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Abstract

Panel datasets have been increasingly used in economics to anal-
yse complex economic phenomena. One of the attractions of panel
datasets is the ability to use an extended dataset to obtain informa-
tion about parameters of interest which are assumed to have common
values across panel units. However, the assumption of poolability has
not been studied extensively beyond tests that determine whether a
given dataset is poolable. We propose a method that enables the dis-
tinction of a set of series into a set of poolable series for which the
hypothesis of a common parameter subvector cannot be reject and a
set of series for which the poolability hypothesis fails. We discuss its
theoretical properties and investigate its small sample performance for
a particular simple model in a Monte Carlo study.
Keywords: Panel datasets, Poolability, Sequential testing JEL Codes:
C12, C15, C23

1 Introduction

Panel datasets have been increasingly used in economics to analyse complex
economic phenomena. One of the attractions of panel datasets is the ability
to use an extended dataset to obtain information about parameters of inter-
est which are assumed to have common values across panel units.
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However, the assumption of poolability, i.e. the validity of the assump-
tion that panel units described by a given model have a common parameter
subvector for that model, has not received great attention in the literature.
Work in this area has concentrated on whether a given dataset is poolable
as a whole, i.e, whether the null hypothesis H0 : βj = β, j = 1, . . . , N holds,
where β is the assumed common parameter subvector of the N cross-sectional
units of the dataset. In that vein a common approach, discussed, in some
detail, in Baltagi (2001), is to use an extension of the Chow (1960) parameter
stability test on the pooled dataset. Other tests for this null hypothesis have
been developped by Ziemer and Wetzstein (1983) and Baltagi, Hidalgo, and
Li (1996).

However, if such tests reject the researcher is left with little idea of how
to proceed. In other words if we reject this null hypothesis we do not know
which series caused the rejection. It would be of some interest if a method
were available that would enable the distinction of the set of series into a
group of poolable and a group of nonpoolable series. Such methods seem
indeed possible, and asymptotically justified under appropriate conditions,
and this paper is proposing one. Our method uses a sequence of tests to
distinguish between poolable and nonpoolable series. If more than one se-
ries are actually poolable then the use of panel methods to investigate the
properties of this set of series is indeed more efficient compared to univariate
methods.

The method we propose starts by testing the null of all series having a
common parameter subvector. In doing that we propose a new test of poola-
bility. Of course, any other poolability test can be used but the new test
is useful in that it produces as a by product the means of distinguishing
poolable from nonpoolable series. If the test rejects the null hypothesis of
poolability, then the series with the maximum difference between the indi-
vidual estimate of the vector β and its estimate obtained using the pooled
dataset, suitably normalised, is considered as non-poolable and is removed
from the dataset. We then apply the poolability test to the remaining series
and continue in this vein until the poolability test does not reject the null
hypothesis for some subset of the original set of series or we are left with a
set of one series.

The paper is structured as follows: Section 2 discusses the proposed test
of poolability. Section 3 discusses the new method of separating poolable
from nonpoolable series. Section 4 provides a Monte Carlo study. Section 5
concludes.
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2 The new poolability test

Let us consider the following panel data model

yj,t = αj + βjxj,t + εj,t, j = 1, . . . , N, t = 1, . . . , T. (1)

where xj,t is a k-dimensional vector of predetermined variables. This is a
standard panel data model where we do not need to specify the nature of the
cross sectional individual effect αj. Our discussion carries through both for
fixed and random effect models. The poolability test is concerned with the
null hypothesis

H0 : βj = β, ∀j (2)

We make the following assumptions

Assumption 1 There exists an efficient,
√

NT -consistent, asymptotically
normal estimator for β under the null hypothesis, denoted by β̃. There ex-
ists an asymptotically normal,

√
T -consistent estimator for the individual βj

using only data on the j-th unit. This estimator is inefficient under the null
hypothesis and is denoted by β̂j.

Assumption 2 xj,t are independent across j. εj,t are i.i.d across t and in-
dependent across j with finite variances σ2

j .

Assumption 1 is likely to imply that the processes yj,t and xj,t are station-
ary. However, the methods we will propose does not rely on stationarity of
the data although dealing with nonstationarity will require changes to the
derivation of the asymptotic distributions of our test. We do not give more
details on these estimators so as to encompass as general a framework as
possible, in our discussion. It is clear that the model may be either dynamic
(by including lags of yj,t) or static. The assumption of model linearity is not
essential, either, for the ensuing analysis. Extension to vector yj,t processes
is also straightforward as will become obvious from what follows.

A test that βj = β for a given j may be based on the test statistic

ST,j = (β̂j − β̃)′V ar(β̂j − β̃)−1(β̂j − β̃) (3)

This is a Haussman type statistic. Given efficiency of the estimator β̃ under
the null hypothesis we know from Hausman (1978) that

V ar(β̂j − β̃) = V ar(β̂j)− V ar(β̃) (4)
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A consistent estimate of V ar(β̂j − β̃) may be based on consistent estimates
of the variances on the RHS of (4). Then it follows from our assumption of
asymptotic normality of the estimators that as T → ∞

ST,j
d→ χ2

k (5)

Our poolability test will be based on the ST,j statistics. In particular we
suggest that Ss

T = supjST,j be used as a test statistic for the test of the null
hypothesis H0. The following theorem discusses the asymptotic properties
of our new test

Theorem 1 Under assumption 1 and as T → ∞ we have the following:
Under the null hypothesis: (i) If N is fixed then Ss

T has a nuisance parameter
free distribution depending only on N and k. (ii) If N → ∞ then bNSs

T +aN

has a cumulative density function given by ee−x
where choices for aN and bN

are given in the appendix. Under the alternative hypothesis, that at least one
βj is not equal to the rest of the βj, the test is consistent.

The proof may be found in the Appendix.

Remark 1 We note a few facts about the distribution with cdf ee−x
which is

usually referred to as the extreme value distribution. Its probability density
function is given by e−x−e−x

. Its cumulants are given by κr = (−1)rψ(r−1)(1),

where ψ(r) is the r-th polygamma function, i.e. dr ln Γ(x)
dxr . So, E(X) = 1 + γ

where γ is Euler’s constant (γ � 0.57722) and V ar(X) = 1/6π2.

Remark 2 We note that the assumption of cross sectional independence
may be relaxed. However, two things are needed for the N -asymptotic results
reported in Theorem 1 to hold. First, we need some structure for the cross
sectional dependence resulting in an appropriately sorted sequence, {Sj′,T}j′

which is mixing in the sense of definition 3.7.1 of Galambos (1978) (this is
similar to standard strong mixing but applied only to the upper tail of the
relevant distribution). Secondly we need a bound on the probability that any
two Sj,T will take large values. A possible bound is given by expression (3.62)
of Galambos (1978).

For finite N , critical values of the nuisance parameter free distribution
may be obtained by simulation. 5% critical values for a selection of k and N
are given in table 1.
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3 The new method of separating poolable from

nonpoolable series

For further use define the following. Let Yi = (yj1 , . . . ,yjM
), i = {j1, . . . , jM}

and ti = (tj1,T , . . . , tjM ,T )
′. Also define ij = {j}, {1, . . . , N} ≡ i1,N and i−j

such that
i−j ∪ ij = i

We now define the object we wish to estimate. To simplify the analysis we
assume that there exists one cluster of series with equal βj = β. If all series
have different βj then without loss of generality we assume that β1 ≡ β. For
the time being we will assume that there exists just one cluster of series with
equal βj and all the rest of the series have different βj. The more general
case is straightforward to deal with and will be discussed briefly later. For
every series yj,t (and associated set of predetermined variables xj,t) define the
binary object Ij which takes the value 0 if βj = β and 1 if βj = β. Then,
Ii = (Ij1 , . . . , IjM

)′. We wish to estimate Ii1,N . We denote the estimate by

Îi1,N .

To do so we consider the following procedure.

1. Set j = 1 and ij = {1, . . . , N}.
2. Calculate the Ss

T -statistic for the set of series Yij . If the test does not

reject the null hypothesis βi = 0, i ∈ ij, stop and set Îij = (0, . . . , 0)′.
If the test rejects go to step (3).

3. Set Îil = 1 and ij+1 = i−l
j , where l is the index of the series associated

with the minimum ST,s over s. Set j = j + 1. Go to step (2).

In other words, we estimate a set of binary objects that indicate whether a
series is poolable or not. We do this by carrying out a sequence of poolability
tests on a reducing dataset where the reduction is carried out by dropping
series for which there is evidence of nonpoolability. A large individual Sj,T -
statistic is used as such evidence.

We will discuss conditions for the consistency of Îi1,N as an estimator of
Ii1,N , for infinite N and T . We denote the number of poolable series by N1

and the number of nonpoolable series N2 = N − N1. We need the following
assumption

Assumption 3 There exists 0 < α < 1 such that if the number of series for
which βj = β is at most O(Nα) the panel estimator of β using all series is
consistent.
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Remark 3 Assumption 3 is needed because if the panel estimator is not
consistent then it is not possible to guarantee that no poolable series will
removed from the dataset before all nonpoolable ones have been removed. For
example, it is straightforward to show that for exogenous regressors, xj,t and
OLS estimation both for panel datasets and individual series if N2/N1 → 0
then the panel estimator is consistent.

Formally, we will show that

Theorem 2 Under assumptions 1 and 2 and if (i) limT→∞ αT → 0 (ii)
limT→∞ lnαT /T = 0, where αT is the significance level used for the poolability
test and (iii)N → ∞, and N2 satisfies assumption 3, then

lim
N,T→∞

Pr(
N∑

j=1

|Îij − Iij | > 0) = 0 (6)

Note the similarities between this setup and the variety of tests of rank
where a sequence of tests are needed to determine the rank of a matrix (see
e.g., Camba-Mendez and Kapetanios (2001) or Camba-Mendez, Kapetanios,
Smith, and Weale (2003)).

A weaker result can be established for a fixed significance level, α.

Theorem 3 Under assumptions 1 and 2, N → ∞, and if N2 satisfies as-
sumption 3, then

lim
N,T→∞

Pr(|Îij − Iij | > 0) = 0,∀j (7)

It is clear that our procedure is very general. It can be applied using
any poolability test. The main ingredients are a poolability test and a cri-
terion for choosing which series to classify as nonpoolable at each step. Our
choice of using the maximum difference between an estimator of the param-
eter vector from an individual series and one from the pooled dataset seems
uncontroversial. The new poolability test is ideally suited for this choice of
metric and is therefore adopted.

Before concluding this section, we discuss the possible case of two or more
different clusters of series in the panel dataset each with a common value of
β within the cluster but different across clusters. Clearly the clusters need to
be of different orders of magnitude to satisfy assumption 3. Our procedure
will inevitably end with the larger cluster being classified as poolable and the
other cluster as nonpoolable. In one sense this is the correct conclusion since
the two clusters should not be pooled. On the other hand, the cluster which
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is not selected as a poolable cluster, should still be analysed using panel
methods. As a result it is possible to restart the procedure with only the
series which have been classified as nonpoolable from the initial application
of the procedure. Then, the second cluster will be identified. The sequential
application of the method can be continued until all potential clusters have
been identified.

4 Monte Carlo Study

In this section we carry out a Monte Carlo investigation of our new method.
We consider the following setup. Let

yj,t = φjyj,t−1 + εj,t, j = 1, . . . , N, t = 1, . . . , T (8)

where εj,t ∼ N(0, 1). We investigate the new method along a number of
different dimensions for the above model. Namely, we consider variations
in N , T and φj. More specifically, we consider T ∈ {50, 100, 200, 400} and
N ∈ {5, 10, 15, 20, 25, 30}.

For φj we consider the following setup: φj = 0.5 with probability δ over j
and φj ∈ (γ1, γ2) with probability 1− δ. This is a general setup designed to
address a number of issues not widely discussed in the literature. Obviously,
the degree of variation in φj under the alternative hypothesis is of great im-
portance. Further, the choice of δ is likely to affect the performance of the
new method. We set δ ∈ {0.25, 0.5, 0.75}.

We choose γ1 = 0.05 and γ2 = 0.95. The performance measure we use is
the estimated probability of classifying a series as nonpoolable. This should
tend to zero for poolable series and to one for nonpoolable series. Denote the
number of Monte Carlo replications by B. This probability is calculated as
follows in our experiments.

P̂ (Iiu = 1|Iiu = s) =
1

NsB

B∑
b=1

∑
Iiq =s

Îb
iq (9)

where Ns = N(1 − δ)s + Nδ(1 − s) and u denotes a generic series. Results
are presented in Table 2. We refer to the new method as Sequential Panel
Selection Method (SPSM).

We also carry out a Monte Carlo evaluation of the new test. The setup
is the same as above. Tables 3 and 4 present the probability of rejection
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under the null hypothesis of φj = 0.5 and under the alternative hypothesis
where φj = 0.5 with probability δ over j and φj ∈ (γ1, γ2) with probability
1− δ. We choose γ1 = 0.25 and γ2 = 0.75 for these experiments. Results for
the null hypothesis are presented in Table 3 and for the alternative in Table 4.

A number of conclusions emerge from these Tables. First, we comment
on the performance of the SPDM method. We note that the performance of
SPSM in terms of classifying poolable series as poolable is in general satis-
factory. The probability of misclassification never exceeds 15%. This is to
be expected given that the method is based on a test whose null hypoth-
esis is that of a set of series being poolable. On the other hand, as the
number of observations increases we see that this probability falls mainly for
δ = 0.50, 0.75. This probability also falls with the number of series included
in the dataset. This is in line with the asymptotic result in Theorem 3. For
example, we see that for N = 30, T = 400 and δ = 0.75 this probability is
only 0.2%.

Moving on to the ability of SPSM to classify nonpoolable series as non-
poolable we see that the probability of that happening increases drastically
with T . It does not seem to be affected by N or δ. Given that the test is
based on a supremum of a set of statistics this is perhaps to be expected since
only the behaviour of one series matters for the test in each sample. We note
here the difference between our conclusion and that reached by Kapetanios
(2003) where similar techniques are advocated to separate I(0) from I(1) se-
ries in a panel. There the test used is based on an average over a set of
Dickey Fuller statistics. As a result that procedure is materially affected by
the choice of δ and N .

Moving on to the properties of the Ss
T test we see that it is very well

behaved under the null hypothesis. The estimated rejection probability never
differs from 5% by more than 1.3% except for one case where it is equal to
7.5% but for a sample of 30 observations. The power of the test increases
with T , N and decreases with δ.

5 Conclusions

The use of panel datasets for the investigation of a number of economic phe-
nomena has been increasing recently. Both the availability of larger datasets
and the development of new estimation methods methods specifically de-
signed for panel datasets can account for this.
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An important advantage of panel methods is their ability to improve in-
ference compared to single unit methods. Nevertheless, this implies that the
parameter restrictions implied by the panel structure are valid. Poolability
tests exists to help with this problem but if they reject the null hypothesis of
poolability the researcher is often uncertain about the cause of the rejection,
or in particular about the identity of the series that caused this rejection.
In other words a method that could distinguish poolable from nonpoolable
series within a panel dataset would be of interest to empirical researchers.

This paper has suggested such a method. It is based on the sequential
use of a poolability test combined with a criterion for removing series one
at a time from the dataset when the test rejects. In our implementation the
maximum difference between an individual and a panel estimator has been
used as such a criterion. Although, we have developed the formal components
of our method using a particular new poolability test it is clear that similar
methods can be developed based on other pooolability tests. Our Monte
Carlo analysis has clearly shown that both the new test and new method
work satisfactorily. Further research can illustrate both the use of the new
method in empirical contexts and the potential for alternative poolability
tests to give rise to methods that improve upon the results reported here.

9



Appendix

Proof of Theorem 1

As T → ∞, each of ST,j tends to a χ2
k random variable as discussed in the

text. For finite N , it is then obvious that the T−asymptotic distribution of
Ss

T will be nuisance parameter free under the null hypothesis and will depend
only on N and k. The above relies on independence of the individual test
statistics which follows from the efficiency of the panel estimator under the
null hypothesis under Assumption 1 and independence of xj,t and εj,t over j.
Critical values are reported in Table 1.

If N → ∞ as well, we can characterise the asymptotic distribution of
Ss

T using sequential asymptotics. In particular, we allow T → ∞ and then
N → ∞. For T → ∞, we have a set of N χ2

k distributed random variables.
As N → ∞ these random variables become independent since the rate of
convergence of β̃ is

√
TN whereas the rate of convergence of β̂j is only

√
T

for all j. So we want the asymptotic distribution of the supremum of a set
of N independent χ2

k random variables as N → ∞.

To obtain this we use results from the asymptotic theory of extreme order
statistics. Following Arnold, Balakrishnan, and Nagaraja (1992) or Galam-
bos (1978), there exist only three forms for the asymptotic cumulative dis-
tribution function of an appropriate normalisation of this statistic, given by
bNSs

T + aN . It is not always the case that such an asymptotic representation
exists. These cumulative distributions are given by

G1(x, α) =

{
0 ifx ≤ 0

e−x−α
x > 0;α > 0

(10)

G2(x, α) =

{
e−(−x)α

x < 0;α > 0
1 x ≥ 0

(11)

and
G3(x) = e−e−x

(12)

According to Theorem 8.3.2 of Arnold, Balakrishnan, and Nagaraja (1992)
the distribution can be of the form G2 only if F−1

k (1) is finite where Fk(.) is
the cdf of a χ2

k random variable. Since F−1
k (1) = ∞, G2 is not the form of

the asymptotic distribution.

The distribution is G1 iff the following condition applies

lim
t→∞

1− Fk(tx)

1− Fk(t)
= x−α (13)
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But by applying L’Hopital’s rule we can easily see that this limit is infinity
for x > 1 using Fk(x) = Γx/2(k/2)/Γ(k/2) and fk(x) =

1
2k/2Γ(k/2)

e−x/2x(k/2)−1

where Γa(b) ≡ ∫ a

0
e−tta−1dt is the incomplete Gamma function. Thus, we

need to either verify that G3 is the appropriate distribution or conclude that
no such distribution exists.

To check whether G3 is the appropriate distribution we use the third
von Mises condition given in Theorem 8.3.3 of Arnold, Balakrishnan, and
Nagaraja (1992). This condition states that the asymptotic distibution is G3

iff

lim
x→F−1(1)

d

dx

{
1− Fk(x)

fk(x)

}
= 0 (14)

where fk(x) is the pdf of a χ2
k random variable.

The above condition is equivalent to

lim
x→∞

−f
′′
k (x)(1− Fk(x)) + f ′

k(x)f(x)

2fk(x)f ′
k(x)

= 1 (15)

where f ′
k(x) and f

′′
k (x) are the first and second derivatives of f(x). Then, it

is easy to see that we need to prove

lim
x→∞

−f
′′
k (x)(1− Fk(x))

fk(x)f ′
k(x)

= 1 (16)

Simple algebra indicates that for the χ2
k pdf

lim
x→∞

−f
′′
k (x)

f ′
k(x)

= 1/2 (17)

Further, by a double application of L’Hopital’s rule, it follows that

lim
x→∞

1− Fk(x)

fk(x)
= 2 (18)

proving that the required distribution is indeed G3. Then, by part (iii) of
theorem 8.3.4 of Arnold, Balakrishnan, and Nagaraja (1992) we have that
possible (but not unique) expressions for aN and bN are given by:

aN = F−1(1−N−1), bN = F−1(1−(Ne)−1)−F−1(1−N−1) or bN = [Nf(aN)]
−1

(19)
Finally, example 8.3.4 of Arnold, Balakrishnan, and Nagaraja (1992) implies
that bN ∼ logN and that Ss

T = Op(logN).

Consistency of the test readily follows since, under the alternative, ST,j =
Op(T ) and, therefore, Ss

T = Op(T logN).
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Proof of Theorem 2

The theorem follows from the following considerations. For all Îij such that
for some l ∈ ij, Iil = 1 we know that the poolability test on the set of se-
ries Yij will reject with probability 1 by the consistency of the poolability
test and condition (ii) of Theorem 2 combined with standard arguments on
sequences of tests as discussed in , e.g., Hosoya (1989). Consistency of the
poolability test follows from Theorem 1. This implies that Ss

T is at least
Op(T

1/2) even for one nonpoolable series in the panel. Further, we know
using assumption 3 that with probability 1, Sl,T > Sm,T asymptotically if
Iil = 1 and Iim = 0. As a result, all series for which Iil = 1 will be identi-
fied as such, by the sequential approach with probability approaching 1. By
condition (i) of Theorem 2 we know that if Iil = 0 for all j in ij then the
poolability test will reject with probability equal to αT → 0.

Proof of Theorem 3

We start by noting that, by assumption 3, with probability 1 all series for
which Iil = 1 will be detected as nonpoolable by the sequential test before
any series for which Iil = 0. This is because the individual Sj,T tests for
nonpoolable series are Op(T

1/2) whereas they are Op(1) for all nonpoolable
series. When all nonpoolable series have been removed from the dataset, a
poolability test will be carried out on a set of poolable series. With prob-
ability α this test will reject. In general, with, at most, probability α̃k, k
or more redundant poolability tests will be carried out. Note that α̃ may
be different from α as the sequence of tests is not made up of independent
tests. However, it is guaranteed that α̃ < 1. Therefore, the probability that
k poolable series are missclassified as nonpoolable is O(α̃k) and tends to zero
exponentially with k. Thus, for any given series, out of the N1 poolable se-
ries, the probability that it will be missclassified as nonpoolable tends to zero.
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Table 1: Simulated 5% critical values for the Ss
T test

Ss
T

N/k 1 2 3 4 5 6 7 8 9 10
1 4.021 5.943 7.765 9.324 11.157 12.513 14.174 15.574 16.696 18.414
2 5.048 7.391 9.299 11.195 12.870 14.495 16.158 17.636 19.033 20.367
3 5.633 8.236 10.230 12.007 14.007 15.396 17.100 18.766 20.022 21.873
4 6.330 8.790 10.771 12.665 14.525 15.973 17.868 19.518 21.083 22.383
5 6.585 9.242 11.189 13.329 14.927 16.742 18.445 19.944 21.638 23.295
6 6.801 9.469 11.668 13.577 15.282 17.135 19.021 20.654 22.112 23.747
7 7.152 9.830 12.010 13.959 15.941 17.717 19.299 20.990 22.876 23.838
8 7.496 10.005 12.163 14.413 16.297 17.893 19.762 21.211 22.870 24.635
9 7.675 10.265 12.518 14.419 16.514 18.311 20.120 21.468 23.221 24.757
10 7.794 10.681 12.870 14.801 16.708 18.278 20.122 21.691 23.684 25.158
15 8.481 11.372 13.509 15.665 17.664 19.452 21.262 22.832 24.644 26.472
20 9.129 11.948 14.078 16.494 18.038 20.318 21.916 23.608 25.473 26.904
25 9.534 12.328 14.809 16.945 18.859 20.926 22.420 24.367 25.957 27.662
30 9.751 12.785 15.147 17.212 19.437 21.146 22.967 24.551 26.576 28.096
35 10.041 13.147 15.482 17.776 19.674 21.537 23.342 25.173 26.835 28.575
40 10.458 13.317 15.864 18.111 19.989 21.848 23.826 25.470 27.247 28.982
45 10.593 13.561 16.069 18.239 20.166 22.213 23.944 25.774 27.680 29.262
50 10.782 13.851 16.114 18.427 20.360 22.337 24.271 26.063 27.760 29.365
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Table 2: SPSMa

%Poolab (N, T ) 50 100 200 400

5 (
0.062
0.231) (

0.116
0.349) (

0.150
0.490) (

0.150
0.611)

10 (
0.038
0.233) (

0.081
0.376) (

0.128
0.516) (

0.152
0.640)

0.25 15 (
0.029
0.235) (

0.056
0.384) (

0.102
0.546) (

0.107
0.661)

20 (
0.014
0.220) (

0.039
0.392) (

0.074
0.552) (

0.080
0.672)

25 (
0.009
0.221) (

0.016
0.389) (

0.031
0.559) (

0.035
0.689)

30 (
0.009
0.218) (

0.017
0.383) (

0.026
0.557) (

0.023
0.685)

5 (
0.036
0.228) (

0.034
0.417) (

0.031
0.574) (

0.025
0.695)

10 (
0.018
0.246) (

0.025
0.406) (

0.024
0.573) (

0.015
0.693)

0.50 15 (
0.011
0.228) (

0.010
0.408) (

0.010
0.577) (

0.007
0.704)

20 (
0.007
0.221) (

0.007
0.396) (

0.006
0.573) (

0.004
0.701)

25 (
0.004
0.222) (

0.004
0.396) (

0.005
0.569) (

0.004
0.699)

30 (
0.004
0.220) (

0.005
0.390) (

0.003
0.567) (

0.003
0.690)

5 (
0.021
0.241) (

0.017
0.425) (

0.013
0.601) (

0.013
0.726)

10 (
0.010
0.245) (

0.009
0.446) (

0.006
0.601) (

0.005
0.716)

0.75 15 (
0.006
0.254) (

0.006
0.416) (

0.004
0.593) (

0.004
0.708)

20 (
0.004
0.231) (

0.003
0.403) (

0.003
0.569) (

0.002
0.701)

25 (
0.004
0.224) (

0.003
0.397) (

0.002
0.567) (

0.002
0.697)

30 (
0.003
0.218) (

0.002
0.392) (

0.002
0.559) (

0.002
0.695)

a%Poolab denotes the proportion of series which are poolable. For the notation (
a
b) we have that

a gives the probability that an poolable series will be classified as nonpoolable, whereas b gives the
probability that an nonpoolable series will be classified as nonpoolable.
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Table 3: Rejection Probability Under the Nulla

Ss
T

%Poolab (N, T ) 50 100 200 400
5 0.052 0.047 0.054 0.052
10 0.063 0.049 0.049 0.046

1 15 0.066 0.052 0.047 0.054
20 0.065 0.057 0.047 0.058
25 0.062 0.063 0.046 0.057
30 0.074 0.059 0.049 0.059

a%Poolab denotes the proportion of series which are poolable.

Table 4: Rejection Probability Under the Alternativea

Ss
T

%Poolab (N, T ) 50 100 200 400
5 0.250 0.473 0.689 0.867
10 0.385 0.693 0.899 0.991

0.25 15 0.493 0.812 0.973 0.999
20 0.543 0.860 0.991 1.000
25 0.547 0.878 0.995 0.999
30 0.627 0.913 0.999 1.000
5 0.182 0.345 0.556 0.762
10 0.322 0.569 0.852 0.965

0.50 15 0.333 0.637 0.905 0.987
20 0.410 0.728 0.952 0.997
25 0.430 0.784 0.967 1.000
30 0.509 0.828 0.988 0.999
5 0.127 0.217 0.355 0.528
10 0.182 0.322 0.521 0.749

0.75 15 0.219 0.360 0.659 0.853
20 0.277 0.525 0.794 0.957
25 0.269 0.525 0.845 0.977
30 0.306 0.546 0.898 0.989

a%Poolab denotes the proportion of series which are poolable.
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