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Abstract

This paper considers estimation and inference in some general non lin-
ear time series models which are embedded in a strongly dependent, long
memory process. Some new results are provided on the properties of a
time domain MLE for these models. The paper also includes a detailed
simulation study which compares the time domain MLE with a two step
estimator, where the Local Whittle estimator has been initially employed
to filter out the long memory component. The time domain MLE is found
to be generally superior to two step estimation. Further, the simulation
study documents the difficulty of precisely estimating the parameter as-
sociated with the speed of transition. Finally, the fractionally integrated,
nonlinear autoregressive-ESTAR model is found to be extremely useful in
representing some financial time series such as the forward premium and
real exchange rates.
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1 Introduction

The literature on non linear time series models has largely developed within the context of

stationary I(0) processes, where the nonlinear component is a complement to an ARMA

model. However, there is now a large body of work on the theoretical properties of strongly

dependent, long memory processes in econometrics, which has developed independently of

the work on nonlinear time series. There is also a burgeoning literature on the application of

long memory processes in applied econometric work. As yet, there has been relatively little

research on combining nonlinearity with the literature on long memory processes. A notable

exception is the work of van Dijk, Frances, and Paap (2002), who consider an interesting

combination of a fractionally integrated model with LSTAR errors, which they apply to a

series of quarterly Dutch unemployment. A more recent paper by Baillie and Kapetanios

(2006), develops various tests for the presence of general forms of nonlinearity that are

complementary to a long memory process. These tests are based on logistic approximations

and artificial neural networks and are known to be very good approximations of quite general

forms of non linearity. Baillie and Kapetanios (2006) also find evidence for the presence of

both non linear and long memory components in many economic and particularly financial

time series. This current paper is a logical extension to issues arising in the econometric

estimation and modeling of combined non linear and long memory processes.

Particular attention is given to the estimation of models with an adjustment mecha-

nism that tends to zero (or any other constant), as the transition variable becomes either

extremely large or extremely small. One important model in this class is the Exponential

Smooth Transition Autoregression, or ESTAR model see Terasvirta (1994) and Granger and

Teräsvirta (1993) for more details. It is also possible to estimate a parametric long memory

model simultaneously with a generic nonlinear model based on approximation expansions.

While this is certainly technically quite feasible, it is not pursued here, since this paper

concentrates on the more economically meaningful models with a parsimonious parametriza-

tion. The methodology estimates all the parameters simultaneously and for some classes of

model is seen to realize parameter estimates that have a limiting Normal distribution. The

theoretical results are complemented by a detailed simulation study.

Additional results are presented for a two step estimator, where a semi parametric es-

timator of the long memory parameter is used to subsequently estimate the parameters

associated with the stationary, I(0) linear and non linear parts of the model. The combined

nonlinear, long memory models appear to be of considerable use in many areas of financial

2



econometrics. Detailed examples are given of applications to two controversial areas of in-

ternational finance; namely forward premia and real exchange rates. The models suggested

in this paper turn out to be very appropriate for these time series.

The plan for the rest of the paper is as follows: Section 2 presents the theoretical frame-

work of the various parametric models and approximating structures for nonlinearity. The

estimation procedures, including the discussion of the theorem proving consistency and as-

ymptotic normality of the time domain MLE are discussed in Section 3. Then, Section 4

presents detailed simulation evidence on the performance of the estimator and its finite sam-

ple properties. The MLE is compared with a two step estimator which utilizes the Local

Whittle estimator in the first step. The time domain MLE is found to be generally superior

to the two step estimator and also illustrates the difficulty of precisely estimating the para-

meter associated with the speed of transition. Surprisingly, the simulation appears to be the

first study to deal with the performance of the estimators of the parameters in an ESTAR

model. Section 5 applies the methodology to monthly forward premium since 1979 and finds

strong evidence for long memory and nonlinearity, and provides some insight into how these

results integrate into the literature on the forward premium anomaly. Then, section 6 applies

the new methodology to a series of over two hundred years of real exchange rates. Again

the model performs very well and is indicative of slow responses to parity conditions. The

paper ends with a short section containing a summary and conclusion.

2 Nonlinear-Long Memory Models

Long memory, fractionally integrated processes are characterized by having slow hyperbolic

rates of decay associated with the impulse response weights and autocorrelations. Following

Granger and Joyeux (1980), Granger (1980) and Hosking (1981), a univariate time series

process with fractional integration in its conditional mean is represented by

(1− L)dyt = ut, t = 1, . . . , T (1)

where L is the lag operator and ut is a short memory, I(0) process. Then yt is said to be a

fractionally integrated process of order d, or I(d). An I(0) process is defined as having partial

sums that converge weakly to Brownian motion. The d parameter represents the degree of

”long memory”, or persistence in the series. For −0.5 ≤ d ≤ 0.5 the process is stationary

and invertible; while for 0.5 ≤ d ≤ 1, the process does not have a finite variance, but still

has a cumulative impulse response function with finite sum. If the short memory component
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is represented as an ARMA(p, q) process, then equation (1) becomes the ARFIMA(p, d, q)

model,

φ(L)(1− L)dyt = θ(L)εt (2)

where E(εt) = 0, E(ε2
t ) = σ2, E(εtεs) = 0, s 6= t, and where φ(L) and θ(L) are polynomials

in the lag operator of orders p and q respectively, with all their roots lying outside the

unit circle. The Wold decomposition, or infinite order moving average representation of this

process is given by

yt =
∞∑
i=0

ψiεt−i (3)

while the infinite order autoregressive representation is given by

yt =
∞∑
i=1

$iyt−i + εt (4)

For large lags i, these coefficients decay at the very slow hyperbolic rates of ψi ∼ c1i
d−1

and $i ∼ c2i
−d−1, where c1 and c2 are constants. The hyperbolic decay that is generated

by such a process is known as the ‘Hurst effect’, after Hurst (1951), who first discovered

the phenomenon in hydrological time series data. This paper considers situations where the

short memory process ut is allowed to be a nonlinear process rather than a pure ARMA

process.

A separate, but related issue concerns the origin of the long memory characteristic in

economic and financial time series. In particular, Granger (1980) developed the theory of

how the contemporaneous aggregation of stationary, independent first order autoregressive

processes can generate a fractionally integrated process. Parke (1999) has considered a

discrete time error duration model where a set of iid shocks have different durations or

times of being ”alive” and has shown that this model generates long memory. This approach

is related to that of Cioczek-Georges and Mandelbrot (1995) and shows the relationship

between long memory and heavy tailed densities. Furthermore, Diebold and Inoue (2001)

have shown that a process with Markov switching regimes can be mistaken for a long memory

process. These papers strongly suggest that long memory can arise from forms of some

nonlinearity. However, the tests of Baillie and Kapetanios (2006) suggest the existence of

both nonlinear and long memory components in many economic and financial time series.

Hence this paper is directed at the joint modeling of this phenomenon.
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It is possible to use techniques which allow for quite general non linear processes, and

which can be expressed by the equations

ut = (1− L)dyt =
∞∑
i=1

πiyt−i (5)

and

ut = F (ut−1, · · · , ut−p) + εt (6)

so that the short memory part of the process is a possibly nonlinear autoregressive involving

the last p lags of the variable ut. The non-linear part of the model could in theory be

approximated by an Artificial Neural Network (ANN) methodology, such as that underlying

Lee, White, and Granger (1993), where the conditional mean of ut given lags of ut is a

linear function of the past information set, and the nonlinear part of F (·) in (6) is given by
∑q

j=1 βjφ(
∑p

i=1 γijût−i) where φ(λ) is some basis function such as the logistic function, given

by [1 + exp(−λ)]−1.1 As noted by Lee, White, and Granger (1993) the logistic function can

approximate arbitrarily well any continuous function. One possibility would be to jointly

estimate the long memory component in (1) with a nonlinear model based on an ANN

expansion. While it is in principle straightforward to estimate such a system, the route

adopted in this study is to concentrate on a simple parametric structure of the nonlinearity.

Hence a natural model is where the strongly dependent component is represented by a

fractionally integrated process as in (1). While the stationary I(0) component is composed

of a linear autogression i.e. AR(p) process with a nonlinear autoregression of order k whose

argument is a smooth transition transformation of the stationary I(0) component. For sake

of notational convenience, this model is labeled as FI(d)−NLAR(p, k)−STAR model and

is represented as,

(1− L)dyt = ut, (7)

ut = α(L)ut−1 + β(L)ut−1φ(ut−D) + εt (8)

where the polynomials in the lag operator are α(L) = α0 +
∑p−1

i=0 αiL
i and β(L) = β0 +

∑k−1
i=0 βiL

i and φ(ut−D) is the Smooth Transition Autoregression function, i.e. STAR. Fi-

nally, D is a delay parameter and is set equal to unity in the simulations reported in this

paper.

1The original work of Lee, White, and Granger (1993) and some extensions in Baillie and Kapetanios
(2006) were primarily directed at testing. Then various issues concerning the generation of the γij coeffi-
cients to deal with the identification problem become important. See Lee, White, and Granger (1993) for
details of the construction of the regressors φ(

∑p
i=1 γij ût−i), j = 1, . . . , q and the formation of an LM test.

Stinchcombe and White (1998)show the testing procedure to be consistent under the alternative hypothesis.
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One of the most widely used models in the nonlinear literature is the ESTAR model,

where the STAR part of the model is represented by φ(ut−D) = exp(−γ(ut−D − c)2). For

the empirical implementation of the ESTAR model it is usual to set the transition function

to 1 − exp(−γ(ut−D − c)2), i.e., to 1 − φ(ut−D). Hence the NLAR(p, k) − ESTAR part of

the model can also be represented as

ut = (α0+β0 [1− exp(−γ(ut−D−c)2 )])+

p∑
i=1

αiut−i+
k∑

i=1

βiut−i [1− exp(−γ(ut−D−c)2 )]+εt

(9)

This is the form of the model that will be used in the Monte Carlo and empirical sections of

the paper.

Since the ESTAR model is so widespread in applied work for stationary processes, it

has also been implemented in this study. Hence both the simulation study and empirical

results are built around the case of a long memory process with a stationary component

which has both linear and non linear autoregressive parts and where the nonlinear transfor-

mation is of the form of ESTAR. It should be noted that there are many other possible

parameterizations, such as the Gaussian transformation, or the Logistic Smooth Transition

Autoregressive LSTAR process

ut = (α0+β0 [1 + exp (−λ1(ut−D − λ0)) ]−1)+

p∑
i=1

αiut−i+
k∑

i=1

βiut−i [1 + exp (−λ1(ut−D − λ0)) ]−1+εt

(10)

which has been used by van Dijk, Frances, and Paap (2002). This is clearly one of many

possible interesting parametric forms to represent the adjustment process; and has been

used by Michael, Nobay, and Peel (1997) and Sarantis (1999)) among others in empirical

work. Evidence is presented in sections 5 and 6 of this paper, for the use of the ESTAR

formulation in conjunction with a long memory process.

3 Properties of Time Domain MLE

This section now considers the properties of the time domain MLE and proves consistency

and asymptotic normality for a useful class of process. While a quite general formulation is

captured by the FI(d)−NLAR(p, k)−ESTAR model, the results on the properties of the

class of models for which the time domain MLE is valid is considerably more extensive. In
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particular, attention is confined to the FI(d)−NLAR(p, k)−STAR process, where STAR

refers to a general smooth transition process that satisfies the various assumptions listed

below. To precede the theorem, it is necessary to state the following assumptions:

Assumption 1 yt is a zero mean process.

Assumption 2 The range of φ(.) is the unit interval, while the limy→±∞ φ(y)y = 0 and φ(.)

belongs to C3.

Assumption 3 The disturbance εt is i.i.d.(0, σ2), with E(ε4
t ) < ∞ The density of εt, denoted

by ϕ, is positive everywhere, continuous and thrice differentiable.

Assumption 4 The roots of the lag polynomials α(L) = α0 − α1L− . . .− αpL
p are outside

the unit circle.

It should be noted that the last assumption covers the behavior of the lag polynomial

that is relevant for the outer regime. The behavior of α(L) + β(L), the polynomial in the

lag operator for the inner regime, is not relevant for the global stationarity of the system.

Theorem 1 For the following FI(d)−NLAR(p, k)− STAR process

(1− L)dyt = ut (11)

ut = α0 +

p∑
i=1

αiut−i +
k∑

j=0

βjφ (ut−1, ..., ut−l; γ, c) ut−j + εt (12)

where without loss of generality it is assumed that l ≤ max(p, k). On denoting

θ = (α0, α1, ..., αp, β0, β1, ..., βp, γ, c, d)′, and under assumptions 1 through 4, the MLE of the

parameter vector θ is T 1/2 consistent and has a liming normal distribution.

The proof of this theorem is given in the Appendix. It should again be emphasized that

Theorem 1 allows for a very wide class of nonlinear functions φ(.), which are considerably

more general than the ESTAR type of specification. The behavior of these functions is

not specified at all points on the real line, but only at the tails. In this sense, the theorem

takes on a semi-parametric interpretation. The need to specify the tails of the function

via assumption 2, motivates the use for a general model in the theoretical discussion. This

model when specialized to the ESTAR case becomes an alternative representation to the

formulation used in the empirical sections of this paper. See the details in the discussion
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above (9). It is shown in the proof of the theorem in the appendix that models implied by

equations (1) and (12) satisfy the conditions of Fox and Taqqu (1986) for the consistency and

asymptotic normality of the MLE estimates of all the parameters, under the null hypothesis.

As in Fox and Taqqu (1986) the proof is in terms of a demeaned process.

On assuming Gaussianity of the white noise process εt, then estimation by minimizing

the conditional sum of squared residuals is equivalent to approximate MLE in the time

domain and is numerically straightforward. Hence joint estimation and testing is carried

out by the minimization of the sum of squared residuals
∑T

t=1 ε̂2
t . The approximate MLE

for a model including the long memory parameter and a parametric non linear component

such as ESTAR is relatively computationally intensive, but is fortunately quite feasible

given the computational power that is available today. This approach has previously been

successfully applied to other models with a long memory component, such as ARFIMA with

GARCH; see Baillie, Chung, and Tieslau (1996). Although the method does not take into

account starting values as considered by Sowell (1992), it has been shown in several studies

to perform well in sample sizes of 100 observations or more: see Cheung (1993), Cheung and

Diebold (1994) and Taqqu and Teverovsky (1998). Various standard information criteria,

such as AIC are used for model selection and are found to generally lead to quite adequate

FI(d)−NLAR(p, k)− ESTAR models being selected and estimated.

An alternative to the one step MLE is to use a two step estimation procedure, where an

estimate of d is initially found from a semi parametric procedure, such as the Local Whittle,

which is then used to fractionally filter the observed series yt from the relationship ut =

yt−
∑t−p

l=0 πlyt−l yt−
∑∞

l=0 πlyt−l = (1−L)dyt. The filter with estimated parameters generates

ût; and the next stage is to then to apply MLE to estimate a NLAR(p, k)−ESTAR model

to the ût series. For the purposes of this study it was decided to use the Local Whittle

semi-parametric estimator for d, which is obtained by minimizing the objective function

ln

[
1

m

m∑
j=1

ω2d
j I(ωj)

]
− 2d

m

m∑
j=1

log(ωj) (13)

with respect to d, where I(ωj) is the periodogram given by

I(ωj) =
1

2πT

∣∣∣∣∣
T∑

j=1

yte
iωjt

∣∣∣∣∣

2

and the usual bandwidth used in both the simulation and empirical work is to choose m =

[T 0.5]. As a robustness check, other choices of bandwidth, such as m = [T 0.75] were also
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considered in this study. However, in terms of the results reported in this study, the semi

parametric estimate of d, is always based on the choice of m = [T 0.50]. Full details of the

simulation and empirical results for other bandwidths are omitted for reasons of space, but

are available from the authors on request. More generally, it might be of interest, although

beyond the scope of the present paper, to consider data dependent methods for setting the

bandwidth such as, e.g., those discussed in Andrews and Sun (2004) or Henry and Robinson

(1996). Details on the theoretical properties of the Local Whittle estimator may be found in

Robinson (1995). See also Dalla, Giraitis, and Hidalgo (2005) for a discussion of properties

of the Local Whittle estimator for general nonlinear processes.

The lag order of the models, p, may be determined by an information criterion or chosen

a priori. While there is no formal justification for applying information criteria in this par-

ticular context, it should be noted that available results in the literature strongly suggest the

standard asymptotic properties of the various information criteria to hold in this context.

The relevant properties include consistent model selection of the Schwartz (Schwarz (1978))

and Hannan-Quinn (Hannan and Quinn (1979)) information criteria; while the Akaike in-

formation criterion is known to be inconsistent. In particular, Sin and White (1996) and

Kapetanios (2001) have shown that these properties extend to nonlinear models for weakly

dependent processes; while Hidalgo (2002) has shown that similar results are valid for regres-

sions involving long memory regressors. Finally, recent work by Poskitt (2005) has extended

the optimality results of Shibata (1980) to stationary long memory processes.

4 Simulation Study

This section reports the results from a detailed Monte Carlo study to investigate the per-

formance of the various estimation procedures applied to data generated from various spec-

ifications of the FI(d) − NLAR(p, k) − ESTAR model. There are nine different designs

which allow for the specification of the basic bell shaped ESTAR process, and also allow

for various degrees of persistence in the linear autoregressive and non linear autoregressive

coefficients. Also, two values of d = 0.2 and d = 0.4 were selected for the long memory

parameter for each of the nine basic experiments. Hence, there are eighteen experiments,

i.e. nine with d = 0.2 and nine with d = 0.4. The numerical values for the parameters in

each design were

• Experiment 1 α0 = 0, β0 = 0, α1 = 0.2, β1 = −0.1 γ = 0.2
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• Experiment 2 α0 = 0, β0 = 0, α1 = 0.4, β1 = −0.2 γ = 0.2

• Experiment 3 α0 = 0, β0 = 0, α1 = 0.8, β1 = −0.4 γ = 0.2

• Experiment 4 α0 = 0, β0 = 0, α1 = 0.2, β1 = −0.1 γ = 0.4

• Experiment 5 α0 = 0, β0 = 0, α1 = 0.4, β1 = −0.2 γ = 0.4

• Experiment 6 α0 = 0, β0 = 0, α1 = 0.8, β1 = −0.4 γ = 0.4

• Experiment 7 α0 = 0, β0 = 0, α1 = 0.2, β1 = −0.1 γ = 1

• Experiment 8 α0 = 0, β0 = 0, α1 = 0.4, β1 = −0.2 γ = 1

• Experiment 9 α0 = 0, β0 = 0, α1 = 0.8, β1 = −0.4 γ = 1

The degree of peakedness in the shape of the ESTAR function is determined by the value

of the γ parameter, with experiments 1 through 3 being very tightly concentrated and very

peaked since γ = 0.2, while designs 4 through 6 with γ = 0.4 are smoother and more of the

classic bell shape. Finally, experiments 7 through 9 with γ = 1.0 have an ESTAR function

which is relatively flat and spread out. The main purpose of this simulation was to assess the

performance of the MLE and two step Local Whittle estimator for all eight parameters in

the FI(d)−NLAR(1, 1)−ESTAR model, including the long memory parameter. However,

rather surprisingly, this simulation analysis appears to be the first Monte Carlo which has

investigated the properties of parameter estimators for STAR models.

The chosen parameter values for the nonlinear specifications is similar to those in other

Monte Carlo studies using ESTAR models such as Kapetanios, Shin, and Snell (2003). All

the experiments, or designs, represent geometrically ergodic processes for ut. The geometric

ergodicity of the above processes has been proven for STAR models by Kapetanios, Shin,

and Snell (2003) using the drift condition by Tweedie (1975). Since these processes are

geometrically ergodic, they possess sufficiently rapid decay in their coefficients to satisfy β-

mixing and hence α-mixing; see Davidson (1994, Ch. 14) for further details. An important

corollary is that the processes are I(0).

The results of the mean and standard deviation of all the various parameter estimates,

from sample sizes of T = 400, T = 600 and T = 1, 000 are reported in Tables 1 through 8.

Table 9 reports some additional experiments for the much larger sample size of T = 5, 000.

All the simulation results for each separate experiment were averaged over 500 replications.
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Tables 1 through 4 are for the long memory parameter being set as d = 0.2. In particular,

tables 1 and 2 report the average values of the various parameter estimates, while tables 3

and 4 report their corresponding standard deviations. Tables 5 through 8 follow exactly the

same format, only for d = 0.4. The following facts emerge from the tables:

(i) The constants in the linear and non linear autoregressive polynomials are estimated

very accurately across all designs and different estimation methods.

(ii) There appears to be an interesting trade off between bias and variance when com-

paring estimation methods for d. Comparisons of the last columns of tables 1 and 2 and

also tables 5 and 6 reveal that the Local Whittle estimator is superior in terms of bias to

the MLE across all experiments. However, comparisons of the last columns of tables 3 and

4 and tables 7 and 8 indicate that the Local Whittle estimator has considerably higher vari-

ance than the MLE again across all experiments. This finding is consistent with the known

slower rate of convergence and m1/2 consistency, where m is the number of bandwidths used

in applying the Local Whittle estimator. Note however, that this theoretical result is usually

derived under some linearity assumption (see, e.g., Dalla, Giraitis, and Hidalgo (2005)).

(iii) While the Local Whittle estimator arguably compares very favorably with MLE in

terms of just estimating d, the one step MLE is generally superior in terms of both bias

and variance for all the other parameters. Hence an investigator may reasonably choose the

Local Whittle estimator for simply estimating the long memory parameter. However, the

simulation results caution against using the Local Whittle estimator to fractionally filter the

series before estimating the remaining parameters in a second step. The alternative one step

approximate MLE appears to produce superior estimates of all the remaining parameters

not including the long memory parameter.

(iv) The estimates of γ are generally poor for all designs. This is not surprising given the

nature of the parameter measuring slope or curvature. The quality of the estimator im-

proves both with increasing degrees of persistence in the autoregressive processes and also

with increasing sample sizes. Some further aspects of the issue of estimating the γ parameter

can be seen from Table 9 where the average values and standard deviation of the parameter

estimates are investigated for Experiments 3, 6 and 9 for the sample size of T = 5, 000.

It should be noted that the bias in the MLE of γ is now very small for all three designs,

although its standard deviation remains quite large for Experiment 9.

(v) The parameter, α1, which is associated with the degree of persistence in the linear au-

toregressive processes is generally estimated with a downward bias in all cases. This is in
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contrast to the parameter, β1, which represents with the degree of persistence in the non-

linear autoregressive processes and is estimated with an upward bias across experiments. In

general a measure of total persistence, which is the sum of the estimated parameters α1 +β1

is extremely well estimated.

(vi) The value of d does not appear to be related to the quality of any of the MLE parameter

estimates, including the long memory parameter itself.

5 Analysis of the Forward Premium

There has been considerable previous literature on the most appropriate time series rep-

resentation for the forward premium in currency markets. The possibility of the forward

premium being a strongly dependent, fractionally integrated process has key implications

for the theory, and as shown below, the possibility of the forward premium being a nonlinear

process is also highly relevant. First it is necessary to provide some background information.

From the theory of Uncovered Interest Parity, (UIP ), the expected future rate of appreci-

ation, (depreciation) on a currency is equal to the current forward premium (discount), or

equivalently the interest rate differential. Hence,

Et(∆st+1) = (ft − st) = (it − i∗t ) (14)

where Et(.) denotes the conditional expectation based on a sigma field of all relevant infor-

mation at time t. The variable st is the logarithm of the spot exchange rate and is measured

in terms of the number of dollars in terms of a unit of foreign currency at time t; while it

and i∗t denote the common maturity nominal interest rates available on similar domestic and

foreign assets respectively. A common test for UIP is to estimate the regression equation

∆st+1 = α + β(ft − st) + εt+1, (15)

where under the null hypothesis of UIP , α = 0, β = 1 and εt+1 is a serially uncorrelated

disturbance. The forward premium anomaly is the widespread empirical finding of a negative

slope coefficient in the above regression, so that the rate of appreciation of the spot exchange

rate is negatively correlated with the lagged forward premium. This phenomenon has been

consistently found for most freely floating currencies in the current float and appears robust

to the choice of numeraire currency. Hence the forward premium anomaly implies that

the country with the highest interest rate will have an appreciating currency, and not a

depreciating currency, as implied by the theory of uncovered interest rate parity. Several
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previous papers have questioned the econometric specification of (15), since it appears to be

unbalanced, with spot returns which are almost serially uncorrelated being regressed on the

highly persistent forward premium. The time series properties of the forward premium are

closely related to the issue of cointegration between spot and forward rates. While there is

large body of evidence which finds that both spot and forward rates are well represented by

I(1) processes and are cointegrated with a coefficient of unity; Baillie and Bollerslev (1994)

and Maynard and Phillips (2001) show that the forward premium is well approximated as

a long memory process, which suggests a form of fractional cointegration. Hence 15 is then

unbalanced and the theory of UIP is immediately seen to be inappropriately expressed in

terms of the equation (15).

For the purposes of illustrating the methodology developed earlier in this paper, monthly

data on spot exchange rates, and one month forward exchange rates were used for the

currencies of the Belgian Franc (BF ), Canadian Dollar (CD), French Franc (FF ), Italian

Lira (IL), Japanese Yen (JY ), and the UK Pound (UK) vis a vis the US Dollar. The data

are provided by the Bank of International Settlements and are end of month mid rates, from

December 1978 through December 1998 for the Eurozone currencies of the BF , FF , and

IL; and are from December 1978 through January 2002 for the other currencies of CD, JY

and UK. Table 10 presents some basic summary statistics of these time series together with

estimates of the FI(d)−NLAR(p, k)− ESTAR model.

In order to motivate the use of a nonlinear long memory model, tests for neglected

nonlinearity are presented for each series. In particular, the tests developed in Baillie and

Kapetanios (2006) which consider the presence of linear long memory under the null hypothe-

sis and long memory with nonlinearity in the short memory component under the alternative

hypothesis, are applied to each series. The tests are based on Taylor approximations and

artificial neural network approximations. They are denoted as TLG and ANN respectively.

More details can be found in Baillie and Kapetanios (2006). Probability values for these

tests are reported in Table 10. It should be noted that to the best of our knowledge, these

are the only tests that have been developed explicitly for long memory processes, unlike tests

for ESTAR nonlinearity which are designed for short memory processes. The chosen orders,

p and k of the models that optimized the information criteria vary across the currencies.

The most appropriate order of the linear autoregressive component varied between 10 for

JY and 15 for BF , while the optimum order for the nonlinear autoregressive component

varied between one for BL, FF , IL and UK, to 2 for the CD and 3 for JY . The MLE
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of the long memory parameter d was relatively close to the Local Whittle estimate for most

currencies and was only in the stationary region of 0.0 < d < 0.5 for the IL, and was in

the region of 0.50 < d < 1.00 for the others, which implies non stationarity of the process,

but nevertheless existence of its cumulative impulse response weights. The implied non sta-

tionarity of the forward premium is also consistent with the findings of previous authors

such as Baillie and Bollerslev (1994) and Maynard and Phillips (2001) who used different

methods. Hence for all eight currencies, the FI − NLAR(p, k) − ESTAR model is found

to work extremely well and includes as few as 16 parameters for the UK and as many as

21 parameters for Belgium. For two of the estimated models on the forward premium series

the estimated models have the first nonlinear autoregressive coefficient β1 being small and

not significantly different from zero. However, the effect of nonlinearity enters through the

statistically significant constant term β0.

The diagnostic analysis of the estimated models can also be based on examining the roots

of the estimated lag polynomial α(L) + β(L), which is the relevant operator for the outer

regime. Note that this is different from the theoretical analysis of Section 3 since there the

transition function is φ(ut−D) rather than 1− φ(ut−D) where φ(ut−D) = exp(−γ(ut−D − c)2

(cf. assumption 4). As seen in Table 10, all the eigenvalues of the determinantal polynomial,

(i.e. the inverse of the lag polynomial), lie inside the unit circle, which is consistent with

the process being stationary. It should be noted that the possible existence of an explosive

root in the lag polynomial α(L) is only of interest in terms of the behavior inside the regime

and is not relevant for the issue of global stationarity.2 Since the estimated long memory

parameters exceeded 0.5 in most cases, the models were also estimated after having first

differenced the data. It was found that this did not change the results after having added

unity to the estimate of the long memory parameter.

Table 10 also presents the Ljung-Box statistic of the residuals, denoted by LBR. While

the asymptotic distribution of this test is strictly speaking only correct for i.i.d. processes

under the null, it is known that if the process is simply uncorrelated, then the assumed

asymptotic distribution can be arbitrarily misleading and lead to spurious over rejection of

the null hypothesis; see Romano and Thombs (1996). However, for all the estimated models

in Table 10, this is not an issue as the test never rejects the null hypothesis of no serial

2It did not prove possible to find a satisfactory model for the German Deutschmark, since the estimate
of γ was outside the range of 0.0 < γ < 3.0, and both the Local Whittle and MLE methods were unable
to reject a unit root of d = 1. Full details of these results are not reported here, but are available from the
authors on request.
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correlation. Note that this test is a portmanteau type test and has power against cases

where neglected nonlinearity, arising for example from mis-specification due to an inappro-

priate parametric nonlinear model, gives rise to serial correlation in the residuals. Note

that most conditional mean nonlinear model used in time series analysis, give rise to serial

correlation. Further useful information on the estimated models can be obtained from plots

of the transition functions in Figure 1. The first six panels present the transition functions

for the forward premia whereas the last panel presents the transition function for the Real

Exchange Rate data discussed in Section 6. As we can see there is considerable variability

across series both with respect to the speed of transition and the minimum value for the

transition function.

Further insights into how the empirical results interact with the theory of uncovered

interest rate parity (UIP ) can be derived from the Euler equation for a risk averse investor

or trader considering being long or short in the forward market. Then

Et
(St+1 − Ft)

Pt

U
′
(Ct+1)

U ′(Ct)
= 0 (16)

where and a Taylor series approximation gives

Et∆st+1 = (ft − st) + 0.5V art[st+1] + Covt[st+1pt+1] + Covt[st+1qt+1] (17)

where the last term is derived from the Lucas Breeden asset pricing model, and on denoting

ρt+1 = Covt[st+1qt+1], is the time dependent risk premium. Hence the relevant equation for

estimation is

∆st+1 = (ft − st) + 0.5V art[st+1] + Covt[st+1pt+1] + ρt+1 + εt+1 (18)

Given a long memory forward premium, the terms involving the time dependent risk premium

and possibly the Jensen inequality term V art[st+1] will have to enter into the fractionally

cointegrating relationship to maintain balance in (15). The issue of nonlinearity and long

memory in the forward premium is related to the specification of the UIP equation and

whether is appropriate. For example, Baillie and Kilic (2006) have estimated a model of the

form

∆st+1 = [α1 + β1(ft,1 − st)] + [α2 + β2(ft,1 − st)]F (zt, γ, c) + εt+1, (19)

where εt+1 is again the disturbance term, and F (.) is a logistic the transition function

F (zt; γ, c) = (1 + exp(−γ(zt − c)/σzt))
−1 with γ > 0, (20)
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where zt is the transition variable, σzt is the standard deviation of zt, while γ is a slope

parameter and c is a location parameter. The parameter restriction γ > 0 is an identifying

restriction. The logistic function (20), is bounded between 0 and 1, and depends on the

transition variable zt so that F (zt; γ, c) → 0 as zt → −∞ , F (zt; γ, c) = 0.5 for zt = c, and

F (zt; γ; c) → 1 as zt → +∞. When γ → ∞, F (zt; γ, c) becomes a step function, such that

the LSTR model becomes effectively a threshold model. Therefore, the LSTR model nests a

two-regime threshold model. For γ = 0, F (zt; γ, c) = 0.5 for all zt, in which case the model

reduces to a linear regression model with parameters α = α1 + 0.5α2, and β = β1 + 0.5β2.

The exponent in (20) is normalized by dividing by σzt , which allows the parameter γ to be

approximately scale-free. This is particularly useful for the initial estimates for the nonlinear

optimization used to estimate the parameters in (19). The values taken by the transition

variable and the transition parameter γ will determine the speed of reversion to UIP . For

any given value of zt, the transition parameter γ determines the slope of the transition

function and hence the speed of transition between extreme regimes, with low values of γ

implying slower transitions. The parameter c can be interpreted as the threshold between

the two regimes corresponding to F (zt; γ, c) = 0 and F (zt; γ, c) = 1, in the sense that the

logistic function changes monotonically from 0 to 1 as zt increases, while F (c; γ, c) = 0.5.

The model implies an inner regime when zt = c and F (zt = 0; γ, c) = 1
2

and equation (19)

becomes a standard linear UIP regression

∆st+1 = [α1 + β1(ft,1 − st)] + ut+1, (21)

and in consistent with a region where the forward premium anomaly hold. There is also an

outer regime when limzt→+∞ F (zt; γ, c) where (19) becomes

∆st+1 = [(α1 + α2) + (β1 + β2)(ft,1 − st)] + ut+1. (22)

and α1 + α2 = 0 and β1 + β2 = 1, which corresponds to an outer regime where the theory

of UIP has a high probability of holding. Baillie and Kilic (2006) find that transition

variables associated with higher US money growth differential, high volatility of US money

growth and low US interest rates, and other variables implied by the fundamentals and risk

premium variables are associated with observations in the outer regime where UIP has a

higher probability of holding. An interesting area for future research would be to combine

the forms of nonlinearity present in the forward premium series with the structural changes

in UIP and the regimes where risk premium are relatively important.
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6 Analysis of the Dollar-Pound Real Exchange Rate

Many previous studies, e.g., Diebold, Husted, and Rush (1991), Papell (1997) and Cheung

and Lai (2001) have considered whether the real exchange rate series exhibit mean reversion,

and whether there is evidence of long run absolute Purchasing Power Parity. Some of these

studies have also tried to measure the magnitude and duration of shocks. The evidence has

generally been mixed with less evidence of stationarity in the post Bretton Woods regime.

One of the motivations of previous studies has been to explain the puzzling inability to reject

the null hypothesis of unit root non-stationarity using standard unit root tests. This section

of the paper considers an interesting historical series of the US dollar vis a vis the UK pound.

The data are annual and stretch from 1791 through 1994 and were complied and analyzed by

Lothian and Taylor (1996). Clearly such a long historical series covers a number of regimes

of floating and fixed exchange rates. However, many previous researchers have argued for the

validity of testing the law of one price over such a long span of data. The last column of table

10 duly presents the estimates of an FI(d) − NLAR(15, 6) − ESTAR for the logarithm of

the US−UK real exchange rate. As with the forward premium series, all the eigenvalues of

the relevant determinantal polynomial lie inside the unit circle, implying that the estimated

ut component is indeed I(0). Interestingly, the estimated long memory parameter is 0.403

and has a two sided confidence interval that is still within the stationarity region of being

< 0.50, in contrast to the Local Whittle estimate of 0.554, which has a two sided confidence

interval that includes 0.50. Hence the estimated FI(d) − NLAR(p, k) − ESTAR model

provides evidence of slow, mean reversion of this historical Dollar-Pound real exchange rate.

7 Conclusion

This paper has examined estimation and model specification of quite general fractionally

integrated, nonlinear autoregressions with smooth transition regimes; i.e. so called FI(d)−
NLAR(p, k) − STR models. Hence the nonlinear times series structure is embedded in a

strongly dependent, long memory process, unlike most previous studies which have consid-

ered nonlinearity in a purely stationary environment. The paper has provided some new

theoretical results on the properties of a time domain MLE for these models. A detailed

simulation study found that the time domain MLE overall performed quite well; although

the parameter representing the speed of transition in the ESTAR model is relatively poorly

estimated in small samples. However, the MLE of all the parameters performs very well in
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a sample of 5, 000 which is quite relevant for many applications in financial econometrics.

The simulation study also considered the method of first employing a semi parametric,

Local Whittle estimator to estimate the long memory parameter before fractionally filtering

the series and then estimating the remaining parameters by MLE on the filtered series.

The Local Whittle estimator has less bias, but increased MSE compared with the time

domain MLE of the long memory component. However, one step MLE is generally superior

in terms of both bias and MSE for all other parameters in the model. Hence, while an

investigator may possibly choose the Local Whittle estimator for simply estimating the long

memory parameter, the results of the simulation suggest using the full MLE is preferable for

estimation of the complete model. The estimated FI(d) − NLAR(p, k) − ESTAR models

are is found to be extremely successful in representing the nonlinear structures and strong

dependencies within forward premium and real exchange rates. The use of these models

appears promising for future modeling in these areas.
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8 Appendix

Fox and Taqqu (1986), Dahlhaus (1989) and Hosoya (1997) have shown that under certain

conditions the MLE of parametric stationary long memory models produce
√

T consistent

and asymptotically normal parameter estimates. The rest of the proof will verify the suffi-

cient conditions for the case in this study. For the purposes of the analysis in this paper it

is sufficient to show the following two conditions:

Condition (C.1): yt is a zero-mean stationary long memory I(d) process.

Condition (C.2): The spectral density of ut ≡ ut(d), is denoted by fu(x, θ) and is continuous

and belongs to C3. It should be noted that the spectral density of yt, denoted fy(x, θ) can

be written as

fy(x, θ) = |e−ix − 1|−2dfu(x, θ) (23)

which further illustrates the decomposition of the nonlinear short memory component and

the long memory component. This emphasizes the similarity between the class of nonlinear

models analysed in this paper compared with the standard ARFIMA model. Equation (23)

together with conditions (C.1) and (C.2) above, imply the conditions (B.1) through (B.4) of

Fox and Taqqu (1986), via the second part of Theorem 3 of Fox and Taqqu (1986), which

implies conditions (A.1) through (A.6) of the same paper. The conditions (A.1) through

(A.6) relate to the continuity and differentiability of the spectral density of yt. The non

parametric nature of these conditions allows for the forms of non linearity considered in the

present paper. It is also important to note that Fox and Taqqu (1986) and subsequent authors

such as Dahlhaus (1989) and this paper consider the process yt to have been demeaned prior

to the application of the MLE.

It is therefore necessary to establish conditions (C.1) and (C.2). The results of Fox and

Taqqu (1986) require the additional assumption of the Gaussianity of yt which follows from

the Gaussianity of ut under the null. It should be noted that Gaussianity is only needed for

asymptotic normality of the MLE and not for consistency of the estimator. The assumption

of Gaussianity is relaxed by Hosoya (1997) and is replaced with a mixing assumption for ut

and a finite fourth moment assumption for yt which is satisfied in our case if Assumption 3

above holds3. This follows from the finiteness of the fourth moment of ut which follows from

assumptions 2 and 3 and the Wold decomposition in (3) and the square summability of the

3The main assumptions required for proving normality for the QMLE in Hosoya (1997) are mixing, a
Lindeberg type and Lipschitz continuity condition (Condition A of Hosoya (1997)), and differentiability and
continuity conditions for the spectral density of yt, (Conditions C and D). Both are satisfied if the conditions
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ψi coefficients. The latter is obtained from the Marcinkiewicz-Zygmund inequality (see, e.g.,

equation (25) of Park (2002)) for some constant c

E|yt|4 ≤ c

( ∞∑
i=1

ψ2
i

)
E|ut|4 < ∞, (24)

It is then clear that yt is I(d). This property is immediate if it can be shown that ut is

a mixing process that satisfies a functional central limit theorem and is therefore an I(0)

process. For example, see Davidson and DeJong (2000). Since the process ut is β-mixing it

follows that it is then geometrically ergodic.

The next step is to show geometric ergodicity for ut, which is easily established under

assumptions 2-4 using the drift condition proposed by Tweedie (1975). This condition states

that a process is ergodic under the regularity condition that disturbances have positive

densities everywhere if the process tends towards the center of its state space at each point

in time. More specifically, a multivariate Markov process vt is geometrically ergodic if there

exists constants δ < 1, B,L < ∞, and a small set C such that

E [‖vt‖ | vt−1 = v] ≤ δ ‖v‖+ L, ∀v /∈ C, (25)

E [‖vt‖ | vt−1 = v] ≤ B, ∀v ∈ C, (26)

where ‖·‖ is the Euclidean norm. To see how this criterion implies geometric ergodicity

for the case in this paper, it is necessary to define vt =
(
ut(d), ..., ut−max(p,q)(d)

)
. By the

boundedness of φ(.), it easily follows that (26) holds for any compact set C. Hence it is

necessary to show that there exists a compact set C such that (25) holds. Let El[.|.] denote

the conditional expectation operator for the linear model given by

ut(d) = α0 +

p∑
i=1

αiut−i(d) + εt (27)

Then, for any ε > 0, by virtue of the fact that limy→±∞ φ(y)y = 0, there exists a compact

set Cε such that

E [‖vt‖ | vt−1 = v] ≤ El [‖vt‖ | vt−1 = v] + ε (28)

(A.1) through (A.6) of Fox and Taqqu (1986) are satisfied without assuming Gaussianity (see Hosoya (1997,
pp. 106)).
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But, by assumption 4, for any compact set C there exists δ1 < 1 and L1 < ∞ such that4

El [‖vt‖ | vt−1 = v] ≤ δ1 ‖v‖+ L1, ∀v /∈ C, (29)

Then, (25) follows immediately from (28) and (29) since ε can be as small as desired. The

above then establishes our condition (C.1).

To prove (C.2), it is necessary to show that the continuity and thrice-differentiability

parts of (C.2) holds for the autocovariance function of ut. The nonlinearity of (12) implies

that the closed form of the autocovariance function is non trivial to obtain. However, it is

possible to establish continuity and thrice-differentiability for the stationary density function

of ut, which is denoted by h(u). It is known that h(u) exists from the geometric ergodicity of

ut. For the case of p = 1, the function h(u) is the solution to the following integral equation

h(y) =

∫
ϕ

(
y − α0 − α1x−

q̃∑
j=1

βjφ (x, γ) x

)
h(x)dx =

∫
g(y, x; θ)h(x)dx (30)

where ϕ(.) denotes the density of εt. The solution takes on a more complicated but similar

form for p > 1. The above equation (30) is a special case of a nonlinear Volterra integral

equation as discussed in Corduneanu (1991). It is easy to see that continuity and thrice-

differentiability of φ and ϕ implies continuity and thrice-differentiability for h. To see this

note that a standard method for proving existence theorems for this integral equation is via

the method of successive approximations which simply involve taking successive integrals

containing φ and ϕ (see, e.g., (Corduneanu, 1991, Sec. 1.3)). As a result the continuity and

three times differentiability properties of φ and ϕ are inherited by h(.).

Having established the above for the probability density of ut it is straightforward to see

that the autocovariance function of ut will be continuous and three times differentiable with

respect to the parameters. Hence the result is proven.
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Granger, C. W. J., and T. Teräsvirta (1993): Modelling Nonlinear Economic Rela-

tionships. Oxford University Press.

Hannan, E. J., and B. G. Quinn (1979): “The Determination of the Order of an Au-

toregression,” Journal of the Royal Statistical Society (Series B), 41, 190–195.

Henry, M., and P. M. Robinson (1996): “Bandwidth Choice in Gaussian Semiparametric

Estimation of Long Range Dependence,” in Athens Conference on Applied Probability and

Time Series, Volume II: Time Series in Memory of E. J. Hannan, ed. by P. M. Robinson,

and M. Rosenblatt. Springer-Verlag.

Hidalgo, J. (2002): “Consistent order selection with strongly dependent data and its

application to efficient estimation,” Journal of Econometrics, 110, 213–239.

23



Hosking, J. R. M. (1981): “Fractional Differencing,” Biometrika, 65, 165–176.

Hosoya, Y. (1997): “A Limit Theory for Long Range Dependence and Statistical Inference

on Related Models,” Annals of Statistics, 25, 105–137.

Hurst, H. E. (1951): “Long Term Storage Capacity of Reservoirs,” Transactions of the

American Society of Civil Engineers, 116, 770–799.

Kapetanios, G. (2001): “Model Selection in Threshold Models,” Journal of Time Series

Analysis, 22, 733–754.

Kapetanios, G., Y. Shin, and A. Snell (2003): “Testing for a Unit Root in the Non-

linear STAR Framework,” Journal of Econometrics, 112(2), 359–379.

Lee, T. H., H. White, and C. W. J. Granger (1993): “Testing for Neglected Nonlin-

earity in Time Series Models: A Comparison of Neural Network Methods and Alternative

Tests,” Journal of Econometrics, 56, 269–290.

Lothian, J. R., and M. P. Taylor (1996): “Real exchange rate behavior: the recent

float from the perspective of the past two centuries,” Journal of Political Economy, 104,

488–509.

Maynard, A., and P. Phillips (2001): “Rethinking an old empirical puzzle; the forward

premium paradox,” Journal of Applied Econometrics, ??, 215–254.

Michael, P., A. R. Nobay, and D. A. Peel (1997): “Transaction Costs and Nonlinear

Adjustment in Real Exchange Rates: An Empirical Investigation,” Journal of Political

Economy, 105, 862–879.

Papell, D. H. (1997): “Searching for Stationarity: Purchasing Power Parity under the

Current Float,” Journal of International Economics, 43, 313–332.

Park, J. Y. (2002): “An Invariance Principle for Sieve Bootstrap in Time Series,” Econo-

metric Theory, 18, 469–490.

Parke, W. R. (1999): “What is fractional integration?,” Review of Economics and Statis-

tics, 81, 632–638.

Poskitt, D. (2005): “Autoregressive Approximation in Nonstandard Situations: The Non-

Invertible and Fractionally Integrated Case,” Monash University Working Paper.

24



Robinson, P. M. (1995): “Gaussian Semiparametric Estimation of Long Range Depen-

dence,” Annals of Statistics, 23, 1630–1661.

Romano, J. P., and L. A. Thombs (1996): “Inference for Autocorrelations under Weak

Assumptions,” Journal of the American Statistical Association, 91, 590–600.

Sarantis, N. (1999): “Modelling Nonlinearities in Real Effective Exchange Rates,” Journal

of International Money and Finance, 18, 27–45.

Schwarz, G. (1978): “Estimating the Dimension of a Model,” Annals of Statistics, 6,

461–464.

Shibata, R. (1980): “Asymptotically Efficient Selection of the Order of the Model for

Estimating Parameters of a Linear Process,” Annals of Statistics, 8, 147–164.

Sin, C. Y., and H. White (1996): “Information Criteria for Selecting Possibly Misspecified

Parametric Models,” Journal of Econometrics, 71(1–2), 207–225.

Sowell, F. (1992): “Maximum Likelihood Estimation of Stationary Univariate Fractionally

Integrated Time Series Models,” Journal of Econometrics, 53, 165–188.

Stinchcombe, M. B., and H. White (1998): “Consistent Specification Testing with

Nuisance Parameters Present Only Under the Alternative,” Econometric Theory, 14, 295–

325.

Taqqu, M. S., and V. Teverovsky (1998): “On estimating the Intensity of Long Range

Dependence in Finite and Infinite Variance Time Series,” in A Practical Guide to Long

Memory Processes, pp. 177–217. Santa Barbara, CA.

Terasvirta, T. (1994): “Specification, Estimation, and Evaluation of Smooth Transition

Autoregressive Models,” Journal of the American Statistical Association, 89, 208–218.

Tweedie, R. L. (1975): “Sufficient Conditions for Ergodicity and Recurrence of Markov

Chains on a General State Space,” Stochastic Processes Appl., 3, 385–403.

van Dijk, D., P. H. Frances, and R. Paap (2002): “A Nonlinear Long Memory Model

with Application to US Unemployment,” Journal of Econometrics, 110(2), 135–165.

25



Figure 1: Transition functions for forward premia and real exchange rate data.
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Table 1. Average of the One Step MLE for d=0.2

T α0 α1 β0 β1 γ c d
400 -0.006 0.135 -0.003 -0.029 1.144 0.068 0.169

Exp. 1 600 0.012 0.166 -0.015 -0.087 1.124 -0.016 0.177
1000 0.004 0.143 -0.001 -0.060 1.057 0.030 0.186
400 -0.015 0.294 0.005 -0.085 1.063 -0.032 0.140

Exp. 2 600 0.000 0.351 -0.012 -0.152 0.988 -0.009 0.163
1000 0.001 0.306 0.007 -0.131 0.889 0.026 0.179
400 -0.001 0.632 0.010 -0.316 0.552 -0.014 0.174

Exp. 3 600 0.045 0.683 -0.072 -0.344 0.529 0.069 0.176
1000 0.029 0.704 -0.054 -0.354 0.391 0.052 0.184
400 0.012 0.130 -0.002 -0.050 1.273 0.005 0.168

Exp. 4 600 0.054 0.124 -0.066 -0.051 1.222 0.031 0.180
1000 -0.003 0.117 0.020 -0.042 1.142 -0.022 0.186
400 -0.015 0.304 0.026 -0.133 1.041 -0.036 0.157

Exp. 5 600 -0.048 0.273 0.053 -0.109 1.050 -0.017 0.167
1000 -0.008 0.321 0.002 -0.161 0.994 0.014 0.181
400 0.016 0.739 -0.023 -0.371 0.797 0.036 0.166

Exp. 6 600 0.028 0.741 -0.028 -0.379 0.713 0.042 0.174
1000 0.003 0.759 -0.018 -0.392 0.600 -0.013 0.186
400 0.006 0.175 -0.000 -0.080 1.458 -0.006 0.166

Exp. 7 600 -0.033 0.203 0.030 -0.120 1.520 -0.091 0.181
1000 0.008 0.189 0.002 -0.112 1.412 0.021 0.186
400 0.000 0.350 0.008 -0.172 1.485 0.025 0.156

Exp. 8 600 -0.022 0.357 -0.015 -0.181 1.488 0.011 0.173
1000 -0.015 0.364 0.034 -0.195 1.476 -0.016 0.181
400 -0.018 0.821 0.009 -0.428 1.372 0.057 0.160

Exp. 9 600 -0.018 0.822 0.006 -0.438 1.435 0.006 0.175
1000 0.001 0.834 -0.002 -0.446 1.370 -0.019 0.185
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Table 2. Average of the Two Step Estimator for d=0.2

T α0 α1 β0 β1 γ c d
400 0.010 0.082 -0.030 0.019 1.233 0.072 0.181

Exp. 1 600 -0.024 0.156 0.014 -0.084 1.206 -0.032 0.190
1000 0.016 0.134 -0.026 -0.055 1.128 0.042 0.194
400 -0.007 0.200 0.005 -0.020 1.145 -0.040 0.191

Exp. 2 600 -0.027 0.285 0.030 -0.120 1.062 -0.017 0.196
1000 -0.013 0.262 0.024 -0.095 0.947 -0.004 0.195
400 0.027 0.510 -0.044 -0.238 0.587 -0.028 0.198

Exp. 3 600 0.049 0.563 -0.051 -0.264 0.575 0.056 0.210
1000 0.018 0.614 -0.012 -0.291 0.377 0.053 0.202
400 -0.006 0.107 0.001 -0.020 1.350 0.027 0.180

Exp. 4 600 0.030 0.097 -0.046 -0.023 1.237 0.024 0.199
1000 -0.034 0.103 0.043 -0.026 1.225 -0.019 0.202
400 -0.001 0.228 -0.011 -0.101 1.153 -0.048 0.206

Exp. 5 600 -0.032 0.213 0.041 -0.083 1.100 0.005 0.197
1000 -0.024 0.272 0.020 -0.110 1.088 -0.001 0.196
400 -0.001 0.609 0.003 -0.287 0.824 0.041 0.206

Exp. 6 600 0.009 0.624 -0.021 -0.312 0.739 0.029 0.205
1000 -0.004 0.670 -0.018 -0.322 0.609 -0.010 0.200
400 0.028 0.175 -0.010 -0.090 1.514 -0.012 0.189

Exp. 7 600 -0.023 0.158 0.016 -0.078 1.590 -0.106 0.188
1000 0.032 0.165 -0.022 -0.085 1.494 0.038 0.199
400 -0.001 0.288 -0.004 -0.136 1.507 0.082 0.183

Exp. 8 600 -0.031 0.301 -0.016 -0.152 1.522 0.025 0.193
1000 0.002 0.328 0.008 -0.163 1.508 0.014 0.188
400 -0.017 0.659 0.008 -0.305 1.432 0.020 0.186

Exp. 9 600 -0.017 0.688 0.017 -0.336 1.402 0.012 0.195
1000 -0.002 0.740 0.001 -0.363 1.388 0.002 0.193
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Table 3. Standard Deviation of the One Step MLE for d=0.2

T α0 α1 β0 β1 γ c d
400 0.941 0.662 1.079 0.701 1.107 1.212 0.089

Exp. 1 600 0.758 0.566 0.900 0.601 1.126 1.130 0.069
1000 0.625 0.495 0.780 0.503 1.105 1.057 0.047
400 1.003 0.720 1.166 0.718 1.103 1.277 0.128

Exp. 2 600 0.748 0.623 0.963 0.648 1.064 1.197 0.098
1000 0.717 0.466 0.932 0.526 0.963 1.241 0.064
400 0.874 0.640 1.180 0.639 0.695 1.329 0.095

Exp. 3 600 0.718 0.538 0.969 0.544 0.682 1.211 0.078
1000 0.555 0.356 0.870 0.432 0.484 1.074 0.059
400 0.970 0.724 1.111 0.747 1.192 1.204 0.078

Exp. 4 600 0.824 0.586 0.947 0.604 1.183 1.177 0.064
1000 0.725 0.541 0.841 0.573 1.095 1.139 0.045
400 0.893 0.713 1.085 0.711 1.022 1.265 0.112

Exp. 5 600 0.766 0.635 0.928 0.611 1.056 1.156 0.087
1000 0.656 0.464 0.785 0.494 0.981 1.107 0.064
400 0.674 0.570 0.870 0.578 0.813 1.011 0.095

Exp. 6 600 0.588 0.482 0.824 0.485 0.721 0.921 0.076
1000 0.345 0.318 0.557 0.335 0.508 0.753 0.056
400 0.831 0.673 0.945 0.660 1.218 1.139 0.082

Exp. 7 600 0.728 0.591 0.839 0.609 1.211 1.111 0.059
1000 0.589 0.469 0.705 0.486 1.150 1.004 0.046
400 0.871 0.714 1.029 0.682 1.230 1.125 0.102

Exp. 8 600 0.781 0.629 0.871 0.602 1.162 1.012 0.078
1000 0.558 0.487 0.708 0.480 1.172 0.953 0.051
400 0.552 0.586 0.676 0.576 1.067 0.796 0.105

Exp. 9 600 0.459 0.485 0.577 0.469 1.074 0.738 0.088
1000 0.259 0.338 0.333 0.324 0.933 0.565 0.063
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Table 4. Standard Deviation of the Two Step Estimator for d=0.2

T α0 α1 β0 β1 γ c d
400 0.973 0.728 1.115 0.720 1.206 1.332 0.192

Exp. 1 600 0.850 0.577 1.026 0.599 1.191 1.255 0.145
1000 0.658 0.504 0.826 0.533 1.139 1.138 0.143
400 1.003 0.762 1.176 0.744 1.142 1.477 0.189

Exp. 2 600 0.747 0.637 0.973 0.658 1.111 1.300 0.148
1000 0.793 0.542 1.062 0.571 1.021 1.385 0.135
400 0.946 0.677 1.198 0.620 0.762 1.475 0.190

Exp. 3 600 0.775 0.587 1.021 0.546 0.721 1.383 0.138
1000 0.714 0.404 1.051 0.414 0.446 1.312 0.135
400 0.990 0.795 1.161 0.768 1.244 1.357 0.188

Exp. 4 600 0.967 0.635 1.097 0.630 1.196 1.317 0.136
1000 0.743 0.586 0.856 0.594 1.187 1.258 0.140
400 0.976 0.769 1.171 0.784 1.129 1.431 0.186

Exp. 5 600 0.870 0.686 1.026 0.682 1.094 1.299 0.149
1000 0.691 0.528 0.866 0.535 1.079 1.219 0.143
400 0.792 0.604 0.931 0.613 0.888 1.203 0.188

Exp. 6 600 0.707 0.538 0.963 0.530 0.781 1.133 0.143
1000 0.428 0.356 0.645 0.350 0.602 0.963 0.146
400 0.859 0.801 0.968 0.737 1.246 1.323 0.180

Exp. 7 600 0.830 0.707 0.944 0.698 1.297 1.292 0.148
1000 0.588 0.516 0.683 0.502 1.216 1.117 0.141
400 0.890 0.793 1.011 0.739 1.249 1.325 0.186

Exp. 8 600 0.790 0.595 0.899 0.622 1.210 1.123 0.143
1000 0.618 0.557 0.722 0.548 1.186 1.112 0.137
400 0.677 0.651 0.768 0.629 1.133 1.060 0.182

Exp. 9 600 0.502 0.520 0.680 0.517 1.052 0.867 0.146
1000 0.349 0.403 0.437 0.395 1.050 0.739 0.137
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Table 5. Average of the One Step MLE for d=0.4

T α0 α1 β0 β1 γ c d
400 0.017 0.167 -0.009 -0.067 1.131 0.035 0.357

Exp. 1 600 0.016 0.150 -0.039 -0.070 1.045 0.009 0.372
1000 -0.022 0.143 0.023 -0.056 1.021 -0.008 0.388
400 0.010 0.303 -0.027 -0.110 0.974 0.008 0.330

Exp. 2 600 -0.030 0.299 0.045 -0.113 0.943 -0.065 0.353
1000 -0.029 0.318 0.032 -0.131 0.875 -0.057 0.381
400 0.030 0.665 -0.050 -0.298 0.571 0.041 0.356

Exp. 3 600 0.027 0.688 -0.006 -0.338 0.489 0.030 0.366
1000 0.053 0.676 -0.061 -0.354 0.390 0.092 0.384
400 -0.007 0.163 -0.018 -0.083 1.233 0.054 0.361

Exp. 4 600 -0.017 0.135 0.013 -0.077 1.231 0.017 0.381
1000 0.015 0.156 -0.003 -0.104 1.126 0.016 0.387
400 -0.021 0.307 0.013 -0.136 1.114 -0.015 0.343

Exp. 5 600 -0.080 0.313 0.079 -0.147 1.020 -0.113 0.363
1000 0.023 0.326 -0.028 -0.167 0.990 0.066 0.380
400 -0.024 0.736 0.016 -0.343 0.787 -0.012 0.354

Exp. 6 600 -0.010 0.746 0.019 -0.373 0.740 0.011 0.370
1000 -0.011 0.746 0.032 -0.374 0.612 -0.035 0.384
400 0.006 0.160 0.013 -0.083 1.486 -0.059 0.366

Exp. 7 600 -0.033 0.184 0.056 -0.111 1.470 -0.040 0.379
1000 0.027 0.147 -0.036 -0.081 1.485 0.006 0.390
400 -0.010 0.363 -0.009 -0.182 1.432 0.017 0.349

Exp. 8 600 0.037 0.348 -0.066 -0.171 1.511 0.018 0.369
1000 -0.026 0.353 0.023 -0.188 1.404 0.002 0.383
400 -0.027 0.842 0.023 -0.448 1.405 -0.047 0.351

Exp. 9 600 0.010 0.821 -0.014 -0.422 1.398 0.041 0.359
1000 0.015 0.843 -0.023 -0.445 1.366 0.009 0.377
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Table 6. Average of the Two Step Estimator for d=0.4

T α0 α1 β0 β1 γ c d
400 -0.040 0.125 0.022 -0.039 1.302 0.030 0.402

Exp. 1 600 0.034 0.098 -0.053 -0.030 1.156 0.008 0.406
1000 -0.028 0.130 0.035 -0.042 1.155 -0.032 0.402
400 -0.026 0.235 0.024 -0.086 1.058 0.035 0.389

Exp. 2 600 -0.042 0.226 0.043 -0.088 1.011 -0.084 0.405
1000 -0.047 0.258 0.025 -0.097 0.977 -0.047 0.399
400 -0.009 0.502 -0.000 -0.192 0.640 0.026 0.396

Exp. 3 600 -0.013 0.574 0.031 -0.281 0.531 -0.005 0.415
1000 0.046 0.595 -0.057 -0.306 0.407 0.086 0.408
400 0.032 0.090 -0.031 -0.030 1.339 0.063 0.391

Exp. 4 600 -0.021 0.131 0.012 -0.076 1.295 -0.021 0.402
1000 -0.000 0.149 0.016 -0.095 1.186 0.026 0.397
400 0.021 0.216 -0.017 -0.097 1.185 -0.021 0.411

Exp. 5 600 -0.060 0.264 0.067 -0.129 1.087 -0.104 0.400
1000 0.024 0.260 -0.028 -0.110 1.049 0.064 0.404
400 -0.051 0.582 0.040 -0.242 0.864 -0.007 0.403

Exp. 6 600 -0.003 0.609 -0.012 -0.292 0.741 0.043 0.412
1000 -0.000 0.658 0.016 -0.331 0.618 -0.047 0.401
400 0.015 0.104 -0.021 -0.054 1.543 -0.079 0.398

Exp. 7 600 -0.014 0.140 0.035 -0.086 1.504 -0.035 0.396
1000 0.049 0.125 -0.041 -0.076 1.564 -0.007 0.401
400 -0.011 0.258 0.006 -0.109 1.499 -0.006 0.399

Exp. 8 600 0.029 0.262 -0.034 -0.115 1.543 0.010 0.406
1000 -0.014 0.295 -0.012 -0.147 1.440 0.002 0.410
400 -0.040 0.653 0.045 -0.307 1.442 -0.039 0.405

Exp. 9 600 -0.008 0.689 0.006 -0.326 1.394 0.043 0.405
1000 0.007 0.715 -0.004 -0.353 1.349 0.008 0.397
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Table 7. Standard Deviation of the One Step MLE for d=0.4

T α0 α1 β0 β1 γ c d
400 0.876 0.662 1.102 0.692 1.148 1.155 0.099

Exp. 1 600 0.778 0.607 0.944 0.663 1.101 1.161 0.067
1000 0.624 0.499 0.791 0.538 1.073 1.105 0.045
400 0.960 0.730 1.191 0.783 1.063 1.302 0.127

Exp. 2 600 0.871 0.615 1.085 0.663 1.037 1.276 0.100
1000 0.724 0.508 0.872 0.523 0.932 1.218 0.060
400 0.912 0.594 1.163 0.631 0.754 1.299 0.080

Exp. 3 600 0.728 0.534 0.962 0.490 0.638 1.196 0.070
1000 0.699 0.433 0.931 0.413 0.501 1.135 0.059
400 0.873 0.670 1.019 0.687 1.146 1.148 0.092

Exp. 4 600 0.808 0.706 0.985 0.703 1.167 1.156 0.058
1000 0.664 0.560 0.797 0.575 1.102 1.099 0.047
400 0.896 0.759 1.073 0.737 1.142 1.261 0.113

Exp. 5 600 0.746 0.560 0.915 0.593 1.019 1.146 0.085
1000 0.600 0.452 0.779 0.478 0.972 1.091 0.058
400 0.731 0.589 0.905 0.606 0.782 0.994 0.087

Exp. 6 600 0.573 0.507 0.770 0.516 0.743 0.915 0.074
1000 0.400 0.356 0.585 0.344 0.531 0.765 0.056
400 0.826 0.689 0.920 0.689 1.218 1.108 0.080

Exp. 7 600 0.708 0.608 0.840 0.596 1.185 1.109 0.064
1000 0.585 0.488 0.715 0.486 1.230 1.016 0.044
400 0.799 0.704 0.918 0.703 1.161 1.037 0.110

Exp. 8 600 0.692 0.632 0.823 0.635 1.196 1.034 0.078
1000 0.560 0.468 0.725 0.458 1.097 0.941 0.053
400 0.574 0.583 0.696 0.565 1.037 0.804 0.088

Exp. 9 600 0.508 0.509 0.592 0.507 1.025 0.733 0.084
1000 0.274 0.336 0.420 0.323 0.940 0.547 0.062
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Table 8. Standard Deviation of the Two Step Estimator for d=0.4

T α0 α1 β0 β1 γ c d
400 0.980 0.754 1.171 0.757 1.248 1.366 0.185

Exp. 1 600 0.910 0.704 1.026 0.721 1.179 1.292 0.142
1000 0.696 0.582 0.828 0.581 1.192 1.216 0.139
400 0.972 0.786 1.237 0.775 1.137 1.468 0.192

Exp. 2 600 0.898 0.662 1.122 0.676 1.097 1.384 0.142
1000 0.800 0.558 0.988 0.584 1.054 1.319 0.143
400 1.008 0.666 1.269 0.685 0.850 1.490 0.188

Exp. 3 600 0.774 0.596 1.049 0.567 0.703 1.353 0.143
1000 0.663 0.473 1.027 0.455 0.528 1.257 0.140
400 0.990 0.740 1.174 0.748 1.222 1.288 0.185

Exp. 4 600 0.862 0.666 1.055 0.660 1.220 1.289 0.150
1000 0.670 0.582 0.848 0.587 1.150 1.186 0.144
400 0.988 0.783 1.120 0.809 1.168 1.418 0.186

Exp. 5 600 0.823 0.598 1.046 0.619 1.079 1.283 0.144
1000 0.663 0.508 0.798 0.465 1.052 1.230 0.142
400 0.796 0.657 1.005 0.642 0.904 1.213 0.185

Exp. 6 600 0.722 0.518 0.888 0.535 0.758 1.100 0.142
1000 0.446 0.419 0.663 0.407 0.589 0.916 0.141
400 0.890 0.806 1.022 0.803 1.297 1.297 0.186

Exp. 7 600 0.735 0.624 0.900 0.607 1.228 1.249 0.143
1000 0.631 0.530 0.724 0.553 1.277 1.129 0.137
400 0.888 0.804 0.998 0.765 1.205 1.250 0.190

Exp. 8 600 0.738 0.677 0.862 0.644 1.222 1.172 0.145
1000 0.590 0.555 0.776 0.556 1.143 1.104 0.143
400 0.697 0.686 0.855 0.649 1.130 1.085 0.183

Exp. 9 600 0.545 0.590 0.636 0.580 1.070 0.896 0.146
1000 0.361 0.389 0.514 0.393 0.978 0.744 0.135
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Table 9. Average and St. Deviation of the One Step MLE for d=0.2 and 5000 observations

Average
α0 α1 β0 β1 γ c d

Exp. 3 0.004 0.785 -0.036 -0.406 0.219 0.042 0.197
Exp. 6 0.000 0.803 -0.004 -0.408 0.431 0.003 0.199
Exp. 9 0.001 0.826 -0.002 -0.422 1.106 0.001 0.194

Standard Deviation
Exp. 3 0.048 0.066 0.272 0.075 0.089 0.451 0.025
Exp. 6 0.024 0.055 0.092 0.049 0.130 0.219 0.026
Exp. 9 0.028 0.091 0.042 0.087 0.392 0.139 0.024
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Table 10: Empirical Results
Forward Premium RER

Country Belgium Canada France Italy Japan UK US
ACF1 0.780 0.916 0.698 0.841 0.940 0.939 0.8909
ACF2 0.666 0.803 0.626 0.663 0.854 0.842 0.7695
ACF3 0.595 0.714 0.584 0.521 0.769 0.758 0.6643
ACF4 0.525 0.660 0.445 0.394 0.691 0.694 0.5799
LB 863.36 1987.29 720.12 688.19 1544.32 1666.69 1214.83
LW 0.489 0.619 0.734 0.649 0.619 0.558 0.554

Nonlinearity Tests
TLG 0.000 0.133 0.012 0.000 0.041 0.111 0.022
ANN 0.000 0.124 0.006 0.000 0.038 0.100 0.027

Estimation of FI-ESTAR Model
p 15 12 12 12 10 10 12
k 1 2 1 1 3 1 6

Linear AR Parameters
α0 2.0084 -0.5103 1.1464 -0.0089 -0.0143 -0.2949 -0.0002

(0.8984) (0.0140) (1.8215) (0.4168) (0.1457) (0.0578) (0.0458)
α1 -0.5914 -0.4114 -0.3566 1.0155 0.7971 0.7175 0.8326

(0.4613) (0.1578) (0.4579) (0.3201) (0.4005) (0.4611) (0.1755)
α2 -0.2014 0.1390 -0.0051 -0.0598 0.2258 -1.3513 -0.1358

(0.1234) (0.1290) (0.1392) (0.0783) (0.2012) (0.1873) (0.1264)
α3 0.0784 -0.0573 0.1657 0.1323 0.2088 0.3525 0.2999

(0.1426) (0.0792) (0.3288) (0.0796) (0.2016) (0.2156) (0.1249)
α4 0.1587 -0.2338 -0.0080 -0.2253 -0.0494 -0.0722 0.0027

(0.1468) (0.0806) (0.4203) (0.0781) (0.0746) (0.2212) (0.0734)
α5 0.0867 0.1056 0.0863 -0.0659 -0.1294 0.1940 -0.3569

(0.1424) (0.0821) (0.3360) (0.0800) (0.0723) (0.2199) (0.1039)
α6 -0.1329 -0.2097 0.0016 -0.0276 0.1484 -0.2386 0.1433

(0.1545) (0.0749) (0.2295) (0.0773) (0.0708) (0.2197) (0.1044)
α7 -0.2982 0.0801 0.1191 0.1806 -0.2179 -0.0913 0.1014

(0.1515) (0.0794) (0.3660) (0.0762) (0.0731) (0.2211) (0.0784)
α8 0.1043 -0.0392 -0.0813 0.0132 0.1532 0.5569 0.0808

(0.1441) (0.0753) (0.3123) (0.0768) (0.0722) (0.2103) (0.0767)
α9 0.0702 0.2174 0.0736 -0.1318 0.2441 -0.6044 -0.1162

(0.1524) (0.0737) (0.4015) (0.0758) (0.0739) (0.1633) (0.0770)
α10 0.1280 -0.2166 0.0886 -0.0093 -0.2747 0.2162 0.0308

(0.1422) (0.0734) (0.2948) (0.0786) (0.0579) (0.0789) (0.0753)
α11 0.0249 0.0248 0.1962 0.0121 0.0175

(0.1502) (0.0739) (0.3285) (0.0801) (0.0747)
α12 -0.0037 -0.0767 0.1651 0.1586 0.0412

(0.1836) (0.0708) (0.2953) (0.0643) (0.0609)
α13 -0.3544

(0.1534)
α14 -0.0597

(0.1317)
α15 0.2155

(0.1444)
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Table 10 (cont.): Empirical Results
Forward Premium RER

Country Belgium Canada France Italy Japan UK US
Non-linear AR Parameters

β0 -3.3514 0.9872 -5.4067 0.0569 0.0747 0.3045 0.0588
(0.8990) (0.0750) (1.8141) (0.4331) (0.1756) (0.0587) (0.1680)

β1 -0.0101 0.5086 -0.0124 -0.5379 0.0642 1.3189 -0.2149
(0.4603) (0.1947) (0.6346) (0.3340) (0.3963) (0.4701) (0.2602)

β2 -0.5072 -0.3227 0.3413
(0.2377) (0.2195) (0.2707)

β3 -0.5033 -1.1910
(0.2176) (0.5498)

β4 0.0054
(0.2788)

β5 0.8325
(0.4075)

β6 -0.6630
(0.3109)

θ 0.4004 1.2650 0.0506 0.3431 0.2986 1.5778 1.0091
(0.3036) (0.0728) (0.1607) (0.7259) (0.2524) (0.0177) (1.0580)

c 1.5006 -0.7599 2.0852 1.4468 -0.2351 -0.0194 -0.1530
(0.1188) (0.0471) (0.4066) (0.4109) (0.1056) (0.1854) (0.0941)

d 0.6837 0.7556 0.5777 0.3148 0.5273 0.2938 0.4032
(0.1013) (0.0959) (0.0472) (0.0633) (0.0278) (0.0275) (0.0389)

Maximum Eigenvalue of Lag Polynomial
Linear 0.9764 1.0334 0.9401 0.9964 1.0955 1.1526 0.9715

Linear + Nonlinear 0.9762 0.9065 0.9391 0.9056 0.9897 0.9896 0.9313

LBR 11.21 22.520 10.89 14.38 18.60 25.69 14.76

Key: The standard errors of the parameter estimates are in parentheses below their corre-

sponding parameter estimates; ACFj denotes the autocorrelation coefficient of the original

series at lag j, and LB is the Ljung-Box statistic of the first 20 of these autocorrelations. The

symbol LW denotes the Local Whittle estimate of the long memory parameter. The sym-

bols ANN and TLG denote the test statistics for nonlinearity, and LBR is the Ljung-Box

statistic of the first 20 of the autocorrelations of the residuals from the estimated model.
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