
Department of Economics
Macroeconomic Forecasting with Mixed Frequency Data:

Working Paper No. 616           October 2007           ISSN 1473-0278

Michael P. Clements and Ana Beatriz Galvão

Forecasting US Output Growth 





Macroeconomic Forecasting with Mixed Frequency Data:

Forecasting US output growth

Michael P. Clements�

Department of Economics

University of Warwick

M.P.Clements@warwick.ac.uk

Ana Beatriz Galvão

Queen Mary, University of London

a.ferreira@qmul.ac.uk

First version September 2005. This version September 2007.

Abstract

Many macroeconomic series such as US real output growth are sampled quarterly, although

potentially useful predictors are often observed at a higher frequency. We look at whether a

mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth.

The MIDAS approach is compared to other ways of making use of monthly data to predict

quarterly output growth. The MIDAS speci�cation used in the comparison employs a novel way

of including an autoregressive term. We �nd that the use of monthly data on the current quarter

leads to signi�cant improvement in forecasting current and next quarter output growth, and that

MIDAS is an e¤ective way of exploiting monthly data compared to alternative methods. We also

exploit the best method to use the monthly vintages of the indicators for real-time forecasting.
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1 Introduction

The unavailability of key macroeconomic variables such as GDP (or GNP) at frequencies higher

than quarterly has led to many macroeconometric models being speci�ed on quarterly data. We

consider the usefulness of information available at higher frequencies, such as monthly data, for

forecasting output growth. There are a range of leading and coincident indicator variables at a

monthly frequency. If all the variables in the model have to be sampled at the same frequency, data

available at the monthly frequency has to be converted to the quarterly frequency, for example by

averaging the months (or taking the last month in the quarter), and information on the �rst month

(or �rst two months) of the quarter being forecast is discarded.

In this paper we explore whether the MIDAS (MIxed Data Sampling) approach of Ghysels,

Santa-Clara and Valkanov (2004), Ghysels, Sinko and Valkanov (2006b) can be successfully adapted

to the modelling and forecasting of a key US macroeconomic variable �US output growth. MIDAS

allows the regressand and regressors to be sampled at di¤erent frequencies. Typically, the regressand

is sampled at the lower frequency. With few exceptions, MIDAS has been used for high-frequency

�nancial data (see, for example, Ghysels, Santa-Clara and Valkanov (2006a)), although Ghysels

and Wright (2006) look at survey-based macroeconomic forecasts. We compare the results of using

MIDAS to forecast output growth with two other approaches that exploit monthly data. The

�rst is an extension to the models used by Koenig, Dolmas and Piger (2003) and the second is a

two-step procedure that �rstly generates forecasts of missing monthly indicator values which are

then averaged to generate quarterly observations. The MIDAS speci�cation used in the comparison

employs a novel way of including an autoregressive term.

Looking ahead to the results, we �nd that the use of within-quarter information on monthly

indicators can result in marked reductions in RMSE compared to quarterly-frequency autoregressive

(AR) or autoregressive distributed-lag (ADL) models. Within the set of models that use monthly

information, MIDAS fares well across the set of indicators we consider. Coupled with their �exibility

and ease of use, we conclude that MIDAS models are an attractive way of exploiting the information

in monthly indicators.

These �ndings are based on a recursive out-of-sample forecasting exercise that uses �conven-

tional�real-time data. As explained by Koenig et al. (2003), the use of real-time data is clearly

preferable to the use of �nal-revised data for estimation and evaluation purposes, as out-of-sample

forecasting exercises based on �nal-revised data may exaggerate the predictive power of explanatory

variables relative to what could actually have been achieved at the time (Diebold and Rudebusch

(1991), Orphanides (2001), Orphanides and van Norden (2005), Faust, Rogers and Wright (2003)).

Koenig et al. (2003) note that the way in which real-time data is conventionally used in forecast

comparison exercises is based on the use of end-of-sample vintage data. They argue that this

approach to real-time estimation and forecasting may be suboptimal: that �at every date within
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a sample, right-side variables ought to be the most up-to-date estimates available at that time�

(Koenig et al, p.618, described as Strategy 1 on p.619). We �nd that Koenig et al�s suggestion

to use real-time-vintage data to estimate forecasting models improves forecast accuracy, and that

our main conclusions are unchanged: the inclusion of monthly data in the forecasting problem can

dramatically reduce RMSE; and MIDAS is an e¤ective way of incorporating monthly data.

The plan of the rest of the paper is as follows. In section 2 we brie�y review the MIDAS

approach of Ghysels et al. (2004, 2006b) and propose an extension that facilitates the application

of MIDAS to macroeconomic data, namely, the inclusion of an autoregressive component. The two

other approaches to using monthly indicator data to generate forecasts of quarterly output growth

are also described. Section 3 contains the out-of-sample forecast comparison exercise, split into �ve

parts. The �rst describes our use of monthly and quarterly vintages to estimate and forecast in real-

time. Section 3.2 compares the MIDAS-AR forecasts against the quarterly AR model forecasts,

using both a conventional real-time data vintage approach, and using �nal-revised data, to see

whether the incorporation of monthly indicator data in the forecasting model results in signi�cant

improvements in forecast accuracy. Section 3.3 compares alternative ways of incorporating monthly

data into the forecasting problem. Section 3.4 investigates the use of real-time-vintage data in the

forecast comparison exercise. Finally, section 3.5 compares the multiple-indicator model forecasts

with combining individual models�forecasts. Section 4 o¤ers some concluding remarks.

2 MIDAS regression approach

The MIDAS models of Ghysels et al. (2004, 2006b) are closely related to distributed lag models

(see, e.g., Dhrymes (1971) and Sims (1974)). The response of the dependent variable to the higher

frequency explanatory variables is modelled using highly parsimonious distributed lag polynomials,

as a way of preventing the proliferation of parameters that might otherwise result, and as a way

of side-stepping di¢ cult issues to do with lag-order selection. Parameter proliferation could be

especially important in �nancial applications, where say, daily volatility is related to 5-minute

interval intraday data (so that a day�s worth of observations amounts to 288 data points), but

parsimony is also likely to be important in typical macroeconomic applications, where quarterly data

are related to monthly data, given the much smaller numbers of observations typically available.

Modelling the coe¢ cients on the lagged explanatory variables as a distributed lag function allows

for long lags with only a small number of parameters needing to be estimated.

The basic MIDAS model for a single explanatory variable, and h-step ahead forecasting, is given

by:

yt = �0 + �1B
�
L1=m;�

�
x
(m)
t�h + "t (1)

where B
�
L1=m;�

�
=
PK
k=1 b (k;�)L

(k�1)=m, and Ls=mx(m)t�1 = x
(m)
t�1�s=m. Here, t indexes the basic

3



time unit (in our case, quarters), and m is the higher sampling frequency (m = 3 when x is monthly

and y is quarterly), and as shown L1=m operates at the higher frequency. All the parameters of the

MIDAS model depend on the horizon h (although this is suppressed in the notation), and forecasts

are computed directly without requiring forecasts of explanatory variables. An �Exponential Almon

Lag�function (Ghysels et al. (2004, 2006b)) parameterizes b (k;�) as:

b (k;�) =
exp(�1k + �2k

2)PK
k=1 exp(�1k + �2k

2)
: (2)

As macroeconomic forecasts are often produced a number of times during each quarter, monthly

data on relevant indicators for the quarter being forecast will sometimes be available. For example,

the sta¤ of the Board of Governors of the Federal Reserve prepare forecasts several times each

quarter for the meetings of the Open Market Committee: see Karamouzis and Lombra (1989) and

Joutz and Stekler (2000). For illustrative purposes, suppose the value of x in the �rst month of the

quarter is known. The MIDAS framework can exploit this data by simply specifying the regression

model as:

yt = �0 + �1B
�
L1=3;�

�
x
(3)
t�2=3 + "t

where h = 2=3 signi�es 1=3 of the information on the current quarter is employed. Forecasts with

h = 1=3 are also possible using information on the �rst two months of the quarter being forecast. So

the MIDAS model can incorporate within-quarter monthly observations on the indicator variable

in a simple fashion.

2.1 Autoregressive structure

Models to forecast US output growth often include autoregressive terms, as in the ADL models of

Stock andWatson (2003). Including autoregressive dynamics in models that sample the explanatory

variables at a higher frequency is clearly desirable. As noted by Ghysels et al. (2006b), this is not

straightforward: consider simply adding a lower frequency lag of y, yt�1 to (1) for one-step-ahead

forecasting, to give:

yt = �0 + �yt�1 + �1B
�
L1=3;�

�
x
(3)
t�1 + "t:

This strategy is not in general appropriate, as from writing the model as:

yt = �0 (1� �)�1 + �1 (1� �L)�1B
�
L1=3;�

�
x
(3)
t�1 + e"t;

where e"t = (1� �L)�1 "t, it is apparent that the polynomial on x(3)t�1 is the product of a polynomial
in L1=3, B

�
L1=3;�

�
, and a polynomial in L,

P
�jLj . This mixture generates a �seasonal�response

of y to x(3), irrespective of whether x(3) displays a seasonal pattern.
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Our suggested solution is simply to introduce autoregressive dynamics in yt as a common factor

(see, e.g., Hendry and Mizon (1978)):

yt = �0 + �yt�1 + �1B
�
L1=3;�

�
(1� �L)x(3)t�1 + "t (3)

so that the response of y to x(3) remains non-seasonal. A multi-step analogue can be written as:

yt = �yt�d + �1 + �2B(L
1=3;�)

�
1� �Ld

�
x
(3)
t�h + �t; (4)

which we term the MIDAS-AR. When the horizon h is an integer, then d = h, as in equation (3),

where d = h = 1. When information is available on the indicator in the current quarter, say, the

�rst two months are known, then h = 1=3 while d = 1.

The referenced literature establishes that non-linear least squares is a consistent estimator

for the standard MIDAS. To estimate the MIDAS-AR model, we take the residuals (b"t) of the
standard MIDAS, and estimate an initial value for �, say �̂0, from �̂0 =

�Pb"2t�h��1Pb"tb"t�h. We
then construct y�t = yt � �̂0yt�d and x

�(3)
t�h = x

(3)
t�h � �̂0x

(3)
t�h�d, and the estimator �̂1 is obtained by

applying nonlinear least squares to:

y�t = �1 + �2B(L
1=3;�)x

�(3)
t�h + "t:

A new value of �, �̂1, is obtained from the residuals of this regression. Then using �̂1 and �̂1 as

initial values, we run BFGS to get the estimates �̂ and �̂ that minimize the sum of squared residuals.

The computations are carried out using the constrained ML package of Gauss 5, CML 2.0, and

selecting the BFGS algorithm. The restrictions imposed in the estimation are that �1 � 300 and
that �2 < 0, and we experiment with a number of initial values for � in order to counter any

dependence of the optimization routine on the initial values.

2.2 Combining indicators

A M-MIDAS-AR model that combines the information of nl monthly leading indicators to predict

output growth, h-steps-ahead, would be written as:

yt = �yt�d + �0 +
nlX
i=1

�1iBi(L
1=m;�i)

�
1� �Ld

�
x
(m)
i;t�h + "t (5)

where the component indicators are indexed by i, and m = 3. Each leading indicator requires the

estimation of only two parameters to describe the lag structure (�i) and one to weight their impact

on yt (�1i). Because the number of parameters required for each additional leading indicator is

small, one might anticipate a good forecast performance from MIDAS when multiple indicators are

included in the forecasting model, relative to other models where the larger number of indicators

is accommodated at the cost of many more parameters to be estimated.
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2.3 Alternative methods of exploiting monthly indicator data

In addition to MIDAS, two other methods are used in the empirical forecast comparisons. The

forecasting models used by Koenig et al. (2003) regress quarterly changes in real GDP on a constant

and �ve lagged monthly changes in the monthly indicator variables. Their forecasting models are

similar to the MIDAS approach except that the coe¢ cients on the right-side explanatory variables

are estimated unrestrictedly, rather than using a restricted distributed function, and there are no

autoregressive terms compared to our MIDAS-AR. Koenig et al. (2003) only calculate forecasts

when the values of the indicators for all the months in the quarter being forecast are known. We

term these models mixed-frequency distributed lag models (MF-DL), and use them to generate

forecasts for a number of monthly horizons (in addition to Koenig et al�s h = 0) when only partial

monthly information is available on the quarter being forecast (corresponding to h = 1=3 and

h = 2=3).

The second method is to use a vector autoregression (VAR) consisting of the monthly indi-

cator variables to provide forecasts of the missing monthly values, which are then aggregated to

provide estimates of the quarterly values of the indicators. This method resembles the �bridge

equation�approach popular in Central Banks (see, e.g., Rünstler and Sédillot (2003) and Zheng

and Rossiter (2006)). As an example, suppose we have data only on the �rst month of quar-

ter t, i.e., x(3)t�2=3 is known, but x
(3)
t and x(3)t�1=3 are not yet known. Forecasts of

n
x
(3)
t ; x

(3)
t�1=3

o
are obtained from the VAR,

nbx(3)t ; bx(3)t�1=3o, and the quarterly estimate of xt is constructed asbxt = 1
3

�bx(3)t + bx(3)t�1=3 + x(3)t�2=3�, which is used in the quarterly-frequency ADL model to forecast
yt. We refer to the approach that uses forecasts of missing monthly observations to augment

a quarterly-frequency ADL as ADL-F. When the forecast horizon is an integer number of quar-

ters, forecasts of the monthly indicator are not required, and ADL-F corresponds to the standard

quarterly-frequency ADL. When using single-indicator models, we use an AR to compute forecasts

for the missing monthly values, rather than a VAR, so that the same indicator information is

available to all models.

There are other ways of using monthly information. For example, Miller and Chin (1996)

propose combining the forecasts from a monthly model with forecasts from a quarterly model. There

are also factor model approaches which make use of mixed-frequency data, such as Schumacher

and Breitung (2006), which adapt single-frequency factor models (see Boivin and Ng (2005) for a

review). However, for the purpose of evaluating the accuracy of MIDAS models, we choose to use

MF-DL and ADL-F because they are simple and popular methods when there is a relatively small

number of indicators available.
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3 Empirical forecasting comparisons

The relative forecast performance of the models is assessed by comparing RMSEs in a recursive

forecasting exercise. Because we also exploit monthly vintages of the indicators while forecasting in

real time, we �rst describe how end-of-sample-vintage data and real-time-vintage data are used for

model estimation and forecasting in this context. To highlight the principal �ndings, the forecast

comparisons are then presented in four further sections. The �rst of these compares the MIDAS-AR

forecasts against the quarterly AR(1) and ADL forecasts. The number of lags of the indicator in

the ADL is selected using SIC setting the maximum to 5. We compare the relative performances

when end-of-sample-vintage data is used and when �nal-revised data is used to see whether the

predictive content of monthly data (via the MIDAS-AR) is sensitive to this issue - recall in the

introduction we referenced a number of studies where this issue was key. Section 3.3 compares the

MIDAS-AR against the two alternative ways of using monthly data (MF-DL and ADL-F) based on

a conventional real-time data forecasting exercise. Section 3.4 investigates whether the result of the

forecast comparison changes with the use of real-time-vintage data. Finally, section 3.5 compares

the multiple-indicator model forecasts with combinations of individual models�forecasts, motivated

by the vast literature that attests to the usefulness of forecast combination (see the recent reviews

by Diebold and Lopez (1996), Newbold and Harvey (2002) and Timmermann (2006)).

3.1 Use of vintage-data in the real-time forecasting exercises

Our real-time data consists of quarterly vintages of output growth and monthly vintages of the

indicators, obtained from the Philadelphia Fed: see Croushore and Stark (2001). We consider

three monthly indicators: industrial production (IP), employment (EMP; payroll, non-farm) and

capacity utilization (CU). The �rst two are components of the Conference Board Coincident Index,

and all three series as well as real output were downloaded from http://www.phil.frb.org. Before

employing the indicator data set for forecasting, we construct approximate monthly growth rates

by taking the �rst di¤erence of the log of each series. Real output growth is the quarterly di¤erence

of the log of output. The quarterly real-time data sets of the Philadelphia Fed record the data

that were available on the 15th of the middle month of a quarter, so that for output the data

sets contain the BEA �Advance�estimates for the latest quarter (the previous quarter) as well as

revised data for earlier quarters. It may in principle be possible to incorporate the di¤erent releases

of output data that are made during the course of a quarter into the forecast comparisons, but

data availability prevented us from considering this option.

The exercise consists of forecasting output growth in the quarters 1985:Q2 to 2005:Q1. For each

of these quarters we generate forecasts with horizons from h = 0 up to 2 quarters, with monthly

steps, h = 1=3, h = 2=3 etc. in the case of the forecasting models that make use of monthly indicator

information, as described more fully below. The model estimation sample begins in 1959:Q1.
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The monthly data consists of monthly vintages of the indicators from 1985:M1 to 2005:M1. For

expositional purposes, let yt+1 denote current quarter output growth, and yt+2 next quarter output

growth.

The timing of the release of o¢ cial data on output growth and the monthly indicators is as

follows. The data-vintage for output growth for quarter t+1 contains data up to quarter t. Before

data on output growth for t + 1 becomes available in the t + 2 quarterly vintage, we will have

data on x up to t+ 1=3 from the t+ 2=3 monthly vintage, data on x up to t+ 2=3 from the t+ 1

monthly vintage, and data on x up to t + 1 from the t + 4=3 monthly vintage. (We suppress the
(3) superscript on x - it is implicit that x is recorded at the monthly frequency, and y is quarterly).

The timing of these three monthly releases relative to the release of the quarterly data gives rise to

forecast horizons of h = 2=3, 1=3 and 0. We adopt the notation that y� ;v denotes the value of y in

period � in the vintage v data set (and similarly for x, where the monthly frequency gives rise to �

and v being measured as fractions of quarters). Following Koenig et al. (2003) and others, our aim

is to forecast the �nal output growth numbers, where the ��nal�data is taken to be the latest data

vintage we have access to (2005:Q2), which we denote by T , so that yt+1;T denotes the estimate of

the actual value of y in t+ 1 in the �nal data vintage.

We use two ways of exploiting the real-time data set for forecasting. The �rst one is the

�traditional�or end-of-sample-vintage data approach to real-time forecasting. We then outline the

proposal of Koenig et al. (2003) to use real-time-vintage data.

3.1.1 End-of-sample-vintage data real-time forecasting with monthly data

At each forecast origin, the models are estimated and the forecasts are computed using the data

contained in the most recent datasets available at that time. For example, for a one-step fore-

cast of yt+1;T from an AR(1), we regress yt;t+1 on yt�1;t+1 (and a constant), where yt;t+1 =

[y2;t+1; : : : ; yt;t+1]
0 and yt�1;t+1 = [y1;t+1; : : : ; yt�1;t+1]

0, and use the estimated model coe¢ cients

and right-side y-value of yt;t+1 to compute the forecast ŷt+1;T . When we have monthly vintages

of indicator data, then the models that utilise this information (MIDAS-AR, MF-DL and ADL-F)

provide four forecasts of current quarter output growth (yt+1;T ), depending on where we are in

the current quarter, as set out above. Suppose we have data on the indicator for all the months

in the quarter, but not for the current quarter value of output growth: we designate this a zero-

horizon forecast (or �nowcast�). Using MIDAS as an example, we regress yt;t+1 on yt�1;t+1 and

B(L1=3; �)xt;t+4=3 (and a constant), where xt;t+4=3 =
�
x2;t+4=3; : : : ; xt�1;t+4=3; xt;t+4=3

�0, and the
monthly lags of this vector are all from the t + 4=3 monthly vintage. Then, using these estimates

and the last available information on y and x at vintages t + 1 and t + 4=3, namely, yt;t+1 and

xt+1;t+4=3, the forecasts are obtained.

When indicator information is available on the �rst two months of the current quarter, the h =
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1=3 forecast of the current quarter and the h = 4=3 forecast of the next quarter (t+2) are constructed

as follows. For h = 1=3, the MIDAS-AR regresses yt;t+1 on yt�1;t+1 and B(L1=3; �)xt�1=3;t+1 (and

a constant), where xt�1=3;t+1 =
�
x2�1=3;t+1; : : : xt�1=3;t+1

�0 with d = 1. The forecast is conditioned
on yt;t+1 and xt+2=3;t+1. For h = 4=3, the forecast is generated from a regression of yt;t+1 on

yt�2;t+1 and B(L1=3; �)xt�4=3;t+1, again using the last values in the vintage datasets to compute

the forecasts. When only information on the �rst month in the quarter is available, the forecasts

horizons are equal to 2=3 and 5=3. We use again data on y from the t + 1 vintage-data but the

data on the indicator is taken from the t+ 2=3 data-vintage. Finally, we obtain an h = 1 forecast

of yt+1 and an h = 2 forecast of yt+2 when the latest data are yt;t+1 and xt;t+1=3.

This is the traditional way (�end-of-sample�) of conducting a real-time forecasting exercise,

adapted to incorporate monthly vintages of monthly indicator data.

3.1.2 A real-time-vintage data approach to real-time forecasting with monthly data

The di¤erence between the end-of-sample and real-time-vintage approaches can be most easily seen

by considering forecasting yt+1;T with a single x, for the case h = 0. The end-of-sample-vintage

approach estimates:

ys;t+1 = xs;t+4=3� + vs (6)

on s = 1; : : : ; t (where t + 1 � T ), and forecasts yt+1 as ŷt+1 = xt+1;t+4=3�̂. Koenig et al. (2003)

show that under general conditions, �̂ will be an inconsistent estimator of �0, where �0 relates the

the true value of yt to xt: yt = xt�0 + "t, as �̂ will in part re�ect the nature of the joint revisions

process rather than cleanly capturing the forecasting relationship between yt and xt. A consistent

estimator of �0 can be obtained from estimating:

ys;s+1 = xs;s+1=3�0 + �s (7)

on s = 1; : : : ; t, that is, using real-time-vintage data. Forecasts are computed as ŷt+1 = xt+1;t+4=3�̂0,

as in the end-of-sample-vintage approach.

The approaches exempli�ed by (6) and (7) condition on the same information in the estimated

model to generate forecasts, but as is evident, di¤er in the way in which the estimation sample is con-

structed. As we have monthly and quarterly vintages of data, and wish to calculate forecasts with

monthly horizons, some care is required in implementing the real-time-vintage scheme of (7) in our

context. Firstly, consider the AR(1) benchmark, against which we judge the accuracy of the fore-

casts from the models with monthly indicators. For the AR(1), the left and right-side vectors of ob-

servations are given by [y2;2; :::; yt�2;t�1; yt�1;t;yt;t+1]
0 and [y1;2; :::; yt�3;t�1; yt�2;t;yt�1;t+1]

0. Suppose

we have a model with two lags of x. If all the months for the current quarter are available, h = 0, the

logic of the real-time-vintage approach suggests augmenting the right-side AR(1) data vector with

the vectors of observations on x given by
�
:::; xt�1;t�2=3; xt;t+1=3

�0 and �:::; xt�4=3;t�2=3; xt�1=3;t+1=3�0.
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Note that the sequence of vintages does not change with the inclusion of lag values, implying that

some data used in the estimation have been partially revised. The last available data is used to

compute the forecasts (yt;t+1; xt+1;t+4=3; xt+2=3;t+4=3), as in the end-of-sample approach. Although

our models use longer lags of x than the two lags we consider, no new issues arise.

For h = 1=3, the two x-vectors used in estimation are given by
�
:::; xt�4=3;t�1; xt�1=3;t

�0 and�
:::; xt�5=3;t�1; xt�2=3;t

�0, and for h = 4=3, �:::; xt�7=3;t�1; xt�4=3;t�0 and �:::; xt�8=3;t�1; xt�5=3;t�0. For
both horizons, the estimated models are used to generate forecasts using (xt+2=3;t+1; xt+1=3;t+1).

When only �rst-month information is available, we build the right-side vectors in a similar fashion

(so for h = 2=3, the two x-vectors are given by
�
:::; xt�1�2=3;t�1; xt�2=3;t

�0 and [:::; xt�2;t�1; xt�1;t]0,
for example). Finally, for h = 1 the x-vectors are

�
:::; xt�2;t�5=3; xt�1;t�2=3

�0 and �:::; xt�7=3;t�5=3; xt�4=3;t�2=3�0.
3.2 Does monthly indicator information help? MIDAS-AR versus AR and

ADL.

The �rst set of results uses end-of-sample-vintage data in a real-time forecasting exercise. However,

to establish a benchmark we �rst discuss results obtained using �nal-revised vintage data through-

out. We compare forecasts of the MIDAS-AR with an AR and an ADL, to determine whether

monthly indicator information improves forecast accuracy. Table 1 gives the ratios of the RMSEs

of the MIDAS-AR against the AR and ADL models. The table shows that there are sizeable re-

ductions in RMSE using MIDAS when monthly data is available on the current quarter - these are

of the order of 20% when industrial production is the indicator for �nowcasts�and h = 1=3 horizons

(compared to the quarterly-frequency ADL). The RMSEs are calculated for output growth rates

calculated as one hundred times the quarterly di¤erence of the natural log of GDP. So taking the

MIDAS RMSE to be 0:4 for illustrative purposes, a RMSE ratio of the MIDAS to the ADL of 0.8

translates into respective RMSEs at annual rates of 1.6% and 2.0%, set against an average annual

growth rate over the period of 3.2%.

Sizeable gains are also achieved when the indicator is capacity utilization for these horizons,

while the di¤erences between MIDAS and the AR/ADL using employment are smaller. We also

report average ratios across horizons which con�rm that MIDAS is generally no better, and often

worse, when no monthly information on the quarter is available.

In passing we note that a comparison of the quarterly frequency ADL and AR models (ADL/AR

ratios can be obtained by dividing the �MIDAS/AR� ratio by the �MIDAS/ADL� ratio for each

indicator in Table 1) presents a less upbeat picture of the usefulness of the indicators: relative to

an AR, the quarterly-frequency ADL only enhances accuracy when employment is the indicator.

The exercise using �nal-revised vintage data allows us to calculate critical values to determine

whether the gains we observe to MIDAS at the shorter horizons are statistically signi�cant. Follow-

ing in the tradition of testing for equal predictive ability of West (1996) and West and McCracken
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(1998) (and see the review by West (2006)), we employ the test of equal forecast accuracy for

multi-step forecasts from nested models of Clark and McCracken (2005). The aim is to compare

the forecast performance in population, taking the e¤ect of parameter estimation uncertainty into

account. Note that the MIDAS-AR nests both the AR and ADL models: it specialises to the ADL

when �1 = �2 = 0 in equation (2). The null is that the quarterly-frequency AR (ADL) model

forecasts are as accurate on RMSE as those of the MIDAS-AR (the unrestricted model) and the

one-sided alternative is that the AR (ADL) model forecasts are less accurate. As the test has a

limiting distribution that depends on the data, we adopt a bootstrap implementation of the test

(similar to that of Kilian (1999)). The entries in the table in bold indicate that the null of equal

RMSE is rejected at the 5% level using the bootstrapped critical values, so that the gains to using

MIDAS at the shorter horizons are clearly signi�cant for both industrial production and capacity

utilization.

Testing for equal predictive ability is more complicated in real-time forecasting exercises when

there are data revisions across the vintages. Clark and McCracken (2007) show that data revisions

may a¤ect the asymptotic behaviour of tests of equal forecast accuracy, and suggest a way of

proceeding using linear models estimated by least squares. It is unclear how useful these results

are in our context. The natural solution of using a bootstrap would require the speci�cation of

the (unknown) revisions process. For the forecasting comparisons based on the real-time use of

end-of-sample and real-time-vintage data we simply report the relative sizes of the RMSFEs, and

largely dispense with the use of formal tests of equal predictive ability.

Consider now the end-of-sample-vintage data. The results clearly indicate that IP and CU help

predict output growth in real time when we have access to monthly data on the quarter being

forecast. When only information on the previous quarter is employed, the indicators are of no

value in real time. These results essentially match those obtained using �nal-revised data. In real

time the gains to MIDAS relative to the AR disappear when EMP is the indicator, suggesting that

the apparent gains from using EMP to predict output growth were not attainable in practice. In

real time, the gains to using EMP at the quarterly frequency also disappear (the comparison of

the ADL against the AR). The entries in the table in bold indicate that the null of equal RMSE

is rejected at the 5% level using the bootstrapped critical values calculated for the exercise using

the �nal-revised data, but as noted the use of these critical values is questionable when there are

data revisions. Nevertheless, it is apparent that MIDAS results in marked reductions in empirical

RMSFEs in real-time for the shorter horizons.

3.3 MIDAS-AR versus other methods of exploiting monthly indicators

We compare the MIDAS-AR with other ways of using monthly indicator data, namely the MF-DL

and the ADL-F described in section 2.3, using end-of-sample-vintage data. When all the months
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of the quarter being forecast are known, ADL-F corresponds to a standard ADL as data on the

current quarter value of the indicator is available. Broadly speaking, the results in table 2 indicate

that there is little to choose between the models. The MF-DL and ADL-F are better than MIDAS

for nowcasting (h = 0), but when only one or two months of indicator data are available MIDAS

is generally at least as good (see the averages of the ratios across di¤erent horizons). Overall, and

except when h = 0, the performance of MIDAS is promising in comparison to other simple methods

of using monthly indicators to forecast quarterly growth. However, Koenig et al. (2003) show that

the use of real-time-vintage data improves forecast accuracy of MF-DL, and advocate this approach

to forecast accuracy comparisons. The next section reports a comparison using real-time-vintage

data.

3.4 MIDAS-AR and other methods of exploiting monthly indicators with real-

time-vintage data

Conducting the forecasting exercise using real-time-vintage data strengthens the �nding that monthly

indicator information helps predict output growth, especially at shorter horizons. This is in part

because the forecast performance of the AR worsens relative to when end-of-sample data is used (by

just over 3% on RMSE at h = 1), while the performance of MIDAS and ADL-F generally improves.

See the �rst panel of Table 3 which shows the ratios of the RMSEs from using real-time-vintage to

end-of-sample vintage data for each monthly model and the AR. The net result of these changes

is that MIDAS is more accurate than the AR for h = 0, 1=3 for all three indicators. The bottom

panel shows that for horizons with two months of indicator information available (the Av .2 row)

the gains to MIDAS are of the order of a 10% reduction in RMSE for IP and CU, and 3% for EMP.

It is worth remarking that MIDAS is generally as good at the shorter horizons as the popular

two-step approach to the incorporation of monthly information exempli�ed by the ADL-F, except

when the indicator is EMP, and is almost always superior to the MF-DL.

3.5 Forecast combination

Table 4 compares models which include all three indicators (these have the pre�x �M-�for multiple)

with equal-weighted combinations of the individual indicator models. The results indicate that

the MIDAS model is clearly preferred to MF-DL. It also beats ADL-F when the horizon is not an

integer multiple of quarters, that is, for those horizons when ADL-F relies on monthly forecasts to

construct quarterly observations. Combining forecasts is better than combining indicators within

a single model (as is often the case: see e.g., Clements and Galvão (2006)), but the combinations

of the MIDAS models�forecasts are generally at least as good as the combinations of the forecasts

from the other two models.
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4 Conclusions

In recent years increasing use has been made of monthly indicator information to generate forecasts

of quarterly macro aggregates such as GDP growth. We investigate whether the MIDAS approach

of Ghysels et al. (2004, 2006b) can be successfully adapted to the short-term forecasting of output

growth, given that it has hitherto been used for forecasting �nancial variables with daily observa-

tions. A typical feature of quarterly macroeconomic time series is that they can often be reasonably

well modelled by autoregressive processes. To capture this characteristic of macro data, we extend

the distributed-lag MIDAS speci�cation to include an autoregressive term (the MIDAS-AR) and

show how this model can be applied in a forecasting context.

Recent research suggests that the predictive content of indicator information must be assessed

in an exercise that mirrors a �real-time-forecasting environment�, and that the use of �nal-revised

data may misleadingly suggest that the indicators are better than what could be achieved with the

data available at the time. We conduct a traditional real-time forecasting exercise that exploits the

monthly vintages of the indicators and the quarterly vintages of output growth and which is con-

sistent with the timing of the releases of the di¤erent data vintages. This permits a comprehensive

and valid appraisal of the usefulness of monthly information in real time. We �nd that the use of

monthly indicator information results in sizeable reductions in RMSE for short-horizon forecasts

when within-quarter monthly data on industrial production and capacity utilization is used.

We also evaluate the suggestion by Koenig et al. (2003) of basing the real-time forecasting

exercise on real-time-vintage data, as opposed to end-of-sample-vintage data. We do so for a

range of forecast horizons, from the �nowcasts�considered by those authors up to the two-quarter

horizon, in steps of one month. The use of real-time-vintage data serves to strengthen our �nding

that within-quarter monthly-indicator information can result in marked improvements in forecast

performance. MIDAS fares well relative to the other models that use monthly information. Coupled

with its �exibility and ease of use relative to methods which involve the generation of forecasts of

explanatory variables o­ ine, the MIDAS-AR would appear to be a useful addition to the sets

of models and methods that exploit monthly indicators for the short-term forecasting of macro-

aggregates.
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Table 1
Comparing the Forecasting Performance of MIDAS-AR with the AR and ADL using real-time end-of-sample-vintage
data and final-revised data.

The entries (except the first column of each panel) are ratios of Root Mean Squared Forecast Error (RMSE) of MIDAS-AR to
the AR and ADL. The RMSEs are computed using final-revised actual values of output growth for forecasts of 1985:Q2-
2005:Q1. The ratios in bold imply that the null of equal RMSE is rejected at the 5% significance level using bootstrapped
critical values. Av. 0 is the average RMSE when no information on the indicator in the current quarter is employed for
forecasting (h=1,2). Av. 1 is the equivalent when only one month on the current quarter is available (h=2/3, 5/3). Av. 2 is the
same measure when two months of information are available (h=1/3, 4/3).

Horizon (h) Industrial Production (IP) Employment (EMP) Capacity Utilization (CU)
MIDAS AR, MIDAS-AR Ratio to: MIDAS-AR Ratio to: MIDAS-AR Ratio to:

ADL (RMSE) AR ADL (RMSE) AR ADL (RMSE) AR ADL
Using end-of-sample-vintage data

0 1 0.444 0.902 0.877 0.514 1.042 1.014 0.452 0.916 0.895
1/3 1 0.432 0.876 0.851 0.487 0.989 0.962 0.439 0.890 0.870
2/3 1 0.516 1.046 1.017 0.524 1.064 1.035 0.515 1.045 1.021

1 1 0.516 1.048 1.019 0.493 1.001 0.974 0.492 0.998 0.975
4/3 2 0.469 0.937 0.940 0.512 1.024 1.018 0.464 0.928 0.930
5/3 2 0.512 1.024 1.027 0.499 0.998 0.992 0.513 1.025 1.028

2 2 0.510 1.020 1.023 0.496 0.992 0.987 0.504 1.007 1.010
Av. 2 Av. 0 0.451 0.907 0.896 0.500 1.007 0.991 0.452 0.909 0.900
Av. 1 Av. 0 0.514 1.035 1.022 0.512 1.031 1.014 0.514 1.035 1.024
Av. 0 Av. 0 0.513 1.034 1.021 0.495 0.997 0.980 0.498 1.002 0.992

Using final-revised data
0 1 0.425 0.869 0.820 0.471 0.963 1.044 0.440 0.900 0.840

1/3 1 0.409 0.837 0.790 0.472 0.966 1.047 0.438 0.897 0.837
2/3 1 0.456 0.932 0.880 0.474 0.969 1.051 0.484 0.991 0.925

1 1 0.536 1.098 1.036 0.477 0.975 1.057 0.521 1.067 0.996
4/3 2 0.459 0.965 0.964 0.466 0.981 0.995 0.469 0.987 0.984
5/3 2 0.491 1.033 1.032 0.472 0.994 1.009 0.495 1.043 1.039

2 2 0.487 1.026 1.025 0.479 1.008 1.023 0.490 1.031 1.027
Av. 2 Av. 0 0.435 0.902 0.874 0.469 0.973 1.021 0.454 0.942 0.907
Av. 1 Av. 0 0.473 0.983 0.952 0.473 0.981 1.029 0.490 1.017 0.979
Av. 0 Av. 0 0.512 1.063 1.031 0.478 0.991 1.040 0.506 1.049 1.010
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Table 2
Comparing the Forecasting Performance of MIDAS-AR with ADL-F and MF-
DL using real-time end-of-sample-vintage data.

The entries are ratios of the MIDAS-AR RMSEs to the RMSEs of the
stated models. Av. 0 is the average RMSE when no information on the
indicator in the current quarter is employed for forecasting (h=1,2). Av. 1
is the equivalent when only one month on the current quarter is available
(h=2/3, 5/3). Av. 2 is the same measure when two months of information
are available (h=1/3, 4/3).

h Industrial Production (IP) Employment (EMP) Capacity Utilization (CU)
MF-DL ADL-F MF-DL ADF-F MF-DL ADL-F

0 1.034 1.032 1.054 1.088 1.017 1.030
1/3 0.981 0.989 0.965 1.040 0.981 1.000
2/3 0.999 1.013 0.978 0.985 0.995 1.023
1 0.993 1.019 0.957 0.974 0.995 0.975

4/3 1.010 0.974 0.966 1.015 1.009 0.978
5/3 1.002 0.947 0.979 0.939 0.996 0.958
2 1.008 1.023 0.999 0.987 0.979 1.010

Av. 2 0.996 0.981 0.965 1.027 0.996 0.988
Av. 1 1.000 0.979 0.979 0.962 0.995 0.989
Av. 0 1.000 1.021 0.977 0.980 0.987 0.992
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Table 3
Comparing the Forecasting Performance of MIDAS-AR with MF-DL, ADL-F and AR using real-time-vintage data and end-
of-sample vintage data.

The entries in the first panel are RMSE ratios of the stated model estimated with real-time-vintage data to the same model
but estimated with end-of-sample-vintage data. The entries in the second panel are ratios of the MIDAS-AR RMSEs to the
RMSEs of the stated models using real-time vintage data. Av. 0 is the average RMSE when no information on the indicator in
the current quarter is employed for forecasting (h=1,2). Av. 1 is the equivalent when only one month on the current quarter is
available (h=2/3, 5/3). Av. 2 is the same measure when two months of information are available (h=1/3, 4/3).

.
h Industrial Production (IP) Employment (EMP) Capacity Utilization (CU) AR

MIDAS-AR MF-DL ADL-F MIDAS-AR MF-DL ADL-F MIDAS-AR MF-DL ADL-F
Real-time-vintage data / end-of-sample-vintage data

0 0.971 1.005 0.990 0.961 1.034 0.952 0.996 1.041 0.960
1/3 0.974 0.971 0.962 0.973 0.988 0.970 1.011 1.034 0.971
2/3 0.993 0.988 1.124 0.959 0.968 0.937 1.027 1.029 1.066
1 1.018 1.048 0.984 1.036 1.029 1.008 1.098 1.105 0.991 1.035

4/3 1.028 1.066 1.000 1.001 1.001 0.995 1.019 1.023 0.963
5/3 0.996 1.024 1.071 1.015 1.018 0.965 1.014 1.042 1.069
2 1.029 1.050 1.014 1.029 1.065 1.029 1.020 1.021 0.991 1.012

Ratio of MIDAS-AR with real-time-vintage data to:
AR MF-DL ADL-F AR MF-DL ADL-F AR MF-DL ADL-F

Av. 2 0.890 0.978 1.001 0.972 0.958 1.031 0.902 0.983 0.995
Av. 1 1.006 0.989 0.888 0.993 0.973 0.998 1.033 0.981 0.961
Av. 0 1.034 0.976 1.046 1.006 0.965 0.994 1.038 0.984 1.029
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Table 4
Comparing Combinations of Indicators: M-MIDAS-AR, M-ADL-F, M-MF-DL
and Means of Forecasts using real-time-vintage data

The entries in the first panel are RMSEs. The second panel records the
RMSE ratios of MIDAS to the stated model. Av. 0 is the average RMSE
when no information on the indicator in the current quarter is employed for
forecasting (h=1,2). Av. 1 is the equivalent when only one month on the
current quarter is available (h=2/3, 5/3). Av. 2 is the same measure when
two months of information are available (h=1/3, 4/3).

.

h Multiple indicator models Combining Forecasts
M-

MIDAS-AR
M-

MF-DL
M-

ADL-F
Mean

MIDAS-AR
Mean

MF-DL
Mean

ADL-F
0 0.442 0.450 0.432 0.420 0.426 0.420

1/3 0.425 0.441 0.431 0.412 0.421 0.417
2/3 0.520 0.522 0.543 0.490 0.487 0.507
1 0.547 0.565 0.511 0.513 0.519 0.500

4/3 0.498 0.516 0.486 0.478 0.481 0.478
5/3 0.519 0.573 0.594 0.510 0.518 0.537
2 0.526 0.563 0.513 0.514 0.522 0.509

Av. 2 0.463 0.480 0.459 0.446 0.452 0.448
Av. 1 0.519 0.548 0.569 0.500 0.502 0.522
Av. 0 0.536 0.564 0.512 0.514 0.520 0.504

Ratio of M-MIDAS-AR to: Ratio of Mean MIDAS-AR to:

M-MF-DL M-ADL-F AR
Mean

MF-DL
Mean
ADL-F AR

0 0.983 1.023 0.898 0.984 0.999 0.852
1/3 0.965 0.987 0.863 0.979 0.989 0.837
2/3 0.996 0.957 1.054 1.007 0.966 0.995
1 0.967 1.071 1.109 0.989 1.027 1.042

4/3 0.964 1.024 0.995 0.993 1.000 0.954
5/3 0.906 0.874 1.037 0.985 0.950 1.019
2 0.934 1.026 1.051 0.986 1.010 1.028

Av. 2 0.965 1.008 0.932 0.987 0.995 0.898
Av. 1 0.948 0.913 1.046 0.996 0.957 1.007
Av. 0 0.951 1.048 1.080 0.987 1.019 1.035
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