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Abstract

We provide a new method for jointly consistently estimating com-
mon trends and cycles in unit root nonstationary multivariate systems.
We concentrate on the MA representation of the differenced data and
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1 Introduction

In the past two decades attention in econometrics and statistics has focused

on the long run properties of nonstationary time series as represented by

the concept of cointegration. A major implication of cointegration is that

the number of underlying random walk components of a multivariate non-

stationary system is smaller than the dimension of the system. Economic

theory has been routinely used to motivate the choice of cointegrating vec-

tors and therefore implicitly the specification of the trend components.

At the same time the specification of the short run dynamics of the mul-

tivariate system has attracted less attention because economic theory can

provide fewer restrictions for the short run than for the long run. However,

these dynamics underlie the cyclical behaviour of the system and are therefore

of particular relevance for business cycle analysis. Following papers such as

Vahid and Engle (1993) and Engle and Issler (1995) we consider the cyclical

components of a multivariate series to be serially correlated stationary pro-

cesses. It is then highly likely that the number of such components is smaller

than the dimension of the system in analogy to the trend components.

Vahid and Engle (1993) and Engle and Issler (1995) have provided a

method for estimating common cycles conditional on the long run parameter

estimates of the model. No method for the joint consistent estimation prob-

lem of common trends and cycles is currently available. We provide such a

method by concentrating on the moving average (MA) representation of the

differenced data and jointly imposing the reduced rank restriction for the

common cycles and common trends on the MA representation coefficients.

2 Theory

Let the multivariate I(1) series yt, of dimension m, accept the VAR repre-

sentation given by

yt = a0 + A1yt−1 + A2yt−2 + . . . + Apyt−p + εt, t = 1, . . . , T (1)
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If linear combinations of the I(1) variables are I(0), i.e. if there is cointegra-

tion in the system, then the system has a vector error correction representa-

tion of the form1.

∆yt = a0 +Πyt−1 +

p−1∑
i=1

Bi∆yt−i + εt (2)

where Π = A1 + . . .+Ap − I and Bi = −Ai+1 − . . .−Ap, i = 1, . . . , p− 1.

Π will be of reduced rank, r. This implies that it can be written as αβ′

where α and β are m × r full rank matrices. The columns of β will contain

the linear combinations that render the I(1) variables stationary. The above

system accepts an MA representation in differences. This is given by

∆yt = µ + C(L)εt (3)

where C(L) = I + C1L + C2L
2 + . . . By the multivariate Beveridge Nelson

decomposition, this can be written as

∆yt = µ + [C(1) + (1− L)C∗(L)]εt (4)

where C∗(L) = I + C∗
1L + C∗

2L
2 + . . . and C∗

i =
∑

j>i −Cj. In levels the

MA representation becomes

yt = µt + C(1)
∞∑
i=0

εt−i + C∗(L)εt + y0 (5)

where for simplicity we set y0 = 0. This is a decomposition of the series

in trends and cycles as discussed by a number of authors ( see e.g. Engle

and Issler (1995)). Under the assumption of cointegration we have that C(1)

has reduced rank, equal to m − r, giving the common trends representation

by Stock and Watson (1988). Engle and Issler (1995) extend this model by

suggesting that an equivalent restriction in terms of the number of cycles be

imposed. This is expressed in terms of restrictions on the rank of the C∗(L)

matrix polynomial. They suggest imposing the restriction C∗(L) = ψΨ(L)′

where ψ and Ψ(L) are an m × s matrix and polynomial matrix of full rank

respectively where s < m.

1We assume that no series are integrated of order 2 or higher.
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3 Joint common cycle - common trend esti-

mation

Engle and Issler (1995) do not suggest straightforward ways of estimating

either the reduced rank polynomial matrix, C∗(L), or the common cycles

it implies apart from the special case where the number of trends and the

number of cycles add up to the dimension of the system. The problem is

clear and can be appreciated by examining the VAR in levels given in (1)

under a plausible identification structure for the common trends common

cycle model. If we restrict all coefficient matrices in the VAR representation

to be of the form Ai = A1A
′
2i, i = 1, . . . , p, where A1 and A2i are m× s full

rank matrices, as in Velu, Reinsel, and Wichern (1986) we obtain a short-

run reduced rank representation for the series. 2 However, we also need to

impose r2 unit root restrictions on the matrix polynomial A(L) needed for

the common trends representation. Estimation of the model under those joint

restrictions clearly requires iterative numerical techniques. Additionally, the

most appropriate way to impose such restrictions is not clear.

3.1 Reduced rank regression

Before presenting our method we briefly outline some results on multivariate

reduced rank regressions, ( see e.g. Brillinger (1981), Velu, Reinsel, and

Wichern (1986), Reinsel and Velu (1998) or Camba-Mendez, Kapetanios,

Smith, and Weale (2000)). The case of a single set of reduced rank regressors

is well known and widely discussed. We therefore discuss the extension that

is useful for our purposes and involves two sets of reduced rank regressors.

Consider a multivariate regression model of the form

Y = XAx + ZAz + ε (6)

2Note that the assumption of a uniform rank for all A2i is not necessary but is assumed
for simplicity. In the case where the ranks of A2i are not equal for all i, s is equal to the
maximum rank over i.
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where Y , X and Z are T × k1, T × k2 and T × k3 matrices respectively.

The matrices Ax and Az are of reduced ranks rx and rz respectively. As a

result they can be written as Ax = βxα
′
x and Az = βzα

′
z where αx βx are

full rank k2 × rx and k1 × rx matrices and αz βz are full rank k3 × rz and

k1 × rz matrices. We want to estimate αx, βx, αz and βz by minimising

tr[(Y − Xβxα
′
x + Zβzα

′
z)(Y − Xβxα

′
x + Zβzα

′
z)] A number of methods

exists for this estimation. One method that is both non-iterative and simul-

taneous is given by Reinsel and Velu (1998). The method assumes initial

estimates of βx and βz which can be obtained as follows: Estimate (6) by

least squares. Conditional on the estimate of Ax run a single regressor re-

duced rank regression to estimate βz and vice versa to estimate βx. These

estimates are denoted by β̃x and β̃z. Conditional on these estimates, least

squares estimation gives estimates of αx and αz denoted, by α̂x and α̂z Then,

updated estimates of βx and βz are obtained via standard minimisation of

the objective function and given by

β̂
′
x = α̂′

x

[
1/T (Y ′ − α̂zβ̃

′
zZ

′)X
]
[1/TX ′X]

−1

vec(β̂
′
z) = [(1/TZ ′Z ⊗ I)− (R ⊗ Q)] vec(P )

where R = 1/TZ ′X(1/TX ′X)−11/TX ′Z, Q = (α̂′
zα̂x)(α̂

′
xα̂z) and

P = α̂′
z(1/TY ′Z) − (α̂′

zα̂x)α̂
′
x(1/TY ′X)(1/TX ′X)−1(1/TY ′Z). These

estimates are
√

T -consistent and asymptotically normally distributed.

3.2 Estimation of Common Trends and Cycles

In what follows we suggest a consistent method of estimating jointly a com-

mon cycle common trend model. We start by estimating the unrestricted

VAR in levels in (1). This provides an estimate for the error sequence ε̂t.

Under the presence of cointegration, εt − ε̂t is Op(T
−1/2) for all t. If no coin-

tegration occurs we obtain as a corollary of superconsistency that εt − ε̂t is

Op(T
−1). Due care should be taken to ensure that the normalisations needed
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to achieve parameter identification are consistent with each other for the

successive reduced rank estimators.

Given the above we demean the differenced data and run the following

regression with two sets of reduced rank regressors

∆yt = C(1)ε̂t + C∗
0∆ε̂t + C∗

1∆ε̂t−1 + . . . + C∗
q∆ε̂t−q + η̂t (7)

where q is chosen to be a function of the sample size as discussed below. C(1)

has rank m− r and each C∗
i can be written as GH ′

i where both constituent

matrices have full rank s < m. In anticipation of what follows define: ∆y =

(∆y1, . . . ,∆yT )
′, ε̂q,t = (ε̂′t,∆ε̂′t−1, . . . ,∆ε̂′t−q)

′, ε̂q = (ε̂q,1, . . . , ε̂q,T )
′, εq,t =

(ε′t,∆ε′t−1, . . . ,∆ε′t−q)
′, and εq = (εq,1, . . . , εq,T )

′.

We now provide an asymptotic justification of our method in terms of pa-

rameter estimate consistency for the parameter set Ĉq = (Ĉ(1), Ĉ
∗
1, . . . Ĉ

∗
q)

′.

We split the argument in two parts. In the first part we assume that the

error sequence εt is known. We get consistency of Ĉ under this assumption

and then generalise to the actual setup. q is assumed to tend to infinity as

T tends to infinity, but at a rate less that T 1/3 (see Berk (1974)). No more

stringent conditions are needed for consistency. If one wants to investigate

parameter estimate rates of convergence and asymptotic normality then more

restrictive conditions are needed (it suffices for that to have q rise by at least

T 1/r for some r > 3). We concentrate on consistency of OLS estimates of

the parameters to simplify the analysis. As both OLS estimates and reduced

rank estimates are continuous functions of the moment matrices of the re-

gressors and regressands, consistency of one estimator implies consistency of

the other and vice versa3.

Assuming a known error sequence4 , and µ = 0 for simplicity, we have

that

ĈOLS

q −Cq = (ε′qεq)
−1ε′q∆y−Cq = (ε′qεq)

−1ε′qεqCq−Cq+(ε
′
qεq)

−1ε′qε−qC−q = (ε′qεq)
−1ε′qε−qC−q

3In the reduced rank case, consistency, of course, only holds for assumed ranks equal
to or larger to true ones.

4This implies ηt = 0 in (7).
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where ε−q,t = (∆ε′t−q−1, . . .)
′, ε−q = (ε−q,t, . . . , )

′ and C−q = (C∗
q+1, . . .)

′. By

the fact that the data generation process is a VAR in levels, ||C∗
q+1|| ∼ cq

where |c| < 1 and ||.|| is the supremum matrix norm. This and the assump-

tion that q tends to infinity at rate of less than T 1/3 leads to consistency of

the OLS estimator for the case where the error sequence is known. More

specifically we have that ||(ε′qεq)
−1ε′qε−qC−q|| conveges to zero in probability.

To see this note the following: By Lemma 3 of Berk (1974) we have that

the norm of the difference between (ε′qεq)
−1 and its population couterpart

converges to zero if q3/T converges to zero. Further, the norm of ε′qε−qC−q

converges in probability to zero if q(||C∗
q+1|| + ||C∗

q+2|| + . . .) converges to

zero which is the case if q tends to infinity and ||C∗
q+1|| ∼ cq+1, |c| < 1, for

large q, which we assume. Combining the above two results with the fact

that the norm of a product is dominated by the product of the norms gives

the result.

The second step is to show that ĈOLS

q − ˆ̂C
OLS

q = op(1) where
ˆ̂C

OLS

q is

obtained by using ε̂t rather than εt. We have that

ĈOLS

q − ˆ̂C
OLS

q = (ε′qεq)
−1ε′q∆y − (ε̂′qε̂q)

−1ε̂′q∆y

It is sufficient to show that (i) 1/T (ε′q∆y−ε̂′q∆y) = op(1) and (ii) 1/T ((ε
′
qεq)

−1−
(ε̂′qε̂q)

−1) = op(1). We prove (i).

||1/T (ε′q∆y−ε̂′q∆y)|| = ||1/T
T∑

t=1

(εq,t∆y′
t−ε̂q,t∆y′

t)|| ≤ q∗max
t

||εt−ε̂t||||1/T
T∑

t=1

∆y′
t||

1/T
∑T

t=1 ∆y′
t converges to its non zero expectation, each of εt − ε̂t is at

most Op(T
−1/2) and therefore the whole term is op(1). (ii) follows from

similar arguments as above and the facts that, firstly for positive definite

matrices A and B, if A − B = op(1) then A−1 − B−1 = op(1), and secondly,

if A − Â = op(1) and B − B̂ = op(1) then AB − ÂB̂ = op(1).

The above analysis has concentrated on providing consistent joint esti-

mates of common cycles and common trends and has not considered neither
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the asymptotic distribution of the estimates nor the question of their asymp-

totic efficiency. On the issue of the asymptotic distribution we note that if

standard errors of the parameter estimates are required then they may be

derived using the distribution of coefficients of reduced rank regression mod-

els with two sets of reduced rank regressors given in Theorem 3.2 of Reinsel

and Velu (1998, pp. 81). Note that all regressors involved here are station-

ary and ergodic and therefore no asymptotic distributional issue arises out

of the presence of nonstationarity in yt. Of course, in our case the number

of regressors increases with the sample size but results in Berk (1974) can be

used to obtain conditions on the rate of increase of the number of regressors

q to give consistent estimation of the moment matrices needed to justify use

of Theorem 3.2 of Reinsel and Velu (1998)5.

If the model is a finite order VAR model then the suggested method will

not provide asymptotically efficient estimates since the true form of the model

is not taken under account. However, this drawback is compensated by the

fact that the method we suggest is robust to the case where the true model

is a VAR model of infinite order or indeed any model where the differenced

data accept an infinite MA representation6. To see this note that the MA

representation of the differenced data still holds under an infinite order VAR

model. This implies that the Beveridge Nelson decomposition, in (4), which

forms the basis of the analysis, holds. If we use data dependent methods

such as information criteria to fit the initial vector autoregression then, if

that vector autoregression is of infinite order, the lag order chosen will be

growing with the sample size at rate ln(T ) (see Ng and Perron (1995) and for

a complete treatment see Hannan and Deistler (1988)). Then, the estimated

error sequence ε̂t will be consistent for the true disturbance terms. In this

context cointegration is defined as the occurrence of reduced rank in the C(1)

5Essentially, the conditions needed for consistency of parameter estimates need to be
tightened so that q = O(T 1/r) , for some r > 3 to get asymptotic normality. (see also Ng
and Perron (1995))

6This of course occurs, under regularity conditions, whenever the differenced data are
stationary using the Wold decomposition.
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matrix following Bierens (1997). Then, the same reduced rank analysis of

the MA representation, as above, applies.

3.3 Numbers of trends and cycles

The above analysis assumed that the ranks m− r and s are known. Clearly,

this is not the case in practical applications. We suggest two methods of

determining these ranks. The first is the standard method for determining

ranks in reduced rank regression models using two sets of reduced rank re-

gressors. Partial canonical correlation analysis is used for this as suggested

by Reinsel and Velu (1998). However, this method essentially determines one

rank conditional on the other. Alternatively, for joint determination of the

ranks, information criteria may be used. To do that we estimate the model

for the grid of all possible ranks where both the rank of C(1) and that of

C∗(L) are allowed to vary independently between 1 and m. A penalty term

depending on the information criterion is then added to the sum of squared

residuals to provide the objective function to be minimised. Any of the usual

information criteria may be used (e.g. Akaike’s, Bayesian information crite-

rion, Hannan-Quinn information criterion) taking into account the fact that

Akaike’s criterion may choose larger ranks asymptotically since it is not a

consistent criterion.

4 Conclusion

In this note we have suggested a new method for joint determination of

common trends and common cycles in cointegrated multivariate systems. No

other joint estimation method exists in the literature. The method uses the

infinite MA representation of the differenced series and applies reduced rank

regression methods to estimate the trend and cycle parameters. A method to

determine jointly the number of trends and cycles has also been suggested.

It is worth noting that the method, based on the infinite MA representation
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is applicable in more general settings and in particular it is applicable for

VAR models with an infinite number of lags.
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