N, T asymptotics.

Note that this test is a modification of the test developed by Breusch and Pagan (1980)

which used squares of ρ̂ij instead. The behaviour of that test, however, had been explored

only for T asymptotics keeping N fixed.

Initial experimentation suggests that both tests are quite powerful and, hence, interest

focuses on modest departures from the null hypothesis. We consider three different such

departures. All consider tridiagonal forms for ΣN . The first set of power experiments

referred to as Experiments B, specify the off-diagonal elements of ΣN to be equal to σii−1 =

σii+1 = 0.05, 0.1, . . . , 0.5. The second set of power experiments referred to as Experiments

C, specify the off-diagonal elements of ΣN to be given by σii−1 = σii+1 ∼ U(0, σ) where

σ = 0.05, 0.1, . . . , 0.5. Finally, the third set of power experiments referred to as Experiments

D, specify the off-diagonal elements of ΣN to be given by σii−1 = σii+1 ∼ U(−σ, σ) where

σ = 0.05, 0.1, . . . , 0.5. This final set of experiments consider the rather more realistic case

where correlations exist between variables but are on average close to zero. Results for these

three sets of experiments are presented in Tables 2-4.

3.2 Monte Carlo Results

Results make interesting reading. As we noted earlier, both tests have well behaved be-

haviour under the null hypothesis. Moving on to the more interesting issue of power, we

see a number of patterns emerging. If we were to rank the sets of experiments in terms of

the extent of their departure from the null hypothesis, we would rank experiments B and

D as more distant than experiments C. Firstly, we note that the U∗ test obeys this ranking

being more powerful for experiments D, followed by B and then by C. The CD test is least

powerful for experiments D. The reason for this is that the CD test is not well equipped to

pick up departures from the null hypothesis where the correlations between variables maybe

different from zero but are close to zero on average. This is because the test is based on ρ̂ij

rather than, say, ρ̂2
ij. However, this choice is understandable given the problematic behaviour

of a test based on ρ̂2
ij as N grows, as noted by Pesaran (2004).

Moving on to a comparison between the two tests, we see that in a majority of cases
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the U∗ test dominates. There are instances where the CD test has higher power, especially

when σ and T are small, but these cases are, very much, in the minority.

4 Conclusion

Datasets in a variety of disciplines require methods where both the sample size and the

dataset dimensionality are allowed to be large. This framework is drastically different from

the classical asymptotic framework where the number of observations is allowed to be large

but the dimensionality of the dataset remains fixed.

This paper proposes a new test of diagonality for large dimensional covariance matrices.

The test is based on the work of John (1971) and Ledoit and Wolf (2002) among others. The

theoretical properties of the test are discussed. A Monte Carlo study of the small sample

properties of the test indicate that it behaves well under the null hypothesis and has superior

power properties compared to an existing test of diagonality for large datasets.
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Table 2: Experiments B
σ N/T 50 100 200 500 1000 50 100 200 500 1000

U∗ CD
50 0.03 0.05 0.09 0.21 0.67 0.10 0.13 0.16 0.34 0.55

0.05 100 0.05 0.05 0.07 0.23 0.66 0.10 0.12 0.18 0.33 0.58
200 0.05 0.06 0.09 0.23 0.69 0.10 0.13 0.23 0.36 0.55
50 0.08 0.18 0.47 1.00 1.00 0.19 0.32 0.47 0.83 0.97

0.10 100 0.08 0.17 0.49 1.00 1.00 0.23 0.30 0.46 0.82 0.98
200 0.07 0.16 0.51 1.00 1.00 0.19 0.30 0.50 0.84 0.99
50 0.19 0.52 0.97 1.00 1.00 0.32 0.52 0.76 0.99 1.00

0.15 100 0.18 0.56 0.99 1.00 1.00 0.32 0.54 0.76 0.98 1.00
200 0.18 0.58 0.99 1.00 1.00 0.33 0.53 0.77 0.98 1.00
50 0.49 0.96 1.00 1.00 1.00 0.45 0.71 0.94 1.00 1.00

0.20 100 0.45 0.96 1.00 1.00 1.00 0.48 0.74 0.94 1.00 1.00
200 0.47 0.96 1.00 1.00 1.00 0.49 0.73 0.94 1.00 1.00
50 0.79 1.00 1.00 1.00 1.00 0.62 0.84 0.98 1.00 1.00

0.25 100 0.81 1.00 1.00 1.00 1.00 0.58 0.84 0.98 1.00 1.00
200 0.82 1.00 1.00 1.00 1.00 0.61 0.86 0.99 1.00 1.00
50 0.97 1.00 1.00 1.00 1.00 0.72 0.92 1.00 1.00 1.00

0.30 100 0.97 1.00 1.00 1.00 1.00 0.70 0.92 1.00 1.00 1.00
200 0.97 1.00 1.00 1.00 1.00 0.70 0.92 1.00 1.00 1.00
50 0.99 1.00 1.00 1.00 1.00 0.79 0.96 1.00 1.00 1.00

0.35 100 1.00 1.00 1.00 1.00 1.00 0.80 0.97 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.81 0.96 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.85 0.99 1.00 1.00 1.00

0.40 100 1.00 1.00 1.00 1.00 1.00 0.86 0.98 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.86 0.98 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00

0.45 100 1.00 1.00 1.00 1.00 1.00 0.92 0.99 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00

0.50 100 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00
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Table 3: Experiments C
σ N/T 50 100 200 500 1000 50 100 200 500 1000

U∗ CD
50 0.04 0.04 0.06 0.08 0.13 0.07 0.08 0.09 0.13 0.20

0.05 100 0.04 0.03 0.05 0.07 0.13 0.08 0.08 0.10 0.14 0.21
200 0.04 0.05 0.04 0.07 0.13 0.06 0.08 0.09 0.13 0.20
50 0.04 0.06 0.10 0.37 0.86 0.09 0.14 0.17 0.34 0.54

0.10 100 0.05 0.07 0.10 0.39 0.89 0.10 0.12 0.19 0.37 0.56
200 0.05 0.06 0.10 0.35 0.90 0.10 0.12 0.19 0.38 0.59
50 0.07 0.11 0.30 0.91 1.00 0.14 0.19 0.33 0.61 0.87

0.15 100 0.08 0.11 0.33 0.94 1.00 0.13 0.19 0.33 0.64 0.89
200 0.08 0.12 0.31 0.95 1.00 0.16 0.21 0.33 0.61 0.87
50 0.10 0.28 0.68 1.00 1.00 0.20 0.31 0.48 0.81 0.97

0.20 100 0.10 0.24 0.70 1.00 1.00 0.20 0.29 0.51 0.82 0.98
200 0.09 0.23 0.71 1.00 1.00 0.20 0.31 0.49 0.85 0.97
50 0.16 0.47 0.95 1.00 1.00 0.23 0.41 0.63 0.93 1.00

0.25 100 0.16 0.50 0.96 1.00 1.00 0.28 0.41 0.63 0.94 1.00
200 0.16 0.50 0.98 1.00 1.00 0.26 0.41 0.63 0.94 1.00
50 0.29 0.74 1.00 1.00 1.00 0.30 0.51 0.76 0.98 1.00

0.30 100 0.30 0.79 1.00 1.00 1.00 0.34 0.53 0.76 0.98 1.00
200 0.32 0.82 1.00 1.00 1.00 0.34 0.53 0.78 0.99 1.00
50 0.45 0.94 1.00 1.00 1.00 0.40 0.60 0.86 1.00 1.00

0.35 100 0.49 0.96 1.00 1.00 1.00 0.38 0.61 0.87 0.99 1.00
200 0.49 0.95 1.00 1.00 1.00 0.38 0.64 0.85 0.99 1.00
50 0.68 0.99 1.00 1.00 1.00 0.45 0.70 0.91 1.00 1.00

0.40 100 0.67 0.99 1.00 1.00 1.00 0.49 0.74 0.92 1.00 1.00
200 0.70 0.99 1.00 1.00 1.00 0.49 0.70 0.94 1.00 1.00
50 0.80 1.00 1.00 1.00 1.00 0.51 0.78 0.96 1.00 1.00

0.45 100 0.85 1.00 1.00 1.00 1.00 0.54 0.78 0.96 1.00 1.00
200 0.87 1.00 1.00 1.00 1.00 0.55 0.79 0.96 1.00 1.00
50 0.94 1.00 1.00 1.00 1.00 0.60 0.85 0.97 1.00 1.00

0.50 100 0.94 1.00 1.00 1.00 1.00 0.60 0.82 0.98 1.00 1.00
200 0.95 1.00 1.00 1.00 1.00 0.64 0.83 0.98 1.00 1.00
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Table 4: Experiments D
σ N/T 50 100 200 500 1000 50 100 200 500 1000

U∗ CD
50 0.05 0.08 0.22 0.75 1.00 0.13 0.20 0.31 0.62 0.88

0.05 100 0.06 0.08 0.19 0.81 1.00 0.15 0.20 0.35 0.62 0.88
200 0.07 0.10 0.21 0.80 1.00 0.15 0.21 0.33 0.64 0.88
50 0.20 0.55 0.98 1.00 1.00 0.32 0.51 0.76 0.99 1.00

0.10 100 0.22 0.61 0.99 1.00 1.00 0.32 0.53 0.78 0.99 1.00
200 0.23 0.62 0.99 1.00 1.00 0.35 0.52 0.77 0.99 1.00
50 0.63 0.99 1.00 1.00 1.00 0.53 0.79 0.95 1.00 1.00

0.15 100 0.69 1.00 1.00 1.00 1.00 0.52 0.79 0.95 1.00 1.00
200 0.66 1.00 1.00 1.00 1.00 0.54 0.79 0.97 1.00 1.00
50 0.97 1.00 1.00 1.00 1.00 0.70 0.92 0.99 1.00 1.00

0.20 100 0.98 1.00 1.00 1.00 1.00 0.73 0.92 0.99 1.00 1.00
200 0.99 1.00 1.00 1.00 1.00 0.72 0.93 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.84 0.98 1.00 1.00 1.00

0.25 100 1.00 1.00 1.00 1.00 1.00 0.86 0.98 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.83 0.98 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.90 0.99 1.00 1.00 1.00

0.30 100 1.00 1.00 1.00 1.00 1.00 0.90 0.99 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.91 0.99 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.89 0.98 1.00 1.00 1.00

0.35 100 1.00 1.00 1.00 1.00 1.00 0.88 0.98 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.89 0.99 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.84 0.98 1.00 1.00 1.00

0.40 100 1.00 1.00 1.00 1.00 1.00 0.84 0.98 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.84 0.98 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.78 0.97 1.00 1.00 1.00

0.45 100 1.00 1.00 1.00 1.00 1.00 0.81 0.94 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.76 0.97 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 0.68 0.91 0.99 1.00 1.00

0.50 100 1.00 1.00 1.00 1.00 1.00 0.69 0.89 0.99 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 0.68 0.89 0.99 1.00 1.00
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