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1 Introduction

Tests of the rank of a matrix are key in a large variety of statistical and econometric mul-

tivariate modelling scenarios. In most cases tests of rank are carried out on matrices of

parameter estimates rather that data matrices. Of course the particular context of such

tests varies greatly but certain common threads are discernible. Most models that rely on

rank deficient parameter matrices do so in order to reduce the channels of effects from one

set of variables to another. So, for example reduced rank VAR models restrict the coefficient

matrices of a VAR model to have reduced rank so as to reduce the number of channels via

which lags of variables can affect their present values. In this sense many instances of rank

reduction can be related to factor structures where a small number of observed or unobserved

factors affect a larger set of variables.

The purpose of this paper is to describe some general methods to test the rank of a

matrix and review their use in econometric modelling. For a general m × n matrix A, the

problem is to test H0 : {ρ [A] = r} against HA : {ρ [A] > r}, where ρ [.] denotes the rank of

a matrix. For a sample of size T , we define an estimate of A by Â. By an application of

some suitable central limit theorem we assume that
√

Tvec(Â −A)
d→ N(0,V ). Starting

with the null hypothesis of r = 1, a sequence of tests is performed. If the null hypothesis is

rejected, r is augmented by one and the test is repeated. When the null cannot be rejected,

r is adopted as the estimate of the rank of A. However, the rank estimate provided by this

approach will not converge in probability to the true value of the rank of the matrix, denoted

by r0. The reason is that even if the null hypothesis tested is true, the testing procedure

will reject it with probability α, where α is the chosen significance level. The rank estimate

will converge to its true value, r0, as T goes to infinity, if α is made to depend on T and

goes to zero as T goes to infinity but not faster than a given rate. We denote this α by αT ,

where the subscript T now denotes dependence of the significance level on the sample size.

Hosoya (1989) shows that if αT goes to zero as the sample size T goes to infinity and also

limT→∞ ln αT /T = 0, then the rank estimate provided by the sequential testing procedure

will converge in probability to r0, see also Cragg and Donald (1997). Although we have

couched the problem in the form of a test, we also review methods that rely on information

criteria to determine the rank of a matrix.

This provides a succinct definition of the general problem we address. The applications

of these general rank estimation procedures ranges from identification of IV models to factor

analysis and VAR modelling. Section 2 reviews the various procedures for determining the
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rank of an estimated matrix in the case of a general matrix. Section 3 concentrates on

determining the rank of a hermitian positive semidefinite matrix. Section 4 presents a large

variety of modelling scenarios where the tests of rank we discuss are of immediate relevance.

Finally, Section 5 concludes.

2 Rank of a General Matrix

2.1 A Generalized Minimum Discrepancy Function Test

This section presents a minimum discrepancy function (MDF) method1 to test whether

a q × 1 parameter vector θ can be represented as a function of p × 1 parameter vec-

tor µ ∈ <p, and where p < q. It is then of interest to formulate a general test of

the hypothesis H0 : {θ = h(µ0)}, where µ0 is used to denote the true value of µ, and

h(µ) = {h1(µ), h2(µ), . . . , hq(µ)}′, where the functions hi(µ) for i = 1, . . . , q are continu-

ously differentiable. A minimum discrepancy function test statistic could thus be formulated

as:

ψ̂g = min
µ

F
(
θ̂, h(µ)

)
= T min

µ

{(
θ̂ − h(µ)

)′
V +

(
θ̂ − h(µ)

)}
(1)

Where the following assumptions are made:

Assumption 1 .

a.
√

Tvec(θ̂ − θ0)
d→ N(0,V ).

b. (uniqueness). The parameter vector µ is identified at µ0, i.e. h(µ∗) = h(µ0) for

µ∗ ∈ <p implies µ∗ = µ0; and µ = µ0 is the unique minimizer of F
(
θ̂,h(µ)

)
.

c. The mapping h(µ) is defined in a neighbourhood of µ0, and the q× p Jacobian matrix

∆ = ∂h
∂µ′ at µ0 is of full column rank p.

d. (inf-boundedness). There exists a number α > F
(
θ̂, h(µ0)

)
and a compact subset

Ξ∗ ⊂ <p such that {µ ∈ <p : F
(
θ̂,h(µ)

)
< α} ⊆ Ξ∗ whenever θ̂ is in a neighbourhood

of θ0.

e. The p× p matrix ∆′
0V

+∆0 is nonsingular, and where ∆0 = ∆|µ=µ0
.

Assumption 1.a can be usually justified by an application of the Central Limit Theorem.

The assumptions above are the usual regularity conditions for a minimum discrepancy type

test being chi-squared distributed. This is stated in the following proposition:

1Note that some notation in this paper is recycled in different subsections. The context should make the
meaning of recycled symbols clear.
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Proposition 1 Under Assumptions 1.a-1.d above and under the null H0, it holds that i)

the minimizer µ̂
a.s.−→ µ0, and ii) ψ̂g p→ χ2

q−p + χ̄2, where χ2
β denotes the χ2 distribution with

degrees of freedom β = rv − p.

Proof: See appendix. 2

Prob
(
V̂ = V

)
→ 1 as T → ∞ does not guarantee Prob

(
V̂

+
= V +

)
→ 1 as T → ∞.

This is due to the fact that generalized inverses are not continuous. Andrews (1987) has

shown that the condition Prob
(
ρ

[
V̂

]
= ρ [V ]

)
→ 1 as T → ∞ is a sufficient condition to

avoid this issue. To enforce this condition, we follow the solution suggested in Lutkepohl and

Burda (1997), namely that if the rank of V is rv, then use as an estimator V̂ rv = ÊΛ̂rvÊ
′
,

where Ê is a matrix with the eigenvectors of V̂ , and Λ̂rv = diag(λ̂1, . . . , λ̂rv , 0, . . . , 0), where

λ̂j for j = 1, . . . , rv are the rv largest eigenvalues of V̂ .

An MDF test of rank. It remains to show that this testing strategy can be applied to

the problem of testing the rank of a matrix. We define for this purpose θ = vec(A), and

note that assuming m < n, under H0 it is possible, after a certain reordering of the columns,

to write the last n− r columns of A as a linear function of the first r columns2. This allows

us to write A = [A1 A1S], where A1 and S are matrices of dimension m×r and r× (n−r)

respectively. A test of rank of a matrix is then a test of the null hypothesis θ = h (µ), where

µ = (a1
′, s′)′ and:

h (µ) =

(
a1

(S′ ⊗ I) a1

)
∆h =

(
Imr 0mr,r(n−r)

(S′ ⊗ Im) (In−r ⊗A1)

)
(2)

where s = vec(S) and a1 = vec(A1). It only remains to show that h (µ) is in line with the

assumptions made above. This issue has been addressed by Cragg and Donald (1997) and

we state it here in the following proposition.

Proposition 2 The parameter constraints imposed by h(µ) as defined in (2), to test for the

rank of a matrix are in line with the functional constraints stated in assumptions 2-4 above.

Proof: See appendix. 2

2.2 Cragg and Donald (1996)

The procedure proposed by Cragg and Donald (1996) is based on the transformation of

the matrix A using Gaussian elimination with complete pivoting3. r∗ steps of Gaussian

2The reordering can be accomplished by using the pivoting matrices R and C obtained from the r steps
of Gaussian elimination as explained above. To avoid excessive notation pivoting matrices will be ignored in
this section.

3For details on Gaussian elimination with complete pivoting see Cragg and Donald (1996) or Golub
and Loan (1983). The foundations behind this strategy follow the work of Gill and Lewbel (1992). The
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elimination with full pivoting on matrix A amounts to the following operations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . .Q1R1AC1 . . . Cr∗−1Cr∗ =

[
A11(r

∗) A12(r
∗)

0 A22(r
∗)

]

where Ri and Ci are pivoting matrices for step i and Qi are Gauss transformation matrices.

The pivoting matrices used to perform the first r∗ steps of Gaussian elimination are applied

to A to obtain the following relation

Rr∗Rr∗−1 . . . R1AC1...Cr∗−1Cr∗ = RAC = F =

[
F 11(r

∗) F 12(r
∗)

F 21(r
∗) F 22(r

∗)

]

where F is partitioned accordingly, i.e. F 11(r
∗) is of dimension r∗×r∗. Note that in this case

F 11(r
∗) has full rank, under the null hypothesis that rk(A) = r∗. It then follows, (see Cragg

and Donald (1996)), that F 22(r
∗)−F 21(r

∗)F−1
11 (r∗)F 12(r

∗) = 0. The estimated counterpart

of the above relation, i.e. F̂ 22− F̂ 21F̂
−1

11 F̂ 12 = Λ̂22(r
∗), may be used as a test statistic of the

hypothesis that the rank of A is r∗. Under regularity conditions, including the requirement

that the covariance matrix of the asymptotically normally distributed matrix
√

Tvec(Â−A)

has full rank, the following result can be shown, under H0.

√
Tvec(Λ̂22(r

∗)) d→ N(0,ΓV Γ′)

where Γ = Φ2 ⊗ Φ1 and Φ1 =
[
−F̂ 21F̂

−1

11 Im−r∗

]
R, Φ2 =

[
−F̂

′
12F̂

−1′

11 In−r∗

]
C ′ and

d→
denotes convergence in distribution. Then,

ξ̂ = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
−1

vec Λ̂22(r
∗) d→ χ2

(m−r∗)(n−r∗)

where Γ̂ and V̂ are the sample estimates of Γ and V and χ2
l denotes the χ2 distribution with

l degrees of freedom. This tests computes the inverse of the covariance matrix V . However,

in many modelling scenarios this matrix is singular. Extension to such cases is stated in the

following proposition.

Proposition 3 Under the general conditions in Cragg and Donald (1996), if additionally

the rank of V is known and ρ
[
V̂

]
= ρ [V ], ∀T , then

ξ̂g = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
+
vec Λ̂22(r

∗) d→ χ2
β

where + denotes the Moore-Penrose inverse of a matrix, and the number of degrees of freedom

β is given by the minimum between the number of rows in Γ̂ and the rank of V̂ .

Proof: See Camba-Mendez and Kapetanios (2001) 2

asymptotic distribution of the test suggested by Gill and Lewbel (1992) was incorrect, nonetheless, it provided
researchers with an ingenious strategy to test for the rank.
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2.3 Robin and Smith (2000)

The testing procedure suggested by Robin and Smith (2000) focuses on the eigenvalues of

quadratic forms of A. The quadratic form ΥAΠA′ where Υ and Π are positive definite

matrices, is considered. Under the null hypothesis, A has min(m,n)− r∗ zero eigenvalues. It

follows that the above quadratic form has min(m,n)−r∗ zero eigenvalues as well. Additionally,

the eigenvalues of the estimator of the above quadratic form converge in probability to their

population counterparts. Robin and Smith (2000) consider the statistic

CRI = T
min(m,n)∑

i=r∗+1

λ̂i

where λ̂i are the eigenvalues of Υ̂ÂΠ̂Â
′
in descending order, Υ̂ and Π̂ are estimates of Υ and

Π respectively. Under the null hypothesis, the above statistic converges in distribution to a

weighted sum of independent χ2
1 random variables. The weights are given by the eigenvalues

of (D′
r∗ ⊗C ′

r∗)V (Dr∗ ⊗Cr∗), τi, i = 1, . . . , (m− r∗)(n− r∗). Dr∗ and Cr∗ are n× (n− r∗)

and m×(m−r∗) matrices containing the eigenvectors corresponding to the n−r∗ and m−r∗

smallest eigenvalues of ΠA′ΥA and ΥAΠA′ respectively. The sample counterparts of the

above matrices may be obtained straightforwardly to estimate the asymptotic distribution

of the test statistic.

2.4 Other Methods

2.4.1 Bartlett (1947)

Applicability of this test to the problem of testing the rank of matrix Â relies on whether

it is possible to define two random vectors yt and xt, such that A = E{ytx
′
t}. That being

the case, it is possible to make use of a well known result in canonical correlation analysis;

namely, that given two random stationary vector series yt and xt of dimensions m and n

respectively, the rank of the covariance matrix between those two random vectors is equal to

the number of nonzero canonical correlations, see Anderson (2003) for further details. Define

the matrices Y = (y1, . . . , yT )′ and X = (x1, . . . , xT )′ Compute the QR decomposition of

the matrices Y and X, i.e. Y = Q1R1 and X = Q2R2. The canonical correlations

between the vectors yt and xt, are the singular values of Q′
1Q2. We denote the canonical

correlations as ρi, i = 1, . . . , min(m,n). Bartlett (1947) provided a likelihood ratio criterion

for testing the null hypothesis that the last rmin(m,n) − r∗ canonical correlations are zero,

i.e., Hr∗ : ρr∗+1 = · · · = ρmin(m,n) = 0. Under the null hypothesis and assuming stationarity

BA =
[
m + n + 1

2
− T

]
ln
min(m,n)∏

i=r∗+1

(
1− ρ̂2

i

)
d→ χ2

(m−r∗)×(n−r∗)
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Fujikoshi (1974) proved that this test procedure is based on the likelihood ratio method.

Bartlett’s test was developed under independence and normality assumptions, but his result

remains valid asymptotically following arguments by Kohn (1979) on the likelihood ratio

tests for dependent observations. Lawley (1959) provided a Bartlett (scale) correction to

the LR statistic, the moments of which equal those of the nominal asymptotic chi-square

distribution, apart from errors of order T−2. We refer to this corrected test as the BC test.

Under H0,r∗ , and assuming for simplicity that m < n, BC = [(T − r∗) − 1
2
(m + n + 1) +

∑r∗
i=1 λ̂−2

i ]
∑m

i=r∗+1 ln(1 + λ̂2
i ) has a limiting chi-square distribution with (m − r∗)(n − r∗)

degrees of freedom, and where λ̂i = ρ̂i/(1− ρ̂2
i )

1
2 ; see Glynn and Muirhead (1978).

2.4.2 Information Criteria Methods

Information Criteria methods to test for the rank of a matrix can be defined. These method

suggest to choose the rank r that minimizes a criterion function that takes the form:

IC(r) = TL + f(T )F (r)

where L denotes the log of the pseudo maximum likelihood estimator of A subject to its

rank being restricted to r, F (r) denotes the number of freely estimated parameters. Al-

ternative specifications have been proposed for f(T ). Akaike (1976) adopted the formu-

lation f(T ) = 2, and their criteria is usually denoted as AIC. Schwarz (1978) proposed

f(T ) = ln(T ) and the standard notation for this criterion is BIC. Hannan and Quinn (1979)

used f(T ) = 2 ∗ ln(ln(T )), and the notation used is HQ. Note that these criteria penalizes

models with large number of parameters, and by extension large rank, and favor parsimo-

nious representations.

Akaike (1974) and Akaike (1976) showed that the number of linearly independent com-

ponents of the projections of the previously defined yt onto the linear space spanned by the

components of xt is identical to the number of nonzero canonical correlations between yt

and xt. When both yt and xt are Gaussian, canonical correlation analysis between yt and xt

is equivalent to maximum likelihood estimation of the linear model: yt = Ψxt + εt, see An-

derson (2003). The number of free parameters for this model is: F (r∗) = {[m(m + 1)]/2}+

{[n(n + 1)]/2}+r∗(m+n−r∗) where m denotes the dimension of the vector yt and n denotes

the dimension of xt. The first two terms are the number of free parameters of the covariance

matrices of yt and xt respectively, and the last term gives the number of free parameters in

matrix Ψ. The value of pseudo likelihood is defined as L = ln
∏r

i=1(1− ρ̂2
i ). where ρ̂i are the

estimated canonical correlation coefficients previously defined.
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Note that, as discussed in Anderson (2003, pp. 505), when ρi = 0 then ρ̂2
i = Op(T

−1),

implying that ln(1− ρ̂2
i ) = Op(T

−1) where Op(.) denotes order in probability. This suggests

that there is a positive probability that AIC will be minimised for some r∗ > r0 since the

probability that T
∑r∗

i=r0+1 ln(1− ρ̂2
i ) < 2(F (r0)−F (r∗)) is greater than zero. Therefore, the

estimated rank will not converge in probability to r0 when AIC is used. The penalty used

by BIC is much more severe than that used by AIC. In fact, it is easy to see that the rank

estimate obtained by BIC will converge in probability to r0. Nevertheless, BIC is likely to

underestimate the rank in small samples.

Information criteria rank selection methods can also be formulated with the elements of

the MDF test of rank. Cragg and Donald (1997) showed that information criterion methods

defined with L = ψ̂ and F (r) = p provided also a consistent method to search for the rank

of a matrix.

3 Rank of a Hermitian Positive Semidefinite Matrix

In what follows we assume that in the following partition of A the r × r submatrix A11 is

of full rank. (
A11 A12

A21 A22

)

If A11 is not initially of full rank r, a valid reordering of the columns and rows of A would

guarantee this without affecting the overall rank of the matrix. As stated above, Cragg and

Donald (1996) proposed the application of r steps of Gaussian elimination with complete

pivoting on A to achieve the required result. This manipulation guarantees that A11 in the

finally reordered matrix is of full rank r. In the case of the hermitian positive semidefinite

matrix we need to preserve the symmetry of A and hence symmetric pivoting should be

implemented.4 Without lack of generality we avoid the issue of pivoting in this section for

ease of notation.

Given the linear dependance of the last n−r columns on the first r columns it must hold that

Λ = A22−A21A
−1
11 A12 = 0. This implies that a test of rank H0 : rk(A) = r is equivalent to

a test of the null hypothesis H0 : Λ = 0. Camba-Mendez and Kapetanios (2005a) show that

Λ = 0 if and only if Λi,i = 0, i = 1, . . . , n − r where Λi,i denotes the i-th diagonal element

of Λ. This simplifies the test because it is thus only necessary to concentrate on testing the

null hypothesis H0 : θ = 0 where θ = (Λ1,1, . . . , Λn−r,n−r)
′. Under the null hypothesis we

4An algorithm to compute the factorization PAP ′ = GḠ
′, where P is an n× n pivoting matrix and G

is an n× r lower triangular matrix is available in the LINPACK, see Dongarra, Bunch, Moler, and Stewart
(1979), and subroutine CCHDC for details.
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show in the appendix that
√

T vec(Λ̂)
d→ NC(0,W ) where W is defined in the appendix.

Hence √
T θ̂ =

√
T Lvec(Λ̂)

d→ N(0, LWL′)

where L is a n− r × (n− r)2 selector matrix that picks the diagonal elements of Λ̂. Then,

using the results of Kudo (1963) we can construct the test statistic for the null hypothesis

H0 : θ = 0 against the alternative H0 : θi ≥ 0, i = 1, . . . n− r where at least one inequality

is strict. This is stated as follows:

Proposition 4 Under the null hypothesis, H0 : r = r∗ the test statistic, χ̄2 = T θ̂
′
Ψ−1θ̂,

where Ψ = LWL′, is distributed as a weighted mixture of χ2
i , i = 1, . . . , n− r∗, i.e.

Pr
(
χ̄2 ≥ χ̄2

0

)
=

q∑

i=0

wiPr
(
χ2

i ≥ χ̄2
0

)

where χ2
0 = 0, and wi are nonnegative weights.

Proof: See Camba-Mendez and Kapetanios (2005a) 2

Following results in Kudo (1963) these weights are given by:

wi =
∑

Qi

P{(ΩQ′i)
−1}P{ΩQi:Q′i} (3)

where the summation runs over all subsets Qi of K = {1, . . . , q} of size i, and Q′
i is the

complement of Qi where ΩQi
is the variance matrix of θj, j ∈ Qi, and ΩQi:Q′i is the same

under the condition θj = 0, j /∈ Qi, and P{Ω} is the probability that the variables distributed

in a multivariate normal distribution with mean zero and covariance matrix Ω are all positive;

finally, P{Ωφ:K} = 1 and P{(ΩK′)−1} = P{(Ωφ)
−1} = 1. The probabilities in (3) can be

easily computed by means of the algorithm proposed in Sun (1988). Note that a simple

expression for ΩQi:Q′i is given by ΩQi
− ΩQi,Q′iΩ

−1
Q′i

Ω′
Qi,Q′i

where ΩQi,Q′i is the covariance

matrix of θj, j ∈ Qi and θj, j ∈ Q′
i (see e.g. Anderson (2003, pp. 33-35)). It is worth noting

that the multivariate one sided test has been generalized by Kudo and Choi (1975) to cases

where Ψ is singular. A generalization of the test of rank presented here hence also follows.

4 Applications of tests of rank

4.1 Identification and Specification of IV Models

Cragg and Donald (1993) studied the problem of identifiability and specification in instru-

mental variable models. For Ordinary Least Square Estimators to yield consistent estimates,

the error terms must be orthogonal to the regressors. This condition is violated in the context
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of simultaneous equation models which are one of the most important models in economet-

rics. A simultaneous equation model can be written in its structural form as,

Byt = Γx1t + εt (4)

where yt is a m-vector of endogenous variables, x1t is a k1-vector of exogenous variables,

εt is a m-vector random process of zero mean and covariance matrix Ω. Alternatively, the

model could be written in reduced form as:

yt = Πx1t + ut

where Π = B−1Γ and ut is a zero mean m-vector random process of zero mean and covari-

ance matrix B−1ΩB−1′. Estimation of the m equations in (4) by means of Least Square is

not feasible due to the non orthogonality of some of the regressors. There is no orthogonality

problem though in estimating the system in its reduced form. The only problem with this

strategy is that it may not always be possible to recover the structural parameter matrices

B and Γ from the relationship BΠ = Γ. This is referred to as the problem of identification

and is well documented in the literature. Conditions for identification usually translate in

zero restrictions in some of the elements of B and Γ. Write the first equation in (4) as:

y1t = −B12y2t + Γ1x1t + ε1t (5)

where we have partitioned B and Γ in line with with y1t and y2t as follows,

B =

[
B11 B12

B21 B22

]
Γ =

[
Γ1

Γ2

]

and where it is further assumed that B11 = 1. If we assume that there are no zero restrictions

on Γ1 there is an identification problem. In this setting, it is necessary to find certain

instrumental variables, say x2t, uncorrelated with y1t but correlated with y2t; we could then

write equation (5) as:

y1t = −B12y2t + Γ1x1t + δ1x2t + ε1t (6)

and where the central specification hypothesis is δ1 = 0. We could define the vector xt =

(x′1t,x
′
2t)

′, and estimate the reduced form:

yt = Kxt + ut

The structural parameters can be recover from BK = Γ∗, where Γ∗ = [Γ δ] where δ =

(δ′1, δ
′
2)
′. In particular for equation (6) these are given by,

K11 = Γ1 + K12B12

K21 = δ1 + K22B12

10



Where, as before, K has been partitioned in four blocks, according with y1t and y2t on the

rows and according to x1t and y2t on the columns. It follows that the specifying condition

δ1 = 0 implies that K21 = K22B12 and this implies that the rank of [K21 K22] must

be strictly less than m the number of endogenous variables. Further, identification of the

parameters implies that K22 must be full rank if one is to recover B12 from K21 = K22B12.

These two conditions together imply that testing for the identifiability and the specification

of the instrumental variable model is testing for the rank of [K21 K22] being equal to

m − 1. Cragg and Donald (1993) developed alternative tests of rank for the identifiability

of parameters apparently estimable by instrumental variables. Their method is less general

than those presented above.

4.2 Factor Analysis

A factor analysis model describes a m-vector yt of observable variables as:

yt = µ + Kf t + ut (7)

where µ and ut are vectors of dimension m, K is a matrix of parameters of order m × r ,

and f t are the common factors. ut is a random vector independent of f t, with mean zero

and covariance matrix Σu. Equivalently, the factors f t are random variables with mean zero

and covariance matrix Σf . Then, the covariance matrix of the observed vector yt is:

Σy = E (yt − µ) (yt − µ)′ = KΣfK ′ + Σu (8)

Identification of the factor model in (7) requires that a triplet Σu,Σf and K that solves

equation (8) exists and is unique. Existence refers to whether there is a nonnegative diagonal

matrix Σu such that Σy−Σu is positive definite and of rank equal to r. Identification requires

to impose further restrictions on those matrices. A common restriction is to fix the covariance

matrix Σf to be equal to an identity matrix, and for Γ = K ′Σ−1
u K to be diagonal. An

alternative identifying restriction would be for Σf to be diagonal and for K = (Ir,K
′
2)
′.

Maximum Likelihood estimation of µ, K and Σu are obtained by maximizing the likelihood

function:

L = (2π)−
1
2
mT |Σy|− 1

2
T exp{−1

2

T∑

t=1

(yt − µ)′Σ−1
y (yt − µ)}

Models like (7) have been used in testing the Arbitrage Pricing Theory. There have been two

major approaches to test the Arbitrage Pricing Theory. Firstly, the Theoretical Approach

specifies certain macroeconomic and financial variables which are the factors f t, and are

thought to capture the systematic risk of the economy. Secondly, the Statistical Approach,

which is based on Factor Analysis or alternatively on Principal Component Analysis. Em-

pirical Studies under this second approach include Lehmann and Modest (1988) and Connor
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and Korajczyk (1988).

A likelihood ratio test can be constructed to test the hypothesis on adequacy of r factors.

Under the null that r factors are adequate, the statistic

−
(
T − 1− 1

6
(2T + 5)− 2

3
r
) [

ln|Σ̂y| − ln|K̂K̂
′
+ Σ̂U |

]

is distributed as a χ2
l where l = 1

2
[(T − r)2 − T − r] is the degrees of freedom. This particu-

lar structure for the APT model was not without criticism, Roll and Ross (1980), Roll (1984)

and Dhrymes, Friend, and Gultekin (1984) showed that the number of factors selected by this

test increased when the number of asset returns which were part of yt was increased. The

problem was associated with the requirement of matrix Σu being diagonal. This translates

in imposing that the diversifiable components of returns being uncorrelated across assets.

However this restriction is too restrictive, and the APT model of Ross (1976) doesn’t rely on

this but on a weaker restriction, namely that the nonfactor risk ut, can be diversified away

in asset portfolios. Chamberlain and Rothschild (1983) and Ingersoll (1984) generalized the

factor model above to account for ‘weak’ correlation among assets in ut, they refer to this

as the approximate factor structure. It is obvious that in the presence of an approximate

factor structure, the Likelihood ratio test would overestimate the number of factors. Connor

and Korajczyk (1993) developed a test for the number of factors in an approximate factor

model. Engle, Ng, and Rothschild (1990) extended a traditional factor model to account for

ARCH effects in the residuals, the factor-ARCH model. This model was used to study the

relationship between asset risk premia and volatilities in a multivariate system.

In testing for the number of factors, and in the context of testing the Arbitrage Pricing

Theory, Cragg and Donald (1997) suggested to use a k-vector of macro variables xt, where

k ≥ r. One could then estimate the equation,

yt = γ + Bxt + εt

where yt is an m-vector of asset returns. The rank of B gives the number of factors.

4.3 Demand Systems

Tests of rank have been used in the context of the estimation of the Engel curve relationship,

i.e. the relationship between budget shares and total expenditure (income). Engel curves are

relevant to model the impact of policy measures on consumer responses, and in addition the

welfare impact of such measures. Also the Engel curve serves as a tool to study the impact

of fiscal policy measures on the relative demand of goods. The Engel curve is as follows:

wi = AG(xi) + εi for i = 1, . . . , N (9)
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where wi is a k × 1 vector of the budget shares of individual i, A is an k × m matrix of

parameters, where G(xi) is a m × 1 vector where the functional form of G(.) may be un-

known, and xi is total expenditure of individual i, and εi is a k×1 zero mean random vector

independent of xi. Note that the sum of the elements of the vector of budget shares sums to

1, i.e. ε′iι = 0 where ι is a k× 1 vector of ones; this obviously implies certain restrictions on

E{εiε
′
i}. Tests of rank in this setting are relevant to find m, the number of unknown factors.

Note that the structure of (9) resembles closely that of Factor Analysis. The factors in this

setting are not linear on the variables, but rather should be referred to as Nonparametric

factors.

Lewbel (1991) suggested the following strategy to estimate m nonparametrically. Let Q(xi)

be a k × 1 (or larger than k) vector of functions having finite mean, and denote B =

E{wiQ(xi)
′}. Given that xi is independent of εi, it holds that B = E{AG(xi)Q(xi)

′},
and so it follows that rank of B is equal to m, unless some component of G is orthogo-

nal to all the elements of Q, which should be a very remote coincidence. Lewbel (1991)

applied this nonparametric rank estimation method to individual household expenditures

data, in particular he used the UK Department of Employment Family expenditure Sur-

vey, and the US Labor Statistics Consumer Expenditure Survey. For the US dataset total

consumption expenditures were divided in seven categories: food, clothing, recreation, fur-

nishing, health, care, transportation, and other. The list of instruments used as Q(xi) were

1, xi, ln(xi), x
2
i , ln(xi)

2, 1/xi, 1/ln(xi), 1/(x
2
i ), xiln(xi). Note that the Barlett test could be

implemented as B is nothing but the covariance matrix between wi and Q(xi). A consistent

estimator of B is given by B̂ = T−1 ∑N
i=1 wiQ(xi)

′, so that
√

N(B̂ −B)
d→ N(0,V ), and

where a consistent estimator for V can be easily obtained, and hence the other tests of rank

presented in section 2 can also be applied.

A Related strategy which doesn’t make use of the list of instruments Q(xi)
′ is the fol-

lowing. Denote F (xi) = AG(xi). Estimation of F (xi) can be accomplished by means of

kernel estimation. Under the null that there is a representation AG(xi) for F (xi) which is

of reduced rank it must be the case that B = E{F (xi)wi} is of reduced rank. Testing for

the number of positive canonical correlations of the vector series F (xi) and wi is equivalent

to testing for the rank of B, i.e. Barlett’s test is applicable. Also, noting that an estimate

for B is computed as B̂ = N−1 ∑N
i=1 wiF (xi)

′, and once more a consistent estimator for V

can be constructed.

This second strategy is related to the approach described in Donald (1997). Notwith-

standing, Donald (1997) rather than applying any of the tests reviewed above, suggested an
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alternative test. If the number of nonparametric factors is smaller than m, this implies that

there exists a matrix c of order k × (k −m) such that:

w′
ic = F (xi)

′c + ε′ic = 0 + ei

where ei = ε′ic. Donald (1997) suggested to test for the number of nonparametric factors m

by means of testing for the moment restriction E{c′F (xi)w
′
ic} = 0. Their proposed test was

constructed from the eigenvalues of a sample analogue of this expression with an appropriate

normalization, see Donald (1997) for further details.

The rank of the demand system has important implications for demand theory, see Lew-

bel (1991) for a detailed review. Under the setting in (9) a rank of 1 implies that the

demands are homothetic, i.e. budget shares are independent of the level of income. If the

rank is two the demands are generalized linear. The PIGLOG specification, see Muellbauer

(1975), is an example of rank two demand system in which budget shares are linear in the log

of total expenditure. The clear advantage of the PIGLOG demand system is that they can

be aggregated across individuals of different income. It is clear that the rank or structure

of demand system has direct implications for the structure of aggregate demand equations.

The PIGLOG would imply that the resulting aggregate demand equation is equivalent to the

representative agent model. Gorman (1981) suggested the following alternative specification

for demand systems

wi = A(P )G(xi) + εi for i = 1, . . . , N

where additionally P is a vector of prices. Under this specification, the rank must be smaller

than three for demands to be aggregable5. Empirical Studies on the estimation of Engel

curves on household data have been conducted among others by Atkinson, Gomulka, and

Stern (1990), Banks, Blundell, and Lewbel (1997), Blundell, Duncan, and Pendakur (1998),

Blundell and Duncan (1998), Hausman, Newey, Ichimura, and Powell (1991) and Hausman,

Newey, and Powell (1995). Blundell, Duncan, and Pendakur (1998) estimated a semipara-

metric Engel curve in which household composition is modelled using an extended partially

linear framework. Previous work, relied on trimming the sample of households to have an

homogenous group. Banks, Blundell, and Lewbel (1997) provided a demand system model

which was able to provide a detailed welfare analysis of shifts in relative prices.

5See Lewbel (1991) and references therein for further studies of exactly aggregable demands.
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4.4 Reduced Rank VAR Model

Consider a conventional VAR of the form:

yt =
p∑

k=1

Akyt−k + εt (10)

each of the Ak is an m × m matrix. εt is an iid process. It is often the case that such

VARs include a large number of insignificant coefficients; one can impose zero restrictions

in a relatively ad hoc way so as to make the model more parsimonious. Velu, Reinsel, and

Wichern (1986) proposed a Reduced rank VAR model which provides a parsimonious method

to model multivariate time series. This model has the following structure:

yt = F

[ p∑

k=1

Gkyt−k

]
+ εt (11)

Here each of the Gk is an r ×m matrix (r < m) and F is an m× r matrix, where r is the

rank of the system. Velu, Reinsel, and Wichern (1986) suggested a method for estimating

the parameters F and
[

G1 G2 ... Gk

]
in (11) conditional on a given r. Denote xt =

(y′t−1,y
′
t−2, y

′
t−k)

′ and Ωε = Ωyy −ΩyxΩ
−1
xxΩxy where Ωε is the covariance of the residuals

of the OLS unrestricted regression of (10) and Ωxy is the covariance matrix between x and

y. Additionally denote Π = Ω−1
ε and set vj to be the eigenvector corresponding to the jth

largest eigenvalue of Π
1
2ΩyxΩ

−1
xxΩxyΠ

1
2 , λ2

j . If V r =
[

v1 v2 ... vr

]
then

F = Π
1
2 V r, [G1 G2 . . . Gk] = V ′

rΠ
1
2ΩyxΩ

−1
xx

are the solutions which minimize tr
{
Π

1
2 εtε

′
tΠ

1
2

}
. To determine r is equivalent to determine

the rank of any of the Ak’s which are assumed to have common rank. Consider the RRVAR

model (11) re-expressed as

yt = Bxt + εt, (12)

t = 1, ..., T , where the (m,mp) matrix B ≡ αβ′. Bartlett’s (1947) test can then be easily

computed from the ordered squared sample canonical correlations between {yt} and {xt}.
Note that under suitable regularity conditions, T 1/2vec(B̂−B)

d→ N(0,Σ−1
XX ⊗Σεε), where

ΣXX ≡ E{xtx
′
t} is assumed positive definite which holds if {yt}∞t=1 is a non-defective pro-

cess. Given this distribution, computation of the tests of Cragg and Donald or Robin and

Smith follows.

Reduced rank regression models like that in (12) have been used by Bekker, Dobbelstein,

and Wansbeek (1996) to estimate Arbitrage Pricing models. Camba-Mendez, Kapetanios,

Smith, and Weale (2003) presented a Monte Carlo exercise comparing the forecasting perfor-

mance of reduced rank and unrestricted VAR models in which the former appear superior.
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They further estimated reduced rank VAR models for leading indicators of UK economic ac-

tivity. Their results show that these more parsimonious multivariate representations display

an improvement in forecasting performance over that of unrestricted VAR models.

4.5 Nested reduced rank VAR models

An alternative, and more general, representation for a reduced rank VAR model is the

following:

yt =
p∑

k=1

F kGkyt−k + εt

where each of the Gk is an rj × m matrix (rj ≤ m) for j = 1, . . . , p and each F k is an

m × rj matrix. It is further assumed that the rj’s are non-increasing. The yt are simply

output variables. This model was suggested by Ahn and Reinsel (1988) and was named

nested reduced rank autoregressive model.

To identify the ranks of the Ak matrices in (10) use is made of the canonical correla-

tion approach described by Tsay and Tiao (1985) and Tiao and Tsay (1985). Define

Y s,t =
(
y′t, . . . , y

′
t−s

)′
. The rank of As is equivalent to the number of non-zero canoni-

cal correlations between Y s−1,t and Y s−1,t−1. This, as stated in section 2, is equivalent to

the rank of the covariance matrix between Y s−1,t and Y s−1,t−1. The Bartlett test described

above is therefore of use in this context. This strategy allows also to identify the order of

the VAR, since for s > p there will be a minimum of m zero canonical correlations between

Y s−1,t and Y s−1,t−1. This model has been extended by Ahn and Reinsel (1990) to incorpo-

rate error correction forms. Reinsel and Ahn (1992) provided the asymptotic distribution

for testing for the number of unit roots in a vector autoregressive model with unit roots and

the additional reduced rank structure of the nested reduced rank model.

4.6 Dynamic Factor Models

Denote a zero mean, wide sense stationary m-vector stationary process by {yt}∞t=1, and

assume that there exists a representation such as:

yt = Pzt + εt (13)

where P is a m× r matrix of parameters, εt is an m-vector of iid zero mean processes with

covariance matrix Σε, and zt is a r-vector stationary process, with r < m, i.e. there is a

reduction in dimensionality, which follows an ARMA(p,q) process

Φ(L)zt = Θ(L)ut
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where Φ(L) and Θ(L) are matrix polynomials in the lag operator L with all the roots of the

determinant polynomials |Φ(L)| and |Θ(L)| outside the unit circle, and ut is an iid random

process with zero mean and positive definite covariance matrix Σu. A further identification

restriction imposed in this model is that the r factors are independent, and that all Φi and

Θi matrices are diagonal.6 Matrix P is usually refer to as the factor loadings. For identifi-

cation purposes it is assumed that P ′P = I.

Denote Γy(k) = E{yty
′
t−k}, and Γz(k) = E{ztz

′
t−k}. Under the representation in equa-

tion (13), it follows Γy(k) = PΓz(k)P ′ for k ≥ 1. The rank of Γy(k) for k ≥ 1 is equal to r,

the number of the common driving forces.

Having established the number of common driving forces, it is still necessary to identify

the type of VARMA process followed by the vector of driving forces. To do so, it is possible

to use a transformation of the vector series yt. Note that the columns of P are the eigenvec-

tors Γy(k) associated with the nonzero eigenvalues. If we denote by P + the Moore-Penroe

generalized inverse of P then it follows that zt = P +yt + P +εt, i.e. equal to the vector of

common driving forces plus an added noise. This transformation can be used to identify the

VARMA structure underlying the common driving forces. Maximum likelihood estimation

of this system is easily implemented once the model is formulated in state space form.

Early applications of dynamic factor models to macroeconomic research include Sargent

and Sims (1977) and Geweke (1977). Sargent and Sims (1977) proposed a dynamic factor

model that was consistent with the idea of co-movement in macroeconomic series. They

assumed that there was an underlying force behind the fluctuations of macroeconomic se-

ries. Rather than working under the assumption of a unique underlying force, Geweke and

Singleton (1981) used a dynamic factor model with two latent variables (factors) to explain

the business cycle. They identified those two factors with unanticipated aggregate demand

shocks and innovations to anticipated aggregate demand shocks. In line with Sargent and

Sim’s work, Stock and Watson (1989) used a dynamic factor model to extract a latent vari-

able that could be identified as the state of the economy. Their assumption was that the

fluctuations of certain macroeconomic variables have an underlying common factor, and this

common factor could be identified as the ‘state of the economy’. The use of dynamic factor

analysis in forecasting macroeconomic series is not new. Engle and Watson (1981) used

a traditional dynamic factor model to forecast sectorial wage rates in Los Angeles. They

6An alternative equivalent representation with solid Φi and Θi matrices is also explained in Pena and
Box (1987).
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compared the forecasting performance of that dynamic factor model with a regression model

without latent variables, and found that the dynamic factor model was better. Recent work

by Camba-Mendez, Kapetanios, Smith, and Weale (2001) and Stock and Watson (2000)

address the problem of forecasting a single time series with many possible predictors. They

showed that the predictors could be summarized by a small number of dynamic factors and

that forecasts based on these factors outperformed various benchmark models.

4.7 State Space models

We focus on the State Space representation in the innovation form, i.e.:

yt = Cst + et

st+1 = Ast + Bet (14)

where A, B and C are r×r, r×m and m×r parameter matrices respectively, st is a r-vector

of unobservable state variables, and et is an m-vector of random variables with mean zero

and positive definite covariance matrix Ω. This system can be characterized by a system

transfer function matrix G(z) =
∑∞

i=1 Giz
−1, where Gi are the impulse response matrices.

The order of the system, is defined as the order of the minimal state-space realization, i.e.

the minimal dimension of the state vector that replicates the transfer function. This type

of State Space model has been used to model exchange rates, Dorfman (1997), economic

interdependence between countries, Aoki (1987), build a small macroeconometric model

for the Dutch Economy, Otter and Dal (1987) and forecasting commodity prices, Foster,

Havenner, and Walburger (1995). Dorfman and Havenner (1992) developed a Bayesian

approach to state space multivariate modelling. Corresponding to the transfer function

matrix G(z) above, the infinite dimensional Hankel matrix is defined as:

H = OC =




G1 G2 G3 · · ·
G2 G3 · · · · · ·
G3 · · · · · · · · ·
...

...
...

. . .




=




CB CAB CA2B · · ·
CAB CA2B · · · · · ·
CA2B · · · · · · · · ·

...
...

...
. . .




(15)

where the so called observability matrix is defined as O =
[
C ′, A′C ′, (A2)′C ′, · · ·

]′
and the

so called controllability matrix as C =
[
B,AB, (A2)B, · · ·

]
. Kronecker’s theorem can be

used to show that the order of the system is equal to the rank of the Hankel matrix (see

Kailath (1980)). The computation of the rank of the Hankel matrix is not an easy task,

as it is unlikely that the impulse response matrices are given exactly, and in a majority of

cases they are estimated. Furthermore, searching for the rank of the Hankel matrix is not

conducted directly on an estimate of (15) but rather on some pseudo-Hankel matrices.
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For example, an alternative characterization of this system is in terms of a Hankel matrix of

the covariances of the output vector, yt.

Ha = OC =




∆1 ∆2 ∆3 · · ·
∆2 ∆3 · · · · · ·
∆3 · · · · · · · · ·
...

...
...

. . .




where ∆i is the autocorrelation matrix of yt for lag i. Where O is the observability matrix

defined above, and C =
[
C,AC, (A2)C, · · ·

]
, and C = B+APC ′ where P is the covariance

matrix of the state vector defined as E{sts
′
t}. It follows that the rank of Ha is equivalent to

the rank of H , see Faurre (1976). Obviously one cannot use the infinite dimensional matrix

above, and when working with finite data will have to resort to a finite truncation of the

Hankel matrix. Note that this Hankel Covariance matrix can be defined as the covariance

matrix between the vectors yt
+ and yt

−, and defined as follows:

Ha = E
(
yt

+yt
−
′)

= E




yt+1

...
yt+k




(
y
′
t ... y

′
t−p+1

)
=




∆1 ∆2 ... ∆p

∆2 ∆3 ... ∆p+1

... ... ... ...
∆k ∆k+1 ... ∆k+p−1


 (16)

The truncation parameters k and p must be fixed, and setting them implies a trade off

between generality in model specification and modelling ∆i at very distant lags; see Aoki

and Havenner (1991) for further details. The representation of the Hankel matrix stated in

equation (16) shows that the Barlett test could be used to test for the rank of this matrix,

and by extension also the information criteria procedures and the Bias Correction Barlett

test are valid. While the matrix V a is of reduced rank, the rank of V̂
a

is only of reduced rank

asymptotically. This is problematic for the Cragg and Donald (1996) procedure. An estima-

tor of V a with equal rank to V a can be constructed as in Camba-Mendez and Kapetanios

(2001). Results in Camba-Mendez and Kapetanios (2004) further showed that bootstrapped

procedures of those tests or rank presented above significantly improve upon the perfor-

mance of the corresponding asymptotic tests, and that statistical tests have in general a

better performance than standard information criteria methods in the identification of the

dimensionality of these systems.

Kapetanios (2004) and Camba-Mendez and Kapetanios (2005b) used a state space model like

that in (14) to compute measures of underlying inflation extracted from a vector series that

contained all available sub-components of consumer price indices. Measures of underlying

inflation are commonly used to formulate monetary policy and assist in forecasting observed

inflation. Camba-Mendez and Kapetanios (2005b) explored empirically the forecasting abil-

ity of core inflation measures built using state space models against those built using more
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traditional techniques, and found them to perform better than traditional measures over

medium to long forecasting horizons.

4.8 Cointegration

The methods to test for cointegration most usually encounter in applied economics work

are those of Johansen (1988), Stock and Watson (1988), Gregoir and Laroque (1994) and

Snell (1999). Their tests are review in many Econometrics textbook. In this section we will

focus instead in the strategy proposed by Camba-Mendez and Kapetanios (2005a), reviewed

above. Phillips (1986) showed that a necessary condition for cointegration is that the spectral

density matrix of the innovation sequence of an I(1) multivariate process has deficient rank

at frequency zero. The equivalence of time-domain and frequency-domain analysis of time

series is well documented in the statistical and econometric literature. Nevertheless, the use

of spectral densities is by far less widespread than the use of covariances in the econometric

analysis of time series. Phillips and Ouliaris (1988) suggested two procedures for detecting

the presence of cointegration. The drawback of their method was that they were tests of the

null of ‘no cointegration’. Namely a test of the hypothesis that the r smallest eigenvalues

are greater than zero. Test of the rank of that matrix at frequency zero are tests of the null

of ‘cointegration’, i.e. tests of the null that the r smallest eigenvalues are equal to zero. In

what follows we present an estimate of the spectral density matrix at any frequency together

with its distribution.

Denote a zero mean, wide sense stationary m-vector process by {xt}∞t=1. The spectral density

matrix of xt is defined as

Σ(ω) = (2π)−1
∞∑

k=−∞
Γke

−ikω

for θ ∈ [−π, π] where Γk = E{xtx
′
t−k}. Given a sample of T observations an estimate of the

spectral density matrix is given by:

Σ(ω) = (2π)−1
T−1∑

k=−(T−1)

Γ̂ke
−ikω

where Γ̂k = 1
T

∑T−|k|
t=1 xtx

′
t−k. 2πΣ(ω) is the periodogram. The periodogram provides an

inconsistent but asymptotically unbiased estimate of the spectral density matrix, and is

asymptotically distributed as a complex Wishart variable with 1 degree of freedom. A stan-

dard approach for consistent estimation of the spectral density matrix7 relies on ‘smoothing’

the periodogram itself over the frequencies, i.e. averaging adjacent frequency ordinates.

7As we are mainly interested in the rank of the spectral density matrix, in the rest of the discussion we
drop the normalizing constant 2π.
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These estimates take the form,

Σ̂(ω) =
1

2M + 1

M∑

k=−M

Σ(ω + k/T )

For M fixed as T → ∞ this estimate is still inconsistent, asymptotically unbiased for the

spectral density matrix and asymptotically distributed as (2M+1)−1WC(2M+1,Σ(ωj)), (see

Brillinger (1981, pp. 245)). This is the simplest form of a smoothed periodogram estimate for

the spectral density matrix. Different weights can be assigned to the periodogram coordinates

Σ̄ (ω + k/T ), see Brillinger (1981, Chapter 7). If we allow M → ∞ as T → ∞ but impose

M4/T → 0 we get a consistent and asymptotically normal estimate (see e.g. Newey and

West (1987)). In particular we get that
√

2M + 1(vec(Σ̂(ω))− vec(Σ(ω))) is asymptotically

complex normal8 with a covariance matrix whose element giving the asymptotic covariance

between Σ̂i,j(ω) and Σ̂u,v(ω), is given by:

Σi,u(ω)Σj,v(ω) + Σi,v(ω)Σj,u(ω) if ω = 0,±π
Σi,u(ω)Σj,v(ω) if ω 6= 0,±π

where Σi,j(ω) is the (i, j)-th element of Σ(ω). We will denote this covariance matrix by

V and its estimate, obtained by using the estimated spectral density matrix, by V̂ . More

details may be found in e.g. Brillinger (1981, pp. 262) or Brockwell and Davis (1991, pp.

447).

4.9 Dynamic Principal Components

The problem behind Dynamic Principal Components is that of approximating an m-vector

stationary process yt, that without loss of generality it is assumed to have zero mean, by

a filter series of itself, but having a filter which has reduced rank. A dynamic principal

component model takes the form:

yt = C(L)ζt + εt (17)

where C(L) is a polynomial lag and forward operator, i.e. a double sided filter, with Ci

matrices of parameters of order m × k; ζt is a k × 1 vector of principal components, and

where εt is a m × 1 error process. The dynamic principal components are a filter version

of yt given by ζt = B(L)yt where B(L) is a polynomial lag and forward operator, i.e. a

double sided filter, with Bi matrices of parameters of order k ×m.

The polynomial operators Bi and Ci which minimize:

E{(yt −C(L)ζt)
τ (yt −C(L)ζt)}

8For more details on the choice of M and its effect on the asymptotic bias and variance of the estimator
see also Brillinger (1981, Chapter 2).
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and where τ serves to denote transpose conjugate, are given by:

Bu = (2π)−1
∫ 2π

0
V k(α)τeiuαdα

and

Cu = (2π)−1
∫ 2π

0
V k(α)eiuαdα

where V k(α) are the k eigenvectors of the spectral density matrix Σ(α) associated with the

largest eigenvalues, see Brillinger (1981) for further details.

In a recent paper Forni and Reichlin (1998) suggested the use of a generalized dynamic

factor model to describe the dynamics of sectoral industrial output and productivity for the

US economy from 1958 to 1986. Their model was similar to that in (17), but without the

idiosyncratic error component. By aggregating across a large number of sectors the idiosyn-

cratic component vanishes. Under this setting the number of common shocks driving those

series is equal to the rank of their spectral density matrix. The foundations for this result are

to be found in the literature on dynamic principal components, see Brillinger (1981). This

issue is further explored in Forni, Hallin, Lippi, and Reichlin (1999) and Forni, Hallin, Lippi,

and Reichlin (2000) where a ‘generalized dynamic factor’ model, novel to the literature, is

proposed.

5 Conclusion

This paper has described several general tests of rank of a matrix. Furthermore, a large

variety of modelling scenarios where these tests of rank are useful for specification purposes

have been presented. The modelling scenarios range from linear and stationary models such

as standard VARs, factor analysis, dynamic factor models, Instrumental Variables models,

and dynamic principal component models, to nonlinear frameworks such as nonparametric

factor models and also to nonstationary frameworks such as cointegrated systems.
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A Appendix

A.1 Proof of proposition 1

Statement i holds from the continuity of F
(
θ̂,h(µ)

)
, and assumptions 1.a and 1.b as shown

in Shapiro (1984). Proof of ii) goes as follows. By noting that µ̂
a.s.−→ µ0, and by taking

Taylor expansions of h(µ) around µ0 it follows that:

ψ̂
a.s.−→ min

µ∈<p
F (ε,∆0(µ− µ0)) = min

η∈<p
F (ε,∆0η)

where ε = θ̂ − h(µ0). Define by z̃ that η that solves that minimization problem, i.e.

z̃ =
(
∆′

0V
+∆0

)−1
∆′

0V
+ε, then it follows that:

min
η∈<p

F (ε,∆0η) = F (ε,∆0z̃) = Tε′ {I −M}′ V + {I −M} ε

where now we define M = ∆0

(
∆′

0V
+∆0

)−1
∆′

0V
+. It is then easy to show that

{I −M}′ V + {I −M} = V + −M ′V +

It is then possible to write:

ψ̂g a.s.−→ Tε′V +ε− Tε′V +∆0

(
∆′

0V
+∆0

)−1
∆′

0V
+ε

Following arguments in Moore (1977), and the provisions made at the beginning of this sec-

tion, it follows that the first summand in the equation above is distributed as a chi-squared

with degrees of freedom rv. It is easy to show that ∆′
0V

+ε is a p× 1 normally distributed

vector process with mean zero and covariance matrix
(
∆′

0V
+∆0

)
, from which it follows

that the second summand is distributed as chi-squared with degrees of freedom p, and this

completes the proof. 2

It is also easy to show that if V is nonsingular ψ̂g would converge to Tε′V − 1
2

(
I − M̃

)
V − 1

2 ε,

where M̃ =
(
I − V − 1

2∆0

(
∆′

0V
−1∆0

)−1
∆′

0V
− 1

2

)
is an idempotent matrix of rank equal to

(q − p). Further noting that V −1
2
ε is a q×1 normally distributed vector process with mean

zero and covariance matrix I, it thus follows that ψ̂g would be distributed as a chi-squared

with degrees of freedom q − p.

A.2 Proof of proposition 2

Proof of boundedness and uniqueness are provided in lemmas 1 and 2 in Cragg and Donald

(1997). Full column rank of ∆h follows directly from (2). 2
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A.3 Distribution of Λ for a hermitian positive semidefinite matrix.

As vec(Λ) is not analytic, it cannot be expanded as a Taylor series. We define instead for a

hermitian complex matrix A, a 2n× 2n real symmetric matrix AR which is an arrangement

of the real and imaginary parts of the elements of A. Details on AR are given in Brillinger

(1981, pp. 71). By Brillinger (1981, Lemma 3.7.1(i),(ii),(iv)), if Λ = Σ22−Σ21Σ
−1
11 Σ12 then

ΛR = ΣR
22 − ΣR

21Σ
R
11

−1
ΣR

12. Note that (Re vec(Σ)′, Im vec(Σ)′)′ d→ N(0,Vr). Let dij be

the vector of distinct elements of ΣR
ij. Define J1, J2, Jh

j , Jh
ij and Di, i, j = 1, 2, as s ≡(

vec(ΣR
11)

′, vec(ΣR
21)

′, vec(ΣR
12)

′, vec(ΣR
22)

′
)′

= J1 (Re vec(Σ)′, Im vec(Σ)′)′, J2vec(ΛR) =

(Re vec(Λ)′, Im vec(Λ)′)′, Jh
j djj = vech(ΣR

jj), Jh
ijdij = vec(ΣR

ij) and vec(ΣR
ii) = Divech(ΣR

ii).

Then

R ≡ ∂vec(ΛR)

∂s
=

[
∂vec(ΛR)

∂vec(ΣR
11)

′ ,
∂vec(ΛR)

∂vec(ΣR
21)

′ ,
∂vec(ΛR)

∂vec(ΣR
12)

′ ,
∂vec(ΛR)

∂vec(ΣR
22)

′

]

Since vec(ΣR
21Σ

R
11

−1
ΣR

12) =
(
ΣR

12

′ ⊗ΣR
21

)
vec

(
ΣR

11

−1
)
, ΣR

11 and ΣR
22 are symmetric and ΣR

21 =

ΣR
12

′
, from Brillinger (1981, Lemma 3.7.1(v)), we have

∂vec(ΛR)

∂vec(ΣR
11)

′ =
(
ΣR

12

′ ⊗ΣR
21

)
D1D

+
1

(
ΣR

11

−1 ⊗ΣR
11

−1
)
D1J

h
1J

h
1

+
D+

1 (18)

∂vec(ΛR)

∂vec(ΣR
21)

′ = −
(
I4(n−r)2 + K2(n−r),2(n−r)

) (
ΣR

21Σ
R
11

−1 ⊗ I2(n−r)

)
Jh

21J
h
21

+
(19)

∂vec(ΛR)

∂vec(ΣR
12)

′ =
∂vec(ΛR)

∂vec(ΣR
21)

′K2r,2(n−r),
∂vec(ΛR)

∂vec(ΣR
22)

′ = D2J
h
2J

h
2

+
D+

2 (20)

where for a matrix A, A+ = (A′A)−1A′, Km,n is a commutation matrix (see Lütkepohl

(1996, Sec. 9.2)). (18), (19) and (20) follow from Lütkepohl (1996, 10.6(2) and 9.5.3(1)(ii)),

Lütkepohl (1996, 10.5.1(7)) and Lütkepohl (1996, 10.4.1(1)(iii) and 9.5.3(1)(ii)) respectively.

Then,
√

2M + 1
(
Re vec(Λ̂)′, Im vec(Λ̂)′

)′ d→ N(0, W r) where W r = JV rJ ′ and J =

J2RJ1. Finally,
√

2M + 1vec(Λ̂)
d→ NC(0,W ). An alternative to the above is the use of

numerical derivatives, or the use of the bootstrapped methods for the multivariate spectra

described in Berkowitz and Diebold (1998).
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