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1 Introduction

In recent years there has been increasing interest in forecasting methods that utilise large

data sets. There is an awareness that there is a huge quantity of information available in the

economic arena which might be useful for forecasting, but standard econometric techniques

are not well suited to extract this in a useful form. This is not an issue of mere academic

interest. Lars Svensson described what central bankers do in practice in Svensson (2005).

‘Large amounts of data about the state of the economy and the rest of the world ... are

collected, processed, and analyzed before each major decision.’ In an effort to assist in this

task, econometricians began assembling large macroeconomic data sets and devising ways of

forecasting with them.

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank of
England.
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In the last few years a large number of methods which are either new or new to econo-

metrics has been proposed to deal with forecasting using large data sets. This review aims

to provide a brief discussion of the available methods. Given the recent and evolving nature

of this literature this review is bound to be incomplete. The need for new methods in the

face of the availability of large data sets arises out of the fact that, given time series obser-

vations for a large data set, which at time t is denoted by the N -dimensional vector xt, it

is either inefficient or downright impossible to incorporate xt in a single forecasting model

and estimate it using standard econometric techniques.

We assume that primary interest focuses on forecasting a single variable yt which may

or may not be included in xt. Broadly speaking, the available methodologies for forecasting

with large data sets fall into four groups: The first group consists of estimation strategies

that allow estimation of a single equation model that utilises the whole of xt. This is per-

haps the most diverse group ranging from factor-based methods to Bayesian regression. The

methods of the second group involve inherently two steps: In the first step some form of

variable selection is undertaken. The variables that are chosen are then most likely to be

used in a standard forecasting model. Of course, if the resulting data set is too large, it

may still be analysed using methods designed for large data sets. These first two groups

of methods inevitably overlap. However, we feel that the step of variable selection is, and

involves methods that are, sufficiently distinct to merit separate mention and treatment.

The third group of methods involves the use of subsets of xt in distinct forecasting models

and the production of multiple forecasts for yt, which are then averaged to produce a final

forecast. The distinctive feature of this group is the explicit use of model and forecast aver-

aging. Finally, the fourth and perhaps most innovative group of methods departs from the

convention of forecasting a single variable. For this group the aim is to forecast the whole of

xt (which is now assumed to contain yt). Thus, use of multivariate models is inevitable. As

is clear, specially designed estimation methods need to be employed, as the size of the data

set, xt, does not allow use of standard econometric techniques.

As the above makes clear, our review will focus on statistical/econometric methods for

dealing with large data sets. This ignores the large literature on traditional macro-forecasting
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models which usually involve many more variables than traditional econometric models.

These more traditional models, typically use economic theory, essentially, to restrict the

size of the data set. Therefore, they offer an alternative means of analysing large data sets

to the second group of methods discussed above. In practise, policymakers consider both

traditional large scale macroeconomic models and statistical models of large data sets in

producing forecasts. Typically, statistical models perform better at shorter horizons whereas

macroeconomic models perform better at longer horizons and during periods of structural

change.

The review is organised as follows: The next four sections deal with each of the above

four groups of forecasting methods. Finally, Section 6 concludes.

2 Forecasting Using the Whole Data set

This group of methods is, in some sense, the most heterogeneous as it includes a wide variety

of approaches in terms of specifying a forecasting equation. The framework here is provided

by the following equation

yt = α′xt + εt (1)

The aim is to determine α without restricting any elements of it to be equal to zero. We

view such restrictions to be of sufficiently different nature to be dealt with as part of variable

selection methods in the next section. Of course, there are inevitable overlaps which we

highlight where appropriate. In the following subsections we present alternative approaches

for determining α.

2.1 Ordinary Least Squares Estimation

OLS is the standard estimation method for determining α. There is little need for further

comment on this estimation method apart from observing that as N increases the estimator’s

behaviour becomes increasingly erratic and of course estimation of α is impossible when N

exceeds the number of observations, T . We note however that estimation of α′xt is possible

via the use of generalised inverses even in this case.
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2.2 Bayesian Regression Estimation

Bayesian regression is a standard tool for providing inference for α and there exist a large

variety of approaches for implementing Bayesian regression. We will provide a brief exposi-

tion of this method. A starting point is the specification of a prior distribution for α. Once

this is in place standard Bayesian analysis proceeds by incorporating the likelihood from the

observed data to obtain a posterior distribution for α which can then be used for a variety of

inferential purposes, including, of course, forecasting. A popular and simple implementation

of Bayesian regression results in a shrinkage estimator for α given by (X ′X + vI)−1 X ′y

where X = (x1, . . . , xT )′, y = (y1, . . . , yT )′ and v is a shrinkage scalar parameter. As the

name suggests this shrinkage estimator shrinks the OLS estimator, given by (X ′X)−1 X ′y

towards zero, thus enabling a reduction in the variance of the resulting estimator. This is a

major feature of Bayesian regression that makes it useful in forecasting when large data sets

are available. This particular implementation of Bayesian regression implies that elements

of α are small but different from zero ensuring that all variables in xt are used for forecast-

ing. Other implementations use prior distributions for α that imply that only a few of the

variables in xt are actually used in forecasting, thereby closely relating Bayesian regression

to variable selection methods. A recent application of Bayesian regression for forecasting is

by De Mol, Giannone, and Reichlin (2007).

2.3 Factor Methods

Factor methods have been at the forefront of developments in forecasting with large data

sets and in fact started this literature with the influential work of Stock and Watson (2002).

The defining characteristic of most factor methods is that relatively few summaries of the

large data sets are used in forecasting equations which thereby become standard forecasting

equations as they only involve a few variables. Implicitly, α′x̃t = α̃′Λ′x̃t where x̃t may be

equal to xt or may involve other variables such as, e.g., lags and leads of xt. Λ′x̃t is referred

to as the factors. The main difference between different factor methods relate to how Λ is

estimated. The following subsections give brief overviews of three factor methods that are

available in the literature.
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2.3.1 Principal Components

The use of principal components for the estimation of factor models is, by far, the most

popular factor extraction method. It has been popularised by Stock and Watson (2002), in

the context of large data sets, although the idea had been well established in the traditional

multivariate statistical literature. The method of principal components is simple. The N×r

matrix of linear combinations, Λ, relating to r factors, is estimated by the eigenvectors

corresponding to the r largest eigenvalues of the second moment matrix X ′X. Data are

usually normalised to have zero mean and unit variance prior to the application of principal

components.

2.3.2 Dynamic Principal Components

Principal component estimation of the factor structure is essentially a static exercise as

no lags or leads of xt are considered. Dynamic principal components which, as a method

of factor extraction, has been suggested in a series of papers by Forni, Hallin, Lippi and

Reichlin (see, e.g., Forni, Hallin, Lippi, and Reichlin (2000, 2004) among others) is designed

to address this issue. Dynamic principal components are extracted in similar fashion to

static principal components but, instead of the second moment matrix, the spectral density

matrices of the data at various frequencies are used. These are then used to construct

estimates of the common component of the data set which is a function of the unobserved

factors. This method uses leads of the data and as a result its application to forecasting

has been problematic for obvious reasons. Recent work by the developers of the method has

addressed this issue (see, e.g., Forni, Hallin, Lippi, and Reichlin (2005)).

2.3.3 Subspace Methods

The third method of factor extraction assumes a parametric state space model for the data

set, xt. This follows earlier work by Stock and Watson (1989) who used state space mod-

els to extract factors via the Kalman filter and maximum likelihood estimation, for small

data sets. Conventional wisdom suggested that such methods would be too computationally

intensive for large data sets. Borrowing work from the engineering literature which again

focused on small data sets, Kapetanios and Marcellino (2003) suggest using subspace algo-

rithms to estimate factors from a state space model. This essentially uses OLS estimation
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to obtain estimates of the matrix coefficient in a multivariate regression of leads of xt on

lags of xt. Then, a reduced rank approximation to this estimated coefficient matrix provides

estimates for the factors. In a Monte Carlo study Kapetanios and Marcellino (2003) found

that subspace estimation compared favourably to static and dynamic principal components.

3 Forecasting Using a Subset of the Data set

This section considers a group of methods that involve two steps. In the first step, some

form of variable selection reduces the dimensionality of the original large data set to a degree

that enables use of a standard forecasting model, which, for our purposes and simplicity, will

be assumed to be a standard linear forecasting regression. As the second step is standard,

we focus on the first step of variable selection. Note, however, that the second step may

be in fact a method designed for large data sets such as those methods discussed in the

rest of the sections of this review. Usually, the selection of any subset of a set of variables

involves a consideration and evaluation of all possible subsets with a view to selecting the

most appropriate subset. Such evaluation is usually carried out using some information

criterion such as the Bayesian information criterion. In the context of large data sets this is

not possible. To appreciate this, it is worth simply noting that for a set of N variables there

exist 2N possible subsets. For values of N , exceeding, say 30 or 40, evaluation of all subsets

is not possible with current computing technology. Therefore, in this section we mainly focus

on methods that search the space of variable subsets efficiently.

3.1 General-to-Specific Variable Selection

One of the most popular variable selection approaches for regression analysis is the general-

to-specific variable selection approach popularised in a number of papers by David Hendry

and his co-authors. A useful self contained account of this approach may be found in Hoover

and Perez (1999). The main algorithm of that paper provides a tractable formalisation

of the general-to-specific methodology advocated by Hendry and his co-authors and dis-

cussed in some detail in a number of paper such as, e.g., Hendry (1995, 1997); Krolzig and

Hendry (2001) (see also Brüggemann, Krolzig, and Lütkepohl (2003) for an application of

this methodology to model reduction in VAR processes). The salient features of the algo-

rithm may be summarised as follows: A general regression specification is considered and
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tested for misspecification using a battery of specification tests such as tests for residual

autocorrelation and ARCH and tests for structural breaks. Then, a sequential testing pro-

cedure is used to remove insignificant regressors from this specification making sure that

resulting specifications are acceptable using misspecification tests. Although, this approach

is not able to handle very large data sets, since a regression involving all variable needs to

be estimated, recent work by Hendry has relaxed this limitation.

3.2 Simulated Annealing

In this and the next subsection, we present two efficient algorithms that search the space of

all possible regression specifications and choose the one that optimises a objective function

such as, e.g., an information criterion.

The first algorithm is known as simulated annealing and its properties as a variable selec-

tion devise have been analysed in Kapetanios (2007) who proposed this approach. Simulated

annealing is a generic term used to refer to a family of powerful optimisation algorithms. In

essence, it is a method that uses the objective function to create a nonhomogeneous Markov

chain that asymptotically converges to the maximum or minimum of the objective function.

It is especially well suited for functions defined in discrete spaces like information criteria.

The concept is originally based on the manner in which liquids freeze or metals recrystalize

in the process of annealing. In an annealing process a melt, initially at high temperature and

disordered, is slowly cooled so that the system at any time is approximately in thermody-

namic equilibrium. As cooling proceeds, the system becomes more ordered and approaches

a ‘frozen’ ground state. The analogy to an optimisation problem is as follows: The current

state of the thermodynamic system is analogous to the current solution to the optimisation

problem, the energy equation for the thermodynamic system is analogous to the objective

function, and the ground state is analogous to the global optimum. Kapetanios (2007) who

provides a detailed algorithm and Monte Carlo evidence suggests that this is one of the most

promising methods of those reviewed in this section.
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3.3 Genetic Algorithms

Another group of powerful optimisation methods are genetic algorithms. Genetic algorithms

have been used widely for optimising discontinuous and multimodal functions. Genetic algo-

rithms iterate towards a solution through a process reminiscent of the Darwinian process of

natural selection. Candidate solutions to the optimisation problem, which appear promising

are allowed to thrive whereas less promising solutions are less likely to be considered further.

As far as economic applications of the algorithm are concerned, we note the work of Dorsey

and Mayer (1995), Marimon, McGratten, and Sargent (1990) and Ostermark (1999). The

work of Kapetanios (2007) who proposed this algorithm as a variable selection device sug-

gests that this is also a promising avenue for variable selection.

It is also worth noting that other objective functions may be used in place of information

criteria which rely on in-sample fit. For example, out-of-sample forecasting ability in the

form of, e.g., root-mean square forecast error, can be used an objective function. Both

genetic algorithms and simulated annealing can be used to optimise such objective functions

as discussed in the empirical work of Kapetanios (2007).

3.4 Boosting

Boosting refers to a relatively new set of algorithms originating in the machine learning

literature. Boosting is, in some sense, the opposite of the general-to-specific methodology

for variable selection, that we discussed earlier. A generic boosting algorithm for linear

regression may be characterised as follows: The researcher, faced with a set of variables xt

to be used for fitting a linear regression for yt, starts with a very simple regression model

(possibly one containing only a constant). The first step is to estimate univariate regression

models containing each of the variables in xt on its own. The variable that minimises

a suitably chosen loss function (such as, e.g., the sum of squared residuals) is chosen for

inclusion in the final model. Then, the residuals from this univariate regression are treated

as a new variable to be explained by the rest of the variables in xt. Once again univariate

regressions containing each one of the remaining xt variables are used and the best-fitting

variable in xt is chosen next. The process is repeated for either a prespecified number of

step or until some criterion, such as, e.g., an information criterion suggest the process should
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stop. This set of algorithms has been recently shown to have good theoretical properties

(see, e.g., Buhlmann (2006)).

3.5 LASSO and Least Angle Regression

LASSO and least angle regression (LAR) are algorithms for fitting linear regression models

that are closely related to boosting. Starting with LASSO we note that it is a shrinkage

estimator and in this sense it is also related to Bayesian regression discussed in Section 2.

LASSO minimises the sum of squared residuals as OLS does, but under the restriction that

some norm of the estimated vector of regression coefficients is smaller than some prespecified

threshold, implying a varying degree of shrinkage. LAR on the other hand works similarly to

boosting, but at each step of the algorithm described for boosting in the previous subsection,

the chosen variable is not fully included in the regression model but the coefficient associated

with this variable is increased as much as is needed for the variable not to be the most

correlated (or the one minimising the loss function). Then, the variable is included in the

regression model with the required coefficient and the search for a new variable to include

starts afresh. LAR is computationally easier than LASSO.

3.6 Variable preselection for factor analysis

In a recent paper Boivin and Ng (2006) note that forecasting using factor analysis may

be problematic if the idiosyncratic parts of the series in the data set (the part that is not

explained by the factors) are highly correlated with each other. They suggest preselecting

a subset of the variables in the large data set so that the resulting subset does not have

highly correlated idiosyncratic parts. The subset of series selected is still analysed using

factor analysis as it is typically still too large for use in traditional econometric forecasting

models. In their empirical analysis, they find that their suggested preselection methods

provide improvement in forecasting performance compared to standard factor analysis.
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4 Forecast Averaging

4.1 Bayesian model averaging (BMA)

BMA can be viewed as a Bayesian approach to combination forecasting. Model averag-

ing summarizes the different possible relationships between the predicted variable and the

predictor variables. With appropriately chosen weights, this should lead to more efficient

extraction of information. Model averaging also has the advantage of providing robustness

against misspecification, and model uncertainty can easily be accounted for, if the model

averaging is conducted in a Bayesian setting, i.e. the weights are the posterior probabilities

of the models. In BMA, the posterior probability associated with the model being correct

serves as the weight assigned to each model in the forecast combination. Bayesian model

averaging can be used to combine forecasts from the set of models that can be constructed

using various combinations of the predictors. The averaging over many different competing

models incorporates model as well as parameter uncertainty into conclusions about parame-

ters and predictions. A good reference on recent BMA work is Fernandez, Ley, and Steel

(2001). Recently, Eklund and Karlsson (2007) use an out-of-sample measure when combining

forecasts and show that the forecast combination with weights based on models’ predictive

performance outperforms forecast combination with in-sample weights.

4.2 Frequentist Model Averaging

As an alternative to Bayesian model averaging, there is a sizable literature, competently

summarised by Burnham and Anderson (1998), on a frequentist information theoretic ap-

proach in an analogous vein. In this context, information theory suggest ways of constructing

model confidence sets. Given the existence of a set of models, relative model likelihood can

be defined. Model weights within this framework have been suggested by Akaike in a se-

ries of papers (see Akaike (1978, 1979)) and expounded further by Burnham and Anderson

(1998). In practical terms such weights are easy to construct using standard information

criteria such as Akaike’s information criterion. Kapetanios, Labhard, and Price (2007) have

considered this way of model averaging as an alternative to Bayesian model averaging for

forecasting.

10



Similarly to the work of Eklund and Karlsson (2007), Kapetanios, Labhard, and Price

(2006) use an out-of-sample measure of fit in standard information criteria when constructing

weights for forecast combination in an information theoretic approach. They find that the

proposed method performs well and, in some respects, outperforms other averaging methods

considered.

5 Forecasting the Whole Data set

This section draws heavily on the work of Carriero, Kapetanios, and Marcellino (2007) and

provides a number of approaches for forecasting large data sets.

5.1 Reduced Rank Regression (RR)

The starting point for these models are standard V AR(p) models. When applied to a large

data set, VAR models result in a large number of insignificant coefficients. Therefore, in

order to obtain a more parsimonious model, one might impose rank reduction, i.e to assume

that rk(B′) = r < N where B is the VAR coefficient matrix. This is equivalent to the

parametric specification

Yt = α

[
p∑

i=1

β′iYt−i

]
= αβ′Xt + et, (2)

where α and β = (β
′
1, ..., β

′
p)
′ are respectively a N × r and a M × r matrices. The model (2)

was studied by Velu, Reinsel, and Wichern (1986). In (2), it is assumed that the true rank of

the matrices α and β are identical and equal to r which is thus referred to as the rank of the

system (2). Given the assumed system rank r, Velu, Reinsel, and Wichern (1986) suggested

an estimation method for the parameters α and β that may be shown to be quasi-maximum

likelihood (see also Reinsel and Velu (1998)).

All the above work assumes implicitly that these models are applied to a relatively small

number of variables. Recently, Carriero, Kapetanios, and Marcellino (2007) have suggested

that RR models may be useful for forecasting large data sets as a whole. They find that the

parsimony imposed by RR models is useful for forecasting.
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5.2 Bayesian VAR (BVAR)

Factor models and Reduced Rank Regressions are both based on the idea of reducing di-

mensionality by imposing a structure which summarizes the information contained in a large

set of predictors by focussing on some relevant linear combinations of them. An alternative

route to obtain a more parsimonious model might be to impose exclusion restrictions on the

predictors. However, excluding some variables from a regression is likely to be relatively ad

hoc, unless a coherent statistical framework is adopted to do so. Bayesian VAR models and

Multivariate Boosting provide a solution to this problem.

Bayesian VAR models work similarly to Bayesian regression but relate to VAR models

and as a result are applied to all equations of a VAR model simultaneously. They allow

the imposition of restrictions on the data, but also a degree of data dependent coefficient

determination. The exclusion restrictions are imposed as priors, so if some a-priori excluded

variable turns out to be relevant in the data, the posterior estimate would contain such

information. This provides a way of solving the curse of dimensionality problem without

resorting to ad-hoc exclusion of some variables.

Bayesian VAR models have been used on relatively small sets of variables but Banburra,

Giannone, and Reichlin (2007) and Carriero, Kapetanios, and Marcellino (2007) have applied

them to the problem of forecasting large data sets with encouraging results.

5.3 Multivariate Boosting (MB)

Multivariate boosting is an extension of boosting as discussed in subsection 3.4. It relates

to a multivariate regression which for simplicity we assume to be a VAR model. Starting by

setting the VAR coefficient B matrix equal to zero, multivariate boosting sets recursively

individual coefficients of B to non zero values depending on how well these coefficient values

explain the whole vector of dependent variables. The main difference between single equation

boosting and multivariate boosting relates to the fact that whereas in univariate boosting

attention is focused on the fit of a single equation regression model, multivariate boosting

looks at measure of multivariate fit. Otherwise the two methods are basically identical.

Lutz and Buhlmann (2006) discusses multivariate boosting and provides theoretical results

suggesting that this method is applicable to very large data sets. Carriero, Kapetanios, and

Marcellino (2007) apply this method to macroeconomic forecasting with mixed results.
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6 Conclusion

This paper aims to provide a brief and relatively non-technical overview of the state-of-the-art

of forecasting with large data sets. We classify existing methods into four groups depending

on whether data sets are used wholly or partly, whether a single model or multiple models are

used and whether a small subset or the whole data set is being forecast. We mainly provide

brief descriptions of the methods and short recommendations where appropriate, without

going into detailed discussions of their merits or demerits. Further references provided may

help in this respect.
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