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Abstract

This paper introduces a new long memory volatility process, denoted by Adaptive
FIGARCH, or A-FIGARCH, which is designed to account for both long memory and
structural change in the conditional variance process. Structural change is modeled
by allowing the intercept to follow a slowly varying function, speci�ed by Gallant
(1984)�s �exible functional form. A Monte Carlo study �nds that the A-FIGARCH
model outperforms the standard FIGARCH model when structural change is present,
and performs at least as well in the absence of structural instability. An empirical
application to stock market volatility is also included to illustrate the usefulness of the
technique.
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1 Introduction

The purpose of this paper is to introduce a new long memory volatility process, denoted by

Adaptive FIGARCH, or A-FIGARCH, which is designed to account for both long memory

and structural change in the volatility processes of economic and �nancial time series. It

is well known that most daily and high frequency �nancial time series exhibit quite per-

sistent autocorrelation in their squared returns, power transformations of absolute returns,

conditional variances and other measures of volatility. The seminal papers by Ding, Granger

and Engle (1993) and Dacorogna et al. (1993) led to the development of the long memory

stochastic volatility models of Breidt, Crato and de Lima (1998) and Harvey (1998), and

the long memory ARCH models of Baillie, Bollerslev and Mikkelsen (1996), Bollerslev and

Mikkelsen (1996) and Davidson (2004). While these models appear useful in describing many

empirical volatility processes, there is understandably great interest in discerning the rea-

sons and underlying causes for the widespread empirical �nding of long memory in volatility.

In particular, Granger and Ding (1996) have shown that contemporaneous aggregation of

stable GARCH(1; 1) processes can result in an aggregate process that exhibits hyperboli-

cally decaying autocorrelations, consistent with a long memory process. A related argument

of Andersen and Bollerslev (1997) shows how the contemporaneous aggregation of weakly

dependent information �ow processes can produce the property of long memory in volatility.

A further justi�cation is provided by Muller et al. (1997), who suggest that long memory in

volatility can arise from the reaction of short-term dealers to the dynamics of a proxy for the

expected volatility trend (coarse volatility), which causes persistence in the higher frequency

volatility, or (�ne volatility) process.

While the above papers were concerned with the underlying causes of long memory

volatility, other studies have essentially been more skeptical about the validity of the �nding

of the long memory property in volatility. In particular, it has been suggested that various

types of structural change can explain extreme persistence of volatility, and can also generate

a series that appears to have long memory. In particular, Mikosch and Starica (1998) and

Granger and Hyung (2004) have presented theoretical and simulation evidence that spurious

long memory can be detected from a time series with breaks. Moreover, while Granger and

Hyung (2004) have found that an occasional breaks model provides an inferior forecasting

performance than a long memory model for S&P500 absolute returns, for the same series

Starica and Granger (2004) have found that a non stationary model, allowing for breaks in

the unconditional variance, can outperform a long memory model in forecasting, but not at
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short horizons.1 Furthermore, Diebold and Inoue (2001) have shown how Markov switching

processes could generate long memory in the conditional mean, while Granger and Terasvirta

(1999) have shown that a process that switches in sign has the characteristics of long memory.

The possible occurrence of structural breaks in conditional variance processes, generating

extreme persistence of the IGARCH form, appears to have been originally suggested by

Lamoreaux and Lastrapes (1990) and Diebold (1986). Subsequent studies by Lobato and

Savin (1998), Beine and Laurent (2000), Morana and Beltratti (2004) and Martens, van

Dijk and de Pooter (2004) have suggested that an appropriate model for the volatility of

�nancial returns should include the joint occurrence of long memory and structural change.

These latter studies are generally consistent with previous literature such as Hamilton and

Susmel (1994), which considered alternating regimes of high and low volatility, each one

being characterized by strong persistence in their �uctuations. Economic explanations of

the phenomenon have been suggested by Schwert (1989), who relates alternating volatility

regimes to �uctuations in fundamental uncertainty and leverage e¤ects over the business

cycle. Also, Beltratti and Morana (2006) relate breaks in stock market volatility to monetary

policy reactions in response to business cycle conditions.

Given the above summary of previous research, this present paper starts from the propo-

sition that both long memory and structural breaks are likely to be present in the volatility

processes of many economic and �nancial time series. The main contribution of this paper

is then to present a model which allows for both long memory and structural change in a

volatility process. The proposed model is named Adaptive FIGARCH, or A-FIGARCH,

and augments the standard FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996)

with a deterministic component, following Gallant (1984)�s �exible functional form. Hence

the A-FIGARCH model allows for a stochastic long memory component and a determinis-

tic break process component. The approach does not require pre-testing for the number of

break points; nor does it require any smooth transition between volatility regimes; and has

the advantage of being computationally straightforward.2

The rest of this paper is organized as follows. Section two introduces the A-FIGARCH

model and its theoretical properties. Section three presents some Monte Carlo evidence for

inference in the model and section four presents an empirical application based on equity

market returns. The paper ends with a short concluding section.

1The �nding that accounting for structural change may not be relevant for short-term forecasting is a
robust �nding in the literature. See for instance the discussion in Diebold and Inoue (2001) and the empirical
results in Morana and Beltratti (2004).

2Indeed the proposed model is easily estimable with available menu-driven packages as for instance the
G@RCH Ox interface.
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2 The Adaptive FIGARCH Process

The Adaptive FIGARCH, or A-FIGARCH process is formed from two basic components

of a long memory volatility process and a deterministic time-varying intercept which allows

for breaks, cycles and changes in drift. By de�nition fytg is a discrete time, real-valued
stochastic process that is serially uncorrelated in its conditional mean, and has long memory

type in its conditional variance process. Hence,

yt � �tzt; (1)

where Et�1 [zt] = 0 and V art�1 [zt] = 1; �t is a positive, time-varying measurable function

with respect to the information set available at time t� 1, which is denoted as 
t�1. Hence,
�2t is the time dependent conditional variance de�ned as �

2
t = V art�1(y

2
t ) = V ar(y2t j
t�1)

and, following Baillie, Bollerslev and Mikkelsen (1996), is expressed as the long memory

FIGARCH(p; d; q) process

[1� �(L)]�2t = w + [1� �(L)� �(L)(1� L)d]y2t : (2)

The process can be most easily motivated from representing fy2t g as the ARFIMA(m; d; q)
model

�(L)(1� L)dy2t = w + (1� �(L))vt; (3)

where vt � y2t ��2t is the innovation in the conditional variance. The long memory, fractional
di¤erencing parameter is denoted as d, and is allowed to be in the interval 0 < d < 1, while

the lag polynomials are de�ned as �(L) = (1 � �(L) � �(L))(1 � L)�d, where �(L) �
�1L + ::: + �qL

q and �(L) � �1L + ::: + �pL
p. The polynomials �(L) and (1 � �(L)) are

assumed to have all their roots lying outside the unit circle. Moreover, m = max(p; q):

After rearrangement, an alternative representation for the FIGARCH(p; d; q) model is

�2t = w[1� �(1)]�1 +
�
1� �(L)(1� L)d[1� �(L)]�1

�
y2t ; (4)

or

�2t = w[1� �(1)]�1 + �(L)y2t ; (5)

where �(L) � �1L + �2L2 + :::, with �i � 0, for i = 1; 2; ::: and w > 0, for the conditional
variance to be well de�ned, so that it is positive almost surely for every t. A key feature

of the FIGARCH model is that for high lags, k, the distributed lag coe¢ cients are �k '
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ckd�1, where c is a positive constant; hence, the conditional variance can be expressed as

a distributed lag of past squared returns with coe¢ cients that decay at a slow, hyperbolic

rate, which is consistent with the long memory property.

Recently, Conrad and Haag (2006) have provided two sets of su¢ cient conditions for the

conditional variance process to be non negative almost surely. While the �rst set immediately

implies the above condition, the second set is less restrictive, and in practice requires checking

the non-negativity of only a �nite number of the impulse response weights �is.

It is well known that for 0 < d � 1 the FIGARCH(p; d; q) process has an unde�ned

unconditional variance. However, the process does possess a �nite sum to its cumulative

impulse response weights. This makes the FIGARCH model di¤erent from other possible

forms of long memory ARCHmodels, such as the class suggested by Karanassos, Pasaradakis

and Sola (2004). However, following the arguments in Baillie, Bollerslev and Mikkelsen

(1996), the FIGARCH process does appear to be strictly stationary and ergodic for 0 �
d � 1.
As argued in the introduction, there are abundant motivations from the �nancial mar-

kets literature to allow for the possibility of structural instability in the volatility process.

A straightforward, but quite powerful approach is to allow the intercept to be time depen-

dent. Hence, the A-FIGARCH (p; d; q; k) process can be derived from the FIGARCH(p; d; q)

process by directly allowing the intercept w in the conditional variance equation to be time

varying according to the Gallant (1994) �exible functional form. Hence, the model becomes

[1� �(L)]
�
�2t � wt

�
= [1� �(L)� �(L)(1� L)d]y2t ; (6)

where

wt = w0 +
kX
j=1

[j sin(2�jt=T ) + �j cos(2�jt=T )]: (7)

Similarly to the FIGARCH model, after rearrangement an alternative representation for

the A-FIGARCH (p; d; q; k) model is

�2t = wt +
�
1� �(L)(1� L)d[1� �(L)]�1

�
y2t ; (8)

or

�2t = wt + �(L)y
2
t : (9)

In order for the conditional variance to be positive almost surely at each point in time,

restrictions similar to those holding for the FIGARCH(p; d; q) process have to be imposed,

i.e. wt > 0, for all t, and �j � 0, for all j. However, unlike the FIGARCH process, the
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A-FIGARCH process will not be ergodic and nor will it be strictly stationary, due to the

time varying intercept component, modelled by the Gallant (1984) �exible functional form.

2.1 The A-FIGARCH(1,d,1,k) Process

A simple version of the model, which appears to be particularly useful in practice, is the

A-FIGARCH (1; d; 1; k) process

[1� �L]
�
�2t � wt

�
= [1� �(L)� �(L)(1� L)d]y2t ; (10)

withwt as de�ned in (7). On rearranging, an alternative representation for theA-FIGARCH (1; d; 1; k)

model is then

�2t = wt +
�
1� (1� �L)�1(1� L)d(1� �L)

�
y2t (11)

= wt + �(L)y
2
t ;

with �0 = 1, �1 = d + � � �, and, following Conrad and Haag (2006), �i = ��i�1 + (fi �
�)(�gi�1) i > 1, where fj = (j � 1 � d)=j, for j = 1; 2; ::: and gj = fj � gj�1. As noted by
Baillie, Bollerslev and Mikkelsen (1996), the non negativity of the conditional variance for

the FIGARCH(1; d; 1) model can be ensured by the restrictions w > 0, 0 � � � � + d

and 0 � d � 1 � 2�. The last two constraints can be stated as � � d � � � 2�d
3
and

d
�
�� 1�d

2

�
� �(� � � + d), and are written by Chung (1999) as 0 � � � � � �d < 1.

Finally, Conrad and Haag (2006) have recently proposed alternative and less restrictive

forms, and they show for the case of 0 < � < 1, �1 � 0 and � � f2; while for the case

�1 < � < 0, �1 � 0, �2 � 0 and � � f2(� + f3)=(� + f2). Similar restrictions hold for the
A-FIGARCH model.

2.2 Estimation

Estimation and inference for the parameters of the A-FIGARCH process can be facilitated

by the familiar method of Quasi Maximum Likelihood Estimation (QMLE), where the

Gaussian log likelihood

lnfL(�; y1; :::; yT )g = �0:5T ln(2�)� 0:5
TX
t=1

fln(�2t ) + y2t ��2t g

is numerically maximized with respect to the vector of the parameters � = (d;�0;�0;w0; 0)0.

Hence, the procedure implements simultaneous estimation of all the model�s parameters,
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including those in the �exible functional form, which specify the time varying intercept in

the conditional variance process. Under fairly general conditions, the asymptotic distribution

of the QMLE is

T 1=2
�
�̂ � �0

�
! Nf0;A(�0)�1B(�0)A(�0)�1g;

where �0 denotes the true value of the vector of parameters, and where A(�0) is the

Hessian and B(�0) is the outer product gradient; both of which are evaluated at the true

parameter values. Some results for the asymptotic properties of QMLE can be estab-

lished on the basis of dominance type arguments, using available results from the estima-

tion of IGARCH processes. Jensen and Rahbek (2004) have recently demonstrated that

QMLE has the properties of consistency and asymptotic normality when applied to the

IGARCH(1; 1) process, which exhibits non stationarity and non ergodicity, similarly to that

of the FIGARCH(1; d; 1) process. Although a formal proof is beyond the scope of this pa-

per, it is expected that similar results can be expected to hold for the A-FIGARCH (1; d; 1; k)

process. However, it is worth noting that the conditions required by Jensen and Rah-

bek (2004) are less stringent than those imposed by Lee and Hansen (1994) and Lums-

daine (1996), where the consistency and asymptotic normality of the QMLE was initially

shown for the strictly stationary and ergodic case. Clearly the IGARCH(1; 1) case is in

some sense an �extreme�situation. In particular, Jensen and Rahbek (2004) assume that

zt � i:i:d:(0; 1), with V ar(z2t ) = k < 1, and that the true parameters satisfy the condition
E ln(�0z

2
t + �0) � 0, where �0 and �0 denote the true values of the parameters � and �,

i.e. the squared innovation and lagged conditional variance parameters, respectively, in the

GARCH (1,1) model. Hence, the requirements do not depend on further higher moment

conditions and cover the integrated and explosive cases.3 Moreover, Jensen and Rahbek

(2004) have shown that the asymptotic properties of the estimator still hold for any initial

values �20 and y
2
0, and any value of !. This allows conditioning on the sample mean value of

y2t , which is
1
T

TP
t=1

y2t , for �
2
0 and y

2
0, as is usually implemented in the estimation of GARCH

models. Finally, it is important to note that results concerning consistency and asymptotic

normality of the QMLE have been obtained for the general strictly stationary and ergodic

GARCH(p; q) process; see Berkes et al. (2003). However, results for the non-stationary and

non ergodic case currently only exist for the GARCH(1; 1) process, which is fortunately the

most widely used model in applied econometric work.

3Lee and Hansen (1994) assume that E ln(�0z2t + �0) < 0, which is a necessary and su¢ cient condition
for the stationarity of the GARCH(1; 1) process. This latter condition is in fact implied by the condition
that �0 + �0 � 1:
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The numerical maximization of the log likelihood function is implemented by using the

asymptotically equivalent method of minimizing the conditional sum of squares function,

which neglects starting values. Many previous studies have presented simulation evidence

which shows that neglecting initial conditions has minimal e¤ects on parameter estimation

of long memory models in either of the �rst two conditional moments, given a sample size of

at least 100 observations. See for instance the results in Baillie, Chung and Tieslau (1996)

for the ARFIMA model with stable GARCH(1; 1) innovations and also Baillie, Bollerslev

and Mikkelsen (1996) for the FIGARCH case.

3 Simulation Results

This section reports some quite detailed Monte Carlo evidence on the impact of estimat-

ing A-FIGARCH models under di¤erent data generating process scenarios. All the esti-

mated A-FIGARCH models are contrasted and compared with the properties of estimated

FIGARCH models from the same data generating process across all the replications. All of

the experiments specify an uncorrelated process yt for the mean, but with various forms of

long memory and structural breaks, or time dependent intercept for its conditional variance

process. In particular, the martingale with FIGARCH(p,d,0) model, with p = (0; 1), has

been employed, which data generating process is

yt = �t"t

"t � NID(0; 1)

�2t = wt + (1� L)dy2t when p = 0 (12)

and, (13)

(1� �L)(�2t � wt) = [(1� �L)(1� L)d]y2t when p = 1: (14)

Three di¤erent designs were focused upon:

Design 1 has a constant intercept of wt = w = 0:5, and corresponds to the standard

case without structural breaks in the conditional variance.

Design 2 has a step change in the intercept at the midpoint of the sample, where the

intercept is doubled at this point. Hence,

wt =

�
0:5 t = 1; :::; T=2
1 t = T=2 + 1; :::; T

.

Design 3 has two step changes equally spaced throughout the sample where the intercept

increases eight fold, one third of the way through the sample and then decreases four fold

after two thirds of the sample. Hence,
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wt =

8<:
0:5 t = 1; :::; T=3
4 t = T=3 + 1; :::; 2T=3
1 t = 2T=3 + 1; :::; T

:

These three designs were each simulated for three di¤erent values of the long memory pa-

rameter, given by d = (0:15; 0:30; 0:45), and for three values for the short memory parameter

� = (0; 0:15; 0:30). Clearly, the estimation of the A-FIGARCH model should prove super-

�uous in design 1, while the interest in designs 2 and 3 centers on the performance of QMLE

when the pure martingale-FIGARCH process and the new martingale-A-FIGARCH mod-

els are estimated in the presence of structural breaks in the intercept of the conditional

variance. Hence, for designs 1, 2 and 3 the estimated models are the FIGARCH(p; d; 0),

with p = (0; 1),

yt = �tzt

zt � NID(0; 1)

(1� �L)�2t = w + [(1� �L)(1� L)d]y2t , (15)

and the A-FIGARCH (p; d; 0; k) model, with p = (0; 1),

y = �tzt

zt � NID(0; 1)

(1� �L)(�2t � wt) = [(1� �L)(1� L)d]y2t ;

wt = w0 +
kX
j=1

[j sin(2�jt=T ) + �j cos(2�jt=T )].

TheA-FIGARCH models were estimated for each design with one to four pairs of trigono-

metric terms included, i.e. k = (1; 2; 3; 4) : The number of simulated observations for each

design is 10,000 observations, which includes the discarded �rst 7,000, leaving with simu-

lated processes of sample size equal to 3,000 observations. Following Baillie, Bollerslev and

Mikkelsen (1996), the order of the truncation in estimation has been set to 1,000 observa-

tions. Finally, 500 Monte Carlo replications were employed in all of the designs. In Tables 1

through 3 the Monte Carlo bias (bias), root mean square error (RMSE) and the standard

error (s.e.) of the estimator, are reported for the p = 0 case. The results for the p = 1

case are reported in Tables 4 through 6. The ability of the models in �tting the conditional

variance process has also been assessed by means of the root mean square forecast error
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statistic (RMSFE�), which is computed as

RMSFE� =
1

500

500X
j=1

RMSFEj

RMSFEj =

vuut 1

T

TX
t=1

�
�̂2t � �2t

�2
;

where �̂2t is the estimated conditional variance process and �
2
t is the actual conditional

variance process.

The simulation experiments reveal several general points concerning the performance of

the di¤erent estimators of the long memory parameter d. For case 1, where there is no struc-

tural change, the application of the A-FIGARCH model should clearly be unnecessary since

the intercept is a constant. First, the estimate of the long memory parameter obtained from

the A-FIGARCH estimation has approximately the same degree of small sample bias as the

corresponding estimate from the estimation of the FIGARCH model. This result appears

consistent across all the designs. However, the most interesting result is the reduction in

RMSE of the estimate of the d parameter from using A-FIGARCH compared with esti-

mation from the regular FIGARCH model. The reduction in RMSE appears to noticeably

increase as the level of persistence (value of d) increases. These results suggest that there is

no additional cost from using the A-FIGARCH model as opposed to the FIGARCH model,

even when there is no structural break in the conditional mean. The interpretation of this

is intriguing and suggests that the time dependent intercept is also somehow adjusting for

parameter uncertainty in the estimation of d.

For cases 2 and 3, where the intercept is subject to structural breaks, apart from the low

persistence case (d = 0:15), the degree of bias in the estimates of d is very small for both

estimators. However, the bias is again always smaller for the A-FIGARCH model compared

to the pure FIGARCH model. Moreover, the RMSE of the estimate of d is generally lower

from the A-FIGARCH estimation compared to the corresponding FIGARCH estimation.

Finally, the generally superior performance of the estimate of d from the estimation of the

A-FIGARCH model relative to the standard FIGARCH model, is robust across the three

di¤erent values of d used in the designs, with the improvement increasing as the the degree

of persistence increases. Hence, the Gallant �exible functional form seems to work quite well

in the A-FIGARCH model estimation framework, doing a good job in terms of modeling

the structural change in the intercept.

Interestingly, from Tables 4 through 6, it can also be noted that neglecting structural

breaks does not only lead to an upward biased estimate of the fractional di¤erencing pa-
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rameter, as already found for the p = 0 case, but also in the estimate of the stationary

autoregressive parameter, �. This latter �nding is particularly evident when the degree of

persistence is low, as in the d = 0:15 case. The upward bias in the estimate of d from the

regular FIGARCH estimation appears to be mitigated by the inclusion of the trigonometric

components in the A-FIGARCH estimation. The improved performance of the estimation

of d tends to increase with the degree of persistence of the series. Hence, estimation of the

A-FIGARCH shows a superior performance relatively to the FIGARCH model in terms of

bias and RMSE in all the designs. Interestingly, the greatest improvement is in the d = 0:45

case, which is the one mostly relevant for �nancial applications. In this case there is a

145% reduction in bias and a 60% reduction in RMSE obtained from using the A-FIGARCH

model, relatively to the FIGARCH model.

Overall, the above results indicate potentially signi�cant gains from using theA-FIGARCH speci�cation,

and certainly no perceptible losses, even in the absence of structural breaks. The possible

loss of e¢ ciency in using an unnecessary, over-parameterized A-FIGARCH model speci�-

cation does not appear to be an issue. It may be that the estimation from smaller sample

sizes would �nd losses in e¢ ciency of the estimation of d. Since a sample size of T = 3; 000

is quite common for �nance applications, the situation from smaller sample sizes was not

investigated.

The �nal point of interest concerns the overall goodness of �t of the models as indicated

by the RMSFE� statistic. Only when the degree of persistence is low (d = 0:15) and

there is no structural change, does the inclusion of the adaptive component not yield any

improvement in the goodness of �t statistic. In particular, in Table 1 and Table 4 for case 1

the estimation of high order (k = 3, or k = 4) adaptive components decreases the goodness

of �t.

Therefore, in the light of the Monte Carlo evidence, it seems preferable to include the

adaptive non linear trend component in the speci�cation for the conditional variance equation

at the out set, since no negative consequences for estimation may be expected, apart from

the case of weak long memory, which however does not seem to be relevant for �nancial

returns. Then, following a general to speci�c methodology, the best �tting parsimonious

model may be obtained. Moreover, for the cases investigated in the Monte Carlo exercise,

there is no evidence of an improvement in the performance of the model by the inclusion of

polynomial terms beyond the second or third order.
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4 Applications to Stock Market Volatility

This section of the paper reports estimation of A-FIGARCH and FIGARCH models for

the S&P500 returns. The time span is from January 3, 1928 through February 15, 2007,

which realizes a total of T = 20,863 observations and is a long enough period for the likely

occurrence of multiple structural breaks in volatility. For the practical implementation of the

A-FIGARCH method, an important consideration is the determination of the order of the

trigonometric terms in the Gallant �exible functional form, in addition to the order of the

speci�cation of the stationary components in the conditional mean and conditional variance

equations. In the reported results the Schwartz BIC information criterion is used for model

selection. Since the conditional mean exhibited some small degree of autocorrelation, an

AR(2) term was eventually included in the mean equation. Hence, the following AR(2)-

FIGARCH (1; d; 1) model

(1� �1L� �2L2)yt = �+ "t
"t = �tzt

zt � NID(0; 1)

[1� �L]�2t = w + [1� �L� (�L)(1� L)d]"2t ;

and the AR(2)-A-FIGARCH (1; d; 1; k) model

(1� �1L� �2L2)yt = �+ "t
"t = �tzt

zt � NID(0; 1)

[1� �L](�2t � wt) = [1� �L� (�L)(1� L)d]"2t

wt = w0 +

kX
j=1

[j sin(2�jt=T ) + �j cos(2�jt=T )]

were estimated for the S&P500 returns series, and the results are reported in Table 7. The

SBC criterion indicates that the inclusion of trigonometric cosine components makes an im-

portant contribution to the general goodness of �t of the models. This �nding is consistent

with evidence on the presence of structural breaks previously detected for S&P500 returns,

as reported by Lobato and Savin (1998), Granger and Hyung (2004), Starica and Granger

(2004) and Beltratti and Morana (2006). On comparison of the estimated parameters for the
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FIGARCH and A-FIGARCH models, it can be seen that neglecting the presence of struc-

tural breaks leads to an inferior �t of the conditional variance process, while the estimated

persistence and autoregressive parameters are not statistically di¤erent across models. This

is fully to be expected given the previously described simulation evidence. The SBC criterion

suggests that the inclusion of trigonometric terms up to the third order (k = 3) is desirable

from a speci�cation perspective, with no additional improvements beyond this order. The

estimated conditional standard deviation by the preferred A-FIGARCH (1; d; 0; 3) model is

plotted in Figure 1. Finally, the consequences of neglecting structural change can be clearly

noted in Figure 2, where the conditional standard deviations from the FIGARCH (1; d; 0)

model and the A-FIGARCH (1; d; 0; 3) model have been plotted for four sub-periods, ran-

domly chosen, of 100 days each. As shown in the plots, due to neglecting the break process,

the estimated conditional standard deviation process from the FIGARCH (1; d; 0) model can

show a noticeable bias, both upward or downward, relatively to the one obtained by the

A-FIGARCH (1; d; 0; 3) model.

5 Conclusions

This paper has introduced the new Adaptive FIGARCH or A-FIGARCH process to model

volatility, which is designed to account for both long memory and structural change in the

conditional variance process. Structural change is modeled by allowing the intercept to

follow a slowly varying function, speci�ed by Gallant (1984)�s �exible functional form. A

detailed simulation experiment �nds that the A-FIGARCH model outperforms the standard

FIGARCH model when structural change is present, and performs at least as well in the

absence of structural instability. Overall, there appear to be signi�cant gains in terms of

bias and e¢ ciency from using the A-FIGARCH speci�cation. An empirical application to

stock market volatility is also included to illustrate the usefulness of the technique.
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Table 1: Monte Carlo results, A-FIGARCH (0; d; 0; k) and FIGARCH(0; d; 0) models

T = 3000
A-FIGARCH (0; d; 0; k); d = 0:15

biasd RMSEd s:e:d RMSFE�

k = 1

m1

m2

m3

:036
:081
:089

:029
:017
:020

:028
:010
:012

:028
:468
:587

k = 2

m1

m2

m3

�:004
:075
:091

:020
:016
:020

:020
:010
:012

:028
:467
:587

k = 3

m1

m2

m3

�:010
:081
:090

:022
:016
:020

:022
:010
:012

:035
:476
:587

k = 4

m1

m2

m3

�:012
:081
:090

:021
:017
:019

:021
:010
:011

:038
:477
:586

FIGARCH(0; d; 0); d = 0:15
biasd RMSEd s:e:d RMSFE�

k = 0
m1

m2

m3

:001
:102
:107

:021
:020
:023

:021
:010
:012

:023
:488
:595

Key: The table reports results for a simulation study. The table indicates the bias,

root mean square error (RMSE) and standard error (s.e.) for estimation of the fractional

di¤erencing parameter d from a sample size of T =3,000 observations. The table also reports

the goodness of �t criterion (RMSFE�) for the conditional variance process; and all results

are based on 500 replications. Three di¤erent break con�gurations have been investigated,

i.e. the case of no break (m1), the case of a single break point (m2) and the case of two

break points (m3), employing up to a fourth order trigonometric expansion (k = 0; 1; 2; 3; 4)

for the adaptive component.
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Table 2: Monte Carlo results: A-FIGARCH (0; d; 0; k) and FIGARCH(0; d; 0) models

T = 3000
A-FIGARCH (0; d; 0; k); d = 0:30

biasd RMSEd s:e:d RMSFE�

k = 1

m1

m2

m3

�:004
:017
:036

:024
:022
:026

:024
:021
:025

:034
:280
:382

k = 2

m1

m2

m3

:002
:003
:034

:023
:021
:027

:023
:021
:026

:033
:254
:380

k = 3

m1

m2

m3

�:010
:005
:027

:023
:021
:028

:023
:021
:027

:033
:266
:417

k = 4

m1

m2

m3

�:011
:004
:028

:023
:020
:029

:023
:020
:028

:036
:263
:373

FIGARCH(0; d; 0); d = 0:30
biasd RMSEd s:e:d RMSFE�

k = 0
m1

m2

m3

:005
:025
:044

:035
:022
:030

:035
:021
:028

:047
:278
:421

Key: As for Table 1.
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Table 3: Monte Carlo results: A-FIGARCH (0; d; 0; k) and FIGARCH(0; d; 0) models

T = 3000
A-FIGARCH (0; d; 0; k); d = 0:45

biasd RMSEd s:e:d RMSFE�

k = 1

m1

m2

m3

�:017
�:012
:005

:024
:034
:035

:024
:034
:035

:039
:347
:433

k = 2

m1

m2

m3

�:007
:003
:001

:056
:021
:027

:042
:021
:025

:166
:254
:368

k = 3

m1

m2

m3

�:020
�:030
�:003

:028
:036
:040

:028
:036
:040

:062
:335
:400

k = 4

m1

m2

m3

�:018
�:027
�:004

:029
:039
:037

:029
:038
:037

:063
:444
:313

FIGARCH(0; d; 0); d = 0:45
biasd RMSEd s:e:d RMSFE�

k = 0
m1

m2

m3

:013
�:012
:036

:035
:049
:040

:035
:049
:037

:059
:470
:484

Key: As for Table 1.

19



Table 4: Monte Carlo results: A-FIGARCH (1; d; 0; k) and FIGARCH(1; d; 0) models

T = 3000
A-FIGARCH (1; d; 0; k); d = 0:15, � = 0:15

biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 1

m1

m2

m3

�:008
:202
:216

:028
:062
:082

:028
:022
:035

�:016
:186
:191

:029
:065
:085

:029
:030
:048

:026
:427
:540

k = 2

m1

m2

m3

�:009
:152
:158

:032
:039
:054

:032
:016
:029

�:016
:120
:124

:033
:042
:056

:033
:025
:040

:028
:429
:542

k = 3

m1

m2

m3

�:020
:151
:154

:029
:037
:041

:029
:015
:018

�:014
:126
:112

:030
:041
:040

:030
:025
:026

:034
:434
:535

k = 4

m1

m2

m3

�:027
:167
:196

:031
:044
:072

:030
:016
:034

�:033
:147
:174

:033
:047
:075

:032
:026
:045

:040
:433
:536

FIGARCH(1; d; 0); d = 0:15, � = 0:15
biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 0
m1

m2

m3

�:004
:220
:244

:030
:071
:098

:030
:022
:047

�:011
:205
:225

:032
:074
:097

:032
:032
:038

:022
:439
:545

As for Table 1; and also including the bias, root mean square error (RMSE) and standard

error (s.e.) for the �rst order autoregressive parameter �:
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Table 5: Monte Carlo results: A-FIGARCH (1; d; 0; k) and FIGARCH(1; d; 0) models

T = 3000
A-FIGARCH (1; d; 0; k); d = 0:30, � = 0:30

biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 1

m1

m2

m3

:002
:130
:168

:042
:055
:070

:042
:038
:041

�:008
:118
:155

:044
:057
:071

:044
:043
:047

:031
:287
:373

k = 2

m1

m2

m3

�:007
:087
:137

:039
:037
:067

:039
:027
:048

�:015
:076
:123

:041
:034
:068

:041
:031
:053

:029
:280
:371

k = 3

m1

m2

m3

�:021
:083
:126

:039
:031
:056

:038
:024
:040

�:028
:069
:111

:040
:033
:057

:039
:028
:045

:032
:280
:307

k = 4

m1

m2

m3

�:027
:095
:147

:038
:040
:067

:038
:030
:046

�:034
:085
:134

:039
:042
:068

:038
:035
:050

:034
:284
:377

FIGARCH(1; d; 0); d = 0:30, � = 0:30
biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 0
m1

m2

m3

�:002
:149
:178

:047
:070
:106

:047
:048
:078

�:010
:138
:190

:049
:071
:106

:049
:052
:082

:033
:302
:366

Key: As for Table 4.
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Table 6: Monte Carlo results: A-FIGARCH (1; d; 0; k) and FIGARCH(1; d; 0) models

T = 3000
A-FIGARCH (1; d; 0; k); d = 0:45, � = 0:30

biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 1

m1

m2

m3

�:006
:044
:085

:042
:051
:061

:042
:049
:053

�:008
:049
:087

:050
:060
:070

:050
:058
:063

:040
:209
:285

k = 2

m1

m2

m3

�:005
:022
:066

:044
:046
:060

:044
:049
:055

�:007
:031
:071

:051
:050
:067

:051
:045
:062

:045
:200
:301

k = 3

m1

m2

m3

�:021
:023
:055

:051
:055
:061

:050
:055
:058

�:019
:033
:064

:056
:060
:070

:056
:059
:066

:049
:232
:270

k = 4

m1

m2

m3

�:027
:021
:062

:050
:056
:061

:049
:055
:058

�:023
:030
:072

:054
:060
:069

:053
:059
:064

:049
:228
:286

FIGARCH(1; d; 0); d = 0:45, � = 0:30
biasd RMSEd s:e:d bias� RMSE� s:e:� RMSFE�

k = 0
m1

m2

m3

:032
:073
:108

:079
:071
:085

:078
:066
:073

:029
:078
:112

:079
:077
:093

:078
:071
:080

:063
:260
:331

Key: As for Table 4.
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Table 7: Estimation of A-FIGARCH (1,d,1,k) and FIGARCH (1,d,1) models to S&P500

Returns
FI AFI(1) AFI(2) AFI(3) AFI(4)

� 0.050 (.006) 0.050 (.006) 0.051 (.006) 0.051 (.006) 0.051 (0.006)
�1 0.115 (.008) 0.115 (.008) 0.115 (.008) 0.115 (.008) 0.115 (0.008)
�2 -0.036 (.008) -0.036 (.008) -0.036 (.008) -0.036 (.008) -0.036 (0.008)

w 0.058 (.008) 0.072 (.009) 0.068 (.009) 0.071 (.009) 0.071 (0.009)
� 0.230 (.044) 0.223 (.030) 0.223 (.029) 0.219 (.029) 0.218 (0.030)
d 0.330 (.037) 0.329 (.024) 0.331 (.023) 0.328 (.024) 0.326 (0.024)

�1 0.035 (.010) 0.014 (.008) 0.013 (.009) 0.012 (0.009)
�2 -0.037 (.009) -0.029 (.009) -0.027 (0.009)
�3 0.019 (.010) 0.015 (0.009)
�4 -0.011 (0.009)

LB10 23.950 27.448 27.463 27.107 27.288
LB50 82.062 86.154 87.141 87.027 87.171
LB210 16.913 16.532 16.306 16.154 16.271
LB250 48.286 47.551 47.842 48.890 49.701

sk -0.421 -0.419 -0.408 -0.407 -0.407
ku 6.688 6.731 6.537 6.486 6.456

sb 0.130 0.123 0.095 0.088 0.088
nsb 0.000 0.001 0.000 0.000 0.000
psb 0.073 0.049 0.050 0.048 0.047

SBC 2.5628 2.5617 2.560 2.5599 2.5602

The sample is from January 3 1928 through February 15 2007, for a total of T = 20,863

observations. The asymptotic standard errors are reported in parenthesis beside correspond-

ing parameter estimates. The diagnostic statistics are LB which denotes the Ljung-Box

test for serial correlation in the standardized residuals, LB2 is the Ljung-Box test for serial

correlation in the squared standardized residuals, sk is the index of skewness and ku is the

index of kurtosis. The Ljung Box statistics are computed from the �rst 10 and 50 sample

autocorrelations. Finally, sb denotes the p-value of the sign bias t-test, nsb the p-value of

the negative size bias t-test, psb the p-value of the positive size bias t-test, while SBC is the

Schwarz-Bayes information criterion. The estimated models are the ARFIMA(1; d; 0) model

(FI) and the A-ARFIMA(1; d; 0; k) model (AFI(k)), with k = 1; 2; 3; 4.
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Figure 1. S&P 500 conditional standard deviation process (csd), A-FIGARCH(1,d,0,3)

model.
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Figure 2: Estimated conditional standard deviations from the FIGARCH(1,d,0) model (FI)

and the A-FIGARCH(1,d,0,3) model (AFI).
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