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Abstract

Testing serial dependence is central to much of time series econometrics. A number
of tests that have been developed and used to explore the dependence properties of
various processes. This paper builds on recent work on nonparametric tests of inde-
pendence. We consider a fact that characterises serially dependent processes using a
generalisation of the autocorrelation function. Using this fact we build dependence
tests that make use of neural network based approximations. We derive the theoretical
properties of our tests and show that they have superior power properties. Our Monte
Carlo evaluation supports the theoretical findings. An application to a large dataset
of stock returns illustrates the usefulness of the proposed tests.
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1 Introduction

Testing for and measuring serial dependence are of paramount importance to time series

analysis (see e.g., Granger and Teräsvirta (1993), Robinson (1991), Tjostheim (1996)). A

conventional measure of serial dependence is the autocorrelation function, which may over-

look essential nonlinear features of time series that have zero autocorrelation. As Granger

and Teräsvirta (1993) pointed out, there are few simple appropriate tools for analyzing

nonlinear time series, although significant effort has been devoted to developing effective

measures of and tests for serial dependence.

Accordingly there is a large literature on how to test independence among process and se-

rial independence in particular, see, e.g., Hoeffding (1948), Baek and Brock (1992), Johnson

and McClelland (1998), and Pinkse (1999). Tjostheim (1996) provides an excellent survey

of the literature. Although there have been a number of distinct approaches to testing serial

dependence there has been increasing interest recently on nonparametric entropy measures

of and tests for serial dependence. This approach makes only minimal assumptions about

the process under investigation avoiding, for example, normality and linearity assumptions

that have been made in this context in existing literature. Prime examples of work that

focuses on entropy measures are Robinson (1991), Hong and White (2005) and Fernandes

and Neri (2007).

This paper provides new tests of serial dependence building on but moving away from

this recent body of work. Our work is based on a fact that is essentially synonymous to

the usual characterisation of serial dependence but has not been explored in the literature.

In particular, letting yt be a strictly stationary process, serial dependence is equivalent to

fs(., .) 6= g(.)g(.) for some s, where g(.) is the marginal density and fs(., .) is the pairwise

joint density for yt and yt−s, s ∈ {1, 2, . . .}. Of course, zero autocorrelations are not ev-

idence of lack of serial dependence. However, we base our analysis on the following fact.

For any serially dependent process, there exist some functions h1(.) and h2(.) such that

Cov(h1(yt)h2(yt−s)) 6= 0. By generalising the definition of autocorrelation in this way, we

can use a simple formulation for constructing tests for serial dependence. Of course, de-

termining h1(.) and h2(.) is not trivial. Neural networks with their ability to approximate

arbitrarily well unknown continuous functions are useful in this respect.

We provide algorithms for constructing appropriate estimates of h1(.) and h2(.) based

on neural network approximations. We derive the relevant asymptotic theory for our test
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statistics under the null hypothesis that fs(., .) = g(.)g(.) and also examine bootstrap ap-

proximations to the exact distribution of the test statistics. Further, we prove consistency

of the test and perhaps surprisingly given the nonparametric nature of our analysis we show

that the test statistic diverges at a parametric rate under any departure from the null hy-

pothesis. This implies that our test is more powerful than other nonparametric tests which

have slower rates of divergence.

The theoretical properties of our tests are reflected in their small sample properties. We

compare our tests to a number of existing tests in the literature replicating exactly existing

Monte Carlo studies. From this analysis we see that our tests dominate all other tests in all

experiments considered that follow a number of dependence structures.

The paper is structured as follows: Section 2 provides the theoretical analysis underlying

our tests and discusses their asymptotic properties. Section 3 provides the Monte Carlo

analysis. Section 4 applies our tests to a large dataset of stock returns to examine the

random walk hypothesis. Section 5 concludes. All proofs are relegated to an Appendix at

the end of the paper.

2 Theoretical Considerations

Let yt be a strictly stationary time series with marginal density g(.) and pairwise joint den-

sity fs(., .) for yt and yt−s where s ∈ {1, 2, . . .}. An important issue in nonlinear time series

analysis is determining the presence of serial dependence in yt. A standard set of tools for

this aim examines the relationship between fs(., .) and g(.) and in particular measures the

deviation between fs(., .) and g(.)g(.). Any evidence of deviation between these two quan-

tities is taken to suggest evidence of serial dependence. Nonparametric estimates of the

marginal and joint densities can be used to construct a variety of tests for serial dependence

and have been the main tools used to investigate this issue.

This paper takes an alternative view in examining this issue, based on neural networks.

We make the following assumptions:

Assumption 1 fs(., .) and g(.) are continuous functions.

Assumption 2 yt is strictly stationary.
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Assumption 3 Let fs(., .) 6= g(.)g(.). Then, yt is a L1 near epoque dependent (NED)

process of size −φ for some φ > 0, on some α-mixing process with mixing coefficients, α`,

such that lim`→∞ α` = 0.

Remark 1 The only noteworthy assumption is Assumption 3. We note that this assumption

is extremely mild compared to assumptions made in related work such as, e.g., Assumption

A.4 of Hong and White (2005).

We base our analysis on the following fact concerning dependent strictly stationary

processes.

Lemma 1 Let fs(., .) 6= g(.)g(.) on some interval with non-zero Borel measure. Let As-

sumptions 1-2 hold. Then, for every fs, there exists at least one pair of continuous functions

(h1,f (.), h2,f (.)) with E(hi,f (yt)) = 0, i = 1, 2 such that E(h1,f (yt)h2,f (yt−j)) 6= 0.

Given the above Lemma, under dependence, there exist functions which when used to

transform the data result in processes with non-zero correlation. Let the set of all pairs of

functions referred to in Lemma 1 be given by Hf . Given the bounded nature of correlation it

is obvious that there exist a pair of functions in Hf that maximises the absolute correlation

|Corr(h1,f (yt), h2,f (yt−s))| over Hf . So the problem of testing for serial dependence is related

to the problem of maximising |Corr(h1,f (yt), h2,f (yt−s))| with respect to (h1,f (.), h2,f (.)).

This is of course a non-trivial optimisation. A number of alternative approaches for this

problem can be envisaged. We focus on neural networks. We restate the problem as follows.

Given the set of all pairs of continuous functions (h1,f (.), h2,f (.)) we need to determine a pair

that maximises |Corr(h1,f (yt), h2,f (yt−s))|. We consider neural network approximations to

continuous functions and in particular radial basis function (RBF) neural network (RBFNN)

approximations for reasons that will be discussed below. The RBFNN series expansion takes

the form

hi,f (y) =
m∑

j=1

cjψ(y, ti,j, σT ) (1)

where the RBF nodes, ψ(y, ti,j, σT ), are radially symmetrical, integrable, bounded functions

and ti,j are referred to as the centres of the RBFs. Examples include the Gaussian function of

the form exp

(
−

(
||y−ti,j ||

σT

)2
)

, or the multiquadratic function

(
1 +

(
||y−ti,j ||

σT

)2
)−1

, σT > 0,

where ||.|| denotes Euclidean distance. Obviously, estimation of (1) is challenging since un-

like standard series expansions, there are two problems that need attention: the first is that

ψ(y, tj, σT ) contain unknown parameters, in particular the centres, and the second is that
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the nodes are not ranked so that the choice of the nodes in the series expansion is not obvious.

We propose the following algorithm for using such approximations for our maximisation

problem.

Algorithm 1 (RBF) Boosting algorithm

1. Let σT be some sequence such that σT = o(1). We construct two initial sets of T − s

RBF nodes given by: Ψ1,(1,...,T ) = {ψ(y, ys+1, σT ), ψ(y, ys+2, σT ), . . . , ψ(y, yT , σT )} and

Ψ2,(1,...,T ) = {ψ(y, y1, σT ), ψ(y, y2, σT ), . . . , ψ(y, yT−s, σT )}.

2. These are ranked according to their ability to maximise |Corr(ψ(yt, yk1 , σT ), ψ(yt−s, yk2 , σT ))|
for k1 = s + 1, ..., T , k2 = 1, ..., T − s.

3. The pair of nodes that maximise the absolute correlation become the first pair node in

the ranking of the nodes. Denote this pair of nodes by (ψ(yt, yS1,1 , σT ), ψ(yt−s, yS2,1 , σT )).

Let S̃1,1 = {S1,1} and S̃2,1 = {S2,1}. Let Ψ1,(1,...,T )/S̃1,1 and Ψ2,(1,...,T )/S̃2,1 be the sets of

nodes in Ψ1,(1,...,T ) and Ψ2,(1,...,T ) apart from the nodes indexed by the elements of S̃1,1

and S̃2,1.

4. Set i = 1 and c1,1 = c2,1 = 1.

5. The nodes in Ψ1,(1,...,T )/S̃1,i and Ψ2,(1,...,T )/S̃2,i are ranked according to their ability to

increase
∣∣∣∣∣Corr

(
i∑

l=1

c1,lψ(yt, yS1,l
, σT ) + ck1

1 ψ(yt, yk1 , σT ),
i∑

l=1

c2,lψ(yt−s, yS2,l
, σT ) + ck2

2 ψ(yt−s, yk2 , σT )

)∣∣∣∣∣

where k1 ∈ S̃1,i and k2 ∈ S̃2,i and ck1
1 and ck2

2 are obtained numerically and constrained

to be bounded.

6. The pair of nodes that maximise the absolute correlation becomes the i + 1-th pair of

nodes in the ranking of the nodes. Denote this pair of nodes by

(ψ(yt, yS1,i+1
, σT ), ψ(yt−s, yS2,i+1

, σT )) and their respective coefficients by c1,i+1 and c2,i+1.

Let S̃1,i+1 = S̃1,i∪{S1,i+1} and S̃2,i+1 = S̃2,i∪{S2,i+1} where S1,i+1 and S2,i+1 denote the

indices of the chosen nodes. Let Ψ1,(1,...,T )/S̃i+1 and Ψ2,(1,...,T )/S̃i+1 be the sets of nodes

in Ψ1,(1,...,T ) and Ψ2,(1,...,T ) respectively apart from the nodes indexed by the elements of

S̃1,i+1 and S̃2,i+1.

7. If i = m for some m = mT stop and select
∑q1

l=1 c1,lψ(yt, yS1,l
, σT ) and

∑q2

l=1 c1,lψ(yt, yS1,l
, σT ), as the function approximations for h1,f (.) and h2,f (.), where
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q1 and q2 are chosen so as to maximise the absolute correlation over 1, .., m, else set

i = i + 1 and go to Step 5.

A few remarks are in order.

Remark 2 This algorithm bears close resemblance to existing algorithms in the econometrics

and statistics literature that are referred to as boosting algorithms (see, e.g., Kapetanios and

Blake (2007) and Buhlmann (2006)). However, its use to approximate unknown functions

so as to optimise a functional as we do in this paper is to the best of our knowledge novel.

Remark 3 The choice for m is not discussed in Algorithm 1. Theorem 1 suggests that, as

long as m is finite or m = o(T 1/4), the test resulting from Algorithm 1 is well behaved, under

the null. Theorem 3 states that the test is consistent and the test statistic diverges to infinity

at a parametric rate of T 1/2, under the alternative hypothesis, fs(., .) 6= g(.)g(.), for all finite

m.

Remark 4 The sequence σT is left unspecified in Algorithm 1. The work of Park and Sand-

berg (1991) suggests that σT = o(1). Given the lack of guidance on this choice from theory,

it is reasonable to consider ad hoc data-based values following the practice established by Orr

(1995) for RBF neural networks. Accordingly, in practice this tuning parameter is set such

that σT = σ where σ = 2 maxt |yt − yt−1|.

Remark 5 The choice of the initial set of RBF nodes given by:

Ψi,(1,...,T ) = {ψ(y, y1, σT ), ψ(y, y2, σT ), . . . , ψ(y, yT , σT )}

may be straightforwardly generalised to Ψi,(1,...,pT ) where pT is chosen to reflect a subset of the

observations or possibly be of a larger order than T . The theory provides no constraints as

long as pT →∞ and the candidate centres of the functions in Ψi,(1,...,pT ) imply a partition of

the support of yt whose intervals tend uniformly to zero. The last restriction is automatically

satisfied by using y1, ..., yT as candidate centres.

Next we provide a result that we will use to simplify our algorithm.

Lemma 2 Let h1(.) and h2(.) be continuous functions such that E(h1(yt)) = E(h1(yt)) = 0

and E(h(yt)h(yt−s)) 6= 0. Then, for any positive RBF function ψ(., ., .), there exist some con-

stants c1,i, c2,i, t1,i and t2,i, i = 1, ..., m, such that the functions ĥ1,m =
∑m

l=1 c1,lψ(yt, t1,l, σm)

and ĥ2,m =
∑m

l=1 c2,lψ(yt, t2,l, σm) approximate abritrarily well h1(.) and h2(.) respectively for

any sequence σm = o(1) as m → ∞. Further, limm→∞
∣∣∣E(ĥ1(yt)ĥ1(yt))

∣∣∣ 6= 0 implies that

there exist constants t̃1,i and t̃2,i, i = 1, ..., m, such that limm→∞
∣∣∣E(h̃1(yt)h̃1(yt))

∣∣∣ 6= 0 where

h̃1,m =
∑i

l=1 ψ(yt, t̃1,l, σm) and h̃2,m =
∑i

l=1 ψ(yt, t̃2,l, σm).
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Following the above Lemma we can modify Algorithm 1 to restrict c1,i = c2,i = 1. We

refer to this Algorithm as Algorithm 2.

Theorem 1 Let assumptions 1-2 hold. Let ρ̂ denote the correlation obtained by applying

Algorithm 1 to the observed data. Then, under the null hypothesis, and for m = o(T 1/4),√
T ρ̂ is asymptotically normally distributed with zero mean.

Of course, the above result applies straightforwardly to Algorithm 2 too, making it a

reasonably computationally inexpensive algorithm as it does not involve any iterative esti-

mation. The asymptotics of Theorem 1 are not that relevant for small samples both because

a test based on these asymptotics is likely to overreject in small samples and also because

the variance of the statistic is not easy to obtain. As a result we resort to the bootstrap. We

apply the nonparametric bootstrap for i.i.d. sequences thereby imposing the null hypothesis

on the bootstrap samples. The following Theorem gives a result on the theoretical properties

of the bootstrap

Theorem 2 Let assumptions 1-2 hold. Let PT denote the probability measure generating

y1, ..., yT . Let GT (x) and ĜT (x) denote the exact distribution of
√

T ρ̂ and its bootstrap

approximation respectively. Then, under the null hypothesis of serial independence

lim
T→∞

PT

[
sup

x

∣∣∣ĜT (x)−GT (x)
∣∣∣ > ε

]
= 0 (2)

for all ε > 0.

We next examine the power properties of Algorithm 2. We have the following Theorem.

Theorem 3 Let assumptions 1-3 hold. Under the alternative hypothesis of dependence given

by fs(., .) 6= g(.)g(.), and using Algorithm 2,
√

T ρ̂ = Op(T
1/2), for all finite m.

Note the simplicity, generality and optimality of this result. The test is consistent against

any hypothesis that does not satisfy fs(., .) = g(.)g(.). In this sense it is nonparametric.

Notice next the parametric rate of convergence implying that this test is more powerful that

the nonparametric entropy based tests proposed in the literature of testing serial dependence.

As a result we choose not to consider local power settings.

Remark 6 The test based on algorithm 2 is still relatively computationally intensive given

that (i) a full search across all neural nodes takes place at each step of the Algorithm, (ii) the

search is over a double grid since there are two unknown functions to be determined, and (iii)

a bootstrap implementation is being considered. As a result we also consider a simplified Al-

gorithm, referred to as Algorithm 3, in which we maximise |Corr(hf (yt), hf (yt−s))|, thereby
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searching for only one unknown function. The modifications needed to obtain this simpli-

fication from Algorithm 2 are obvious. Whereas, Algorithm 2 requires O(T 2m) correlation

evaluations for each bootstrap replication, Algorithm 3 only requires O(Tm) evaluations.

We refer to the bootstrap tests based on Algorithms 2 and 3, for lag s as RBF2(s) and

RBF3(s).

Remark 7 Both RBF tests are informative in revealing information about the lag(s) at

which there exists significant serial dependence. However, for testing the null hypothesis

of serial independence, it is possible that two different lag orders may give conflicting con-

clusions. It is thus desirable to have a portmanteau test that uses multiple lags. For this

purpose, we simply follow Hong and White (2005) and suggest using

RBFi =
1√
p

p∑
j=1

RBFi(j), j = 2, 3

Given the results of Theorems 1 and 2 on the asymptotic normality of the RBFi(s) tests and

the validity of the bootstrap, we conclude that these results extend immediately to the RBFi

tests.

3 Monte Carlo Study

In this section we consider the finite sample performance of our new test. Comparability with

results of Monte Carlo studies of other serial dependence tests is very important. Therefore,

we follow exactly two recent Monte Carlo studies: Hong and White (2005) and Fernandes

and Neri (2007). The exact replication of their Monte Carlo setup enables us to focus on

our test and take the rejection probabilities under the alternative hypotheses from existing

papers thus minimising computational cost.

We now give details on the Monte Carlo experiments of Hong and White (2005) and Fer-

nandes and Neri (2007). Starting with Hong and White (2005), the experiments considered

are given by

• Exp. 1A (IID, Size):

yt = εt, εt ∼ N(0, 1)

• Exp. 2A (AR1, Power):

yt = 0.3yt−1 + εt, εt ∼ N(0, 1)
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• Exp. 3A (ARCH1, Power):

yt = h
1/2
t εt, ht = 1 + 0.8y2

t−1, εt ∼ N(0, 1)

• Exp. 4A (TARCH, Power):

yt = h
1/2
t εt, ht = 0.25 + 0.6ht−1 + 0.5y2

t−1I{εt<0} + 0.2y2
t−1I{εt≥0}, εt ∼ N(0, 1)

• Exp. 5A (BILIN1, Power):

yt = 0.8yt−1εt−1 + εt, εt ∼ N(0, 1)

• Exp. 6A (NMA1, Power):

yt = 0.8ε2
t−1 + εt, εt ∼ N(0, 1)

• Exp. 7A (TAR1, Power):

yt = −0.5yt−1I{yt−1<1} + 0.4yt−1I{yt−1≥1} + εt, εt ∼ N(0, 1)

• Exp. 8A (NAR1, Power):

yt = 0.8
√
|yt−1|+ εt, εt ∼ N(0, 1)

• Exp. 9A (SIGN1, Power):

yt = −I{yt−1<0} + I{yt−1≥0} + 0.43εt, εt ∼ N(0, 1)

Throughout, we consider sample sizes of 100 observations thereby focusing on the smaller

sample size considered in Hong and White (2005). Results on rejection probabilities, for the

tests based on Algorithms 2 and 3, are reported in Table 1. We set s = 1. We also report,

in Table 1, the rejection probabilities for these experiments reported for Tn(1) in Hong and

White (2005).

Moving on to the Monte Carlo study of Fernandes and Neri (2007), the experiments of

that Monte Carlo study are given by

• Exp. 1B (AR2, Power):

yt = 0.1 + 0.2yt−1 + εt, εt ∼ N(0, 1)
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• Exp. 2B (ARCH2, Power):

yt = h
1/2
t εt, ht = 0.1 + 0.2y2

t−1, εt ∼ N(0, 1)

• Exp. 3B (NMA2, Power):

yt = 0.2εt−1εt−2 + εt, εt ∼ N(0, 1)

• Exp. 4B (TAR2, Power):

yt = (0.1− 0.2yt−1)I{yt−1<1} + (0.1 + 0.5yt−1)I{yt−1≥1} + εt, εt ∼ N(0, 1)

• Exp. 5B (BILIN2, Power):

yt = 0.1 + 0.2yt−1εt−1 + εt, εt ∼ N(0, 1)

• Exp. 6B (NAR2, Power):

yt = 0.1 + 0.2
√
|yt−1|+ εt, εt ∼ N(0, 1)

• Exp. 7B (SIGN2, Power):

yt = 0.1 + 0.2(−I{yt−1<0} + I{yt−1≥0}) + εt, εt ∼ N(0, 1)

Throughout this set of experiments, we consider sample sizes of 500 observations thereby,

again, focusing on the smaller sample size considered in Hong and White (2005). Results on

rejection probabilities, for the tests based on Algorithms 2 and 3, are reported in Table 2. We

focus solely on algorithm 3 for two reasons. Firstly, our results presented below show that

Algorithm 2 is more powerful than Algorithm 3 for the Monte Carlo experiments of Hong

and White (2005). Since we see that for the Monte Carlo experiments of Fernandes and Neri

(2007) the test based on Algorithm 3 dominates all other tests, we feel it is redundant to

incur further computational cost. This computational cost is the second reason. The test

based on Algorithm 2 which searches for two rather than just one function is 25 times more

expensive computationally compared to the test based on Algorithm 3, for sample sizes of

500 observations. We also report, in Table 2, the rejection probabilities for these experiments

reported for the entropy based test of Hong and White (2005) in Hong and White (2005)

for the values 1/2 and 4 for the tuning parameter q of their test. For all Monte Carlo ex-

periments, the nominal significance level is 5%. We carry out 1000 Monte Carlo replications

and 99 bootstrap replications throughout this section. We also set m = [T 0.249], where [.]
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denotes integer part. Throughout the section we set s = 1.

Results make interesting reading. RBF2(1) and RBF3(1) are extremely well behaved

under the null hypothesis. For the power experiments of the Monte Carlo study of Hong

and White (2005), both RBF2(1) and RBF3(1) are more powerful than all tests considered

in that paper for all experiments. RBF2(1) is substantially more powerful than RBF3(1)

for a number of experiments, but as we discussed earlier this comes at a quite considerable

extra computational cost. In all other cases, RBF2(1) and RBF3(1) have essentially sim-

ilar power properties. Notable examples of this are the linear AR model and the ARCH

model, where RBF2(1) is marginally less powerful than RBF3(1). This is of course reason-

able given that the same function (identity function and square function for the two models

respectively) maximises |Corr(h1,f (yt), h2,f (yt−s))| with respect to (h1,f (.), h2,f (.)) for each

different model. Overall, RBF2(1) is either substantially more powerful than or as powerful

as RBF3(1), but at an extra computational cost.

Moving on to the Monte Carlo of Fernandes and Neri (2007) we see again that the

RBF3(1) is more powerful than the entropy based test of that paper for all experiments

and all values of the tuning parameter of that test, q. It is also substantially more powerful

than almost all other tests and almost all other experiments examined in the Monte Carlo

study of Fernandes and Neri (2007). The only exception is the BDS test of Brock, Dechert,

Scheinkman, and LeBaron (1996) and experiments ARCH2 and NMA2 where the BDS test

marginally outperforms RBF3(1). However, the difference between these two tests for these

two cases are negligible whereas for the rest of the cases the difference in performance between

these two tests is very substantial in favour of RBF3(1).

4 Empirical Application to Stock Returns

In this section, we provide an empirical application that illustrates the potential of the new

test to detect the presence of serial dependence. As it is sometimes difficult to draw mean-

ingful conclusions from the empirical analysis of a single series for the performance of a new

statistical test, we consider a large dataset such as the S&P 500. It has long been hypoth-

esized that stock prices follow a (geometric) random walk possibly with a drift. We are

interested in testing this hypothesis and in identifying important lags.

Data, obtained from Datastream, are weekly returns and span the period 01/01/1993-

20/01/2004 comprising 575 weekly observations. We choose to consider only companies for
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which data are available throughout the period leading us to have 412 series on which to use

our test. We normalise the returns series to have mean equal to zero and variance equal to

one prior to applying our test. Following the Mote Carlo evidence of the previous section,

we use the RBF3(i) for the empirical analysis. We carry out 149 bootstrap replications. We

set m = [T 0.249]. We consider a variety of lags to fully capture any serial dependence in

the processes. In particular we look at 1, 2, 3, 4, 12 and 52 lags, which given the weekly

frequency of the data, are expected to capture monthly, quarterly and yearly seasonalities.

We report probability values for all these tests in Tables 3-5.

Looking at these Tables we note that there is extensive rejection of the null hypothesis

for all lags considered. The extent of the rejection is much larger than than implied by

pure chance. This implies a rejection of the random walk hypothesis. In particular, we have

rejection of serial independence for 58.7% of the series considered at one lag, and 34.2%,

31.7%, 25.7%, 27.6% and 21.6 % for 2, 3, 4, 12 and 52 lags respectively. Clearly, there is

a decline in the extent of the evidence for serial dependence as the lag order increases, but

this decline is quite slow.

5 Conclusions

Testing for serial dependence is important for time series analysis. Recent work on testing

serial dependence has focused on nonparametric entropy measures. We take a different ap-

proach to that work by looking at a generalisation of the autocorrelation function. Using

neural network approximations we are able to construct new tests of serial dependence. We

derive the theoretical properties of our tests and show that they have superior power prop-

erties. Our Monte Carlo evaluation supports the theoretical findings. An application to a

large dataset of stock returns illustrates the usefulness of the proposed tests.

A number of extensions are possible using our approach. Our tests of serial dependence

should be in principle extensible, straightforwardly, to testing for dependence between differ-

ent, possibly serially dependent, processes. Technical issues remain before this extension is

feasible. In particular, we have relied on the independence of the process being tested under

the null hypothesis. This independence simplifies greatly the analysis but cannot be relied on

in the general case since dependent processes need to be analysable under the null hypothesis.

Another extension is more general. We have provided a strategy for estimating unknown

functions that optimise functionals without relying on computationally intensive iterative
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optimisation techniques that lack robustness. This strategy has not been shown to provide

consistent estimates of the unknown functions since we did not need such a result to prove

the properties of our test under the alternative hypothesis. However, such a result would be

of interest in itself and would generalise results in the statistics literature on boosting and

related methods (see, e.g., Kapetanios and Blake (2007), Buhlmann (2006) and Temlyakov

(2000)).

Finally, we have provided a possible basis for a generalised autocorrelation type measure

of dependence based on our Lemma 1 that may be of independent interest for nonlinear time

series analysis.
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6 Appendix

6.1 Proof of Lemma 1

Let y = yt and x = yt−j. We have that for any pair of functions (h1,f (.), h2,f (.)),
∫ ∫

h1,f (y)h2,f (x)fs(x, y)dxdy = (3)

∫ ∫
h1,f (y)h2,f (x)g(x)g(y)c(G(y), G(x))dxdy = 0

where c(., .) is the copula density and G(.) the distribution function corresponding to fs(., .)

and g(.) respectively. We note that the copula density is given by

c(u, v) =
∂2C(u, v)

∂u∂v

where C(u, v) is the copula function satisfying

fs(., .) = C(g(.), g(.)).

In the case of independence c(u, v) = 1. Then, (3) can be rewritten as

∫
h1,f (x)

[∫
h2,f (y)g(y)c(G(y), G(x))dy

]
g(x)dx = 0

But, by the assumed dependence of yt and yt−j, and the fact that c(G(y), G(x)) is a contin-

uous density, it follows that c(G(y), G(x)) is a non-constant function in both its arguments.

Then, it follows that
∫

h2,f (y)g(y)c(G(y), G(x))dy cannot be zero for all possible h2,f (.). As

a result there exists some h2,f (.) for which
∫

h2,f (y)g(y)c(G(y), G(x))dy = q(x)

such that q(x) is nonzero for some x and also non-constant. Then, similarly, given the non-

constancy of q(x), there exists h1,f (.) such that
∫

h1,f (x)q(x)g(x)dx is non-zero completing

the proof of the Lemma.

6.2 Proof of Lemma 2

The first part of the Lemma follows immediately from Park and Sandberg (1991). We now

prove the second part. We have

∣∣∣E(ĥ1(yt)ĥ1(yt))
∣∣∣ =

∣∣∣∣∣
m∑

l=1

m∑

k=1

c1,lc2,kE (ψ(yt, t1,l, σm)ψ(yt, t1,l, σm))

∣∣∣∣∣ ≤

m∑

l=1

m∑

k=1

|c1,lc2,k| |E (ψ(yt, t1,l, σm)ψ(yt, t1,l, σm))| > 0

14



But, then it immediately follows that

m∑

l=1

m∑

k=1

|E (ψ(yt, t1,l, σm)ψ(yt, t1,l, σm))| > 0

and by positivity of ψ that

∣∣∣∣∣
m∑

l=1

m∑

k=1

E (ψ(yt, t1,l, σm)ψ(yt, t1,l, σm))

∣∣∣∣∣ > 0

6.3 Proof of Theorem 1

We focus on the computationally infeasible but conceptually simpler case where the absolute

correlation ∣∣∣∣∣Corr

(
m∑

l=1

c1,lψ(yt, t1,l, σT ),
m∑

l=1

c2,lψ(yt−s, t2,l, σT )

)∣∣∣∣∣ (4)

is jointly maximised numerically with respect to c1,l, c2,l, t1,l and t2,l for l = 1, ..., m. Through-

out, it is assumed that m = mT but this dependence is supressed. The above maximand is

clearly equal to or larger than the absolute correlation obtained via Algorithm 1. It is clear

that c1,l, c2,l, t1,l and t2,l are chosen so as to maximise

1

T

T∑
t=1

σ−1
12

[(
m∑

l=1

c1,lψ(yt, t1,l, σT )− µ1,T

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σT )− µ2,T

)]
= (5)

1

T

T∑
t=1

Dt

where

σ12 =


 1

T

T∑
t=1

[
m∑

l=1

c1,lψ(yt, t1,l, σT )− µ1,T

]2



1/2 
 1

T

T∑
t=1

[
m∑

l=1

c2,lψ(yt, t2,l, σT )− µ2,T

]2



1/2

=

(6)

A
1/2
1 A

1/2
2

By the proof of the law of large numbers given in Theorem 19.1 of Davidson (1994) it follows

that Ai → σ2
i , i = 1, 2 where

µi,T = E

(
m∑

l=1

ci,lψ(yt, ti,l, σT )

)

σ2
i,T = E




(
m∑

l=1

ci,lψ(yt, ti,l, σT )− µi,T

)2



15



µi,T → µi, σ2
i,T → σ2

i and both µi and σ2
i can be either finite or infinite. More specifically

for Theorem 19.1 of Davidson (1994) it is required that

V ar


 1

T

T∑
t=1

[
m∑

l=1

ci,lψ(yt, ti,l, σT )− µi,T

]2

 = o(1), i = 1, 2

But, by independence across t,

V ar


 1

T

T∑
t=1

[
m∑

l=1

ci,lψ(yt, ti,l, σT )− µi,T

]2

 ≤ 1

T
V ar




[
m∑

l=1

ci,lψ(yt, ti,l, σT )

]2

 ≤

T−1E







[
m∑

l=1

ci,lψ(yt, ti,l, σT )

]2



2
 =

1

T

m∑

l=1

m∑

k=1

m∑
r=1

m∑
s=1

ci,lci,kci,rci,sψ(yt, ti,l, σT )ψ(yt, ti,k, σT )ψ(yt, ti,r, σT )ψ(yt, ti,s, σT ) ≤

1

T

m∑

l=1

m∑

k=1

m∑
r=1

m∑
s=1

|ci,lci,kci,rci,s| |ψ(yt, ti,l, σT )ψ(yt, ti,k, σT )ψ(yt, ti,r, σT )ψ(yt, ti,s, σT )| ≤

T−1m4Cψ = o(1)

since by boundedness of ψ, 0 < Cψ < ∞, and also ci,j are constrained to be bounded.

As a result of the independence of the process yt, only a subset of at most 4m observations

(equal to the number of parameter to be chosen) are relevant for the maximisation in (4).

The rest of the observations are not relevant. Let us denote the set of the time indices of

the observations that have been used to choose c1,l, c2,l, t1,l and t2,l by Om Then,

1

T

T∑
t=1

σ−1
12

[(
m∑

l=1

c1,lψ((yt, t1,l), σT )− µ1,T

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σT )− µ2,T

)]
=

1

T

∑
t∈Om

σ−1
12

[(
m∑

l=1

c1,lψ((yt, t1,l), σT )− µ1,T

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σT )− µ2,T

)]
+

1

T

∑

t/∈Om

σ−1
12

[(
m∑

l=1

c1,lψ((yt, t1,l), σT )− µ1,T

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σT )− µ2,T

)]
=

B1 + B2 = B1 +
1

T

∑

t/∈Om

B2,t

By the fact that m = o(T 1/4),
√

TB1 = op(1). Therefore, we focus on B2. But in this case,

E(B2,t) = 0. Further, the conditions of Theorem 23.18 of Davidson (1994) are easily seen to

be satisfied since by an argument similar to that used above for the law of large numbers,

B2,t are uniformly L2-bounded implying the result of the Theorem.
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6.4 Proof of Theorem 2

In order to prove Theorem 2 we use Theorem 2.2 of Horowitz (2002) which is a restatement

of a result in Mammen (1992). Given the normality result of Theorem 1 and the linearity of

ρ̂ as a function of transforms of the observations, Mammen’s result immediately implies (2).

6.5 Proof of Theorem 3

Using (5) we get that

1√
T

T∑
t=1

Dt =
1√
T

T∑
t=1

E(Dt) +
1√
T

T∑
t=1

(Dt − E(Dt))

Then it follows that it is sufficient to show that

lim
m→∞

Corr

(
m∑

l=1

ψ(yt, yS1,l
, σT ),

m∑

l=1

ψ(yt−s, yS2,l
, σT )

)
6= 0

By Lemma 1 and 2 and under the alternative hypothesis of temporal dependence, there exist

t1,l and t2,l such that

lim
m→∞

Corr

(
m∑

l=1

ψ(yt, t1,l, σT ),
m∑

l=1

ψ(yt−s, t2,l, σT )

)
6= 0

To prove this theorem we will use similar analysis to that used in Theorem 1 of Temlyakov

(2000). Note that the framework considered in Temlyakov (2000) is substantially different

to the one we consider here and therefore we provide a distinct analysis in what follows. Let

Ff be a normed space with elements given by

(h, g) =

( ∞∑

l=1

c1,lψ(y1, t1,l, σ),
∞∑

l=1

c2,lψ(y2, t2,l, σ)

)

for some constants c1,l, c2,l ∈ {0, 1}, t1,l, t2,l, l = 1, ..., and norm given by

‖(h, g)‖ = ψ3

∣∣∣∣∣
∫ ∫ ( ∞∑

l=1

ψ(y1, t1,l, σ)− ψ1

)( ∞∑

l=1

ψ(y2, t2,l, σ)− ψ2

)
fs(y1, y2)dy1dy2

∣∣∣∣∣

where

ψi =

∫ ∫ ( ∞∑

l=1

ψ(yi, t1,l, σ)

)
fs(y1, y2)dy1dy2, i = 1, 2

and

ψ3 = ψ
−1/2
3,1 ψ

−1/2
3,2 ,

ψ3,i =

∫ ∫ ( ∞∑

l=1

ψ(yi, t1,l, σ)− ψi

)2

fs(y1, y2)dy1dy2, i = 1, 2
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It easily follows that the above norm is bounded. Define a dictionary to be a set of functions

of the form

G = {(ψ(y1, t1, σ), ψ(y2, t2, σ)); t1, t2 ∈ R}

Then, we can write

Ff = {⊕∞l=1(ψl,1, ψl,2); (ψl,1, ψl,2) ∈ G}

where

⊕∞l=1(ψl,1, ψl,2) ≡ (ψ1,1, ψ1,2)⊕ (ψ2,1, ψ2,2)⊕ .... ≡
( ∞∑

l=1

c1,lψ(y1, t1,l, σ),
∞∑

l=1

c2,lψ(y2, t2,l, σ)

)

By Lemmas 1 and 2 there exist element(s) in Hf that have nonzero norm. Algorithm 2

can be schematised as follows: We choose an element (ψ1,1, ψ1,2) such that ‖(ψ1,1, ψ1,2)‖ is

maximised. Then, we proceed by iteratively choosing (ψl,1, ψl,2) such that

∥∥(⊕l−1
i=1(ψi,1, ψi,2)

)⊕ (ψi,1, ψi,2)
∥∥

is maximised. The chosen element of Ff is the one that maximises the norm over the set

{⊕1
l=1(ψl,1, ψl,2), ...,⊕m

l=1(ψl,1, ψl,2)}. We first note that there can only exist element(s) in

Hf that have non zero norm if there exist elements in G denoted by (ψ1,1, ψ1,2) such that

‖(ψ1,1, ψ1,2)‖ > 0. The maximisations involved in Algorithm 2 imply that at least one such

element will be picked as long sample moments converge to population moments, i.e., as

1

T

T∑
i=1

[(
m∑

l=1

c1,lψ(yt, t1,l, σ)

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σ)

)]
p→ (7)

E

((
m∑

l=1

c1,lψ(yt, t1,l, σ)

)(
m∑

l=1

c2,lψ(yt−s, t2,l, σ)

))

for finite m. Since (
∑m

l=1 c1,lψ(y1, t1,l, σ)) (
∑m

l=1 c1,lψ(y1, t2,l, σ)) is a bounded function, for

finite m, (7) follows if we establish a law of large numbers for ψ(yt), where ψ(.) is some

bounded function. To establish this law of large numbers we use Theorem 19.11 of Davidson

(1994). This requires three conditions: (i) ψ(yt) is a L1 mixingale, (ii) ψ(yt) is uniformly

integrable and (iii) the mixingale coefficients of ψ(yt) tend to zero. By Assumption 3, bound-

edness of ψ(yt) and Theorems 17.5 and 17.13 of Davidson (1994), we obtain conditions (i)

and (iii). Condition (ii) follows immediately by boundedness of ψ(yt). From the above

it follows immediately that the chosen element of Ff has non zero norm thus proving the

theorem.
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Table 1: Rejection Probabilities for Monte Carlo study of Hong and White (2005). Tn(1) is
the entropy based test of Hong and White (2005). best(Hong and White (2005)) refers to
the best performing test in terms of rejection probabilities for a given experiment, of those
tests considered and reported in Hong and White (2005).

Experiment RBF3(1) RBF2(1) Tn(1) best(Hong and White (2005))
IID 0.050 0.047 - -
AR1 0.699 0.604 0.140 0.140

ARCH1 0.887 0.875 0.376 0.612
TARCH 0.607 0.574 0.206 0.278
BILIN1 0.964 0.967 0.696 0.816
NMA1 0.411 0.607 0.340 0.348
TAR1 0.417 0.721 0.256 0.258
NAR1 0.495 0.477 0.170 0.170
SIGN1 0.625 0.616 0.608 0.608

Table 2: Rejection Probabilities for Monte Carlo study of Fernandes and Neri (2007). The
second and third columns of the Table report rejection probabilities for the entropy based
test of Fernandes and Neri (2007) and two values of q which is a tuning parameter for that
test. best(Fernandes and Neri (2007)) refers to the best performing test in terms of rejection
probabilities for a given experiment, of those tests considered and reported in Fernandes and
Neri (2007).

Experiment RBF3(1) q = 1/2 q = 4 best(Fernandes and Neri (2007))
AR2 0.978 0.209 0.447 0.447

ARCH2 0.864 0.210 0.156 0.903
NMA2 0.163 0.032 0.038 0.170
TAR2 0.454 0.166 0.323 0.323

BILIN2 0.976 0.387 0.508 0.788
NAR2 0.112 0.053 0.066 0.073
SIGN2 0.882 0.241 0.392 0.392
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Table 3: Probability Values for S&P 500 Series and 1, 2, 3, 4, 12 and 52 lags (ABBOTT
LABS.- EASTMAN KODAK). (Significant p. values reported in bold typeface)

P. Values P. Values
Company Name/s 1 2 3 4 12 52 1 2 3 4 12 52
ABBOTT LABS. 0.020 0.020 0.523 0.007 0.644 0.074 ADC TELECOM. 0.000 0.060 0.007 0.322 0.765 0.738

ADOBE SYS. 0.886 0.570 0.034 0.067 0.544 0.094 ADVD.MICRO DEVC. 0.678 0.215 0.000 0.295 0.161 0.638
AES 0.013 0.007 0.000 0.000 0.060 0.812 AFLAC 0.000 0.027 0.000 0.201 0.013 0.154

AIR PRDS.& CHEMS. 0.107 0.832 0.154 0.000 0.503 0.020 ALBERTO CULVER ’B’ 0.007 0.101 0.168 0.315 0.181 0.416
ALBERTSONS 0.047 0.866 0.195 0.537 0.195 0.497 ALCOA 0.000 0.134 0.282 0.020 0.792 0.007

ALLEGHENY EN. 0.000 0.047 0.000 0.007 0.040 0.973 ALLEGHENY TECHS. 0.013 0.034 0.168 0.383 0.530 0.013
ALLERGAN 0.336 0.195 0.081 0.161 0.074 0.826 ALLIED WASTE INDS. 0.128 0.826 0.275 0.134 0.953 0.034

ALLTEL 0.013 0.121 0.007 0.591 0.040 0.007 ALTERA 0.060 0.322 0.174 0.074 0.188 0.148
ALTRIA GP. 0.107 0.383 0.034 0.148 0.107 0.966 AMBAC FINANCIAL 0.000 0.617 0.054 0.087 0.047 0.174

AMERADA HESS 0.919 0.309 0.604 0.315 0.262 0.349 AMER.ELEC.PWR. 0.000 0.013 0.007 0.268 0.000 0.248
AMERICAN EXPRESS 0.007 0.336 0.228 0.644 0.027 0.107 AMER.GREETINGS ’A’ 0.315 0.490 0.946 0.577 0.067 0.383
AMERICAN INTL.GP. 0.000 0.074 0.067 0.322 0.067 0.000 AMER.POWER CONV. 0.302 0.946 0.456 0.356 0.295 0.336

AMGEN 0.034 0.168 0.000 0.497 0.000 0.000 AMSOUTH BANC. 0.013 0.564 0.966 0.973 0.007 0.154
ANADARKO PETROLEUM 0.034 0.638 0.000 0.000 0.013 0.772 ANALOG DEVICES 0.013 0.000 0.000 0.034 0.221 0.221

ANDREW 0.872 0.423 0.946 0.289 0.221 0.020 ANHEUSER - BUSCH COS. 0.000 0.007 0.040 0.577 0.000 0.040
AON 0.000 0.275 0.396 0.013 0.000 0.597 APACHE 0.054 0.148 0.322 0.067 0.201 0.336

APPLE COMPUTERS 0.060 0.201 0.114 0.349 0.040 0.148 APPLERA APPD.BIOS. 0.000 0.000 0.087 0.416 0.134 0.584
APPLIED MATS. 0.000 0.376 0.336 0.181 0.295 0.208 ARCHER - DANLS. 0.087 0.121 0.047 0.785 0.523 0.188

ASHLAND 0.544 0.430 0.349 0.738 0.906 0.242 AT & T 0.758 0.007 0.060 0.772 0.866 0.047
AUTODESK 0.779 0.161 0.047 0.624 0.013 0.134 AUTOMATIC DATA PROC. 0.013 0.604 0.926 0.087 0.181 0.262

AUTONATION 0.040 0.638 0.792 0.879 0.054 0.275 AUTOZONE 0.698 0.074 0.960 0.557 0.148 0.121
AVERY DENNISON 0.168 0.121 0.295 0.007 0.221 0.409 AVON PRODUCTS 0.497 0.134 0.000 0.611 0.161 0.013
BAKER HUGHES 0.027 0.919 0.201 0.289 0.047 0.121 BALL 0.007 0.007 0.007 0.060 0.705 0.906

BANK OF AMERICA 0.000 0.074 0.436 0.195 0.034 0.034 BANK OF NEW YORK 0.087 0.007 0.248 0.188 0.362 0.121
BANK ONE 0.154 0.114 0.101 0.168 0.490 0.020 BARD C R 0.060 0.013 0.940 0.523 0.738 0.658

BAUSCH & LOMB 0.436 0.752 0.879 0.544 0.611 0.752 BAXTER INTL. 0.060 0.094 0.255 0.242 0.597 0.295
BB & T 0.000 0.040 0.013 0.000 0.040 0.604 BEAR STEARNS 0.007 0.000 0.040 0.772 0.027 0.691

BECTON DICKINSON & .CO. 0.000 0.477 0.060 0.611 0.020 0.423 BED BATH & .BEYOND 0.000 0.000 0.020 0.000 0.013 0.745
BELLSOUTH 0.000 0.040 0.195 0.161 0.007 0.329 BEMIS 0.034 0.208 0.517 0.745 0.732 0.953

BEST BUY CO. 0.470 0.832 0.040 0.000 0.463 0.953 BIG LOTS 0.027 0.027 0.349 0.685 0.362 0.691
BIOGEN IDEC 0.188 0.040 0.899 0.168 0.007 0.826 BIOMET 0.020 0.758 0.799 0.919 0.738 0.698

BJ SVS. 0.047 0.060 0.456 0.570 0.074 0.013 BLACK & .DECKER 0.040 1.000 0.718 0.879 0.362 0.101
H & R BLOCK 0.490 0.141 0.195 0.188 0.691 0.597 BMC SOFTWARE 0.074 0.436 0.020 0.161 0.000 0.000

BOEING 0.074 0.121 0.188 0.295 0.497 0.013 BOISE CASCADE 0.309 0.228 0.564 0.027 0.282 0.638
BOSTON SCIENTIFIC 0.409 0.711 0.383 0.034 0.678 0.067 BRISTOL MYERS SQUIBB 0.013 0.000 0.013 0.262 0.121 0.148
BROWN - FORMAN ’B’ 0.195 0.134 0.013 0.114 0.966 0.570 BRUNSWICK 0.027 0.879 0.530 0.732 0.570 0.054

BURL.NTHN.SANTA FE C 0.000 0.067 0.007 0.470 0.174 0.007 BURLINGTON RES. 0.034 0.148 0.000 0.221 0.000 0.765
CAMPBELL SOUP 0.013 0.544 0.094 0.067 0.503 0.188 CARDINAL HEALTH 0.591 0.215 0.087 0.617 0.114 0.060

CARNIVAL 0.034 0.161 0.074 0.007 0.168 0.349 CATERPILLAR 0.201 0.215 0.691 0.987 0.027 0.322
CENDANT 0.597 0.047 0.128 0.919 0.671 0.168 CENTERPOINT EN. 0.000 0.000 0.081 0.094 0.007 0.013
CENTEX 0.685 0.685 0.738 0.396 0.725 0.040 CENTURYTEL 0.007 0.215 0.564 0.953 0.631 0.067

CHARLES SCHWAB 0.054 0.034 0.732 0.926 0.678 0.047 CHARTER ONE FINL. 0.000 0.946 0.993 0.396 0.839 0.389
CHEVRONTEXACO 0.000 0.268 0.181 0.591 0.007 0.315 CHIRON CORP 0.168 0.000 0.013 0.000 0.007 0.503

CHUBB 0.000 0.067 0.000 0.624 0.121 0.664 CIGNA 0.812 0.141 0.054 0.698 0.409 0.336
CINCINNATI FIN. 0.000 0.000 0.000 0.007 0.228 0.497 CINTAS 0.087 0.087 0.047 0.020 0.013 0.698

CIRCUIT CITY STORES 0.396 0.470 0.456 0.678 0.020 0.302 CISCO SYSTEMS 0.047 0.007 0.000 0.007 0.530 0.013
CITIGROUP 0.020 0.195 0.195 0.168 0.000 0.403 CITIZENS COMMS. 0.000 0.074 0.369 0.597 0.396 0.617

CLEAR CHL.COMMS. 0.027 0.040 0.195 0.007 0.557 0.799 CLOROX 0.007 0.027 0.416 0.013 0.040 0.349
CMS ENERGY 0.013 0.027 0.020 0.013 0.020 0.510 COCA COLA 0.000 0.550 0.000 0.591 0.242 0.034

COCA COLA ENTS. 0.148 0.034 0.141 0.872 0.148 0.799 COLGATE - PALM. 0.000 0.007 0.134 0.114 0.738 0.141
COMCAST ’A’ 0.027 0.436 0.336 0.336 0.987 0.188 COMERICA 0.067 0.309 0.141 0.638 0.215 0.121

COMPUTER ASSOCS.INTL. 0.141 0.060 0.275 0.054 0.336 0.510 COMPUTER SCIS. 0.242 0.819 0.121 0.705 0.027 0.134
COMPUWARE 0.933 0.128 0.174 0.094 0.034 0.564 COMVERSE TECH. 0.081 0.973 0.275 0.329 0.872 0.517

CONAGRA 0.054 0.000 0.490 0.107 0.611 0.879 CONCORD EFS 0.611 0.839 0.047 0.000 0.899 0.966
CONOCOPHILLIPS 0.047 0.228 0.081 0.268 0.570 0.128 CONS.EDISON 0.000 0.007 0.020 0.000 0.409 0.698

CONSTELLATION EN. 0.181 0.007 0.047 0.329 0.040 0.027 COOPER INDS. 0.040 0.872 0.980 0.007 0.752 0.329
COOPER TIRE RUB. 0.470 0.074 0.523 0.013 0.772 0.047 ADOLPH COORS ’B’ 0.362 0.403 0.161 0.188 0.866 0.698

CORNING 0.020 0.013 0.020 0.181 0.000 0.000 COUNTRYWIDE FINL. 0.725 0.812 0.846 0.336 0.859 0.181
CRANE 0.624 0.819 0.060 0.228 0.510 0.953 CSX 0.007 0.034 0.852 0.638 0.047 0.389

CUMMINS 0.228 0.282 0.000 0.000 0.450 0.705 CVS 0.779 0.074 0.094 0.490 0.027 0.054
DANA 0.007 0.000 0.121 0.000 0.564 0.000 DANAHER 0.275 0.000 0.007 0.074 0.000 0.000

DEERE & CO. 0.087 0.034 0.463 0.000 0.993 0.013 DELL 0.430 0.705 0.000 0.007 0.973 0.993
DELTA AIR LINES 0.007 0.376 0.315 0.013 0.664 0.027 DELUXE 0.302 0.651 0.007 0.866 0.564 0.000

DILLARDS ’A’ 0.094 0.933 0.577 0.799 0.691 0.557 DOLLAR GENERAL 0.510 0.691 0.913 0.141 0.054 0.309
DOMINION RES. 0.181 0.020 0.000 0.134 0.007 0.329 DONNELLEY R R 0.638 0.336 0.953 0.584 0.349 0.161

DOVER 0.752 0.000 0.315 0.443 0.081 0.154 DOW CHEMICALS 0.007 0.020 0.013 0.315 0.174 0.289
DOW JONES & .CO 0.013 0.611 0.530 0.772 0.114 0.819 DTE ENERGY 0.000 0.423 0.134 0.034 0.423 0.248

DU PONT E I DE NEMOURS 0.000 0.752 0.013 0.161 0.027 0.054 DUKE ENERGY 0.000 0.020 0.007 0.007 0.074 0.624
DYNEGY ’A’ 0.000 0.087 0.027 0.020 0.289 0.067 EASTMAN KODAK 0.450 0.383 0.685 0.027 0.020 0.235
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Table 4: Probability Values for S&P 500 Series and 1, 2, 3, 4, 12 and 52 lags (EATON -
NORTH FORK BANCORP.). (Significant p. values reported in bold typeface)

P. Values P. Values
Company Name/s 1 2 3 4 12 52 1 2 3 4 12 52

EATON 0.899 0.013 0.866 0.174 0.497 0.376 ECOLAB 0.000 0.235 0.054 0.148 0.523 0.154
EDISON INTL. 0.000 0.013 0.027 0.275 0.047 0.617 EL PASO 0.007 0.047 0.020 0.013 0.000 0.107

ELECTRONIC ARTS 0.020 0.973 0.040 0.336 0.497 0.987 ELECTR. DATA SYSTEMS 0.013 0.081 0.550 0.557 0.040 0.839
EMC 0.020 0.020 0.000 0.671 0.671 0.107 EMERSON ELECTRIC 0.000 0.013 0.000 0.007 0.007 0.000

ENGELHARD 0.027 0.799 0.839 0.852 0.423 0.403 ENTERGY 0.040 0.034 0.671 0.034 0.054 0.792
EOG RES. 0.094 0.121 0.899 0.034 0.007 0.933 EQUIFAX 0.544 0.302 0.242 0.114 0.436 0.067
EXELON 0.060 0.195 0.879 0.597 0.463 0.067 EXPRESS SCRIPTS ’A’ 0.027 0.852 0.168 0.081 0.846 0.738

EXXON MOBIL 0.000 0.000 0.000 0.470 0.651 1.000 FAMILY $.STRS. 0.242 0.128 0.262 0.396 0.436 0.711
FANNIE MAE 0.007 0.289 0.154 0.054 0.027 0.356 FREDDIE MAC 0.013 0.483 0.503 0.174 0.067 0.349

FEDERATED DEPT.STRS. 0.141 0.000 0.195 0.597 0.309 0.013 FEDEX 0.671 0.349 0.034 0.228 0.255 0.893
FIFTH THIRD BANCORP 0.034 0.148 0.027 0.000 0.007 0.919 FIRST DATA 0.000 0.128 0.047 0.054 0.248 0.000

FIRST TEN.NAT. 0.007 0.007 0.396 0.020 0.047 0.658 FIRSTENERGY 0.054 0.000 0.275 0.000 0.456 0.926
FISERV 0.020 0.235 0.054 0.517 0.785 0.174 FLEETBOSTON FINL. 0.000 0.081 0.329 0.141 0.376 0.121

FORD MOTOR 0.154 0.060 0.658 0.040 0.081 0.651 FOREST LABS. 0.094 0.302 0.510 0.450 0.926 0.060
FORTUNE BRANDS 0.054 0.107 0.523 0.940 0.577 0.658 FPL GROUP 0.000 0.013 0.047 0.309 0.027 0.799

FRANK.RES. 0.000 0.497 0.168 0.094 0.000 0.893 GANNETT 0.000 0.000 0.007 0.074 0.000 0.081
GAP 0.248 0.000 0.000 0.470 0.141 0.215 GEN.DYNAMICS 0.228 0.980 0.201 0.262 0.362 0.060

GENERAL ELECTRIC 0.000 0.409 0.181 0.215 0.322 0.691 GEN.MILLS 0.711 0.859 0.228 0.154 0.000 0.295
GENERAL MOTORS 0.946 0.322 0.141 0.114 0.268 0.738 GENUINE PARTS 0.000 0.792 0.685 0.201 0.081 0.322

GENZYME 0.174 0.966 0.631 0.711 0.020 0.919 GEORGIA PACIFIC 0.000 0.007 0.107 0.107 0.060 0.000
GILLETTE 0.007 0.638 0.034 0.040 0.819 0.443 GOLDEN WEST FINL. 0.007 0.020 0.356 0.477 0.081 0.819
GOODRICH 0.268 0.201 0.403 0.678 0.577 0.362 GOODYEAR TIRE 0.034 0.188 0.007 0.040 0.087 0.000

GRAINGER W W 0.013 0.027 0.000 0.040 0.067 0.007 GT.LAKES CHM. 0.268 0.570 0.067 0.940 0.081 0.262
HALLIBURTON 0.013 0.463 0.054 0.013 0.490 0.832 HARLEY - DAVIDSON 0.054 0.309 0.671 0.510 0.718 0.235

HARRAHS ENTM. 0.322 0.886 0.899 0.336 0.168 0.362 HASBRO 0.047 0.436 0.423 0.040 0.060 0.966
HCA 0.000 0.000 0.745 0.356 0.087 0.161 HEALTH MAN.AS.A 0.040 0.101 0.242 0.188 0.242 0.235

HEINZ HJ 0.007 0.530 0.195 0.013 0.779 0.617 HERCULES 0.007 0.081 0.624 0.893 0.973 0.007
HERSHEY FOODS 0.007 0.161 0.570 0.221 0.846 0.289 HEWLETT - PACKARD 0.007 0.000 0.128 0.436 0.557 0.584
HILTON HOTELS 0.973 0.201 0.886 0.101 0.215 0.060 HOME DEPOT 0.000 0.725 0.638 0.034 0.785 0.597

HONEYWELL INTL. 0.638 0.356 0.832 0.792 0.376 0.329 HUMANA 0.007 0.114 0.322 0.047 0.490 0.919
HUNTINGTON BCSH. 0.000 0.000 0.034 0.235 0.000 0.309 ILLINOIS TOOL WKS. 0.013 0.148 0.067 0.530 0.624 0.174
INGERSOLL - RAND 0.336 0.067 0.027 0.785 0.081 0.000 INTEL 0.685 0.114 0.007 0.772 0.168 0.013

INTL.BUS.MACH. 0.423 0.262 0.020 0.550 0.812 0.705 INTL.FLAV.& FRAG. 0.812 0.094 0.020 0.060 0.282 0.336
INTL.GAME TECH. 0.698 0.705 0.973 0.765 0.148 0.946 INTL.PAPER 0.423 0.181 0.248 0.054 0.463 0.000
INTERPUBLIC GP. 0.000 0.020 0.275 0.013 0.054 0.128 ITT INDUSTRIES 0.000 0.443 0.000 0.503 0.698 0.698

JP MORGAN CHASE & .CO. 0.000 0.195 0.060 0.181 0.128 0.443 JEFFERSON PILOT 0.007 0.013 0.007 0.114 0.020 0.268
JOHNSON & JOHNSON 0.000 0.121 0.953 0.013 0.691 0.953 JOHNSON CONTROLS 0.020 0.054 0.121 0.893 0.322 0.201

JONES APPAREL GROUP 0.443 0.013 0.886 0.195 0.617 0.067 KB HOME 0.000 0.000 0.027 0.054 0.503 0.872
KELLOGG 0.040 0.000 0.020 0.040 0.658 0.336 KERR - MCGEE 0.027 0.013 0.074 0.000 0.497 0.188
KEYCORP 0.000 0.034 0.020 0.040 0.000 0.020 KEYSPAN 0.007 0.087 0.101 0.611 0.389 0.074

KIMBERLY - CLARK 0.000 0.557 0.718 0.007 0.792 0.161 KINDER MORGAN KANS 0.013 0.000 0.000 0.248 0.987 0.248
KLA TENCOR 0.007 0.114 0.094 0.007 0.154 0.859 KNIGHT - RIDDER 0.047 0.376 0.436 0.000 0.309 0.027

KOHLS 0.000 0.074 0.336 0.651 0.570 0.658 KROGER 0.047 0.000 0.087 0.060 0.000 0.148
LEGGETT& PLATT 0.034 0.020 0.664 0.617 0.047 0.268 LILLY ELI 0.886 0.651 0.537 0.081 0.946 0.691
LIMITED BRANDS 0.342 0.000 0.289 0.013 0.040 0.315 LINCOLN NAT. 0.000 0.000 0.007 0.000 0.208 0.060

LINEAR TECH. 0.000 0.074 0.007 0.228 0.275 0.812 LIZ CLAIBORNE 0.805 0.148 0.718 0.443 0.396 0.926
LOEWS 0.013 0.329 0.107 0.054 0.557 0.000 LNA.PACIFIC 0.738 0.362 0.121 0.973 0.872 0.027

LOWE’S COMPANIES 0.047 0.000 0.953 0.591 0.275 0.060 LSI LOGIC 0.074 0.376 0.047 0.235 0.953 0.678
MANOR CARE 0.302 0.289 0.745 0.523 0.255 0.208 MARATHON OIL 0.007 0.034 0.255 0.027 0.168 0.121

MARSH & MCLENNAN 0.000 0.013 0.027 0.054 0.000 0.919 MARSHALL & ILSLEY 0.000 0.000 0.000 0.000 0.000 0.456
MASCO 0.000 0.034 0.040 0.060 0.315 0.013 MATTEL 0.000 0.765 0.094 0.007 0.054 0.430

MAXIM INTEGRATED PRDS. 0.034 0.074 0.309 0.275 0.577 0.248 MAY DEPT.STORES 0.154 0.913 0.208 0.436 0.013 0.302
MAYTAG 0.107 0.094 0.544 0.799 0.658 0.785 MBIA 0.000 0.302 0.302 0.188 0.356 0.020
MBNA 0.007 0.154 0.477 0.772 0.188 0.866 MCCORMICK & .CO NV. 0.007 0.195 0.805 0.477 0.101 0.987

MCDONALDS 0.456 0.141 0.530 0.698 0.027 0.134 MCGRAW - HILL CO. 0.000 0.181 0.584 0.691 0.383 0.242
MEADWESTVACO 0.020 0.893 0.121 0.054 0.711 0.356 MEDIMMUNE 0.960 0.101 0.376 0.510 0.705 0.114

MEDTRONIC 0.000 0.839 0.047 0.275 0.081 0.027 MELLON FINL. 0.174 0.074 0.617 0.946 0.356 0.000
MERCK & .CO. 0.047 0.651 0.114 0.826 0.711 0.456 MEREDITH 0.007 0.114 0.000 0.275 0.497 0.738

MERRILL LYNCH & .CO. 0.013 0.000 0.611 0.208 0.034 0.040 MGIC INVT 0.007 0.040 0.013 0.463 0.181 0.047
MICRON TECH. 0.141 0.302 0.134 0.060 0.490 0.450 MICROSOFT 0.040 0.007 0.013 0.020 0.309 0.705

MILLIPORE 0.362 0.000 0.208 0.000 0.503 0.000 MOLEX 0.188 0.503 0.134 0.174 0.007 0.846
MOTOROLA 0.013 0.013 0.040 0.000 0.013 0.295 NABORS INDS. 0.034 0.054 0.074 0.859 0.000 0.000
NAT.CITY 0.000 0.000 0.000 0.000 0.000 0.221 NATIONAL SEMICON. 0.658 0.322 0.020 0.544 0.235 0.503

NAVISTAR INTL. 0.872 0.262 0.490 0.987 0.523 0.772 NEW YORK TIMES ’A’ 0.000 0.275 0.403 0.128 0.020 0.436
NEWELL RUBBERMAID 0.047 0.134 0.114 0.242 0.993 0.000 NEWMONT MINING 0.000 0.664 0.926 0.000 0.946 0.691

NEXTEL COMMS.A 0.000 0.362 0.000 0.000 0.128 0.805 NICOR 0.597 0.148 0.792 0.564 0.282 0.745
NIKE ’B’ 0.000 0.040 0.228 0.221 0.664 0.262 NISOURCE 0.000 0.007 0.000 0.000 0.000 0.013
NOBLE 0.000 0.195 0.624 0.611 0.872 0.000 NORDSTROM 0.087 0.664 0.007 0.940 0.141 0.087

NORFOLK SOUTHERN 0.034 0.013 0.000 0.054 0.027 0.000 NORTH FORK BANCORP. 0.000 0.027 0.054 0.617 0.013 0.973
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Table 5: Probability Values for S&P 500 Series and 1, 2, 3, 4, 12 and 52 lags (NTHN.TRUST
- 3M). (Significant p. values reported in bold typeface)

P. Values P. Values
Company Name/s 1 2 3 4 12 52 1 2 3 4 12 52
NTHN.TRUST 0.000 0.624 0.134 0.007 0.134 0.047 NORTHROP GRUMMAN 0.128 0.181 0.591 0.201 0.826 0.557

NOVELL 0.732 0.564 0.000 0.128 0.134 0.074 NOVELLUS SYSTEMS 0.101 0.000 0.020 0.000 0.047 0.584
NUCOR 0.195 0.899 0.228 0.866 0.282 0.000 OCCIDENTAL PTL. 0.993 0.846 0.980 0.302 0.020 0.034

OFFICE DEPOT 0.852 0.201 0.570 0.107 0.644 0.671 OMNICOM GP. 0.000 0.000 0.027 0.007 0.114 0.134
ORACLE 0.020 0.275 0.081 0.121 0.047 0.221 PACCAR 0.094 0.027 0.322 0.698 0.617 0.523

PALL 0.772 0.933 0.148 0.396 0.013 0.000 PARAMETRIC TECH. 0.007 0.356 0.329 0.617 0.362 0.114
PARKER - HANNIFIN 0.007 0.000 0.436 0.564 0.973 0.456 PAYCHEX 0.000 0.020 0.020 0.141 0.007 0.839

PENNEY JC 0.000 0.000 0.711 0.523 0.000 0.550 PEOPLES ENERGY 0.020 0.362 0.013 0.242 0.564 0.329
PEOPLESOFT 0.188 0.013 0.282 0.128 0.383 0.141 PEPSICO 0.000 0.081 0.174 0.879 0.020 0.242

PERKINELMER 0.054 0.396 0.121 0.034 0.705 0.839 PFIZER 0.060 0.255 0.034 0.671 0.980 0.866
PG & .E 0.000 0.020 0.000 0.040 0.013 0.396 PHELPS DODGE 0.000 0.054 0.060 0.067 0.369 0.007

PINNACLE WEST CAP. 0.060 0.027 0.020 0.315 0.020 0.564 PITNEY - BOWES 0.013 0.591 0.866 0.282 0.262 0.456
PLUM CREEK TIMBER 0.000 0.054 0.463 0.094 0.154 0.013 PMC - SIERRA 0.007 0.000 0.013 0.007 0.007 0.013

PNC FINL.SVS.GP. 0.040 0.396 0.940 0.752 0.255 0.114 PPG INDUSTRIES 0.007 0.221 0.154 0.826 0.772 0.188
PPL 0.094 0.020 0.000 0.362 0.537 0.000 PRAXAIR 0.087 0.564 0.128 0.349 0.872 0.020

PROCTER & GAMBLE 0.013 0.248 0.993 0.000 0.436 0.705 PROGRESS EN. 0.067 0.235 0.040 0.020 0.054 0.154
PROGRESSIVE OHIO 0.013 0.087 0.107 0.322 0.000 0.020 PROVIDIAN FINL. 0.000 0.000 0.013 0.007 0.060 0.040
PUB.SER.ENTER.GP. 0.000 0.007 0.013 0.074 0.007 0.081 PULTE HOMES 0.034 0.638 0.463 0.101 0.846 0.470

QUALCOMM 0.141 0.638 0.919 0.000 0.047 1.000 RADIOSHACK 0.101 0.248 0.027 0.074 0.188 0.302
RAYTHEON ’B’ 0.027 0.430 0.013 0.000 0.940 0.114 REEBOK INTL. 0.013 0.000 0.879 0.819 0.000 0.329
REGIONS FINL. 0.000 0.027 0.054 0.020 0.000 0.040 ROBERT HALF INTL. 0.356 0.752 0.812 0.094 0.013 0.007

ROCKWELL AUTOMATION 0.013 0.705 0.081 0.456 0.128 0.000 ROHM & HAAS 0.007 0.691 0.027 0.940 0.034 0.477
ROWAN COS. 0.497 0.544 0.081 0.295 0.067 0.007 RYDER SYSTEM 0.000 0.899 0.248 0.490 0.611 0.362

SAFECO 0.000 0.000 0.000 0.000 0.034 0.564 SAFEWAY 0.309 0.557 0.248 0.336 0.034 0.463
SARA LEE 0.356 0.262 0.235 0.000 0.738 0.168 SBC COMMUNICATIONS 0.027 0.013 0.007 0.121 0.477 0.148

SCHERING - PLOUGH 0.034 0.074 0.087 0.060 0.221 0.101 SCHLUMBERGER 0.007 0.013 0.047 0.000 0.000 0.000
SCIENTIFIC ATLANTA 0.201 0.725 0.718 0.020 0.604 0.651 SEALED AIR 0.268 0.154 0.208 0.993 0.718 0.376

SEARS ROEBUCK & .CO. 0.020 0.060 0.000 0.799 0.054 0.926 SEMPRA EN. 0.007 0.034 0.054 0.020 0.007 0.477
SHERWIN - WILLIAMS 0.356 0.805 0.020 0.161 0.812 0.040 SIGMA ALDRICH 0.221 0.758 0.705 0.336 0.074 0.826

SLM 0.000 0.067 0.081 0.007 0.134 0.584 SNAP - ON 0.530 0.389 0.779 0.671 0.101 0.000
SOLECTRON 0.060 0.034 0.000 0.000 0.195 0.007 SOUTHERN 0.007 0.000 0.060 0.027 0.000 0.034
SOUTHTRUST 0.101 0.000 0.000 0.000 0.013 0.946 SOUTHWEST AIRLINES 0.215 0.906 0.638 0.966 0.101 0.946

SPRINT 0.000 0.289 0.007 0.826 0.121 0.973 ST.JUDE MED. 0.000 0.060 0.047 0.624 0.040 0.671
ST.PAUL 0.000 0.007 0.013 0.530 0.000 0.007 STANLEY WORKS 0.195 0.034 0.081 0.805 0.067 0.215
STAPLES 0.000 0.235 0.020 0.148 0.423 0.658 STARBUCKS 0.060 0.094 0.268 0.040 0.020 0.416

STARWOOD HTLS.& .RESORTS 0.007 0.067 0.430 0.309 0.980 0.101 STATE STREET 0.087 0.772 0.557 0.195 0.832 0.114
STRYKER 0.148 0.208 0.477 0.423 0.013 0.094 SUN MICROSYSTEMS 0.711 0.000 0.027 0.839 0.671 0.007

SUNGARD DATA SYSTEMS 0.040 0.242 0.470 0.255 0.886 0.242 SUNOCO 0.040 0.792 0.242 0.101 0.671 0.295
SUNTRUST BANKS 0.040 0.000 0.081 0.060 0.000 0.705 SUPERVALU 0.517 0.020 0.423 0.174 0.040 0.107

SYMANTEC 0.000 0.315 0.168 0.369 0.987 0.121 SYMBOL TECHS. 0.007 0.054 0.000 0.067 0.101 0.007
SYNOVUS FINL. 0.000 0.040 0.725 0.295 0.893 0.195 SYSCO 0.000 0.544 0.107 0.899 0.919 0.899

T ROWE PRICE GP. 0.007 0.597 0.698 0.174 0.772 0.987 TARGET 0.087 0.000 0.094 0.550 0.020 0.644
TECO ENERGY 0.000 0.000 0.007 0.000 0.000 0.973 TEKTRONIX 0.000 0.195 0.121 0.054 0.107 0.846

TELLABS 0.007 0.000 0.114 0.067 0.497 0.020 TEMPLE INLAND 0.369 0.490 0.054 0.463 0.329 0.067
TENET HLTHCR. 0.000 0.893 0.933 0.409 0.409 0.584 TERADYNE 0.000 0.188 0.329 0.000 0.141 0.000
TEXAS INSTS. 0.020 0.013 0.000 0.000 0.148 0.349 TEXTRON 0.000 0.584 0.644 0.201 0.201 0.416

THERMO ELECTRON 0.027 0.020 0.128 0.591 0.946 0.067 THOMAS & .BETTS 0.188 0.188 0.960 0.664 0.195 0.107
TIFFANY & CO 0.007 0.027 0.047 0.188 0.376 0.946 TIME WARNER 0.953 0.349 0.228 0.544 0.114 0.946

TJX COS. 0.315 0.000 0.000 0.007 0.812 0.369 TORCHMARK 0.195 0.007 0.148 0.013 0.134 0.128
TOYS R US HOLDINGS CO. 0.463 0.188 0.758 0.262 0.107 0.000 TRIBUNE 0.007 0.000 0.034 0.101 0.208 0.651

TXU 0.000 0.000 0.060 0.047 0.329 0.993 TYCO INTL. 0.013 0.966 0.134 0.174 0.148 0.483
US BANCORP 0.000 0.007 0.007 0.027 0.201 0.000 UNION PACIFIC 0.034 0.188 0.081 0.557 0.047 0.235

UNION PLANTERS 0.074 0.128 0.846 0.000 0.289 0.624 UNISYS 0.993 0.262 0.007 0.161 0.007 0.161
UNITEDHEALTH GP. 0.040 0.074 1.000 0.852 0.376 0.792 US.STEEL 0.638 0.275 0.685 0.705 0.772 0.074

UNITED TECHNOLOGIES 0.013 0.020 0.282 0.450 0.812 0.550 UNOCAL 0.020 0.141 0.389 0.181 0.107 0.027
UNUMPROVIDENT 0.477 0.416 0.101 0.376 0.081 0.027 UST 0.013 0.013 0.007 0.993 0.208 0.591

V F 0.141 0.013 0.094 0.577 0.134 0.195 VERIZON COMMS. 0.000 0.000 0.161 0.577 0.020 0.966
VIACOM ’B’ 0.020 0.295 0.477 0.148 0.060 0.711 VULCAN MATERIALS 0.013 0.926 0.268 0.262 0.161 0.040
WACHOVIA 0.000 0.007 0.087 0.128 0.034 0.081 WALGREEN 0.000 0.020 0.208 0.651 0.087 0.362

WAL MART STORES 0.000 0.000 0.000 0.000 0.013 0.638 WALT DISNEY 0.128 0.060 0.497 0.309 0.530 0.812
WASHINGTON MUTUAL 0.007 0.020 0.027 0.034 0.329 0.047 WASTE MAN. 0.228 0.376 0.000 0.523 0.322 0.034
WELLS FARGO & .CO 0.000 0.195 0.342 0.000 0.000 0.725 WENDY’S INTL. 0.148 0.705 0.456 0.752 0.094 0.141

WEYERHAEUSER 0.376 0.423 0.242 0.430 0.819 0.430 WHIRLPOOL 0.114 0.866 0.134 0.872 0.034 0.946
WILLIAMS COS. 0.000 0.134 0.000 0.013 0.040 0.966 WINN - DIXIE STRS. 0.020 0.047 0.591 0.369 0.779 0.262

WORTHINGTON INDS. 0.107 0.396 0.678 0.953 0.711 0.550 WRIGLEY WILLIAM JR. 0.000 0.309 0.376 0.322 0.953 0.221
WYETH 0.000 0.000 0.107 0.289 0.765 0.114 XCEL ENERGY 0.060 0.000 0.208 0.383 0.221 0.765
XEROX 0.007 0.007 0.000 0.000 0.000 0.000 XILINX 0.195 0.128 0.208 0.074 0.342 0.919

ZIONS BANCORP. 0.081 0.020 0.201 0.705 0.054 0.094 3M 0.000 0.154 0.463 0.141 0.181 0.148
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